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Abstract
The detection and estimation of business cycles in economic time series is an important activity of econometricians,
and typically involves the filtering of one or more seasonally adjusted time series. The community of econometricians
favoring univariate model-based approaches to cycle estimation seeks to avoid the identification of spurious cycles
via taking a data-driven approach, which is in contrast to nonparametric band-pass approaches. However, given
that seasonal adjustment is a procedure that greatly affects all frequencies of the raw data, it is natural to ask the
following questions: can cycles be adequately detected from raw data? If so, are the detection rates superior to
those obtained from seasonally adjusted data, and does this question depend on the method of adjustment? Does
seasonal adjustment generate spurious cycles? This paper seeks to provide statistical methodology that can be used
to answer these queries. We introduce a diagnostic statistic for deciding the inclusion or exclusion of an unobserved
component, such as a cycle, and determine its theoretical properties. We then describe how this can be used to
address our research questions in a rigorous fashion, and how currently available tools are not adequate.
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1. Introduction

The detection and estimation of business cycles in economic time series is an important activity of econome-
tricians, and typically involves the filtering of one or more seasonally adjusted time series. The community
of econometricians favoring univariate model-based approaches to cycle estimation seeks to avoid the iden-
tification of spurious cycles via taking a data-driven approach (Harvey (1989) and Harvey and Trimbur
(2003)), which is in contrast to nonparametric band-pass approaches (Hodrick and Prescott (1997) and
Baxter and King (1999)). However, given that seasonal adjustment is a procedure that greatly affects all
frequencies of the raw data, it is natural to ask the following questions: can cycles be adequately detected
from raw data? If so, are the detection rates superior to those obtained from seasonally adjusted data,
and does this question depend on the method of adjustment? Does seasonal adjustment generate spurious
cycles? This paper provides statistical tools to answer these queries.

We first observe that these questions are irrelevant if the analyst adopts the nonparametric framework,
since by definition the cycle is merely the output of some user-specified filter, such as the Hodrick-Prescott
(HP) or an ideal band-pass. In this paper we focus on the model-based approach to cycle identification
and estimation, which has the advantage of not producing a cycle when the data does not warrant one
(see Harvey and Jaeger, 1993). With this model-based philosophy, a cycle is viewed as a certain stochastic
Unobserved Component (UC), and not merely a certain band of frequencies in the data’s spectrum. We
mention in passing the method of Kaiser and Maravall (2005), which marries the model-based approach
to the HP filter, essentially finding an implicit cycle model through the use of a user-defined HP filter
on seasonally adjusted data. Note that this method does not have the capacity to declare that a cycle is
absent from the data.
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On the topic of UC detection, one can reject the hypothesis that a certain UC is not present via
considering whether it is plausible, given the data, that the UC’s innovation variance is zero (see Harvey,
1989). Alternatively, one can use a likelihood ratio test; either way, this is a test of inclusion, since low p-
values indicate rejection of the null hypothesis and hence inclusion of the UC (see the treatment of likelihood
ratio tests and similar procedures in Taniguchi and Kakizawa, 2000). These tests are point hypotheses,
i.e., they are concerned with parameter values, and not composite hypotheses such as goodness-of-fit (gof)
tests, which are concerned with model specifications (although they do take parameter uncertainty into
account). UC gof testing was briefly discussed in McElroy and Holan (2009), and is further developed
here for tests of both inclusion and exclusion of UCs in Section 2. This additional flexibility, as well as the
ability to test model specifications, makes these UC gof tests a natural tool for studying our questions.

This paper does not include numerical or empirical studies; instead we exposit the theoretical aspects
of our approach. We have in mind seasonal economic time series that are thought to have salient cyclical
effects (e.g., Housing Starts). Other series with a negligible cycle (for which economists can nevertheless
produce a cycle with nonparametric filters such as the HP) could also be examined with our tests, but in
this case the inclusion of a cycle UC is likely to be rejected. In the next section we develop the methodology
and mathematical results that are needed, and explain how these can be used to assess the presence of
cycles in seasonal data.

2. Statistical Identification of Unobserved Components

In this section we draw heavily on the concepts and notation of McElroy and Holan (2009). We have in
mind a Null model described by the class of spectra F = {fθ}θ∈Θ, and an Alternative model described by
another class G = {fξ}ξ∈Ξ. Also, we consider two UCs, a signal process St and a noise process Nt. The
true spectral density is denoted f̃ , but it is unknown whether f̃ ∈ F or f̃ ∈ G. Then our hypotheses are

H0 : f̃ ∈ F
Ha : f̃ ∈ G.

We assume that there are unique pseudo-true values θ̃ ∈ Θ and ξ̃ ∈ Ξ, which are the respective minimizers
of the Kullback-Leibler distance from f̃ to the model class. Then f̃ equals fθ̃ or fξ̃, depending on H0 or
Ha respectively. Parameters are obtained through maximum likelihood estimates (MLEs), which under
certain conditions are asymptotically equivalent to the minimizers of the Kullback-Leibler distance from
the periodogram to the model class. These MLEs are denoted θ̂ and ξ̂.

