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Abstract   
The U.S. Census Bureau collects its survey and census data under Title 13 of the U.S. Code which promises 
confidentiality to its respondents.  The agency also has the responsibility of releasing data for the purpose of 
statistical analysis.  In common with most national statistical institutes, our goal is to release as much high quality 
information as possible without violating the pledge of confidentiality.  This paper discusses a Microdata Analysis 
System (MAS) that is under development at the Census Bureau.  The system is designed to allow data users to 
perform various statistical analyses (for example, regressions, table generations, generation of correlation 
coefficients) of survey and census data without seeing or downloading the actual underlying confidential microdata.  
This paper begins with an overview of the Microdata Analysis System and discusses the confidentiality rules 
currently implemented in the system.  The remainder of the paper will focus on a recently evaluated Drop q Rule 
and a cutpoint generation program.  These are used to protect the confidentiality of results generated from the 
system while still maintaining data quality and utility.  We will then conclude with a brief discussion about future 
work on the MAS. 
 
Key Words: Disclosure Avoidance, Confidentiality, Data Dissemination, Remote Access, Differencing Attack, 
Sub-sampling 
 

1.  Introduction 
 
The U.S. Census Bureau collects its survey and census data under Title 13 of the U.S. Code.  
This prevents the Census Bureau from releasing any data “...whereby the data furnished by any 
particular establishment or individual under this title can be identified.”  In addition to Title 13, 
the Confidential Information Protection and Statistical Efficiency Act of 2002 (CIPSEA) 
requires the protection of information collected or acquired for exclusively statistical purposes 
under a pledge of confidentiality.  In addition, the agency has the responsibility of releasing data 
for the purpose of statistical analysis.  In common with most national statistical institutes, our 
goal is to release as much high quality data as possible without violating the pledge of 
confidentiality (Duncan, Keller-McNulty, and Stokes, 2003; Kaufman, Seastrom, and Roey, 
2005).  We apply disclosure avoidance techniques prior to publicly releasing our data products to 
protect the confidentiality of our respondents and their data (Willenborg and de Waal, 2001).  
This paper discusses a Microdata Analysis System (MAS) that is under development at the 
Census Bureau.  The system is designed to allow data users to perform various statistical 
analyses (for example, regressions, table generations, generation of correlation coefficients) of 
survey and census data without seeing or downloading the actual underlying confidential 
microdata.  We begin by answering some frequently asked questions about the MAS.  We then 
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discuss the current state of the system, including which data sets and types of statistical analyses 
are included, and the confidentiality rules used to protect data products generated from the MAS.  
We then discuss some of the recent work that has been done on the MAS.  In particular, we focus 
on a Drop q Rule and a cutpoint generation program.  We end with remarks on future work. 
 

2.  Answers to Frequently Asked Questions about the Microdata Analysis 
System 

 
2.1 Why Do We Need a MAS? 
There are several reasons to develop a Microdata Analysis System.  One reason is to allow data 
users to perform statistical analyses on the actual confidential microdata instead of our public use 
microdata files, which have been modified to protect the confidentiality of our respondents.  The 
Census Bureau conducts reidentification studies on its public use microdata files.  In these 
studies, we attempt to link outside files that have identifiers on them to our public use files.  We 
have found and fixed a few small problems, but there is a concern that more problems will arise 
in the future because more and more data are becoming publicly available on the internet, and 
more people are using record linkage software and data mining in an effort to increase the 
amount of information they can work with.  As a result, data users are worried that we may have 
to cut back on the detail in our public use files and use more data perturbation techniques to 
protect them.   
 
A second (related) reason for developing the MAS is not to allow data users to access new 
information, but to allow data users to access more detailed, accurate information than what is 
currently available on our public use files.  For example, perhaps the data that can be accessed 
through the MAS could identify smaller geographic areas and show more detail in variable 
categories and tail ends of distributions that are normally not shown on public use files.  One of 
our goals for the MAS is to allow access to as much high quality data as possible (Weinberg et 
al., 2007; Rowland and Zayatz, 2001).  In addition, the MAS would allow users to access to data 
that is not typically released in public use microdata files.  This would include data on 
establishments and linked data sets that include both demographic and establishment data. 
 
