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Abstract

Most statistical agencies are concerned with the dual challenge of releasing

quality data and reducing, if not totally eliminating, the risk of divulging pri-

vate information. Various data masking procedures such as data swapping, cell

suppression, use of synthetic data and random noise perturbations have been

recommended and used in practice to meet these two objectives.

This paper investigates properties of random noise multiplication as a data

masking procedure, especially for tabular magnitude data. We study effects of
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multiplicative noise on both data quality and disclosure risk. We establish that

quite generally under independent random noise multiplication, the moments

and correlations of the original data can be unbiasedly recovered from their

noise-perturbed versions. In the context of tabular magnitude data, we show

that independent multiplicative noises affect the quality of a cell total more

for sensitive cells than for non-sensitive cells. For assessing disclosure risk and

choosing a suitable noise distribution we use the prediction error variance in

a very conservative scenario, where for a target unit, an intruder knows the

perturbed cell total as well as all values within the cell, except the target unit’s

value. We also derive some interesting properties of a balanced noise method,

proposed recently by Massell and Funk (2007a, b). Specifically, we prove that

for any set of units, the perturbed total is symmetrically distributed around the

total of the corresponding original values, so a perturbed total is an unbiased

estimate of the original total. The reduction in the variance of a cell total, from

the balancing mechanism, is also ascertained.

Key words and Phrases: Data quality, disclosure risk, noise variance, tabular data,

unbiasedness, variance inflation.

2



1. Introduction

The main goal of most statistical agencies is to collect and publish data relevant to

important national and regional public policy issues, but they also need to protect

the privacy of survey respondents for legal reasons and for upholding public trust.

Just removing all direct identifiers, such as full name, passport number and social

security number, may not provide sufficient protection against disclosure because it

may be possible to identify the record of a survey unit using its values for some of

the survey variables, such as gender, age and zip code, that are easily available from

other sources. We shall call these key variables, following Bethlehem et al. (1990).

Typically, a microdata set contains records of n sampling units on k variables, some

of which are key variables and some are confidential or sensitive that need protection

against disclosure. However, in practice, defining key and sensitive variables is often a

challenging task. We shall denote all key variables by X and all confidential variables

by Y . To reduce disclosure risk, statistical agencies often release a perturbed or masked

version of the original data, sacrificing some statistical information. Various masking

procedures, such as grouping, cell suppression, data swapping, multiple imputation

and random noise inoculation, have been developed for practical use. The books by

Doyle et al. (2001) and Willenborg and de Waal (2001) discuss many issues germane

to disclosure avoidance and various disclosure control techniques.

Disclosure is a difficult topic (cf., Lambert, 1993) and it can occur in different forms

depending on the disclosure scenario (see Willenborg and de Wall, 2001). Broadly

speaking, disclosure occurs when the released data enable an intruder to predict the

values of some confidential variables for a specific unit too accurately. Identity disclo-
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sure is most serious and it happens when an intruder correctly identifies the record of a

survey unit using externally available values of some key variables. Identity disclosure

reveals the values of all confidential variables of an identified unit. Measures of identity

disclosure risk have been discussed by Bethlehem et al. (1990), Greenberg and Zayatz

(1992), Willenborg and de Wall (2001), Skinner and Elliot (2002) and Reiter (2005),

among others.

Another type of disclosure that has received much attention is predictive disclosure,

which occurs when the released data enable one to infer a confidential variable value

of a respondent with high accuracy. An extreme case is attribute disclosure, where

a confidential variable value can be predicted without any error. Attribute disclosure

can occur without identity disclosure. For example, suppose in a data set, several units

have the same value, say x0, of some key variables as well as a common value, say y0, of

a confidential variable. Then, if the original data are released, an intruder would know

surely the confidential variable value (y0) of any unit with x0 for the key variables, but

not the identify (or record) of the unit in the data set. Predictive disclosure depends

not only on the released data set but also on the intruder’s prior knowledge. Logically,

predictive disclosure should be assessed by comparing the intruder’s knowledge before

and after data release (see Duncan and Lambert, 1986, 1989; Lambert, 1993; Keller-

McNulty et al., 2005).