2.1 UC Models and a General Result

The way we have formulated things, we have a signal process in mind and there is the question of whether
to include or exclude a noise process, which is a second UC. Of course, there may be plenty of applications
of UC testing that do not involve signal extraction, but the use of signal and noise as terminology is
helpful for identification. We suppose that the signal process is potentially nonstationary with differencing
operator δS(z), such that Ut = δS(B)St is stationary with mean zero (here B is the backshift operator).
Likewise, the noise process (if it exists) has differencing operator δN (z) with Vt = δN (B)Nt. Clearly if an
operator is just the identity, we recover stationarity as a special case. As usual, it is assumed that no unit
roots are common to δS(z) and δN (z); let δ(z) = δS(z)δN (z). Let Wt = δ(B)Yt, which is stationary.

Now in the case that the noise process is absent, we have Yt = St and Wt = Ut (note that δ = δS since
δN = 1). Then we have the simple relation

fW (λ) = fU (λ).

However, if the noise process is present, we have Yt = St + Nt and Wt = δN (B)Ut + δS(B)Vt, and now

fW (λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ). (1)



When we refer to the model spectral density (either fθ or fξ, depending on the model), this is the spectrum
of the differenced data, i.e., fW . If the noise process is absent, the parameters (either θ or ξ) enter simply
through the spectral density fU . But if the noise is present, then the parameters enter in through both
fU and fV according to (1).

The idea of the UC gof tests of this paper is to adapt the framework of McElroy and Holan (2009),
where a diagnostic statistic of the form Qn(I, g, ξ) is considered, where I is the periodogram (of the
differenced data), g is a weighting function depending on ξ, and Qn(f, g, ξ) = n−1

∑
λ f(λ)gξ(λ), with the

summation extending over Fourier frequencies only. In Section 3 of that paper an extension of the main
result to UC testing is discussed; here we restate the main theorem in this context:

Theorem 1 Under the same conditions as Theorem 2 of McElroy and Holan (2009), we have
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These entries are defined in terms of the following quantities:
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When all the gθ,i functions are even and H0 holds, the variance formulas simplify to
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Remark 1 The expression for bi differs slightly (f̃ and fθ are swapped) from that in McElroy and Holan
(2009), which is in error.

In order to form a normalized statistic under H0, we see that the asymptotic variance matrix can be
computed as if H0 were true; denote this quantity by W 0

kl. Then the MLEs θ̂ and ξ̂ can be substituted for
the unknown parameters in all of the above formulas. As in McElroy and Holan (2009), this will provide a
consistent estimate of the variance. In this article we focus on the linear case (L = 1 and j1 = 1) and the



quadratic case (L = 2 and j1 = 2, j2 = 1). The linear and quadratic diagnostics, appropriately normalized,
are given by
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2.2 GOF Tests for UC Inclusion and Exclusion

The gof test for inclusion of a UC has the Null model corresponding to just the signal process, so that
rejection of H0 entails acceptance of G, which corresponds to a model including the second UC (the noise
process). Hence, the inclusion test provides p-values that represents the probability that the second UC
should not have been included (i.e., Type I error). Since, as discussed above, the model classes correspond
to a stationary spectrum of the differenced data process, we have

fθ(λ) = fU (λ)

fξ(λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ).

Similarly, the gof test for exclusion of a UC has the Null model corresponding to signal plus noise, so that
rejection of H0 entails rejection of the presence of the noise process. Then

fθ(λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ)
fξ(λ) = fU (λ).

In this way gof test for inclusion and exclusion of a UC can be handled. We next discuss two examples,
which are central to the motivation for this article.

Scenario 1 Suppose that the signal process follows a Box-Jenkins Airline model, and the noise process
is a (stationary) stochastic cycle Ct with dynamics

(1− 2ρ cosωB + ρ2B2)Ct = εt, (3)

where εt is white noise with variance σ2
C . The strength of the cycle is parametrized through ρ, while the

frequency location is governed by ω. The airline process At has dynamics

(1−B)(1−B12)At = (1− η1B)(1− η2B
12)ζt, (4)

with ζt white noise with variance σ2
A. Then in the inclusion test, the null model is just the airline model

so that θ = (η1, η2, σ
2
A)′. The alternative model consists of the sum of the airline and cycle processes, so

that
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−iλ|2|1− η2e

−i12λ|2σ2
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|1− e−iλ|2|1− e−i12λ|2σ2
C

(1− 2ρ cos(λ + ω) + ρ2)(1− 2ρ cos(λ− ω) + ρ2)
. (5)

In this case ξ = (η1, η2, σ
2
A, ρ, ω, σ2

C)′. But with the exclusion test, the role of θ and ξ are swapped.