2.2   What Data Sets and What Types of Analyses Will be Available on the MAS? 
The ultimate goal is to include any and all data sets and any and all types of analyses.  We will 
begin with data from demographic surveys and the decennial censuses.  We would like to add 
establishment survey and census data as well as linked data sets.  We will begin with regressions, 
cross-tabulations, and correlation coefficients, and add other applications in the future.  See 
section 3 for what is included in the prototype.  
 
2.3   Who Might Want to Use the MAS and Will It Cost Anything? 
The MAS will be used by people with needs for fairly simple statistical analyses (news media, 
some policy makers, teachers and students).  We understand that some users feel the need to use 
the underlying microdata for more exploratory data analysis.  However, due to confidentiality 
concerns, users will have to continue to use the public use files (although they may not offer the 
detail that one might get through the MAS) or the Research Data Centers (although this is not as 
inexpensive or easy to use as the MAS) for their exploratory data analysis needs.    
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A final decision on cost has not yet been made; however, the current plan is to offer this as a free 
service through the Census Bureau’s DataFERRETT (Chaudhry, 2007).  
 
2.4   Will the Census Bureau Keep Track of Who Uses the MAS and What Queries Are 
Submitted? 
We are currently investigating the legality of doing this.  There are at least two reasons why we 
would want to.  First, we want to see how people are using the system, so that we can make 
modifications and enhancements to improve the user experience. 
 
The second reason would be for disclosure avoidance purposes.  These data may be useful to 
help identify disclosure risks arising from multiple queries to the system.  The system is meant to 
do all disclosure avoidance by itself through confidentiality rules and restrictions on the 
underlying datasets.  There will be no humans monitoring the system.  Instead, we will write 
software that prevents users and automated robot programs from bombarding the system with 
large numbers of queries.  We will not try to determine if different users are colluding with 
multiple queries.  There will be no modification of data on the fly. 
 

3.  An Alpha Prototype of the Microdata Analysis System 
 
The Census Bureau contracted with Synectics to develop an alpha prototype of the MAS.  It was 
written in SAS.  We also contracted with Jerry Reiter of Duke University to help us develop the 
confidentiality rules and Steve Roehrig of Carnegie Mellon University to help us test the 
confidentiality rules.  Some rules were modified as a result of the testing. 
 
3.1   Data Sets and Types of Statistical Analyses  
The data sets included in the prototype were the Current Population Survey (CPS) March 2000 
Demographic Supplement and the 2005 American Community Survey (ACS).  The types of 
statistical analyses available in the prototype were cross-tabulations, generation of correlation 
coefficients, ordinary least squares (OLS) regression, binary logistic regression and multinomial 
logistic regression.   
 
3.2   Current Confidentiality Rules For Universe Formation Within the Alpha MAS 
Prototype. 
The confidentiality rules discussed in this section and in section 4 are quite complex.  This paper 
gives a brief overview of them.  More detail can be found in Lucero[2] (2009).  
 
The MAS software is programmed with several confidentiality rules and procedures that uphold 
disclosure avoidance standards.  The purpose of these rules and procedures is to prevent data 
intruders from exploiting the system by submitting multiple statistical queries for the purpose of 
recreating individual confidential microdata records.  Currently, the alpha prototype implements 
rules on the formation of universes (subpopulations) and rules for OLS regression, binary logistic 
regression, and multinomial logistic regression.  The alpha prototype does not implement any 
confidentiality rules for cross-tabulations or for the generation of correlation coefficients.  Work 
is currently underway at the Census Bureau to develop a beta prototype, that will include 
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confidentiality rules for cross-tabulations and correlation coefficients, as well as confidentiality 
rules that required modification due to previous testings.  This recent work will be discussed 
further in sections 4 and 5.  
 
All variables used for universe formations are categorical recodes of the actual raw variables 
found in the underlying microdata.  Raw categorical variables, as well as their corresponding 
category level bins, are coded directly into the metadata.  Raw numerical variables are presented 
to the user as recoded categorical variables based on output from a cutpoint program.  This 
cutpoint program bins numerical values to further confidentiality protection.  Details of the 
cutpoint program will be discussed in section 5. These recoded variables are used for universe 
formations only.  All statistical analyses performed on the MAS use the raw variable values from 
the underlying microdata. 
 
