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1. Introduction 
 
Before a series is seasonally adjusted, it should be shown 
that the series is seasonal.  When using X-12-ARIMA for 
seasonal adjustment, two diagnostics commonly used to 
determine seasonality are M7, a diagnostic developed at 
Statistics Canada for X-11-ARIMA, and the F-test for 
seasonality assuming stability, referred to as the D8 F-test 
for stable seasonality; however, the statistical properties 
of these are not well understood.  In this paper, we 
examine properties of these statistics and compare them to 
those of two other diagnostics available in the program: 
the presence of seasonal peaks in the spectrum of the 
differenced original series, and a model-based chi-squared 
test of fixed seasonal effects. We also examine a 
modification of the chi-squared test to give the 
corresponding model-based F-test (FM).  We use 
simulated nonseasonal series to determine and compare 
the significance levels of these diagnostics and simulated 
seasonal series to assess their power. 
 
In Section 2, we discuss the various methods for 
determining seasonality.  We discuss the methodology 
used to find the significance levels and present these 
results in Section 3.  In Sections 4 and 5 we explain the 
methodology used to evaluate the tests’ power and present 
these results.  We summarize our results in Section 6. 
 

2. Background 
 
At the U.S. Census Bureau, we use the D8 F-test for 
stable seasonality, along with M7 and the spectrum of the 
differenced original series, to determine whether or not a 
series is seasonal.  We investigate the properties of these 
diagnostics, along with the chi-squared and FM tests for 
fixed seasonal effects, using various simulated 
nonseasonal and seasonal regARIMA models. These 
models have the general form  
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(1-B)d(1-Bs)Dφ(B)Φ(Bs)(Yt – β’Xt) = θ(B)Θ(Bs)αt 

 
where B is the backshift operator, such that BYt=Yt-1, 
φ(Β), Φ(Βs), θ(Β), and Θ(Βs) are nonseasonal and 
seasonal autoregressive (AR) and moving-average (MA) 
polynomials of orders p, P, q, and Q, respectively, β’Xt 
are fixed regression effects, Yt is the observed time series, 
and αt is white noise with mean zero and variance σ2.  A 
particular model is often identified by the orders of its 
differencing and AR and MA polynomials as 
(p d q)(P D Q).  For example, Box and Jenkins’s (1976) 
classic airline model  is an ARIMA model of the form 
(0 1 1)(0 1 1), and so it has one nonseasonal and one 
seasonal difference, θ(Β)=(1−θΒ), and Θ(Β)=(1−ΘΒs).  In 
this paper we assume the time series are monthly. 
 
2.1 D8 F-test for Stable Seasonality 
The D8 F-test checks for the equality of the monthly 
means; that is, it tests the hypothesis 
 

H0: m1=m2=…=m12

 H1:  mp≠mq for at least one pair (p,q) 
 
where m1,…,m12 are the monthly means of the seasonal-
irregular (SI) component (the detrended series) found in 
table D8.  It assumes that the SI values are independently 
distributed as normal with means mi and common 
standard deviation σ.  However, while this could be true 
conceptually for the underlying true SI ratios, the 
estimates of the SI ratios are actually dependent and 
heteroscedastic, which affects the behavior of the 
resulting F-statistic.  The traditionally attempted solution 
to this problem is to not use a critical value from the F-
distribution, but to instead use a cut-off value of 7, with 
values greater than 7 indicating that the series is seasonal 
(McDonald-Johnson et al. 2006). For more information 
on the D8 F, see Ladiray and Quenneville (2001). 
 
2.2 M7 
M7 is one of the monitoring and quality assessment 
statistics developed by Statistics Canada in the 1970s 
(Lothian and Morry 1978).  M7 values less than one are 
interpreted as indicating that the series has identifiable 
seasonality, while values greater than one are interpreted 
as indicating that either the series is not seasonal or the 
seasonality cannot be identified by the X11 algorithm.  
M7 is calculated using the D8 F-test for stable seasonality 



and the D8 F-test for moving seasonality, which tests 
whether the seasonality changes over the years, using the 
equation 
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where Fs is the D8 F-statistic for stable seasonality and Fm 
is the D8 F-statistic for moving seasonality (Ladiray and 
Quenneville 2001). 
 