Masking procedures dilute, suppress, and in some cases distort the information in

the original data. For example, grouping, cell collapsing and cell suppression hide some

information, and certain inferences that can be made from the original data cannot

be made from the released data. Logically, one should attempt to strike a balance

between disclosure risk and information loss when selecting disclosure control meth-
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ods for an application. Some approaches to measuring data utility and optimizing

the risk-utility tradeoff have been discussed by Duncan and Fienberg (1999), Duncan

and Stokes (2004), Karr et al. (2006) and others. In particular, Keller-McNulty et al.

(2005) proposed a decision theoretic framework where data utility and disclosure risk

are formulated as the utilities of a legitimate data user and of an intruder, respectively,

and both are quantified via Shannon’s information entropy. Then, a weighted combi-

nation of the two utilities, representing the utility of the data agency, is maximized to

determine optimal data masking. Although risk-utility frameworks are conceptually

appealing, they are hard to implement in practice as both disclosure risk and data

utility are difficult to quantify satisfactorily.

Methods and formulas for analyzing a data set may not be appropriate for analyzing

a masked version of it; masking may destroy known properties, such as unbiasedness,

of standard estimators. Obviously, the sampling distribution of an estimator and hence

its statistical properties depend not only on the sampling design but also on the mask-

ing method. So, full knowledge of the masking process is necessary for investigating

properties of any statistical procedure and for deriving suitable inferential methods.

Little (1993) presents a likelihood theory that is applicable to a wide variety of masked

data. In general, likelihood theories require information about the masking procedure,

which can be viewed as comprised of a process for selecting the values that are to be

masked and a mechanism for masking the selected values. Thus, to allow data users

to derive valid inferences, data providers need to release full information about the

masking procedure along with masked data.

The complexity and cost of proper analyses of perturbed data should also be con-

sidered. The complexity of required changes to standard analyses, to account for effects
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of data perturbation, depends on the masking procedure applied to the original data.

Masking procedures that yield simple likelihood functions or require simple adjust-

ments of routine analyses, for common inferential goals, are desirable because diverse

data users, most of whom rely on standard statistical software, cannot be expected to

make complicated corrections (see Rubin, 1993). To help common users, data providers

should also release highly aggregated summary measures of the original data, such as

the mean vector and the covariance matrix, that are of substantial statistical interest

but do not not pose much disclosure risk.

There are multiple views and paradigms for addressing privacy protection and dif-

ferent procedures are suitable in different paradigms. One paradigm advocates that

inferential methods for the original data should remain valid, at least approximately,

for the perturbed data, so that users would not need to develop new methods for data

analysis (see Rubin, 1993). This goal seems to be the main motivation for creating

synthetic data. Logically, analytical validity is retained fully if and only if the sam-

pling distributions of original and masked data are the same, which does not hold for

most (if not all) masking methods. Arguably, protecting disclosure while retaining full

analytical validity is not an achievable goal.

Another paradigm, which we subscribe to in this paper, has the following features:

i) data providers disseminate masked data and full information about the masking pro-

cedure, ii) data users derive proper inference procedures for the released data, taking

their sampling distribution (and established statistical principles and theory) appro-

priately into account, and iii) data providers use masking procedures for which a)

additional theoretical derivations and programming (or adjustments to standard anal-

yses) are not too complex or burdensome and b) protection of private information can
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be assessed (and communicated) reasonably well. With this perspective, we inves-

tigate statistical properties of random noise multiplication as a disclosure avoidance

technique, especially in the context of magnitude tabular data.

Most papers on noise perturbation deal with additive noise and assume that the

data are generated by random sampling from an infinite population; see Brandt (2002)

for a nice review and further references. One plausible reason for greater interest in

additive noise is that it blends conveniently with multivariate normal theory. Also, the

literature on noise masking is focused largely on derivation of estimators and inferences,

with little formal discussion (and assessment) of efficacy of noise masking in disclosure

control (cf., Brandt, 2002). Some distinguishing features of our paper are that it i)

focuses on multiplicative noise, which is better suited than additive noise for uniform

privacy protection (with constant noise CV), ii) includes estimation in finite population

sampling, iii) covers magnitude tabular data, in addition to standard microdata and

iv) appraises confidentiality protection rendered by multiplicative noise masking.

