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Abstract

The effectiveness of alternate models for estimating trading
day and moving holiday effects in economic time series are
examined. Several alternative approaches to modeling Easter
holiday effects will be examined, including a method sug-
gested by the Australian Bureau of Statistics that includes a
linear effect. In addition, a more parsimonious technique for
modeling trading day variation will be examined by apply-
ing the day-of-week constraints from the weekday/weekend
trading day contrast regressor found in TRAMO and X-12-
ARIMA to stock trading day.

Keywords: moving holiday effects, forecast revisions, sea-
sonal adjustment, likelihood statistics

Disclaimer

This report is released to inform interested parties of ongoing
research and to encourage discussion of work in progress. Any
views expressed on statistical, methodological, technical, or
operational issues are those of the author and not necessarily
those of the U.S. Census Bureau.

1 Introduction

This study examines the effectiveness of some alternate mod-
els for estimating working day and moving holiday effects in
economic time series. It is focused on two areas of interest:
alternate models for Easter holiday effects, and constrained
stock trading day regressors.

Several approaches to modeling Easter holiday effects in
U. S. Retail Sales series are examined, including adaptations
of Easter regressors studied by the Australian Bureau of Statis-
tics (see Zhang, McLaren, and Leung (2003)), as well as new
models that break the Easter model into separate weekday and
weekend effects.

In addition, a more parsimonious technique for modeling
trading day variation is examined by developing a weekday-
weekend constrained version of the stock trading day regres-
sor as described in Findley and Monsell (2007), which im-
poses flow day-of-week effect constraints upon the day-of-
week effect component of the stock trading day model of Bell
(1984) used in X-12-ARIMA. These constrained trading day
variables will be applied to industrial inventory series.

2 Alternate Models for Easter

The most common moving holiday effect for monthly flow se-
ries found in U. S. economic series is the Easter effect. For
many retail sales series, levels of sales are elevated in the

period just before the Easter holiday (which varies between
March 22 and April 25). Because of this, X-12-ARIMA has
long had a built in regressor corresponding to the Easter holi-
day.

The current Easter regressor within X-12-ARIMA assumes
that the level of activity changes on the w−th day before the
holiday for a specified w, and remains at the new level until
the day before the holiday. For a given effect window w, the
Easter regressor is generated as

E(w, t) =
nw,t

w
− µw,t (1)

where nw,t is the number of the w days before Easter fall in
month t, and µw,t are the “long-run” monthly (or quarterly)
means of the first part of the E(w, t) equation (corresponding
to the first 400 year period of the Gregorian calendar, 1583-
1982)1.

There have been two main critiques of this type of Easter
regressor. One is that assuming the level of activity is elevated
by a constant level for the w days before Easter is unrealis-
tic. A better measure of sales activity before Easter would al-
low for a linear increase in activity before the Easter holiday.
Zhang, McLaren, and Leung (2003) studied the performance
of an Easter regressor that could handle such an effect. It was
found to perform about as well as the current Easter regressor
in Equation (1). An Easter regressor similar to the quadratic
regressor of Zhang, McLaren, and Leung (2003) will be ap-
plied to retail sales series.

Some analysts have suggested that an allowance be made
for an assumed decline in activity during Good Friday and the
Easter holiday itself. Their argument is that not including such
an effect leads to over-adjustment of the Easter holiday effect.
This could be particularly important when Easter occurs late
in March.

Zhang, McLaren, and Leung (2003) developed an alternate
regressor for a similar effect in Australian series. Their model
consisted of two regressors, one which modeled an assumed
increase in the level of the series before Good Friday, and an-
other to handle the period between Good Friday and Easter
Monday, a national holiday in Australia. Again, alternate re-
gressors similar to the Australian model will be used for US
series.

2.1 2-Part Easter Regressor

The first alternate form for modeling the Easter effect assumes
that one can break the Easter effect into two parts: a pre-Easter
effect from the w−th day before Easter to the day before Good
Friday, and an Easter Holiday effect starting on Good Friday

1Note that the long term mean is in the same units as the ratio of days in
the effect window w in the first part of Equation (1).



and lasting until Easter. This takes the form of two regressors
- a pre-holiday effect (where sales are expected to be elevated)
and an effect for the duration of the holiday (where sales are
expected to decline). These regressors will be referred to as
two-part Easter regressors throughout this paper.