Universe formation on the MAS is performed through an implicit table server.  To form a 
universe, users would first select m recoded variables, then select up to j observed bin levels for 
each of the m recoded variables.  Currently, users can define a universe using no more than m = 4 
variables, and may select no more than j = 8 observed bin levels for each variable.  The MAS 
would then generate an m-way table of counts for the m recoded variables used to define the 
universe.  A universe query on the MAS can be thought of as a request for a set of cell counts 
from the m-way table of counts.        
 
For example, suppose the user would like to perform a statistical analysis on the following 
universe: 
 
P1(99) = [gender = female and $28,501 < income < $39,500] 
OR 
P2(49+11) = [gender = male and $62,001 < income < $120,000] 
 
This universe is derived from the set of yellow and blue cells from Table 3.2.1, a two-way table 
of counts for gender by income.  The yellow cell represents the first piece of the full universe, 
P1(99).  The blue cells represent the second piece of the full universe, P2(49+11).  Note that there 
are 99 total observations in P1 and 60 total observations in P2.  Furthermore, since no cell counts 
are shared among P1 and P2, we would call this a disjoint universe, Ud.  There is a total of 159 
observations in the full disjoint universe: Ud(159) = P1(99) or P2(49+11).   
 

 income 
 

gender 
$0 
to 

$28,500 

$28,501 
to 

$39,500 

$39,501 
to 

$45,000 

$45,001 
to 

$53,500 

$53,501 
to 

$62,000 

$62,001 
to 

$70,500 

$70,501 
to 

$120,000 

 
 

Total 
male 20 97 49 92 38 49 11 356 

female 26 99 42 64 45 37 8 321 
Total 46 196 91 156 83 86 19 677 

               Table 3.2.1-Example of a disjoint universe. 
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As for another example, suppose the user requests the following universe on the MAS: 
 
P1(321) = [gender = female] 
OR 
P2(86+19) =  [$62,001 < income < $120,000] 
 
This universe is also derived from the same two-way table of counts for gender by income, as 
shown in Table 3.2.2.   The yellow and green cells represents the first piece of the full universe, 
P1(321).  The blue and green cells represent the second piece of the full universe, P2(86+19).  
The green cells represent the shared cell counts among P1 and P2.  That is, the intersection of P1 
and P2 is non-empty, and contains 37+8 = 45 total observations: P1(321) … P2(86+19) = I(37+8).  
Since cell counts are shared among P1 and P2, we would call this a joint universe.  There are 
321+86+19 – 37 – 8 = 381 total observations within the full joint universe:  Uj(381) = P1(321) or 
P2(86+19) 
 

 income 
 

gender 
$0 
to 

$28,500 

$28,501 
to 

$39,500 

$39,501 
to 

$45,000 

$45,001 
to 

$53,500 

$53,501 
to 

$62,000 

$62,001 
to 

$70,500 

$70,501 
to 

$120,000 

 
 

Total 
male 20 97 49 92 38 49 11 356 

female 26 99 42 64 45 37 8 321 
Total 46 196 91 156 83 86 19 677 

               Table 3.2.2-Example of a joint universe. 
 
Before users are allowed to perform any statistical analyses on their chosen universe, their 
universe must pass the following two rules: 
 

• No Marginal 1 or 2 Rule:  The m-way table, from which the universe is derived, cannot 
contain any (m-1) dimensional marginal totals equal to 1 or 2. 

 
• 75 Rule:  The universe must contain at least 75 observations. 

 
If at least one of these two rules fail, then the MAS rejects the user’s universe query, and 
prompts the user to modify his universe selection.  For any universe derived from an m-way table 
of counts, the No Marginal 1 or 2 Rule ensures that all (m-1) dimensional marginal totals are not 
equal to 1 or 2.  If at least one (m-1) dimensional marginal total equals 1 or 2, then no universes 
can be derived from that particular m-way table.  The application of the 75 Rule is dependent if 
the universe is disjoint or joint.  If a universe is disjoint, then no cell counts are shared among 
any of its pieces, and each piece is checked separately for the 75 Rule.  If a universe is joint, then 
there are at least some cell counts shared among two or more of its pieces, and each of these 
shared cell counts must be checked for the 75 Rule.  Furthermore, all cutpoint bins are combined 
within each piece or within each set of shared cell counts in order to test the 75 Rule.    
 
