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Abstract 
Small area estimation based on area level models typically assumes that sampling error variances for the direct survey small 
area estimates are known. In practice we use estimates of the sampling error variances, and these can contain substantial 
error. This suggests modeling the sampling variances to improve them and to quantify e 

,
dects of their estimation error on 

small area inferences. We review papers that have attempted to address these issues. We then provide some results on the 
latter issue, showing, in a simple framework, how error in estimating sampling variances can a 

,
dect the accuracy of small area 

predictions and lead to bias in stated mean squared errors. 
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1. Introduction 

A basic area level model used in small area estimation (Fay and Herriot 1979, Rao 2003) is as follows: 

yi = Yi + ei i = 1, . . . ,m  

x 0 (1)
iβ + ui) + ei 

where the yi are direct survey estimates of true population quantities Yi for m small areas, the ei are sampling errors 
(of the yi) independently distributed as N(0, vi), the  ui are small area random effects (model errors) distributed i.i.d. 
N(0, σ2 ), the  xi are r × 1 vectors of regression variables for area i, and  β is the corresponding vector of regression u

parameters. Normality is not an essential assumption. A “standard” assumption, however, is that the sampling 
variances, vi, are all known. If the model error variance, σ2 , is also known, then the best linear unbiased predictor u

(BLUP) of Yi and its mean squared error (MSE) are (Rao 2003, 96-99 and 116-117) 

= ( 


Ỹi =
 hiyi + (1− hi) 0 xi β̂ 
2Var(Yi − Ỹi) =  σ2 (1− hi) + (1− hi)u
0 xiVar 

³ ´ 
β̂ xi 

(2)
 

(3)
 

0

where hi = σ2 /(σ2 + vi) and β̂ and Var(β̂) come from weighted least squares results: u u 

−1β̂ Σ−1X) X0Σ−1 y (4) 
0

= (X

Var(β̂) =  (X −1Σ−1X) (5)
 

0 , X is n× r with rows x
From (2), the smoothed estimate Ỹi is a weighted average of the direct estimate yi and the regression prediction 

0 diag(σ2 
uwhere y = (y1, . . . , yn , and  Var(y) ≡ Σ =)
 + vi).i

β̂, with  weights  hi and 1 − hi determined by the model error variance σ2 and the sampling variance vi. The  u 
0xi 
first term in (3), σ2 (1− hi), is the inherent prediction error variance that would result if all model parameters were u

known. The second term in (3) accounts for additional error due to estimating β. Considerable attention has been 
given in the literature to augmenting (3) to reflect uncertainty due to estimating σ2 while still assuming the vi areu 
known. Prasad and Rao (1990) and Datta and Lahiri (2000) provide asymptotic results while Berger (1985, pp. 
190-193) provides results from a Bayesian approach. Many other papers have extended these results towards more 
general models (e.g., Booth and Hobert (1998) consider generalized linear mixed models) and to other approaches to 
accounting for uncertainty due to estimating σ2 (e.g., Jiang, Lahiri, and Wan (2002) provide a jackknife approach). u 

Much less attention has been given to dealing with the fact that, in practice, the vi are not known but are 
replaced in equations (2)—(5) by estimates v̂i. Typically the v̂i are direct sampling variance estimators based on 
survey microdata (Wolter 1985) and, as such, are subject to errors (v̂i 6 vi.) In fact, if the direct survey point = 
estimates yi are very imprecise due to small sample sizes for some or all areas (which is what motivates model-based 
small area estimation in the first place), the corresponding v̂i can also be expected to be very imprecise due to the 

∗Disclaimer: This report is released to inform interested parties of research and to encourage discussion. The views expressed on 
statistical, methodological, technical, or operational issues are those of the author and not necessarily those of the U.S. Census Bureau. 

†U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233 



same sample size limitations. This suggests modeling the v̂i to develop improved estimates of the vi and to quantify 
their estimation error. It also suggests translating these results into improved measures of the MSE, or, from a 
Bayesian perspective, improved measures of the (posterior) uncertainty of Yi. Section 2 discusses papers that have 
attempted to address these issues. 
Section 3 provides some results giving a rough indication of the extent to which estimation error in the v̂i can 

affect small area prediction results in regard to (i) increase in MSE relative to use of the true (unknowable) vi, and  
(ii) misstatement of prediction MSE. These topics are considered both in a conditional sense (for given values of the 
v̂i) and in an unconditional sense (averaging over the distribution of the the v̂i). 
Before proceeding a couple points are worth noting. First, the issues of concern here do not arise for unit level 