Let nBE
t be the number of days from the w-th day before

Easter to the day before Good Friday that fall in month t, and
nDE

t be the number of days between Good Friday and Easter
(inclusive) that fall in month t. The pre-holiday regressor is
generated as

BE(w, t) =
nBE

t

w − 3
− µBE

w,t (2)

and the effect during the holiday is generated as

DE(t) =
nDE

t

3
− µDE

t (3)

where again, µBE
w,t and µDE

w,t are the “long-run” monthly (or
quarterly) means used to center the respective Easter regres-
sors.

2.2 Linear Easter Regressor

The next regressor assumes the level of activity before Easter
increases linearly before the holiday. This increase in level
starts at the w − th day before the holiday for a specified w,
and increases each day until the day before the holiday.

For a given effect window w for monthly series, let
nMarch,y be the number of days before Easter falling in March
(or the first quarter) for year y. The value for the linear Easter
regressor for March is taken to be

LE(w,March, y) =
n2

March,y

w2
− µLE

w,March (4)

and the value for April (or the second quarter) is

LE(w,April, y) =

(
1 −

(
n2

March,y

w2

))
− µLE

w,April (5)

where µLE
w,March and µLE

w,April are the “long-run” monthly (or
quarterly) means of the first part of equations (4) and (5). Val-
ues for all other months (or quarters) are assumed to be zero.

Note that we can construct two-part linear Easter re-
gressors analogous to those in Section 2.1. In this case, let
nBE

March,y be the number of days in the period starting w days
before Easter to the day before Good Friday that fall in March.
Then in the same way as in equation (4), we have

LBE(w,March, y) =
(nBE

March,y)2

w2
− µLE

w,March (6)

for the March (or first quarter) value of the pre-Good Friday
regressor. The value of this regressor for April (or the second
quarter) follows from equation (5) as

LBE(w,April, y) =

(
1 −

(
(nBE

March,y)2

w2

))
− µLE

w,April

(7)
with the values for the remaining months (or quarters) being
zero.

The second regressor for this two-part Easter regressor will
be the same Easter duration regressor that was defined earlier
in equation (3).

2.3 Weekend-Weekday Easter Regressors

The final proposed Easter model is one that assumes that the
change in the level of activity for weekend days (Friday, Sat-
urday, and Sunday) is different than the change for the week-
days leading up to Easter. This model will pool the effect for
the weekend and weekdays, so that there is a single regressor
for the weekend effect and a single regressor for the weekday
effect.

Let nwe,t be the number days in month t that fall on a Fri-
day, Saturday, or Sunday in the period 16 days before Easter,
inclusive, and nwd,t be the number days in month t that fall
on a Monday, Tuesday, Wednesday or Thursday in the period
16 days before Easter. Then the Weekend-Weekday Easter re-
gressors are

WE(t) =
nwe,t

8
− µwe (8)

WD(t) =
nwd,t

8
− µwd (9)

where µwe and µwd are the “long-run” monthly (or quarterly)
means of the first part of equations (8) and (9) corresponding
to the first 400 year period of the Gregorian calendar, 1583-
1982.

Note that this definition excludes Easter and includes Good
Friday in the weekend regressor defined in equation (8).
Another configuration would create a third regressor that
would try to capture an effect for Good Friday and Easter, a
Weekend-Weekday-Easter regressor.

Let nwee,t be the number of days in month t that fall on
a Friday, Saturday, or Sunday in the period 16 days before
Easter excluding Friday, inclusive, nwde,t be the number of
days in month t that fall on a Monday, Tuesday, Wednesday
or Thursday in the period 16 days before Easter, and ngfe,t be
the number of times Good Friday and Easter occur in month t.
Then the Weekend-Weekday-Easter regressors are

WEE(t) =
nwee,t

7
− µwee (10)

WDE(t) =
nwde,t

8
− µwde (11)

GFE(t) =
ngfe,t

2
− µgfe (12)

where µwee, µwde, and µgfe are the “long-run” monthly (or
quarterly) means of the first part of equations (10), (11) and
(12) corresponding to the first 400 year period of the Grego-
rian calendar, 1583-1982. Note that the regressor produced in
equations (9) and (11) are equivalent.