2.3 Spectrum of the Differenced Series 
X-12-ARIMA estimates the spectrum of the differenced 
original series as follows.  Let wt = Yt − Yt-1 be the first 
differenced series. Then the value of the spectrum at the 
frequency λ is 
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those from the linear regression of 
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ww jt −− , 1 ≤ j ≤ 30, and is the sample variance of 
the resulting regression residuals.  X-12-ARIMA 
calculates values of 
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)(ˆ λs  at 61 frequencies and graphs 
the results in the output file using lineprinter plots.  The 
seasonal frequencies (1/12, 2/12,…,6/12) are marked on 
the graph (U.S. Census Bureau 2007).  A six “star” peak 
at one of the seasonal frequencies is considered “visually 
significant,” with one star corresponding to 1/52nd of the 
range between the maximum and minimum spectral 
values (Soukup and Findley 1999).  By default, 
X-12-ARIMA uses the last eight years of the first 
differenced original series in its calculations of the 
spectrum.  We only considered frequencies 1/12,…,4/12 
(McDonald-Johnson et al. 2006). 
 
2.4 Model-Based Chi-squared and F-tests for Fixed 
Seasonal Effects 
When fixed seasonal effects are specified, X-12-ARIMA 
fits a regARIMA model with the following 11 variables 
included in the vector Xt: 
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The model fitting provides estimates of the regression 
parameters  and corresponding t-statistics that can be 
used to determine if the individual parameter estimates 
are significantly different from zero, and also a chi-

squared test statistic for testing if the parameters are 
collectively all zero (no fixed seasonal effects). The chi-
squared test statistic is 

β̂
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The statistic is compared to critical values from the χ2-
distribution with 11 degrees of freedom. When calculating 
this statistic X-12-ARIMA uses its estimate of the 
innovation variance in calculating . In referring 
this statistic to the  χ

)ˆ(βVar
2  distribution we effectively assume 

that the estimated innovation variance equals the true 
innovation variance. While this is true asymptotically 
(under suitable assumptions), for finite samples the 
estimation of the innovation variance affects the behavior 
of the test statistics.  We can, however, correct the chi-
squared test to account for the estimation of the 
innovation variance by using the corresponding test 
statistic FM, calculated as follows: 
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Here is the chi-squared statistic from above, n is the 
number of observations in the series, d is the degree of 
differencing, and k is the total number of elements 
estimated in

2χ̂

β . (If the only regression effects are the 
fixed seasonal effects, then k = 11; however, if there are 
other regression effects in the model then k > 11.) FM 
follows an F11,n-d-k distribution. 
 

3. Nonseasonal Series—Calculating 
Significance Levels 

 
3.1 Methods 
We simulated nonseasonal series to check the significance 
levels of the four diagnostics. We simulated 10,000 series 
of length 20 years from each of the following seven 
models: 
 
 ARIMA (0 1 0) 
 ARIMA (0 1 1), with θ=0.3, 0.5, and 0.8  
 ARIMA (1 1 0), with φ=0.3, 0.5, and 0.8 
 
The series were each run in X-12-ARIMA Version 0.3 
Build 174 using a regARIMA model with the correct 
ARIMA model and with fixed seasonal effects.  We ran 
the series both with and without the correct ARMA 
parameters specified to check whether the performance of 
the diagnostics deteriorates when the parameters are 
estimated. In each run, X-12-ARIMA estimated the 
innovation variance, as there is no way to specify it in the 
program.  We ran X-12-ARIMA with the default settings 



in the x11 spec and two years of forecasts, and both with 
the spectrum calculated using the default 8 years of data 
and using all 20 years of data. 
 
3.2 Results 
The significance levels of the five diagnostics for series 
from each of the seven ARIMA models, as found when 
X-12-ARIMA was run with the correct model, estimated 
parameters, and fixed seasonal effects, are shown in Table 
1.  Note that the standard error of the significance levels 
would be 0.002 for p=0.05, 0.003 for p=0.1, and as high 
as 0.005, when p=0.5.  (From considerations of the 
binomial distribution the standard error is 
[p(1−p)/10,000].5.) 
 