small area models (Rao 2003), such as the nested error regression model of Battese, Harter, and Fuller (1988). We 
can convert (1) to such a model by replacing the single index i by the double index ij, so  that  yij denotes the 
observation from subject (ultimate sampling unit) j in area i, except we leave ui as is, so that it denotes a random 
effect common to all observations from area i. With such models sampling variability is reflected in the variation 
of yij within area i. The challenge is to specify a unit level model that adequately reflects the sampling variability, 
including important features of the sample design. This challenge is made more severe if the sample design is complex 
and/or the model is nonlinear. For example, while a number of papers have explored use of unit level generalized 
linear mixed models for small area estimation, the papers have generally assumed, effectively, that the data arose 
from simple random sampling (or basically they have ignored any consideration of the sample design). An exception 
to this limitation is the paper by Malec, Davis, and Cao (1999). 
Second, as noted by Wang and Fuller (2003), the asymptotic MSE results given by Prasad and Rao (1990) are 

sufficiently general to cover the case where the sampling variances vi (as well as Var(ui)) depend on a finite number 
of parameters and, potentially, on some additional covariates. (This is also true of the asymptotic MSE results 
of Datta and Lahiri (2000).) In such a case more information accumulates about the sampling variances as the 
number of observations m → ∞, and their parametric estimates should thus converge to the true values subject 
to an assumption of correct specification of the parametric form of the variances. This differs fundamentally from 
the situation where each individual variance estimate v̂i is used for the true vi,  all  of  which are  treated as  distinct.  
However, even if the parametric specification of the vi is reasonable these asymptotic results may not be very helpful 
in practice since they assume that the parameters determining the vi are estimated using only the direct point 
estimates yi as data (with no use made of direct survey variance estimates). Even if identifiability conditions hold 
for the vi and Var(ui) in a strict mathematical sense, these quantities may be very weakly identified in a statistical 
sense with any finite amount of data {yi}. In such cases the parameters determining the vi and Var(ui) will be 
highly correlated and poorly estimated (Bell (1997) provides such an example), which may compromise practical 
application of the asymptotic MSE results. 

2. Literature Review: Dealing with Estimation Error in Sampling Variances 

We group the papers reviewed here into three subsections: (2.1) approximate MSE results; (2.2) small area modeling 
including sampling variance modeling; and (2.3) additional papers on modeling sampling variances. 

2.1 Approximate MSE results 

Wang and Fuller (2003, Theorem 1) provide an asymptotic result for the mean squared error of small area predictors 
from the model (1) when small area sampling variances are estimated. Let Ŷi be the predictor for area i using 
estimated sampling variances v̂i. The  v̂i are assumed unbiased estimators of the vi that are independent of the 
model and sampling errors ui and ei. In the notation being used here, under suitable assumptions their result can 
be written: ³ ´ 

0 ˆ 2 σ2MSE(Yi − Ŷi) ≈ σ2 (1 − hi) +  (1  − hi)2 xiV β xi + (σ2 + vi)−3{σ4 V (v̂i) +  vi VA(ˆ )). (6)u u u u³ ´ 
V β̂ is the variance of β̂, but differs from (5) because in Wang and Fuller (2003) β̂ is assumed not to depend on the 

unknown variances σ2 and vi. See their paper for the expressions for this and for V (v̂i) and VA(σ̂
2 ). The expression u u

(6) is analogous to the asymptotic MSE result of Prasad and Rao (1990), but with addition of the term σ4 V (v̂i) tou

reflect error in the estimates v̂i. Wang and Fuller derive two estimators of the MSE and examine their performance 
in a simulation study. The estimators perform well in many of the cases considered, but do poorly when σ2 is quite u 
small relative to the sampling variances vi. 
Rivest and Vandal (2003) provide an essentially similar MSE estimator, but obtained under the assumption 

that the v̂i are approximately normally distributed. They provide some simulation results on its performance, 
showing some improvements over the MSE estimator of Prasad and Rao (1990), which ignores error in the v̂i. 