2.4 Modeling Diagnostics Used to Choose Between
Easter Models

An earlier study, Findley and Soukup (2000), shows how
comparing AIC values and analyzing graphs of out-of-sample
forecast errors can be used to determine if regARIMA models
should include moving holiday terms. The same diagnostics
will be used in this study, testing each of the different alternate
models in sequence to determine which Easter model should
be used.

The first utilizes likelihood-based model selection criterion
by comparing the values of AICC, a version of Akaike’s Infor-
mation Criterion also called the F-corrected AIC which con-
tains a correction for small sample size. Suppose the num-
ber of estimated parameters in the model, including the white
noise variance, is np. If after applying the model’s differenc-
ing and seasonal differencing operations, there are N data, and
if the estimated maximum value of the exact log likelihood
function of the model is denoted LN , then the formula for the
AICC criteria is:

AICCN = −2LN + 2np

(
1 − np + 1

N

)−1

(13)

Among competing models for a given times series, the
model with the smallest AICC value is the model preferred
by the criterion. For more information on AICC, see Hurvich
and Tsai (1989).

Another method for determining which Easter regressor to
choose is to examine out of sample forecast error plots avail-
able from X-12-Graph (see Hood (2002)). X-12-ARIMA’s
history spec is used to obtain differences of the accumu-
lating sums of squared forecast errors between the competing
models for forecast leads of interest (in this case, 1 and 12).
Accumulating forecast errors are computed for two compet-
ing models, and the difference between the values for the two
models are graphed.

The first model is preferred if the direction of the accumu-
lating differences is predominantly downward. We assume in
this case the forecast errors are predominantly smaller for the
first model.

If the direction of the accumulating differences is predom-
inantly upward, then we assume that the forecast errors are
predominantly larger for the first model, and prefer the second
model.

Often the forecast error differences do not appear to be go-
ing in any particular direction. Other times the direction of the
accumulating differences goes in one direction for one fore-
cast lag, and another direction for the other. In these cases, the
forecast error plots are inconclusive, and we cannot declare a
preferred model.

2.5 Application to Retail Sales Series

Currently 17 retail sales series published monthly by the Cen-
sus Bureau are adjusted for Easter effects (among other calen-
dar effects). Table 1 gives the names and descriptions of these
series.

Series Description of Retail Sales Series
s0b44510 Grocery
s0b445X0 Miscellaneous Food and Beverage
s0b44520 Miscellaneous Food
s0b44530 Beverage and Liquor
s0b44600 Health and personal care
s0b44611 Pharmacies
s0b44811 Men’s Clothing
s0b44812 Women’s Clothing
s0b4481L Miscellaneous and Luggage
s0b4481Y Miscellaneous Apparel
s0b45210 Department Stores (Excluding leased

departments)
s0b45212 Discount Department Stores (Excluding

leased departments)
s0b45231 Convenience Stores (Excluding leased

departments)
s0b45291 Super stores
s0b45299 Miscellaneous General Merchandise
s0b45310 Florists

Table 1: Descriptions of Retail Sales series modeled using the
Easter[8] regressor (Source: U.S. Census Bureau).

The Easter adjustments are generated from regARIMA
models fit to the series. The easter[8] regressor is used
for all the series (an Easter regressor where the window w in
equation (1) is 8). The data used to model the series will start
at January 1995 for each of the series.

The regARIMA model used by the Census Bureau to pro-
duce the monthly seasonal adjustments is the model used for
this study. The only part of the model that is changed through-
out this analysis is the model for Easter used (or not used).

Note that automatic outlier identification will not be per-
formed during the analysis. It would bias the model compar-
isons if different outliers were identified for different Easter
models.

2.5.1 AICC Results

The first comparison is between four models:

• the regARIMA model for the series with no Easter re-
gressor

• the regARIMA model with an easter[1] regressor

• the regARIMA model with an easter[8] regressor

• the regARIMA model with an easter[15] regressor

Note that these are the choices for Easter regressors used in
the aictest argument for Easter. The model that the min-
imum AICC criterion chooses most often in Table 2 is the
model with the easter[8] regressor, the Easter regressor
currently used by the Census Bureau for adjusting these se-
ries.