As Table 1 shows, the significance levels of the M7 and 
D8 F-statistics and the spectrum peaks diagnostic vary 
greatly depending on the ARIMA model from which the 
series was simulated. These three diagnostics all find 
fewer (0 1 1) series to be seasonal than (1 1 0) series.  The 
significance levels of all three decrease as the θ parameter 
increases in (0 1 1) series, while in the (1 1 0) series the 
significance levels of M7 and the D8 F increase as φ does 
and the significance levels of the spectrum peaks decrease 
as φ increases.  For all models, fewer seasonal series are 
identified when the spectrum is calculated over twenty 
years than over the default eight years. 
 
The results of the model-based chi-squared test of the 
fixed seasonal effects are more consistent: for each 
model, 7.5%−8% of the simulated nonseasonal series 
have significant fixed seasonal effects detected when 
tested at the 0.05 level. With the correction for the 
estimation of the innovation variance (FM), this proportion 
is closer to 5%.  (As a check we ran the simulated series 
through X-12-ARIMA using the correct model and the 
correct parameters, and found that FM matched its stated 
significance levels, as it should have.) 
 

Table 1: Significance Levels of the 
Seasonality Diagnostics 

Spectrum Peaks 
  
Model 

  
M7  

  
D8F 8 years All Data 

SR chi-
squared 
p=0.05 

  
FM  

p=0.05 
(0 1 1)  
θ= 0.3 0.0094 0.0008 0.1893 0.1424 0.0789 0.0536 
     0.5 0.0016 0.0000 0.1437 0.0802 0.0758 0.0538 
     0.8 0.0000 0.0000 0.0892 0.0298 0.0772 0.0527 
(1 1 0)  
φ= 0.3 0.0816 0.0628 0.2132 0.1711 0.0769 0.0548 
    0.5 0.1063 0.1118 0.1791 0.1113 0.0786 0.0541 
    0.8 0.1087 0.1676 0.1041 0.0304 0.0777 0.0534 

       
(0 1 0) 0.0312 0.0116 0.2353 0.2262 0.0752 0.0505 
 

Because of the large range of significance values found 
for the various models and parameters, size-adjusted 
critical values were found for the M7, D8 F, and spectrum 
peak diagnostics for each of the models, using the series 
run with the correct model and parameters. These are the 
values such that when the diagnostics are applied to 
(nonseasonal) series from the given models, they will 
exceed, or in the case of M7 be less than, the critical 
values in Table 2 5% of the time.   Remember that, 
normally, series are considered seasonal if M7 is less than 
1, D8 F is greater than 7, and there is a seasonal peak in 
the spectrum of the differenced original series greater than 
6 (stars). 
 
Table 2: Critical Values for a Significance Level of 0.05

Spectrum Peak Height 
(in stars) Model Parameter M7 D8 F 

8 years All Data 
(0 1 1) 0.3 1.223   3.337 12.7 10.1 

 0.5 1.348   2.712 10.8   7.5 
 0.8 1.513   2.145   7.9  5.0 

(1 1 0) 0.3 0.918   7.542 13.7 11.0 
 0.5 0.858   9.736 11.6   8.7 
 0.8 0.847 12.154   8.1   5.1 

(0 1 0)  1.065   4.854 13.9 13.7 
 
 

4. Seasonal Series—Calculating Power 
 

4.1 Methods 
We explored how well these four diagnostics correctly 
identified seasonality using simulated series with fixed 
seasonal effects, and also with series simulated from the 
airline model.  Tables 3 and 4 below report the results. 
 
The series with fixed seasonal effects were generated by 
adding a fixed set of seasonal factors to 1,000 simulated 
nonseasonal series.  This was done for all 36 
combinations from each of the six (0 1 1) and (1 1 0) 
models of Table 1 with six sets of seasonal factors. The 
six sets of seasonal factors were generated from the two 
sets of factors shown in Figure 1, multiplying them by 
one of three constants so the maximum magnitude of the 
seasonal factors was either less than, close to, or greater 
than the innovation standard deviation (1.0).  The six sets 
of fixed seasonal factors thus had: 
 Set 1a: Values ranging from –0.42 to 0.70 
 Set 1b: Values ranging from −0.57 to 0.96 

Set 1c: Values ranging from –1.31 to 2.18 
 Set 2a: Values ranging from –0.65 to 0.64 
 Set 2b: Values ranging from –0.98 to 0.96 
 Set 2c: Values ranging from –1.73 to 1.70 
 The series were run in X-12-ARIMA with the correct 
ARIMA model, estimated parameters, and including fixed 
seasonal effects in the model.  The power of the seasonal 



diagnostics was found when they were compared to the 
size adjusted critical values from Table 2. 