For example, to apply the 75 Rule for the disjoint universe Ud(159) = P1(99) or P2(49+11), 
derived from Table 3.2.1, the 75 Rule must be tested separately for  P1(99) and P2(49+11).  Both 
P1 and P2 must each contain 75 or more observations.  The 75 Rule is satisfied for P1 since 99 > 
75.  Since income is a categorical recode, the cutpoint bins of income are combined to test the 75 
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Rule for P2.  However, since 49+11 = 60 < 75, the 75 Rule fails for P2 and the MAS would reject 
the user’s universe query. 
 
To apply the 75 Rule for the joint universe Uj(384) = P1(321) or P2(86+19), derived from Table 
3.2.2, the 75 Rule must be tested separately for the shared cell counts contained in the non-empty 
intersection I(37+8) = P1(321) … P2(86+19).  The total number of observations within this non-
empty intersection must contain 75 or more observations.  Once again, the income cutpoint bins 
must be combined to test the 75 Rule within the non-empty intersection I(37+8).  Since 37+8 = 
45 < 75, the 75 Rule fails for I(37+8), and the MAS would reject the user’s universe query.  
Further details and examples of testing the 75 Rule for disjoint and joint universe types can be 
found in Lucero[2], (2009). 
 
3.3 Current Confidentiality Rules For Regression Analyses within the Alpha MAS 
Prototype. 
In addition, the MAS implements other confidentiality rules for regression analyses.  Again, we 
will provide only a brief overview of these rules.  More detail can be found in Lucero[3] (2009).  
For example, no more than 20 independent variables may be selected for any regression model.  
Furthermore, since there are some transformations that could deliberately emphasize outliers 
(Gomatam et al., 2004), the set of transformations available to the user is limited to a 
predetermined list.   
 
As shown in Reznek (2003) and Reznek and Riggs (2004), any fully interacted regression model 
that contains only dummy variables as predictor variables can pose a disclosure risk.  Therefore, 
users are restricted to include only two-way and three-way interaction terms within their 
regression model.  In addition, each predictor dummy variable must pass a minimum size 
threshold, or it will be absorbed into the intercept term along with the dummy variable that 
represents the reference category level. 
 
Depending on the type of regression analysis, the MAS will check the values for some summary 
statistics prior to passing back the estimated regression coefficients back to the user.  For 
example, for OLS regression, the MAS checks and ensures that R2 is not too close to 1.  If R2 is 
too close to 1, then the fitted regression model fits the data too well, and users could use the 
values of the estimated coefficients to obtain accurate predictions of the response variable given 
known values of the predictor variables (Reiter, 2004).  If R2 is too close to 1, then the MAS will 
not output any regression results back to the user.  If R2 is not too close to 1, then the MAS will 
output the estimated regression coefficients, as well as the ANOVA table, to the user without 
restriction. 
 
The MAS never outputs the actual residual values back to the user, since the real residual values 
can be easily manipulated to determine the actual values of the dependent variable.  All 
diagnostic residual plots on the MAS are based on synthetic residuals vs. synthetic fitted values, 
which are designed to mimic the patterns shown in the actual scatter-plot of the real residuals vs. 
real fitted values.    These synthetic residual scatter-plots allow the user to check the fit of their 
submitted regression model, without the disclosure of the actual residual values (Reiter, 2003). 
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4.  Recent Work on the Microdata Analysis System: The Drop q Rule 
 
In this section, we present a brief overview of the recent evaluation of the Microdata Analysis 
System’s universe subsampling routine known as the Drop q Rule.  A more in depth evaluation 
can be found in Lucero[1] (2009).   
 
4.1 Differencing Attack Disclosures 
While the 75 Rule ensures that the universe data set, U(n), meets a minimum size requirement, it 
does not prevent differencing attack disclosures.  A differencing attack combines the statistical 
results obtained from two similar universe queries in an attempt to disclose an individual’s 
confidential microdata record.  To perform a differencing attack disclosure, a data intruder would 
first create two similar universes on the MAS:   
 
U(n):  A universe with n total observations. 
 
U(n-1):  A universe with the exact same n observations as U(n), less one observation. 
 
The difference U(n) – U(n-1) = U(1), where U(1) is a universe that contains only one unique 
observation.  Suppose a data intruder then requests two similar two-way tables of counts for 
gender by race on the MAS:  T[U(n)] from U(n), and T[U(n-1)] from U(n-1), as shown in Figure 
4.1.1. 
 