The third columns of Table 2 gives the difference between
the AICC of the preferred Easter model and that of the model
with no Easter regressor. Usually, an AICC difference of 1
is enough to select between a pair of models; models with
AICC difference less than one (in absolute value) cannot be
distinguished from one another.

Table 2 also gives the choice of the two-part Easter re-
gression model defined in Section 2.1. Note that in only one
case does the two-part Easter model have a better AICC than
the model AICC chose for the current Easter models - Retail
Sales of Miscellaneous Food and Beverage (s0b445X0). Only
seven of the series had an Easter duration regressor for one of
the two-part Easter models with a significant t-value (> 2.00).
For a majority of the series, the presence of the extra regressor
does not significantly improve the model.

Tables 3 gives the model choice due to AICC for the lin-
ear Easter regression model defined in Section 2.2. Note
again that the differences between the AICCs for the preferred
linear Easter model and the model with no Easter indicates
that the linear Easter should be in the model.

Also, there are six cases out of the sixteen series where the
two-part linear Easter model has a better AICC than the linear
Easter model AICC chose in Table 3. Again, for most of the
series, the extra regressor for the Good Friday to Easter effect
does not improve the model for most of the cases.

Table 4 gives the final choice of Easter regressor from
all the sets of Easter models, including the Weekend-Weekday
Easter model defined in Section 2.3, giving the preference be-
tween the linear Easter regressor and their current Easter re-
gressors from X-12-ARIMA as well as the Easter model that
performs best overall.

First, there does not seem to a discernable difference in the
likelihood statistics between the linear Easter regressor and the
current Easter regressor. There are only two cases where the
linear Easter regressor is the preferred model and the AICC
difference is greater than one.

The Easter model that is selected most often is the
Weekend-Weekday Easter model, and the easter[8] re-
gressor used currently is not selected at all. When we examine
the AICC differences between models with the current regres-
sor and models with the Easter regressor(s) with the lowest
AICC, there is a greater preference for the Weekend-Weekday
regressors; many differences are small for the linear Easter re-
gressors when it is preferred.

2.5.2 Forecast Error Plot

Examining the forecast error plots, two questions need to be
addressed:

• Does using an alternate Easter model offer an improve-
ment over the current methodology?

• Does using an alternate Easter model offer an improve-
ment over not using an Easter regressor at all?

For the first, the forecast plots offer some support for the
conclusions given by the AICCs - for one thing, the differ-
ences between using the easter[8] and linear Easter re-
gressors appear to be quite small. The graph for Retails Sales

Figure 1: Forecast Error plot comparing forecasts from mod-
els with Easter[8] and Linear Easter[15] regressors for Retail
Sales of Miscellaneous Food (s0b44520) (source: U. S. Cen-
sus Bureau).

of Miscellaneous Food (s0b44520) in figure 1 is an example
of this; the differences between the evolving sum of squared
forecast errors are extremely small, and a consistent pattern in
one direction or the other never develops.

A clearer indication of improvement is given for the
Weekend-Weekday regressor over the easter[8] regressor
in the forecast error plot of Retail Sales of Miscellaneous Ap-
parel and Luggage (s0b4481L) given in figure 2. The down-
ward slope and position of the line overall shows an improve-
ment in the forecasts using the Weekend-Weekday Easter vari-
ables (although there is movement upward in the last two
years).

In addition, some of the models with a preference for
easter[1] showed improvement over easter[8] as
well.

Figure 2: Forecast Error plot comparing forecasts from mod-
els with different Easter regressors for Retail Sales of Mis-
cellaneous Apparel and Luggage (s0b4491L) (source: U. S.
Census Bureau).



