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Abstract

This paper is a description of the algorithms and code that were de-
veloped in R to compute empirical Bayes estimates. The setting is that
some variables that have direct survey estimates for some set of geographic
areas or domains are given along with estimates of the variance of those
variables. In addition, a set of variables that are correlated with the vari-
able of interest is given. An empirical Bayes estimate is then a weighted
average of the direct estimate and a regression estimate. It turns out that
the empirical Bayes method in this setting is equivalent to a single level
mixed model with known variances.

1 Introduction

This paper was motivated by a computational problem that arose in the project
‘Exploration of the Use of Empirical Bayes Procedures for Estimating Changes
in Occupancy Rate and Persons per Household,’ conducted by staff in the Sta-
tistical Research Division (see [Weidman (2008)]). State level and national level
empirical Bayes estimates were sought for each county in the state or U.S. A dif-
ficulty arose because SAS PROC MIXED was unable to run the national models
at all, and SAS also did not converge for several of the state models. A custom R
program was written to compute the parameter estimates for the models using
maximum likelihood and an EM (expectation maximization) algorithm.

2 Models

Using the notation from [Weidman (2008)], let θi be the true value for the ith
county, i = 1 . . . k, and

∗This paper is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. The views expressed are those of the author and not necessarily
those of the Census Bureau.
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Yi = θi + ηi (1)

be a direct estimate of θi from a survey, where the ηi’s are independent sampling
errors with E(ηi|θi) = 0 and V (ηi|θi) = Vi.

In addition, given a vector z′i = (zi1, zi2, . . . , zir) of r model variables avail-
able for each county i,

θi = z′iβ + εi (2)

is a linear regression model, where β is a vector of unknown coefficients, E(εi) =
0 , and V (εi) = Ai with the εi ’s independent.

Then, substituting (2) into (1), a model for the direct estimate can be written
as

Yi = θi + ηi = z′iβ + εi + ηi (3)

This can be recognized as a mixed model where the β are the coefficients of
the fixed effects zi and the εi and ηi are the coefficients for the random effects.

This model can be translated to the notation of [Searle (1992)]. In that
notation a mixed model is written as:

y = Xβ + Zu + e (4)

The n × 1 vector of observations y is modeled with both fixed effects, β
and random effects u. Here, X is an n × p known model matrix derived from
the predictor variables, β is a p × 1 vector of fixed effect parameters and e is
an error vector. The mean vector is then µ = Xβ. The n × q random effects
model matrix Z can take a variety of forms in different types of mixed models,
but it is often an incidence matrix, that is a matrix of 0-1 values describing the
relationship between the ith observation and the qth random effect. For this
project, there is one random effect for each county, so u is an n× 1 vector and
Z = In is simply the identity matrix of size n.

The distributional assumptions of the model given in equation (4) are

E(e) = 0 and var(e) = σ2
eIn (5)

E(u) = 0 and var(ui) = σ2
i Iqi

(6)

where qi is the number of levels of the ith random effect. In this case qi = 1 for
all i since there is a separate random effect for each observation.

The following table makes the correspondence between the notation of
[Weidman (2008)] and [Searle (1992)] explicit
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True value θi µi + ei

Dependent variable Yi yi

Number observations k n
Number of dependent variables r p
Independent variables zi xi

Fixed effects β β
Residual error εi ei

Residual variance Ai σ2
e

Random effects ηi ui

Random effects variances Vi σ2
i

Note that the terms εi or ei, that I am calling residual error in analogy
to simple linear regression, can also be thought of as county random effects,
and are described that way in [Weidman (2008)]. Also, a more general form of
the mixed model described in [Weidman (2008)] allows the variance Ai of each
residual εi to be different; in the estimation , this variance is assumed to be
constant. (Ai = A = σ2

e).

3 Maximum Likelihood Estimation

Searle ([Searle (1992)] in Chapter 6 derives equations for both maximum likel-
hood estimation (MLE) and restricted maximum liklihood estimation (REML)
of the parameters in equation (4) . These equations are the basis for the deriva-
tion of EM algorithms described in section 8.3 of Searle. The EM algorithm
for the MLE, which is what has been implemented, is illustrated as an example
for the 1-way random model in section 8.6. It is a modification of the method
described in section 8.6 that takes into account that the random effect variances
( Vi or σ2

i ) are assumed to be known. Another variation from the method de-
scribed in section 8.6 is that an arbitrary model matrix X ia allowed, not just
the constant X = 1 for the mean.

By simplifying and extending the notation for the algorithm in Searle, the
following iterative algorithm is obtained:

Input: y,X, µ(0), σ2
i , σ

2(0)
e (all known except σ

2(0)
e and µ(0) which are pro-

vided as initial (step m=0) estimates of the residual variance and mean vector
µ = Xβ respectively. In practice, σ

2(0)
e = mean(σ2

i ) and µ(0) = 0 ) are used.
At step (m+1), re-estimate the parameters β(m+1) and σ

2(m+1)
e based upon

the data and the values of the parameters at the previous step, (m). Also,
update estimates of the mean vector µ(m+1), the random effects vector u(m+1)

and the residual vector, e(m+1).
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β(m+1) = (X′X)−1X′(y − µ(m)) (7)
µ(m+1) = X′β(m+1) (8)

u(m+1) =
(y − µ(m+1))σ2

i

(σ2
i + σ

2(m)
e )

(9)

e(m+1) = y − µ(m+1) − u(m+1) (10)

σ2(m+1)
e =

e′(m+1)e(m+1)

n∑
i=1

σ
2(m)
e

(σ2
i + σ

2(m)
e )

(11)

Iterations proceed until convergence, which is defined as when the absolute
relative change of the estimated residual variance changes by less than some
tolerance (set to 10−8). ∣∣∣σ2(m+1)

e − σ
2(m)
e

∣∣∣
σ

2(m)
e

≤ 10−8

It may happen that the MLE for σ2
e is 0, so iterations also stop if the esti-

mated residual variance becomes less than some epsilon (set to 10−12).
It can be noted that the same algorithm can be used for REML estimation

with a simple change of the denominator of equation (11).
The R code that implements the above algorithm is listed in Appendix A.