The improvements are more pronounced as the degrees of freedom of the v̂i (assumed distributed as χ2 in their 
simulations) gets small (they use a minimum of 4). However, in most cases that they consider the bias of the 
Prasad-Rao MSE estimator is also small. Their simulations cover a relatively narrow range of values of vi/σ2 

u 
(smallest is 1/3, largest is 2.5) compared to Wang and Fuller (smallest is 1/4, largest is 160). 
An interesting feature of Wang and Fuller’s result is that it is asymptotic in both the number of small areas 

m and the degrees of freedom d of the v̂i. They show that the error of the approximation (6) is O(rm,d) where 
−1.5rm,d = max(m ,m−1d−1, d−1.5). One would not ordinarily think of the degrees of freedom of direct small area 

variance estimates being large, which their theorem suggests is needed to make the approximation error in (6) small. 
Similarly, Rivest and Vandal’s assumption of approximate normality of the v̂i obviously improves as d increases. 
However, even with relatively small values of d (8 and 17 for Wang and Fuller, down to 4 for Rivest and Vandal), 
the simulation results show fairly low bias of the MSE estimator in many cases, with the exception noted by Wang 
and Fuller of the cases where σ2 is very small relative to the vi.u 

Note also that papers mentioned in the next section that feature Bayesian treatments of small area models which 
include sampling variance models provide posterior variances reflecting uncertainty about the true sampling error 
variances. 

2.2 Small area modeling including sampling variance modeling 

Arora and Lahiri (1997) examined theoretically a unit level small area model with random area variances proposed by 
Kleffe and Rao (1992), but in analysis of an empirical example they used an area level model with direct sampling error 
variance estimates assumed unbiased, independent of the direct survey point estimates, and distributed proportional 
to a chi-squared random variable with known degrees of freedom. They then developed a Gibbs sampling scheme to 
make Bayesian inferences for the model. The model is related to that of Otto and Bell (1995) (which is mentioned in 
Section 2.3), though with a much simpler model for the sampling variances. They applied their model to data from 
the Consumer Expenditure Survey on milk consumption for 43 small areas and, drawing eight 12.5 percent samples 
from the survey data treated as a finite population, they compared direct and model-based small area estimators 
from these samples. The hierarchical Bayes model yielded lower MSE than the direct survey estimates for all eight 
samples,  and lower  MSE  than an EBLUP  for six  of  the eight  samples. They didn’t attempt to assess the contribution 
of uncertainty about the sampling error variances to their results. 
You and Chapman (2006) analyzed an essentially similar area level model to that used by Arora and Lahiri (1997), 

applying it also to their data, as well as to small area data on amount of land planted with corn and soybeans taken 
from the paper of Battese, Harter, and Fuller (1988). You and Chapman provided results both for the model that 
assumed the v̂i were distributed via div̂i/vi ∼ χ2 (with the degrees of freedom di assumed equal to ni −1 where ni isdi 
the sample size for area i), and for a model that assumed the v̂i were equal to the vi. Comparing posterior standard 
deviations or coefficients of variation for the two models showed, for the corn and soybean example, substantially 
larger uncertainty surrounding the small area predictions from the model with the vi assumed unknown, but, for the 
milk consumption example, almost identical results for the two models. The latter result was due to the large small 
area sample sizes for that example, while for the corn and soybean example the small area samples were quite small. 
Liu, Lahiri, and Kalton (2007) considered four alternative models for small area proportions. Two of these took 

sampling variances as known, while the other two parameterized the sampling variances as [pi(1 − pi)/ni]deff i, with  
pi denoting the unknown true proportion for area i, ni the sample size, and deff i design effects that were estimated 
and treated as known. Since the pi are unknown, the sampling variances were, to this extent, treated as unknown. 
They applied the models to data on all registered births for 2002 and made predictions about the prevalence of low 
birth weight for states from 1,000 samples drawn from the full data set. They examined coverage of 95 percent 
credible intervals, finding that the models whose sampling variances depended on the true (unknown, to the models) 
state proportions produced intervals with better coverage overall, though coverage rates for these and one of the 
other two models were observed to increase with increasing sample size. They suggested, “that the credible intervals 
are not adequately reflecting the effect of the greater precision of the direct estimates in the states with large sample 
sizes.” 
You (2008) considered a cross-sectional and time series model for estimated unemployment rates of small areas 

in Canada, with sampling variances of the direct estimates parameterized in the same way as in the model of Liu, 
Lahiri, and Kalton (2007), again with design effects estimated and then treated as known. He did not, however, 
compare results to those from a model that assumed sampling variances were known. 
Bell and Otto (1992) and Bell (1995) investigated time series models with sampling error components, with the 