Choice of AICC Difference Choice of Choice of
Series Easter regressor Best Easter vs. None 2-Part Easter 2-Part vs. Current

s0b44510 easter[8] -57.4456 2-Part e[15] easter[8]
s0b44520 easter[8] -95.5329 2-Part e[8] easter[8]
s0b44530 easter[1] -6.2961 2-Part e[8] easter[1]
s0b445X0 easter[8] -66.2861 2-Part e[8] 2-Part easter[8]
s0b44600 easter[8] -19.6923 2-Part e[8] easter[8]
s0b44611 easter[8] -20.8301 2-Part e[8] easter[8]
s0b44811 easter[1] -26.2221 2-Part e[8] easter[1]
s0b44812 easter[8] -18.5871 2-Part e[8] easter[8]
s0b4481L easter[8] -19.5609 2-Part e[15] easter[8]
s0b4481Y easter[8] -19.7912 2-Part e[15] easter[8]
s0b45210 easter[8] -22.3665 2-Part e[8] easter[8]
s0b45212 easter[8] -24.5982 2-Part e[8] easter[8]
s0b45231 easter[15] -7.7293 2-Part e[15] easter[15]
s0b45291 easter[8] -14.6856 2-Part e[8] easter[8]
s0b45299 easter[15] -22.0504 2-Part e[15] easter[15]
s0b45310 easter[1] -33.972 2-Part e[8] easter[1]

Table 2: Choice of Current Easter Model (Data: Retails Sales Series 1992- 2006, Source: U.S. Census Bureau).

Choice of AICC Difference Choice of
Series Easter regressor Best Linear vs. None 2-Part Linear 2-Part Linear vs. Linear

s0b44510 linear e[8] -58.2565 2-Part linear e[15] linear e[8]
s0b44520 linear e[15] -95.7815 2-Part linear e[15] linear e[15]
s0b44530 linear e[8] -3.8603 2-Part linear e[8] 2-Part linear e[8]
s0b445X0 linear e[8] -69.1474 2-Part linear e[15] linear e[8]
s0b44600 linear e[15] -19.8071 2-Part linear e[15] linear e[15]
s0b44611 linear e[15] -21.107 2-Part linear e[15] linear e[15]
s0b44811 linear e[8] -21.903 2-Part linear e[8] 2-Part linear e[8]
s0b44812 linear e[8] -19.6466 2-Part linear e[8] linear e[8]
s0b4481L linear e[15] -20.203 2-Part linear e[15] linear e[15]
s0b4481Y linear e[15] -20.4691 2-Part linear e[15] linear e[15]
s0b45210 linear e[15] -22.0163 2-Part linear e[8] 2-Part linear e[8]
s0b45212 linear e[8] -23.7728 2-Part linear e[8] 2-Part linear e[8]
s0b45231 linear e[15] -7.4536 2-Part linear e[8] linear e[15]
s0b45291 linear e[15] -13.8148 2-Part linear e[8] 2-Part linear e[8]
s0b45299 linear e[15] -20.0451 2-Part linear e[15] 2-Part linear e[15]
s0b45310 linear e[8] -34.5496 2-Part linear e[8] linear e[8]

Table 3: Choices of Linear and 2-Part Easter regression model (Data: Retails Sales Series 1992- 2006, Source: U.S. Census
Bureau).



Choice of AICC Difference AICC Difference
Series Current vs. Linear Current vs. Linear Best Overall Best vs. Easter[8]

s0b44510 linear e[8] 0.8109 linear e[8] -0.8109
s0b44520 linear e[15] 0.2486 linear e[15] -0.2486
s0b44530 easter[1] -0.0363 easter[1] -3.6136
s0b445X0 linear e[8] 1.4361 linear e[8] -2.8613
s0b44600 linear e[15] 0.1148 linear e[15] -0.1148
s0b44611 linear e[15] 0.2769 linear e[15] -0.2769
s0b44811 easter[1] -1.4287 easter[1] -7.1796
s0b44812 linear e[8] 1.0595 Weekend-Weekday-Easter -5.9601
s0b4481L linear e[15] 0.6421 Weekend-Weekday -2.8882
s0b4481Y linear e[15] 0.6779 Weekend-Weekday -3.0916
s0b45210 2-Part linear e[8] 0.8783 Weekend-Weekday -15.2059
s0b45212 2-Part linear e[8] 0.629 Weekend-Weekday -10.9756
s0b45231 easter[15] -0.2757 Weekend-Weekday -5.8173
s0b45291 easter[8] -0.5907 Weekend-Weekday -10.485
s0b45299 easter[15] -1.2366 Weekend-Weekday -11.1531
s0b45310 linear e[8] 0.5776 linear e[8] -3.0754

Table 4: Choice of Easter Regressor (Data: Retails Sales Series 1992- 2006, Source: U.S. Census Bureau).