T[U(n)]                                     race T[U(n-1)]                                       race 
gender White Black Asian Other Total gender White Black Asian Other Total 
Male n11 n12 n13 n14 n1. Male n11 - 1 n12 n13 n14 n1. - 1 

Female n21 n22 n23 n24 n2.  Female n21 n22 n23 n24 n2.  
Total n.1  n.2  n.3  n.4   

 
 
-

Total n.1 -1 n.2  n.3  n.4   
 

T[U(1)]                                       race 
gender White Black Asian Other Total 
Male 1 0 0 0 1 

Female 0 0 0 0 0 

 
 

= 
 

Total 1 0  0 0   
Figure 4.1.1-Example of a differencing attack performed on two similar two-way tables. 
 
Since U(n) and U(n-1) only differ by one unique observation, T[U(n-1)] will be exactly the same 
as T[U(n)], less one cell count.  This sensitive cell is shaded in Figure 4.1.1.  The data intruder 
then performs the following differencing attack on these similar two-way tables:  T[U(n)] – 
T[U(n-1)] = T[U(1)].  The resulting table,  T[U(1)], is a two-way table of counts of gender by 
race, which contains a cell count of 1 in the cell that represents white males.  By performing a 
differencing attack T[U(n)] – T[U(n-1)] = T[U(1)], the data intruder has disclosed that the one 
unique observation contained in U(1) = U(n) – U(n-1) is a white male.  
 
4.2 The Drop q Rule 
To help guard against differencing attack disclosures, the MAS implements a subsampling 
routine called the Drop q Rule.  After the universe U(n) passes the No Marginal 1 or 2 Rule and 
the 75 Rule, q observations are randomly removed from the U(n) data set to yield a new 
subsampled universe data set, U(n-q), where q << n.  If the same U(n) is selected again by the 
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same user, or by a different user, then the exact same q observations are dropped from U(n) to 
yield the same subsampled  U(n-q) as before.  Currently, the value of q is fixed for all universe 
queries on the MAS and does not change with respect to the universe size n.   
 
On the MAS, every statistical analysis is performed on the subsampled U(n-q) data set, and not 
on the original U(n) data set.  Therefore, if a data intruder attempts to perform a differencing 
attack on two similar two-way tables of gender by race, T[U(n)] – T[U(n-1)], as shown in Figure 
4.2.1, he is actually performing a differencing attack of T[U(n-q)] – T[U(n-1-q)] as shown in 
Figure 4.2.2. 
 
T[U(n)]                                       race T[U(n-1)]                                  race 
gender White Black Asian Other gender White Black Asian Other 
Male n11 n12  n13  n14  Male n11 – 1 

 
n12  n13  n14  

Female n21  

 

n22  n23  n24  

 
 
 

– 
Female n21  n22  n23  n24  

Figure 4.2.1- The differencing attack T[U(n)] - T[(U(n-1)]. 
 
T[U(n-q)]                                     race T[U(n-1-q)]                                race 
gender White Black Asian Other gender White Black Asian Other 
Male n11 – X11 n12 – X12 n13 – X13 n14 – X14 Male n11 – 1 

– Y11 
n12 – Y12 n13 – Y13 n14 – Y14 

Female n21 – X21 

 

n22 – X22 n23 – X23 n24 – X24 

 
 
 

– 
Female n21 – Y21 n22 – Y22 n23 – Y23 n24 – Y24 

Figure 4.2.2- The differencing attack T[U(n-q)] - T[(U(n-1-q)]. 
 
In Figure 4.2.2, T[U(n-q)] is a two-way table for gender by race, based on the subsampled    
U(n-q) data set, and T[U(n-1-q)] is a two-way table for gender by race based on the 
independently subsampled U(n-1-q) data set.  The random removal of q observations from U(n) 
to yield U(n-q) is equivalent to removing q cell counts at random from the original two-way table 
T[U(n)] to yield a new subsampled two-way table of gender by race, T[U(n-q)].  Similarly, the 
random removal of q observations from U(n-1) to yield U(n-1-q) is equivalent to removing q cell 
counts at random from the original two-way table T[U(n-1)] to yield a subsampled two-way table     
T[U(n-1-q)].  The random variables Xij give the number of counts that were randomly removed 
from each cell in T[U(n-q)], while the random variables Yij give the number of counts that were 
randomly removed from each cell in T[U(n-1-q)], where 0 < Xij < q, 0 < Yij < q, ÊiÊj Xij = q and 
ÊiÊj Yij = q.  Since T[U(n-q)] and T[U(n-1-q)] are based on two independently subsampled 
universe data sets, the resulting table T[U(1)] = T[U(n-q)] – T[U(n-1-q)] may or may not yield a 
successful disclosure of gender and race for the one unique observation contained in U(1).   
 