The primary algorithm is itermix, but all the code is included. It can be found
at /home/creec003/myR/weidmanmixed/Src on the SRD research1 computer.

References

[Weidman (2008)] Weidman, L., Malec, D. and Creecy, R. (2008). Exploration
of the Use of Empirical Bayes Procedures for Estimating Changes in Oc-
cupancy Rate and Persons per Household (Statistical Research Division
Technical Report). U.S. Census Bureau.

[Searle (1992)] Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance
Components. John Wiley and Sons Inc., New York.

4



4 Appendix A: R Code

‘itermix‘ <-
function(y,x,mu,sig2e,sig2i,maxit=1000,tol=1e-8,sigmin=1e-12,trace=FALSE) {

n<-length(y)
it <- 1
sig2enew <- sig2e

sig2e <- 0
p<- dim(x)[2]

xxi <- solve(t(x) %*% x)
xy <-t(x) %*% y
xxix <- xxi %*% t(x)

while ((it <= maxit) && (abs((sig2e-sig2enew)/sig2e) > tol) && ( sig2enew > sigmin )) {
if (it != 1) {
beta <- xxix %*% (y-u)
mu <- x %*% beta
}

sig2e <- sig2enew
u <- uhat(y,mu,sig2e,sig2i)
eps <- epshat(y,mu,sig2e,sig2i)
dfe <- n-sum(sig2e/(sig2e+sig2i))
sig2enew <- sum(eps^2)/(n-dfe)
if (trace) {
cat("sig2e ", sig2enew," dfe ",dfe," change ", sig2enew-sig2e,"
rel change ",abs((sig2e-sig2enew)/sig2e),"\n")

}
it <- it+1

}
converged <- abs((sig2e-sig2enew)/sig2e) <= tol
dimnames(beta)[[1]][1] <- "intercept"
list(sig2e=sig2enew,beta=beta,mu=mu,u=u,eps=eps,iters=it,converged=converged)
}

‘uhat‘ <-
function(y,mu,sig2e,sig2i) {
(y-mu)*sig2i/(sig2e+sig2i)

}

‘epshat‘ <-
function(y,mu,sig2e,sig2i) {
y-mu-uhat(y,mu,sig2e,sig2i)

}

setwd(’/home/creec003/myR/weidmanmixed/apr08’)
source(’/home/creec003/myR/weidmanmixed/Src/mixfuns.R’,
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echo=TRUE,max.deparse.length=10000)
library(Hmisc)
libname <- ’/cenhome/tsay0001/tract_level_plan/april_08/robdata’
if (libname == ’’) libname <- ’.’
setname <- ’’

charstates <-
c("nat","01", "02", "04", "05", "06", "08", "12", "13", "16", "17", "18",
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",

"30", "31", "32", "34", "35", "36", "37", "38", "39", "40",
"41", "42", "45", "46", "47", "48", "49", "50", "51", "53", "54",
"55", "56")

# charstates <- "nat"
for (variable in c(’occ’,’pph’)) {
for (state in charstates) {
if (state == "nat") { setname <- paste(state,"_",variable,"_rev",sep="")}
else
{setname <- paste("st",state,"_",variable,"_rev",sep="")}
cat("Reading SAS data set ",setname,"\n")
mydat <- sas.get(libname,setname)
k <- dim(mydat)[2]-2
n <- dim(mydat)[1]
x<- matrix(1,n,1)
if (k > 0) x<- cbind(x,as.matrix(mydat[,1:k,drop=FALSE]))
y<- as.matrix(mydat[,k+1,drop=FALSE])
sig2i <- as.matrix(mydat[,k+2,drop=FALSE])
indepnames <- names(mydat)[1:k]
depname <- names(mydat)[k+1]
varname <- names(mydat)[k+2]
cat("Independent variables (X): ", indepnames,"\n")
cat("Dependent variable (y): ", depname,"\n")
cat(" Sampling variance variable (sig2i): ", varname,"\n")
mu <- 0
sig2e<-mean(sig2i)
res<- try(itermix(y,x,mu,sig2e,sig2i))
if (res$converged) {
cat("EM iterations converged in ",res$iter," iterations \n")
cat("Residual variance (sig2e):",res$sig2e,"\n")
cat("Beta\n")
print(t(res$beta))
mydat[paste(depname,".mu",sep="")]<-res$mu
mydat[paste(depname,".u",sep="")]<-res$u
mydat[paste(depname,".eps",sep="")]<-res$eps
write.table(mydat,file=paste(setname,".dat",sep=""),row.names=FALSE)
myparams <- as.data.frame(cbind(state=state,sig2e=res$sig2e,t(res$beta)))
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write.table(myparams,file=paste(setname,".params",sep=""),
row.names=FALSE,quote=FALSE)

} else {
cat("EM iterations DID NOT converge in ",res$iter," iterations \n")
cat("Residual variance (sig2e):",res$sig2e,"\n")
cat("Beta\n")
print(t(res$beta))

}
cat("\n \n \n")

}
}
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