As is often the case with forecast error plots, the results are
sometimes inconclusive, and there is no clear model choice
indicated by the graphs. Often there is a split verdict, with
a clear winner for lag one forecasts and another for lead 12
forecasts.

For the 16 Retail Sales series in this study,

• 6 had forecast error plots that showed significant forecast
improvement using a model with some other Easter re-
gressor than the easter[8] regressor;

• 7 had split preferences for the choice of model, and

• 3 were inconclusive.

For forecast error plots where the best model found by
AICC was compared to using a model with no Easter regressor
at all, the results differed greatly from the conclusions arrived
at by AICC. Only six of the series with the AICC choice of
Easter improve the forecast performance of the model over a
model with no Easter. Curiously, most of these series are using
either the easter[1] regressor or one of the linear Easter re-
gressors, as is the case with Retail Grocery Sales (s0b44510)
in Figure 3.

As before, often the plots were inconclusive or split in their
verdict as to the best model. However, in five cases there ap-
pears to be no benefit to using Easter regressors in the reg-
ARIMA model, at least in terms of forecasting performance.
Figure 4 shows an example for a series where the model with-
out any Easter regressors was preferred, despite AICC consis-
tently prefering the model with the Weekend-Weekday Easter
regressors.

Further examination of these series should be done to deter-
mine if an Easter adjustment is suitable for these 5 series.

Figure 3: Forecast Error plot comparing forecasts from mod-
els with No Easter and Linear Easter[8] regressors for Retail
Grocery Sales (s0b44510).

3 Constrained Stock Trading Day

Trading day regressors are often used in flow series such as
retail sales to adjust for the effect that the different number
of days in the calendar has on the level of the series. The
regressors defined in Bell and Hillmer (1983) have been used
in the X-12-ARIMA from its inception.

For inventory series, Bell (1984) and Bell (1995) developed
regressors that could be used for the same purpose. For a given
integer value w assumed to be the day of the month where
inventory is taken, these regressors are defined as



Figure 4: Forecast Error plot comparing forecasts from mod-
els with No Easter and Weekend-Weekday Easter regres-
sors for Retail Sales of Miscellaneous Apparel and Luggage
(s0b4491L) (source: U. S. Census Bureau).

I1,t =


1 w̃th day of month t is a Monday
−1 w̃th day of month t is a Sunday
0 otherwise

,

· · · , I6,t =


1 w̃th day of month t is a Saturday
−1 w̃th day of month t is a Sunday
0 otherwise

,

(14)
where w̃ is the smaller of w and the length of month t; w = 31
assumes that inventory is taken at the end of the month.

Constrained flow trading day regressors were first de-
veloped for the TRAMO program (see Gómez and
Maravall (1997)), and are also implemented in X-12-
ARIMA as td1coef in the variables argument of the
regression spec. The programs use a weekday-weekend
contrast model that imposes separate equality constraints on
weekday and weekend day of week coefficients, ie,

β1 = β2 = β3 = β4 = β5

β6 =β7

(15)

where β1 be the day-of-week coefficient for Monday, β2 the
day-of-week coefficient for Tuesday, etc.

The flow regressor that corresponds to this constraint is sim-
ple to generate. Let NWD

t be the number of weekdays in
month/quarter t and NSS

t be the number of Saturdays and
Sundays in month/quarter t. The constrained flow regressor
implied by the constraint given in (15) is given below:

TD(t) = NWD
t − 5

2
(NSS

t ) (16)

Findley and Monsell (2007) derives how day-of-week ef-
fect constraints like the one used to generate the regressors
in equation (16) can be imposed upon the stock trading day
model of Bell (1984) and Bell (1995) used in X-12-ARIMA,

and gives weights for deriving such a set of constrained trad-
ing day regressors from a stock trading day regression matrix
with sample day w generated as in equation (14).

For this paper, we will generate a constrained stock trading
day variable based on the flow trading day constraints given
in (15). As shown in Findley and Monsell (2007), the stock
trading day regressor that results from this constraint is

Dt = −3
5
I1,t −

1
5
I2,t +

1
5
I3,t +

3
5
I4,t + I5,t (17)

where I1,t, I2,t, ..., I5,t are taken from the definition of stock
trading day given in (14).