Scenario 2 Now suppose that the signal process is a trend irregular Tt with an IMA(2,2) specification:

(1−B)2Tt = (1 + ϑ1B + ϑ2B
2)κt,

with white noise variance σ2
T . The noise process is the cycle Ct described in Example 1 above. Then in

the inclusion test we have the null spectral density given by

|1 + ϑ1e
−iλ + ϑ2e

−i2λ|2σ2
T ,

and θ = (ϑ1, ϑ2, σ
2
T )′. But the alternative spectral density for the differenced data is

|1− ϑ1e
−iλ − ϑ2e

−i2λ|2σ2
T +

|1− e−iλ|4σ2
C

(1− 2ρ cos(λ + ω) + ρ2)(1− 2ρ cos(λ− ω) + ρ2)
.

Then we have ξ = (ϑ1, ϑ2, σ
2
T , ρ, ω, σ2

C)′. In the case of the exclusion test θ and ξ are swapped.

2.3 Seasonal Adjustment Methods

In this article we consider model-based Seasonal Adjustment (SA), which is a signal extraction problem
where the noise process is the seasonal component. Since we are interested in testing for the presence of
a cyle UC before and after SA, we consider the following two SA procedures:

1. Supposing that the cycle UC is present, we fit a model of the form Airline plus Cycle, where parameter
estimates are obtained using a structural approach, i.e., the spectral density given in (5). A canonical
decomposition is then performed on the airline model, so that a model for the seasonal is obtained;
then model-based signal extraction is carried out, with a trend plus cycle plus irregular as the signal,
and with the seasonal as the noise.

2. Supposing that no cycle UC is present, we fit an Airline model and perform the canonical decom-
position in order to obtain a model for the seasonal. Then model-based signal extraction is carried
out, with a trend plus irregular as the signal, and with the seasonal as the noise.

Note that UC gof tests for inclusion/exclusion of the cycle can be done on the original (linearized) data, as
described in Scenario 1; then we can seasonally adjust according to method 1 or 2 above, as indicated by
the results of the test; and finally we can again test for existence of the cycle in the SA data, following the
approach of Scenario 2. This provides several different scenarios, so that we can investigate the following
questions: are cycles present in the raw data also present in the SA? Or is cycle detection easier after SA?
How does this depend on the method of SA, i.e., whether the presence of the cycle is taken into account?

We briefly justify our hybrid approach to modeling the UCs, which really combines the structural
approach and the canonical decomposition approach. A standard canonical decomposition approach would
place an AR(2) factor in the model for the raw data, and attempt to decompose into four components;
however, in practice it is difficult to get good fits for such SARIMA models (in our experience), and the
decomposition is no longer guaranteed to exist. On the other hand, decompositions frequently exist for
airline models, at least within the scope of parameter values typically encountered with economic time
series. As for a fully structural approach, this would postulate four UCs (trend, seasonal, irregular, and
cycle) with potentially 19 parameters (assuming an IMA(2,2) specification for trend and an MA(11) model
for the differenced seasonal). Although this number can be reduced by selecting more parsimonious models
for the seasonal (one extreme dictates that the differenced seasonal should be white noise, although this
produces a very chaotic seasonal pattern that is unlikely to fit data with stable seasonality), there are still
more parameters than the case of the hybrid approach. But with the hybrid approach, the model for the
seasonal is essentially governed by the parameter η2 of the airline UC. We do not argue that the hybrid
method is the best, only that it seems to be an interesting and workable alternative to two widely used
techniques.



In the practice of seasonal adjustment we would like to perform signal extraction with simpler models,
if possible. Therefore we would like to exclude the cycle component in the modeling stage, if this is
statistically justifiable. Models without a cycle correspond (essentially) to current practice at the U.S.
Census Bureau, and therefore there is an institutional incentive to utilize the tests of exclusion rather than
those of inclusion. Note that in the event that the presence of a cycle is rejected with significance, it is
not saying that no cycle exists in the nonparametric sense of the HP filter, but rather that the particular
ARIMA model for that UC has no statistical support. Any minor cyclical effects will then be incorporated
into the models for the other components, but in any event have little impact on seasonal adjustment
results.

3. Conclusion

This paper has set out some questions regarding the investigation of cycles in seasonal economic data,
utilizing a model-based perspective. We have presented tests for the inclusion and exclusion of unobserved
components in a mathematically rigorous fashion, and specialized to the case of seasonal-trend-cycle data
in our examples. These new tests allow for the exclusion of a cycle component, which cannot be done using
likelihood ratio tests (or similar statistics such as the Wald test). This is accomplished by directly com-
paring the fits of both models in the frequency domain, although all quantities can actually be computed
in the time domain using simple formulas (omitted to save space). Future work will focus on numerical
studies of these new tests, and how they can be used to answer our leading questions.
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