In Section 2, we discuss statistical properties of multiplicative noise masking at

microdata level. Multiplicative noise provides uniform protection, in terms of noise

CV, to all values in the data set. Population moments are easy to estimate unbiasedly,

along with their standard errors, for both finite and infinite populations. Also, in finite

population sampling, all polynomial estimators for the original data can be adopted

easily for applying to noise multiplied data. In Section 3, we discuss certain properties

of a procedure, proposed by Evans et al. (1998), for protecting confidentiality in

magnitude tabular data. We theoretically prove that the cell level noise CV decreases

as the contributing values to the cell become more homogeneous. This indicates that

the total of a non-sensitive cell is likely to be less affected than a sensitive cell total. We
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address confidentiality protection and the choice of the noise distribution by considering

the variance of the prediction error under a fairly conservative scenario. In Section 4,

we consider a variation of Evans et al. (1998) procedure, viz., a balanced noise masking

method introduced by Massell and Funk (2007a, b). We show that the procedure is

unbiased in the sense that the noisy total of any set of units is an unbiased estimator of

the corresponding total based on the original data. We also ascertain the reduction of

cell level noise variance from using the balancing mechanism. Section 5 contains some

concluding remarks.

2. Random Noise Perturbation

Several forms of data masking using random noise have been discussed by Kim (1986),

Tendick (1991), Fuller (1993), Evans, Zayatz and Slanta (1998), Brandt (2002), Yancey,

Winkler and Creecy (2002), Kim and Winkler (2003) and others. Typical data sets

contain values of several variables for n units, usually sampled from a population.

First, let us consider a single quantitative sensitive variable Y with values y1, · · · , yn

for the n units. The basic mechanism for random noise perturbation is: generate n

numbers r1, · · · , rn from a known distribution, called the noise distribution, and then

apply them to the y-values, either additively or multiplicatively. Thus, a masked data

set is created by replacing yi by zi = yi + ri or zi = yiri, i = 1, · · · , n. The data agency

selects the noise distribution, usually with mean zero for additive noise, and mean 1

for multiplicative noise, so that E[Zi|yi] = yi. In this paper, we shall focus mainly on

multiplicative noise, which may be described by

Z = Y R, (2.1)
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where R denotes the noise variable whose distribution is selected suitably by the data

agency. Let νj = E(Rj), j = 1, 2, · · · , denote the raw moments of the noise distribution

and σ2
R denote the noise variance, and assume that ν1 = 1.

How much protection does noise multiplication provide to individual data values?

Specifically, what can an intruder infer about the original value (y) of a specific unit,

whose identity he has ascertained correctly, from its perturbed value (z)? From (2.1)

it follows that

E[Z|y] = y, and σ2
Z|y = V [Z|y] = y2σ2

R.

So, z is an unbiased estimate of y and the standard deviation σZ|y = |y|σR is a measure

of an intruder’s uncertainty about y, after learning the masked value z. An intruder

may estimate σZ|y by |z|σR. As σZ|y is proportional to |y|, the relative size of per-

turbation is the same for all y, viz., 1
|y|σZ|y = σR is a constant. This is a desirable

property; small |y| should be perturbed little to avoid excessive distortion and large

|y| should be perturbed more to protect y reasonably well. For a positive variable Y ,

the noise standard deviation σR is also the record (or unit) level noise CV, providing a

convenient interpretation for σR, which is also useful for selecting its value. In contrast,

for additive noise, V [Z|y] = σ2
R is the same for all y, which is too much for small |y|

and too small for large |y|. Thus, with additive noise, the level of masking may vary

widely depending on the range of y-values.