 
Figure 1: Seasonal factor sets 1 and 2 
 
We also simulated 1,000 series from each of several 
airline models with various starting values, series lengths, 
innovation variances, and MA parameters.  Series were 
simulated for each combination of the following: 

Seasonal Θ = 0.6 and 0.9 
 Nonseasonal θ = 0.3 and 0.8 
 Series length of 10 years and 20 years 

Small, medium, and large innovation variances 
Starting values of all zeroes, as well as two 
additional sets of starting values given in Figure 
2. 

We ran the series in X-12-ARIMA with the regARIMA 
model identified as (0 1 1) +  fixed seasonal effects  + 
trend constant, allowing X-12-ARIMA to estimate all 
model parameters. 

 
Figure 2: Starting values used for airline series 
 
4.2 Results 
The power of all four diagnostics varies when fixed 
seasonal effects of varying patterns and magnitudes are 
added to the previously generated nonseasonal series.  
Table 3 shows the proportions of series found to be 
seasonal when the fixed seasonal effects sets are added to 
the various simulated nonseasonal series.  For the M7, D8 
F, and spectrum diagnostics we used the size-adjusted 
critical values shown in Table 2. For the model-based test 
we used FM to correct the small size distortions of the chi-
squared statistic.  Note that the standard errors for these 
values would be 0.009 when p=0.9, and as large as 0.016 
when p=0.5. 
 
The FM test for the significance of the fixed seasonal 
effects is, overall, the most powerful of the diagnostics. 
At  the  0.05 level the FM test identifies as seasonal  all the  

Table 3: Power of Diagnostics When Using the Size-
Adjusted Critical Values 

Spectrum Peaks 
Set Model φ,θ M7 D8 F 8 years All Data

FM, 
p=0.05

1a (0 1 1) 0.3 0.856 0.872 0.202 0.378 0.843
0.5 0.948 0.948 0.227 0.478 0.923
0.8 0.959 0.965 0.258 0.399 0.957

(1 1 0) 0.3 0.334 0.367 0.109 0.215 0.613
0.5 0.240 0.246 0.122 0.210 0.586
0.8 0.163 0.156 0.123 0.216 0.699

1b (0 1 1) 0.3 0.990 0.995 0.363 0.737 0.992
0.5 1.000 1.000 0.436 0.822 0.999
0.8 1.000 1.000 0.494 0.849 1.000

(1 1 0) 0.3 0.649 0.677 0.188 0.413 0.933
0.5 0.415 0.436 0.204 0.391 0.914
0.8 0.296 0.300 0.217 0.456 0.961

1c (0 1 1) 0.3 1.000 1.000 0.949 1.000 1.000
0.5 1.000 1.000 0.982 1.000 1.000
0.8 1.000 1.000 0.993 1.000 1.000

(1 1 0) 0.3 1.000 1.000 0.704 0.990 1.000
0.5 1.000 1.000 0.758 0.997 1.000
0.8 0.968 0.984 0.863 1.000 1.000

2a (0 1 1) 0.3 0.964 0.973 0.236 0.466 0.964
0.5 0.993 0.995 0.309 0.647 0.985
0.8 1.000 1.000 0.434 0.739 1.000

(1 1 0) 0.3 0.516 0.544 0.182 0.324 0.978
0.5 0.339 0.367 0.185 0.394 0.989
0.8 0.186 0.198 0.238 0.535 1.000

2b (0 1 1) 0.3 1.000 1.000 0.518 0.874 1.000
0.5 1.000 1.000 0.621 0.962 1.000
0.8 1.000 1.000 0.794 0.995 1.000

(1 1 0) 0.3 0.884 0.907 0.355 0.689 1.000
0.5 0.702 0.749 0.444 0.818 1.000
0.8 0.510 0.533 0.563 0.944 1.000

2c (0 1 1) 0.3 1.000 1.000 0.926 1.000 1.000
0.5 1.000 1.000 0.970 1.000 1.000
0.8 1.000 1.000 0.993 1.000 1.000