4.3 An Evaluation of the Drop q Rule 
On the MAS alpha prototype, q = 2 regardless of the size of the original U(n) data set.  We 
believed that higher values of q would yield lower probabilities of obtaining successful 
disclosures from the m-way table T[U(1)] = T[U(n-q)] – T[U(n-1-q)].  However, we observed 
that the distribution of cell proportions within the original m-way table T[U(n)], on which the 
data intruder attempts to perform a differencing attack, played a major role in determining the 
effectiveness of the Drop q Rule, not just the value of q itself.     
 
 



For example, using the same similar two-way tables of gender by race, T[U(n)] and T[U(n-1)], 
as shown in Figure 4.2.1, when q observations are removed at random from U(n) to yield U(n-q), 
the observed number of counts xij that were randomly removed from each cellij in resulting two-
way table T[U(n-q)] (as shown in Figure 4.2.2), is dependent on the proportion of counts pij 
within each cellij in the original two-way table T[U(n)].  If we think of these cell proportions as 
probabilities, then, for large values of n, the random variables X11,…,X24 in T[U(n-q)] follow an 
approximate multinomial distribution with parameters q, p11,…, p24: 
 

( ) 2411
2411

2411
241124241111 !!

!,...,,|,..., xx

xx
qqxXxXP ππππ L
L

===  

Similarly, when q observations are removed at random from U(n-1) to yield U(n-1-q), the 
observed number of counts yij that were randomly removed from each cellij in the resulting two-
way table of gender by race, T[U(n-1-q)], is also dependent on the cell proportions within the 
original two-way table T[U(n-1)].  However, for large values of n, the cell proportions in   
T[U(n-1)] are approximately equal to the cell proportions pij in the original two-way table 
T[U(n)].  Therefore, the random variables Y11,…,Y24 T[U(n-1-q)] also follow an approximate 
multinomial distribution with same parameters q, p11,…, p24: 
 

( ) 2411
2411

2411
241124241111 !!

!,...,,|,..., yy

yy
qqyYyYP ππππ L
L

===  

 
Since U(n-q) and U(n-1-q) are subsampled independently, T[U(n-q)] and T[U(n-1-q)] are two 
independently subsampled tables, and the approximate joint probability of removing X11 = x11, 
…,X24 = x24 cell counts at random from T[U(n-q)] and removing Y11 = y11,…,Y24 = y24 cell 
counts at random from T[U(n-1-q)] is: 
 
(4.3.1)  ( ) ( ) ===== 241124241111241124241111 ,...,,|,...,,...,,|,..., ππππ qyYyYPqxXxXP  

             24241111
2411

24112411 !!
!

!!
! yxyx

yy
q

xx
q ++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ππ L

LL
, where ÊiÊj Xij = q, ÊiÊj Yij = q, ÊiÊj pij = 1. 

 
The PMF in 4.3.1 gives us the approximate joint probability of obtaining a subsampled table 
T[U(n-q)] from T[U(n)] and a subsampled table T[U(n-1-q)] from T[U(n-1)], where Xij = xij 
counts were removed at random from each cellij in T[U(n-q)]  and Yij = yij counts were removed 
at random from each cellij in T[U(n-1-q)].  
 
It was observed that a successful disclosure of gender and race from the differencing attack of 
T[U(1)] = T[U(n-q)] - T[U(n-1-q)] could occur only if xij = yij, for all i, j.  That is, the xij counts 
that were removed at random from each cellij in T[U(n-q)] must exactly match the yij counts that 
were removed at random from each cellij in T[U(n-1-q)].  Therefore, the joint approximate 
probability of obtaining two such subsampled tables T[U(n-q)] and T[U(n-1-q)], where the exact 
same xij = yij counts were removed at random from each cellij in both T[U(n-q)] and T[U(n-1-q)], 
is: 
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(4.3.2)  ( ) 2411 2
24

2
11

2

2411
241124241111 !!