sampling error variances treated as unknown. A Bayesian approach was implemented via accept/reject sampling 
and used to produce posterior means and variances of the time series components, a prediction problem analogous 
to small area estimation. In the application considered the sampling errors were approximately uncorrelated over 
time, and were assumed to have constant relative variance over time, with logarithms taken of the time series so 



the relative variance was taken as an approximation to the sampling variance in the log scale. Thus, the sampling 
variances depended on this one unknown parameter, of which multiple estimates were available. The Bayesian 
approach was used to reflect uncertainty about the common sampling relvariance and the other model parameters. 
Nguyen, Bell, and Gomish (2002) applied a similar modeling approach to an application for which the sampling 

errors did not appear uncorrelated over time (a second order autoregressive model was used), and for which the 
sampling relvariances varied over time due to sample size fluctuations. Later, Bell (2005) provided some results from 
a Bayesian treatment of this model. 

2.3 Additional papers on modeling sampling variances 

Several recent papers by (mostly) staff of the U.S. Bureau of Labor Statistics have explored fitting generalized 
variance functions (GVFs) to direct survey variance estimates in a formal modeling context. Particularly relevant to 
our concerns here is the paper by Gershunskaya and Lahiri (2005). They examined alternative approaches to variance 
estimation for domain estimates in the Current Employment Statistics (CES) survey. In a simulation study with 
subsamples drawn from part of the CES sample they noted that design-based variance estimates have low bias but 
are unstable (very high CVs), while a synthetic model-based variance estimator was more stable but had substantial 
bias. They developed simple models for design-based variance estimates or their logarithms that permitted empirical 
Bayes smoothing of the variance estimates. They found the resulting variance estimates had low bias and were much 
more stable than the design-based variances. 
Additional papers on GVF modeling of direct variance estimates, though not doing empirical Bayes smoothing, 

include Huff, Eltinge, and Gershunskaya (2002), Cho et al. (2002), and Eltinge, Cho, and Hinrichs (2002). An earlier 
paper by Valliant (1987) connected use of a generalized variance function (GVF) with sample design by showing that 
a commonly used GVF is consistent with a particular class of prediction models for estimating totals from stratified, 
two-stage cluster samples. 
Otto and Bell (1995) developed a model with state random effects for sampling covariance matrices of CPS 

estimated poverty ratios. This model provides for a Bayesian or empirical Bayes smoothing of the direct sampling 
variance estimates analogous to what was done by Gershunskaya and Lahiri (2005). 

3. Examining How Error in Sampling Variance Estimates Can Affect Small Area Predictions 

To get a rough idea of how error in sampling variance estimates can affect small area predictions — point predictions 
and prediction error variances — we consider the simple case where the parameters β and σ2 are known, leaving only u 
the sampling error variances vi as unknown parameters. This assumption also applies as the number of small areas 
m grows sufficiently large so that the estimation error of β and σ2 becomes small. We start by computing the MSE u 
treating the v̂i as fixed (i.e., conditional on the v̂i). Let Ŷi be given by (2) but using the estimated sampling variance 
v̂i, that  is,  with  weight  ĥi = σ2 /(σ2 + v̂i) on the direct estimate yi. The  MSE  of  Ŷi can be obtained by writing u u 
Yi − Ŷi = (Yi − Ỹi) + (Ỹi − Ŷi), noting that the error Yi − Ỹi in the optimal predictor Ỹi is orthogonal to Ỹi − Ŷi, 
which is a linear function of the data, so that E[(Yi − Ŷi)2] =  E[(Yi − Ỹi)2] +  E[(Ỹi − Ŷi)2]. After a little algebra, we 
have that 

E[(Ỹi − Ŷi)
2|v̂i] = (hi − ĥi)

2(σ2 + vi).u 

We shall examine the percentage increase in MSE from using Ŷi instead of Ỹi. Since, with β and σ2 known the MSE u 
of Ỹi is given by the first term in (3),  which  can be written as  σ2 vi/(σ

2 + vi), this percentage increase in MSE turns u u 
out to be 

MSE pct diff ≡ 100 × 
MSE(Yi − Ŷi) − MSE(Yi − Ỹi) 

MSE(Yi − Ỹi) 

= 
E[( ̃Yi − Ŷi)2|v̂i] 
σ2 
uvi/(σ

2 
u + vi) 

(hi − ĥi)2 

= . (7)
hi(1 − hi) 