Trading day adjustments of inventory series are currently
rare and are not done for production at the Census Bureau.
One reason may be that the full stock trading day model is
not parsimonious; there are too many parameters to estimate
such a small effect. Perhaps using a constrained regressor will
allow for an efficient estimation of the effect.

3.1 Analysis of Industrial Inventory Series

To examine the possibility that a constrained stock trading day
effect can be found in Census Bureau inventory series, a group
of 91 industrial inventory series will be modeled for stock trad-
ing day. We are going to assume that inventory is taken at the
end of the month for these series, so we will be using end-of-
month stock trading day regressors generated as in (14) with
w = 31.

Three possible models are examined - a model without
stock trading day regressors, a model with unconstrained end-
of-month stock trading day, and a model with constrained end-
of-month stock trading day as in (17).

The stock trading day regressors given above will be added
to the model currently used in production at the Census Bu-
reau. All the data sets are from January 1992 to October 2006.

To examine which inventory series would be most amenable
to including the stock trading day, a standard log-likelihood
difference asymptotic chi-square test will be used.

When one regARIMA model is of the correct type and is
nested in (i.e. is a special case of) of another model, then for
long enough time series, −2{L(1)

N −L
(2)
N } = 2

{
L

(2)
N − L

(1)
N

}
varies approximately like a chi-square variate with n

(2)
p −n

(1)
p

degrees of freedom. That is, asymptotically

−2{L(1)
N − L

(2)
N } ∼ χ2

n
(2)
p −n

(1)
p

(18)

holds, under standard assumptions, including the requirement
that the true model is invertible, i.e. without unit magnitude
roots in the MA polynomial (see Taniguchi and Kakizawa
(2000), p. 61). The same result applies to AICC differences
because

(
n

(1)
p + 1

)
/N and

(
n

(2)
p + 1

)
/N tend to zero as N

increases.
Using a level of significance of α = 0.05, there are 21 se-

ries where the model with no trading day was rejected in favor
of a model with stock trading day. However, for one of the
series, the trading day model was rejected for inducing a vi-
sually signficant trading day peak in the seasonally adjusted



series (see Soukup and Findley (1999) for a definition of a vi-
sually significant spectral peak). Another series was rejected
because the model without trading day had better forecasting
performance than the model with stock trading day.

For the 19 remaining series:

• the unconstrained stock trading day regressors were sig-
nificant for three series;

• the constrained stock trading day regressor was signifi-
cant for eight series;

• both the constrained and unconstrained regressors were
significant for eight series.

When both the constrained and unconstrained regressors were
found to be significant, the constrained stock trading day was
always preferred over the unconstrained stock trading day re-
gressors using an appropriate chi-square test. However, the
unconstrained stock trading day regressors were preferred for
two of these series when further examination showed that the
constrained stock trading day left a visually significant visual
peak in the regARIMA residuals.

To summarize: in 14 of the 19 series where a stock trad-
ing day regressor was found significant, the constrained stock
trading day model was the preferred model. In addition, for 12
of the 14 series where the constrained stock trading day model
is preferred, additional model criteria were found to support
this choice, including

• reducing visually significant spectral peaks;

• reducing the number of lags with significant Ljung-Box
statistics;

• reducing out-of-sample forecast errors for one and 12
step ahead forecasts.

4 Further Research

For the Easter regressors, work is needed to understand more
fully the lack of agreement between the AICC results and the
graphs of the evolving forecast error. Examining model coef-
ficients generated at each stage of the history run may provide
insight on why the forecast performance seems so erratic when
only the Easter variables are changed. Applying the findings
of Wills (2006) to determine if many of the series would ben-
efit from Easter adjustment will also be done.

Also, more work can be done refining the Weekend-
Weekday Easter model. Giving the different weekend dates
different weights (i.e., giving more weight to Saturdays and
less weight for Fridays and Sundays) should be examined.

For the constrained stock trading day regressors, the regres-
sors will be evaluated for retail inventories to see if more series
with strong evidence of stock trading day can be found. The
current results are promising enough to have this regressor in-
cluded in a future release of X-12-ARIMA.
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