!,...,,|,..., xx

xx
qqxXxXP ππππ L
L ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== , 

              where ÊiÊj Xij = q, and ÊiÊj pij = 1. 
 
As a result, 4.3.2 gives us the approximate probability of obtaining a successful disclosure of 
gender and race from a single differencing attack T[U(1)] = T[U(n-q)] - T[U(n-1-q)].  If we sum 
4.3.2 over all possible sequences of x11,…x24, such that ÊiÊj Xij = q, we get 4.3.3, the total 
approximate probability of obtaining a successful disclosure of gender and race, for all possible 
differencing attacks of T[U(1)] = T[U(n-q)] - T[U(n-1-q)]: 
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In general, given any two similar universe data sets U(n) and U(n-1), and their independently 
subsampled universe data sets U(n-q) and U(n-1-q), if a data intruder requests the same m-way 
table of counts T[ ] for both U(n-q) and U(n-1-q), where T[ ] contains L total cells, and performs 
the differencing attack T[U(n-q)] – T[U(n-1-q)] = T[U(1)] as an attempt to disclose all m 
observed categorical variables for the one unique observation contained in U(1) = U(n) – U(n-1), 
then the total approximate probability of obtaining a successful disclosure from T[U(1)] for all m 
observed categorical variables is given by: 
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where p1,…, pL are the cell proportions contained in the m-way table T[U(n)], U(n) is the 
original data set, p1 + ÿÿÿ + pL = 1, and the summation in 4.3.4 is taken over all possible sequences 
of x1,…,xL such that x1 + ÿÿÿ + xL = q. 
 
Using the function NMinimize in Mathematica, we set equation 4.3.4 as a function of p1,…, pL, 
and then performed several non-linear optimization routines to minimize 4.3.4 subject to the 
constraint p1 + ÿÿÿ + pL = 1 for L = 2,…,9, and different values of q. It was found that the 
minimum total approximate probability of obtaining a successful disclosure was achieved when 
p1 = p2 = ÿÿÿ = pL =1/L, regardless of the value of q.  Setting p1 =  ÿÿÿ = pL =1/L in equation 4.3.4, 
the minimum total approximate probability of obtaining a successful disclosure from T[U(n-q)] – 
T[U(n-1-q)] = T[U(1)] is: 
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When the cell proportions p1 = p2 = ÿÿÿ = pL = 1/L within the original m-way table T[U(n)], higher 
values of q yielded lower minimum total approximate probabilities of successful disclosures.  It 

 10



 11

was observed that when the cell proportions were fairly balanced among the L total cells in 
T[U(n)] (that is, no one cell in T[U(n)] contains a very large proportion of counts relative to its 
remaining L-1 cells), higher values of q yielded lower probabilities of successful disclosures 
from the differencing attack T[U(n-q)] – T[U(n-1-q)] = T[U(1)].  For example, Figure 4.3.6 
shows a two-way table for gender by race T1[U(n)], where the cells proportions in T1[U(n)] are 
fairly balanced among its 8 total cells.  Therefore, for any given pair of independently 
subsampled tables T1[U(n-q)] and T1[U(n-1-q)], the differencing attack T1[U(n-q)] –         
T1[U(n-1-q)] = T1[U(1)] will yield smaller approximate probabilities of successful disclosures 
for gender and race for larger values of q, as shown in Table 4.3.6. 
 
However, it was also observed that if one cell in T[U(n)] contains an very high proportion of 
counts relative to its remaining L-1 cells, then the approximate probability of obtaining a 
successful disclosure from T[U(n-q)] – T[U(n-1-q)] = T[U(1)] remained high, regardless of the 
value of q.  For example, Figure 4.3.7 shows a two-way table for gender by race, T2[U(n)], 
where the cell for gender = female and race = white contains a very high proportion of counts, 
0.9814, relative to its remaining 7 cells.  Therefore, for any given pair of independently 
subsampled tables T2[U(n-q)] and T2[U(n-1-q)], the differencing attack T2[U(n-q)] –         
T2[U(n-1-q)] = T2[U(1)] will still yield high approximate probabilities of successful disclosures 
for gender and race, even for higher values of q, as shown in Table 4.3.7.  It is important to note 
that the sensitive cell (the cell that differs by only one count in both T[U(n)] and T[U(n-1)], as 
shown in Figure 4.2.1) does not need to be the cell that contains the highest proportion of counts 
relative to the remaining L-1 cells within the original table T[U(n)].  If any cell within T[U(n)] 
contains a very high proportion of counts, the approximate probability of obtaining a successful 
disclosure from the differencing attack T[U(n-q)] – T[U(n-1-q)] = T[U(1)] will still remain high. 
 