(1 1 0) 0.3 1.000 1.000 0.784 0.996 1.000
0.5 0.998 1.000 0.907 1.000 1.000
0.8 0.963 0.971 0.958 1.000 1.000

 
series in sets 1c and 2c (where the magnitude of the fixed 
seasonal effects are large compared to the innovation 
standard deviation) and almost all the series in sets 1b and 
2b (where the values of the fixed seasonal effects range to 
about one, which is the innovation standard deviation).  In 
sets 1a and 2a, the magnitude of the fixed seasonal effects 
is always less than the innovation standard deviation of 
the series.  The power of the FM test remains near one for 
set 2a, but for set 1a the power is between 0.61 and 0.70 
for the (1 1 0) series at the 0.05 level.   



 
Table 4: Power of Seasonal Diagnostics Using the Airline Series 

     Series length = 10 years Series length = 20 years
Starting 
Values σ2 Θ θ  M7 D8 F 

Spectrum 
Peaks 

FM, 
p=0.05 M7 D8 F 

Spectrum 
Peaks 

FM, 
p=0.05

Zero 1 0.6 0.3  0.989 0.972 0.979 1.000 0.999 0.999 0.995 1.000
Zero 1 0.6 0.8  0.972 0.942 0.948 0.999 1.000 0.998 0.992 1.000
Zero 1 0.9 0.3  0.974 0.923 0.920 1.000 0.997 0.990 0.954 1.000
Zero 1 0.9 0.8  0.969 0.901 0.897 1.000 0.997 0.989 0.902 0.999

Zero 0.1 0.6 0.3  0.977 0.964 0.967 0.999 1.000 0.999 0.996 1.000
Zero 0.1 0.6 0.8  0.981 0.953 0.959 1.000 1.000 0.999 0.995 1.000
Zero 0.1 0.9 0.3  0.981 0.939 0.924 0.998 0.998 0.996 0.952 1.000
Zero 0.1 0.9 0.8  0.960 0.892 0.900 1.000 0.997 0.991 0.921 1.000

Set 1 1 0.6 0.3  0.994 0.991 0.987 1.000 0.999 1.000 0.998 1.000
Set 1 1 0.6 0.8  0.997 0.990 0.983 1.000 1.000 0.999 0.994 1.000
Set 1 1 0.9 0.3  0.996 0.985 0.980 1.000 1.000 0.999 0.983 1.000
Set 1 1 0.9 0.8  0.990 0.977 0.968 1.000 1.000 0.998 0.951 1.000

Set 1 0.136 0.6 0.3  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Set 1 0.136 0.6 0.8  1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
Set 1 0.136 0.9 0.3  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Set 1 0.136 0.9 0.8  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Set 2 1 0.6 0.3  0.984 0.962 0.987 0.999 0.999 1.000 0.995 1.000
Set 2 1 0.6 0.8  0.978 0.960 0.956 0.999 1.000 1.000 0.993 1.000
Set 2 1 0.9 0.3  0.984 0.945 0.941 0.999 0.997 0.994 0.946 1.000
Set 2 1 0.9 0.8  0.971 0.904 0.910 1.000 1.000 0.997 0.921 1.000

Set 2 0.015 0.6 0.3  1.000 1.000 0.996 1.000 1.000 1.000 0.998 1.000
Set 2 0.015 0.6 0.8  1.000 0.999 0.999 1.000 1.000 1.000 0.997 1.000
Set 2 0.015 0.9 0.3  1.000 0.998 0.996 1.000 1.000 1.000 0.994 1.000
Set 2 0.015 0.9 0.8  1.000 0.999 0.997 1.000 1.000 1.000 0.996 1.000

 
 
 
The M7 and the D8 F show a great deal more variation of 
their power across the different models, and in some cases 
the power is rather low.  All the diagnostics performed 
well for all models when the fixed seasonal effects were 
large compared to the innovation standard deviation (sets 
1c and 2c). For the other sets, M7 and D8 F were 
powerful for (0 1 1) series, particularly as the MA 
parameter grew larger. However, M7 and D8 F performed 
poorly for the (1 1 0) series, particularly as the AR 
parameter became larger; for both sets 1a and 2a, these 
two diagnostics found less than 20% of the series with 
φ=0.8 to be seasonal.   
 