We also examine the extent to which the MSE would be misstated by assuming that the v̂i are the true sampling 
variances. The reported MSE would be, from (3), σ2 (1 − ĥi), while the actual MSE is, from above, σ2 (1 − hi) +u u



(hi − ĥi)2(σ2 + vi). The percentage difference between these two is u ( )
σ2 (1 − ĥi)uMSE relbias = 100  × − 1

σ2 (1 − hi) + (hi − ĥi)2(σ2 + vi)u u( )
hi(1 − ĥi)

= 100  × − 1 (8) 
hi(1 − hi) + (hi − ĥi)2 

upon dividing the numerator and denominator of the ratio by σ2 + vi and simplifying. Notice that we can write u 

hi = (1+  vi/σ2 )−1 as a function of just the “noise-to-signal” ratio vi/σ2 . Similarly, ĥi = (1+ v̂i/σ2 )−1. Thus,  both  u u u

(7) and (8) can be computed given the ratios vi/σ2 and v̂i/σ2 .u u

We shall examine the MSE pct diff and MSE relbias for various multiplicative errors in v̂i as an estimate of vi. 
These can be specified in terms of the ratio v̂i/vi = (v̂i/σ2 )/(vi/σ

2 ). For various degrees of underestimation of vi weu u

set v̂i/vi to one of the values (.75, .50, .25), reflecting underestimation by 25, 50, or 75 percent. For various degrees 
of overestimation of vi we use the reciprocal values (4/3, 2, 4). We then computed MSE pct diff and MSE relbias for 
values of the true ratio vi/σ2 ranging from 1 to 50, and their corresponding reciprocals ranging from 1 down to .02. u 
Results are plotted in Figures 1.a and 1.b. The dotted curves correspond to underestimation with the ratio v̂i/vi set 
to .75 (green), .50 (blue), or .25 (red). The solid curves correspond to overestimation by the reciprocal factors 4/3 
(green), 2 (blue) and 4 (red). The x-axis of both plots, for vi/σ2 , is on a log scale. Note that the MSE pct diff curves u

−1 −1are symmetric in that the MSE pct diff for (v̂i/σ2 , vi/σ
2 ) = (r1, r2) is equal to that for (v̂i/σ2 , vi/σ

2 ) = (r , r  ).u u u u 1 2 
Examining first Figure 1.a we see that the increase in MSE from underestimating vi by 25 or 50 percent, or 

overestimating vi by multiplicative factors of 4/3 or 2, is not very large, being no more than about 10 percent for 
all values of vi/σ2 . With the more extreme estimation errors by factors of 1/4 or 4, consequences for MSE are u

more severe. Note that when the sampling variance becomes larger than the model error variance (vi/σ2 > 1),u 
underestimation of vi is a more severe problem than overestimation. When the sampling variance is smaller than 
the model error variance (vi/σ2 < 1), the reverse is true. Focusing on underestimation of vi, note that this implies u 

that the weight, ĥi = (1+ v̂i/σ2 )−1, given to the direct estimate yi, exceeds the optimal weight hi = (1+  vi/σ2 )−1 .u u

When vi/σ2 < 1 the optimal weight exceeds 1/2, and giving a still larger weight to yi does not incur much increase u 
in MSE. However, when vi/σ2 > 1 the optimal weight is less than 1/2, and putting substantially more weight than u 
this on yi can lead to a substantial increase in MSE. The MSE increase peaks around vi/σ2 = 5, at  which  point  u 

underestimating vi by a factor of 1/4 leads to ĥi = (1+5/4)−1 ≈ .44 compared to the optimal hi = (1+5)−1 ≈ .17, 
with about a 55 percent increase in MSE. In other words, substantially underestimating the sampling variance vi 
when it is large can substantially increase MSE. Note also, however, that for the largest values shown of vi/σ2 , even  u

underestimating vi at 1/4 its true value does not increase MSE so much. For example, if vi/σ2 = 50  the optimal u 
weight on yi is about .02, and  if  v̂i = vi/4 the weight is about .074, still quite small, so the increase in MSE is less 
than 20 percent. Parallel comments clearly apply to overestimation of vi. 
Turning to Figure 1.b we see that over- or underestimation of vi has more substantial effects on error in the  

reported MSE than it did on the true MSE. The effects are largest for small values of vi/σ2 . Note  that  if  v̂i/σ2 isu u 