2.1. Estimation using noise multiplied data

Certain inferences, e.g., estimating the mean, variance and moments of Y , can be

derived easily from noise multiplied data. First, consider random sampling from an
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infinite population or simple random sampling with replacement (SRSWR) from a

finite population. Letting µY and σ2
Y denote the mean and variance of Y , it can be

seen easily that E[Z] = µY and

V [Z] = V [E(Z|Y )] + E[V (Z|Y )]

= σ2
Y + σ2

R[σ2
Y + µ2

Y ]

= (1 + σ2
R)σ2

Y + µ2
Y σ

2
R. (2.2)

From these, it follows that the sample mean (Z̄) of masked data is an unbiased estimator

of µY , but the sample variance S2
Z over-estimates σ2

Y . However, unbiased estimation

of higher order moments of Y is fairly easy. Note that for all j ≥ 1, E[Zj|y] = νjy
j

and hence E[Zj] = E[Y j]E[Rj] = νjE[Y j]. So, zj
i /νj is an unbiased estimate of yj

i and

(1/νj)(
∑

i Z
j
i /n) is an unbiased estimator of E[Y j]. Thus, sample moments of noise

multiplied masked data can be modified easily to make them unbiased estimators of

the corresponding moments of Y . In particular, if T is any unbiased estimator of µ2
Y ,

e.g., T = 1
n(n−1)

∑
i 6=j ZiZj, then from (2.2)

δ = [S2
Z − σ2

RT ]/(1 + σ2
R) (2.3)

is an unbiased estimator of σ2
Y . Kim and Winkler (2003) discussed estimation of µY

and σ2
Y when the noise distribution is truncated normal.

Commonly used finite population estimators, viz., all polynomial estimators, can be

modified easily to account for the effects of multiplicative noise masking. Suppose the

original data were generated by a probability sample, taken from a finite population.

Suppose the sampling design is p(s) and let N denote the population size. First,

consider one survey variable Y . Since zj
i /νj is an unbiased estimate of yj

i it follows
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that if w0 +
∑

i∈s

∑k
j=1wijY

j
i is an unbiased estimate of a population parameter based

on the original data, then w0 +
∑

i∈s

∑k
j=1wij[Z

j
i /νj] is an unbiased estimator of the

same parameter but based on the masked data.

Suppose T =
∑

i∈swsiYi is a homogeneous linear unbiased estimator of a population

parameter θ based on the original data and Vp(T ) is its design variance. Then T ∗ =∑
i∈swsiZi is also an unbiased estimator of θ (based on noise multiplied data) and

V [T ∗] = Ep[VR(T ∗|s)] + Vp[ER(T ∗|s)]

= Ep[
∑
i∈s

w2
siσ

2
RY

2
i ] + Vp(T )

= σ2
R

N∑
i=1

Y 2
i

∑
s3i

w2
sip(s) + Vp(T ), (2.4)

where Ep denotes expectation with respect to sampling design and ER denotes ex-

pectation with respect to noise distribution. The first term of (2.4) is the variance

inflation due to noise multiplication, for which an unbiased estimator, based on the

original data, is σ2
R

∑
i∈sw

2
siY

2
i . So, an unbiased estimator of it based on the masked

data is

σ2
R

∑
i∈s

w2
si(
Z2

i

ν2

) = (
σ2

R

1 + σ2
R

)
∑
i∈s

w2
siZ

2
i . (2.5)

It can be seen that (e.g., Hedayat and Sinha, 1991, sec. 3.1)

Vp(T ) =
N∑

i=1

biY
2
i +

∑∑
i 6=j

bijYiYj,

where

bi =
∑
s3i

w2
sip(s)− 1 and bij =

∑
s3i,j

wsiwsjp(s)− 1

and an unbiased estimator of Vp(T ), based on original data, is

V̂p(T ) =
∑
i∈s

bi
Y 2

i

πi

+
∑

i,j∈s,

∑
i 6=j

bij
YiYj

πij

,
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where πi =
∑

s3i p(s) and πij =
∑

s3i,j p(s). Clearly, V̂p(T ) is a quadratic estimator in

Y and it can be adopted easily for the masked data. Specifically, an unbiased estimator

of Vp(T ), based on masked data, is

Ṽp(T ) = (
1

1 + σ2
R

)
∑
i∈s

bi
Z2

i

πi

+
∑

i,j∈s,

∑
i 6=j

bij
ZiZj

πij

. (2.6)

Thus, from noise multiplied masked data, we can easily obtain an unbiased estimator

(T ∗) of θ and also its variance, which is the sum of (2.5) and (2.6). Note that (2.6)

gives a data user an estimate of the variance of an estimator of θ based on the original

data. Thus, the estimates of the two components of V [T ∗], given by (2.5) and (2.6), are

useful for ascertaining information loss (for estimating θ) due to noise multiplication.