T1[U(n)]                                     race T2[U(n)]                                     race 
gender White Black Asian Other gender White Black Asian Other 
Male 0.123 0.111 0.145 0.152 Male 0.0016 0.0017 0.0088 0.0007 

Female 0.116 0.133 0.101 0.119 

 

Female 0.9814 0.002 0.0015 0.0023 
Figure 4.3.6                                                                            Figure 4.3.7 
 
 

 
q 

Total Approximate Probability of Obtaining 
a Successful Disclosure from 

T1[U(n-q)] – T1[U(n-1-q)] = T1[U(1)], 
for the Given Cell Probabilities in T1[U(n)] 

 
q 

Total Approximate Probability of Obtaining 
a Successful Disclosure from 

T2[U(n-q)] – T2[U(n-1-q)] = T2[U(1)], 
for the Given Cell Probabilities in T2[U(n)] 

q = 2 0.03014660 q = 2 0.9280158 
q = 3 0.01000567 q = 3 0.8942550 
q = 4 0.00412943 q = 4 0.8618921 
q = 6 0.00107119 q = 6 0.8011097 
q = 8 0.00039571 q = 8 0.7451983 

q = 10 0.00018161 q = 10 0.6937315 
q = 15 0.00004419 q = 15 0.5820591 
q = 20 0.00001626 

 

q = 20 0.4907147 
Table 4.3.6                                                                              Table 4.3.7 
 
To increase the confidentiality protection against differencing attacks, we are exploring possible 
modifications to the current drop q subsampling routine. 
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5.  Recent Work on the Microdata Analysis System: The Cutpoint Program 
 
5.1  The Cutpoint Generation Program 
Cutpoints are used to create buckets or bins of numeric values.  We require that each bin contains 
at least a pre-specified number of observations (d), otherwise, a universe defined from one of 
these bins may fail the No Marginal 1 or 2 or 75 Rules.  It is common for a bin to represent a 
range of numeric values, e.g., ages 20 to 25.  Doing this adds an additional level of uncertainty 
since all the analyses will be based on a universe defined on ranges of values instead of single 
value.  This also adds further protection against a differencing attack, since forming two similar 
universes by incrementing the cutpoint value by one may result in an imprecise difference. 
 
There are a number of approaches for generating cutpoints.  The ones we consider are the 
following: fixed width bins, minimum width bins, increasing width bins, and partitioned bins.  
The fixed width bin approach ensures that the width of each bin is the same.  In other words, the 
difference between the maximum bin cutpoint value and the minimum bin cutpoint value is the 
same for every bin.  The minimum width bin approach creates bins with as close to d 
observations in each bin.  These bins vary in size.  The bin widths tend to be smaller than the 
other approaches, leading to bins of a finer granularity.  The increasing width bins approach 
gradually increases the width of the bins.  Based on Steele and Zayatz (2006), this approach 
begins with a fixed bin width that increases as numeric values increase.  For example, the bin 
width d may equal 50 when the numeric variable values are less than 200, but increase to 100 
once variable values get larger.  Finally, unlike the other methods, partitioned binning uses a top 
down strategy for bin generation.  Beginning with the entire set of values, this strategy 
recursively partitions the sorted data until there are approximately d observations in each bin.  
Using this approach, bin widths are not equal, but are multiples of each other. 
 
Each of these approaches has a number of strengths and weaknesses depending upon the range 
and distribution of the variable in question.  At this stage, the partitioned binning seems the most 
promising.  However, we are considering hybrid strategies that use different approaches based on 
the statistical properties of a given variable. 
   

6.  Future Work 
 
For future work, we will continue to develop a beta prototype of the Microdata Analysis System 
as part of DataFERRETT (Chaudhry, 2007).  We will begin to test both the software itself and 
the confidentiality rules implemented in the MAS beta prototype to test their effectiveness in 
preventing the disclosure of confidential data.  In addition, we will be adding more data sets and 
more types of statistical analyses to the system. 
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