The spectrum was consistently the least powerful of the 
diagnostics, particularly when it used the default setting 
of 8 years.  Like the other diagnostics, it had more trouble 
identifying (1 1 0) series as seasonal.  However, it was the 
only diagnostic to also have extremely low power in 
identifying (0 1 1) series as seasonal.   

 
Table 4 shows the proportion of airline series detected as 
seasonal for each combination of starting values, 
innovation variance, model length, and model parameters. 
The FM test found nearly every series seasonal, while the 
M7, D8 F, and spectral peaks varied some in how well 
they detected seasonality amongst the models, with the 
spectral peaks generally doing the worst job. (In Table 4 
the spectrum diagnostic used just 8 years of data.)   
However, even these three diagnostics indicated that at 
least about 90% of the series were seasonal in all cases. 
 
For each model, M7, D8 F, and spectral peaks had higher 
power when used on longer series.  In the case of the 
series with nonzero starting values, seasonality was 
detected by M7, D8 F, and the spectrum for almost all 
series when the innovation variance σ2 was set to the 
sample variance of the starting values, and the power 
decreased slightly when the innovation variance 
increased.  The value of Θ also appeared to have a small 



effect on the number of series found to be seasonal; 
slightly more seasonal series were identified when Θ was 
0.6 than 0.9, when all other values are held constant.  In 
many cases these differences were statistically significant. 
 

5. Incorrect Model Choice 
 

The results in Sections 3 and 4 assumed the correct 
regARIMA models were used.  In practice, we cannot 
know the correct model. To test how these diagnostics 
perform when an incorrect model is specified, we ran the 
nonseasonal series and the series with fixed seasonal 
effects through X-12-ARIMA with an incorrect ARIMA 
model specified.  To specify an incorrect model we ran all 
the (1 1 0) series as (0 1 1), and we ran all the (0 1 1) 
series as (1 1 0).   
 
The significance levels, size-adjusted critical values, and 
power of the M7, D8 F, and spectrum diagnostics were 
identical or very close to their values when the program 
was run with the correct model.  As these diagnostics are 
not strongly dependent on the model specification, the 
model only being used for forecast and backcast 
extension, this was an expected   result.  There were some 
differences in the significance levels and powers of the FM  
 

Table 5: Significance Levels With the 
Correct and the Incorrect Models 
Specified (p=0.05) 

Real 
Model φ,θ 

FM,   
Correct 
Model 

FM, 
Incorrect 
Model 

(0 1 1) 0.3 0.0536 0.0618 
 0.5 0.0538 0.0722 
 0.8 0.0527 0.0944 

(1 1 0) 0.3 0.0548 0.0492 
 0.5 0.0541 0.0395 
 0.8 0.0534 0.0125 

 
 Table 6: Critical Value for the Model-
Based F-test When the Wrong Model is 
Specified (Actual Critical Value is 
1.831) 

Real 
Model φ,θ FM, Incorrect Model
(0 1 1) 0.3 1.899 

 0.5 1.969 
 0.8 2.085 

(1 1 0) 0.3 1.827 
 0.5 1.760 
 0.8 1.356 

 

Table 7: Power With the Correct and the 
Incorrect Models Specified (p=0.05) 

Set Model φ,θ 

FM, 
Correct 
Model 

FM, 
Incorrect 
Model 

1a (0 1 1) 0.3 0.843 0.827 
  0.5 0.923 0.867 
  0.8 0.957 0.779 
 (1 1 0) 0.3 0.613 0.589 
  0.5 0.586 0.512 
  0.8 0.699 0.409 

1b (0 1 1) 0.3 0.992 0.992 
  0.5 0.999 0.994 
  0.8 1.000 0.985 
 (1 1 0) 0.3 0.933 0.922 
  0.5 0.914 0.863 
  0.8 0.961 0.780 

1c (0 1 1) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 
 (1 1 0) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 

2a (0 1 1) 0.3 0.964 0.950 
  0.5 0.985 0.950 
  0.8 1.000 0.921 
 (1 1 0) 0.3 0.978 0.978 
  0.5 0.989 0.988 
  0.8 1.000 0.996 

2b (0 1 1) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 
 (1 1 0) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 

2c (0 1 1) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 
 (1 1 0) 0.3 1.000 1.000 
  0.5 1.000 1.000 
  0.8 1.000 1.000 

 
test, however. Table 5 shows the significance levels of FM 
when using correct and incorrect models.  For the 
incorrect models Table 6 gives the size adjusted critical 
values for a 0.05 significance level.  Table 7 compares the 
powers of the diagnostics under the correct versus 
incorrect models. 
 