small (which it will be when vi/σ2 is small unless vi is substantially overestimated) ĥi is close to 1 and Ŷi is close u 
to yi, whose  MSE is  vi, so that errors in v̂i translate directly into errors in the reported MSE. With overestimation 
of vi by factors of 2 or 4 the bias in the reported MSE is very large for small vi/σ2 , but declines fairly rapidly u

as vi/σ2 increases, becoming much less important when vi/σ2 > 2. With underestimation of vi substantial bias u u 
in the reported MSE persists into large values of vi/σ2 . When  vi/σ2 gets sufficiently large then, even when vi isu u 

underestimated to some extent, we have ĥi near zero, Ŷi close to the regression prediction x0 β̂, and the MSE becomes i 
0the variance of the regression prediction error, which is σ2 +x Var(β̂)xi. This depends on the vi only through Var(β̂),u i

which may not be severely affected by error in any individual vi (though here we are actually assuming Var(β̂) is 
small due to m being large). 
Notice that underestimation of vi is the more serious problem (in regard to both increased MSE and bias in 

reported MSE) when vi/σ2 is large, while overestimation of vi is the more serious problem when vi/σ2 is small. u u 
However, small values of vi generally result from large sample sizes, which also lead to more precise variance estimates 
v̂i, making substantial error in the v̂i less likely. Thus, situations where overestimation of vi causes serious problems 
seem generally less likely to arise than situations where underestimation of vi causes serious problems. 
We now examine results for unconditional MSE obtained by assuming a distribution for the v̂i, integrating with 

respect to this distribution to get E[(hi − ĥi)2] and E(ĥi), and substituting these quantities into (7) and (8). These 
results are consistent with the approximate unconditional MSE results of Wang and Fuller (2003) and Rivest and 
Vandal (2003) discussed in Section 2, though again under the assumption that m is sufficiently large that σ2 andu 
β are essentially known. For this purpose we assume a χ2 distribution for dv̂i/vi. We  choose  d so that the lower 5 d 



percent point of the χd/d distribution for v̂i/vi roughly corresponds to the (.75, .50, .25) underestimation factors used 
2 
d/d distribution (Chemical Rubber Company in Figures 1.a and 1.b. The corresponding 95 percent points of the χ

1971) are then substantially less than the reciprocals of (.75, .50, .25), as can be seen from Table 1, which also shows 
the coefficients of variation (CVs) of the distributions. 

Table 1.  5% and  95%  points and  CVs for  the  χ2 
d/d distribution 

d 5% point 95% point CV 
6 .27 2.10 .82 
16 .50 1.64 .50 
80 .75 1.27 .22 

While these assumed distributions make a loose connection with  the  results in Figures  1.a and  1.b in  relation to  
underestimation of v̂i (the more serious concern), these assumptions are just for illustration, and clearly other 
assumptions could be used. In particular, if we instead assumed a lognormal distribution with median 1 for v̂i/vi 
(the mean would then exceed 1), then its 5 percent and 95 percent points would be reciprocals of one another, more 
analogous to the calculations for Figures 1.a and 1.b. 
Results from these unconditional calculations are shown in Figures 1.c and 1.d, with the red, blue, and green 

curves corresponding to the values 6, 16, and 80 for d. From Figure 1.c we see that the increase in unconditional 
MSE when d = 16  or d = 80  is quite mild, and is not very large (less than 10 percent) even for d = 6. What increases 
there are in unconditional MSE are largest when vi/σ2 2exceeds 1. (This is due to the nature of the χu d/d distribution, 
which makes severe underestimation of vi more likely than severe overestimation, in a multiplicative sense, as can 
be seen from Table 1.) Examining Figure 1.d we see only slightly larger effects on the bias of the reported MSE, 
with estimation error in v̂i leading to downward biases in the reported MSE (consistent with the asymptotic result 
(6) of Wang and Fuller (2003)). Again, the effects are more pronounced when vi/σ2 

u exceeds 1, and are larger for 
smaller values of d, reflecting larger amounts of estimation error in v̂i. 
Clearly the most serious concerns arising from the results presented here are those of Figure 1.b on the percent 

bias in the reported conditional MSE due to error in v̂i. Whether or not one takes comfort in the relatively mild 
effects of estimation error in v̂i on the unconditional MSE and on the bias in the reported unconditional MSE, in 
contrast to the potentially larger effects for a specific observed sample, probably depends on whether one views 
things from a conditional or unconditional perspective. 
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Fig. 1. Percent difference in MSE and percent bias in reported MSE
 
from using estimated versus true sampling variance
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