One of the benefits of using the FM test rather than one of 
the other diagnostics when the correct model was 
specified was that the power was consistent and very 
close to the nominal 5% across the different models.  This 
is not always the case when an incorrect model is used.  
When (0 1 1) series were misspecified as (1 1 0) series, 
the significance level was larger than the expected 0.05 
for all parameters, and as θ increased, so did the 
significance level.  The opposite occurred when (1 1 0) 
series were specified as (0 1 1); in all cases, the 
significance level was smaller than the expected 0.05 for 
all parameters, and this significance level decreased as φ 
increased. 
 
The actual critical value for a 0.05 level of an F11,228 
distribution, 1.831, is used to find the power of the F-test 
when the correct model is given. These results are in the 
first column of Table 7; the second column shows the 
power when the incorrect model is specified, using the 
size-adjusted critical values given in Table 6.  When the 
actual parameter is 0.3, the power is either identical or 
slightly less with the incorrect model. The largest 
difference is 0.024. The difference grows as the parameter 
becomes larger, with the largest difference in (1 1 0) 
models with a parameter of 0.8 in Set 1a; the power drops 
from 0.699 to 0.409 when the incorrect model is used. 
 
While the size and power of the FM test can be affected by 
specifying an incorrect model, note that these effects are 
quite mild for φ or θ equal to 0.3, are still not that serious 
for φ or θ equal to 0.5, and really only become substantial 
for φ or θ equal to 0.8.  Moving through these parameter 
values from 0.3 to 0.5 to 0.8 takes us to models that are 
more and more incorrect, in the sense that for low values 
of |φ| the (0 1 1) model can approximate the (1 1 0) model 
quite well, but not for large values of of |φ|, and similarly 
for small versus large values of |θ| in the (0 1 1) model. 
 
But at the same time when |φ| is large we are unlikely to 
misspecify a (1 1 0) series as (0 1 1), and similarly when 
|θ| is large we are unlikely to mis-specify a (0 1 1) series 
as (1 1 0).  This is true whether the model specification 
comes from an automatic criterion, such as AIC, or from 
examination of sample autocorrelation and partial 
autocorrelation functions.  In general, small model 
misspecifications are more likely than large ones, and the 
above results suggest that small model misspecifications 
may lead to only mild deterioration in the performance of 
FM.  A more relevant evaluation may be to use a model 
selection criterion like AIC to pick models for the 
simulated series, rather than deliberately specifying an 
incorrect (or a correct) model.  We intend to pursue this in 
future research. 
 
 

6. Summary 
 
The diagnostics M7, D8 F, and the spectrum peaks of the 
differenced original series have significance levels that 
vary greatly amongst the different models. This indicates 
that the traditional cutoff values would need to be 
modified based on the model and the model parameters in 
order to provide consistent results.  This is not a practical 
solution, since in practice the true model and parameter 
values are not known, so the actual correct critical values 
would not be known.  As an approximation one could 
consider taking the estimated model as truth, determining 
the appropriate critical value for this model, and using 
that value.  However, this would be clumsy (perhaps 
requiring an additional simulation), and error in 
estimating the model parameters would affect the  
determination of the critical values, and thus the 
properties of the resulting diagnostics. 
 
The model-based chi-squared test has a consistent 
significance level, but is somewhat oversized.  
Fortunately, using the FM test substantially corrects the 
size distortion, and the power of this test is higher than or 
consistent with those of the other diagnostics.  Specifying 
an incorrect model has some effect on the size and power 
of the FM test, but these effects appear mild for mild 
deviations from the correct model, and major deviations 
from the correct model are less likely to occur and more 
readily detected and corrected.  Thus, overall the FM test 
appears to perform the best among the available 
seasonality diagnostics.  The FM test also has the 
advantage (relative to M7, D8 F, and the spectrum 
diagnostic) that appropriate critical values for the test are 
readily available from the standard table of the F-
distribution. 
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