Many agencies grant researchers access to original data, but it often involves a lengthy

application and review process and conducting research at agency’s locations. In a

specific situation, the numerical values of T ∗, (2.5) and (2.6) are directly useful to

a researcher for i) ascertaining the worth of the original data over the masked data,

ii) requesting the data agency to reduce the masking level and iii) making a case for

granting him access to the original data, subject to appropriate pledge of maintaining

confidentiality. We may note that V̂p(T ) and hence Ṽp(T ) can be negative. However,

alternative estimators of Vp(T ), based on the original data, that are available in the

literature can easily be adopted for noise multiplied data.

Practical datasets contain values of many variables, several of which may be sensi-

tive. Noise multiplication may be applied to more than one variable. It is convenient

to generate the noise factors independently, but possibly from different distributions

for different variables. Noise multiplication (or addition) distorts correlations among

the variables. For simplicity, suppose Y and W are two variables in the original file

12



and the masked file contains W (unchanged) and Z, which is noise multiplied Y , as

described before. Then, it can be seen, using (2.2), that

ρ(Z,W ) = [
σ2

Y

(1 + σ2
R)σ2

Y + µ2
Y σ

2
R

]1/2ρ(Y,W ), (2.7)

where ρ(., .) denotes the correlation between the two variables within the parenthe-

ses. Generally, as can be seen from (2.7), noise multiplication (or addition) deflates

correlations.

Unbiased estimation of correlations and joint moments from noise multiplied masked

data are, however, quite straightforward. Suppose Y1 and Y2 are two variables and the

corresponding masked variables are Zi = YiRi, i = 1, 2, where R1 and R2 are inde-

pendently (but possibly not identically) distributed. The data set contains 2n values

for the two variables and the masking is done by multiplying each value by a noise

factor. All 2n noise factors are selected independently; the noise factors for Y1(Y2)

values coming from the distribution of R1(R2). Then, for all k1, k2 ∈ R,

E[Zk1
1 Z

k2
2 |y1, y2] = yk1

1 y
k2
2 E[Rk1

1 ]E[Rk2
2 ],

which shows that [Zk1
1 Z

k2
2 ]/{E[Rk1

1 ]E[Rk2
2 ]} is an unbiased estimator of yk1

1 y
k2
2 . A data

user would simply need to divide the masked sample joint raw moment of order (k1, k2)

by E[Rk1
1 ]E[Rk2

2 ] to get an unbiased estimate of the corresponding original sample

moment. A similar approach can be used to obtain consistent estimators of regression

coefficients and their standard errors (see Hwang, 1986). Analogous adjustments for

additive noise (with mean 0) are fairly simple for estimating means, variances and

covariances (see Kim, 1986; Kim and Winkler, 1995), but could be tedious for moments

of high order. Note that

cov(Z1, Z2) = E(Z1Z2)− E(Z1)E(Z2) = E(Y1Y2)− E(Y1)E(Y2) = cov(Y1, Y2)
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and hence independent noise multiplication (with mean 1) does not bias the sample

means and covariances, but inflates the variances as seen in (2.2). Thus, for valid esti-

mates of correlations, only the variances need to be estimated using (2.3). Usual finite

sample estimates of covariances can also be adjusted easily, through simple divisions

by appropriate raw moments of noise distributions.

2.2. Comments on other noise methods

It may be noted that, mathematically, noise masking can always be treated as additive

if the noise distribution is allowed to depend on y (see Fuller, 1993). For example, (2.1)

can be expressed as Z = Y +R∗, where R∗ = Y (R−1) whose conditional distribution,

given y, depends on y. More generally, if Z = h(Y,R), where h is a given function, one

can write Z = Y + R∗ with R∗ = Y − h(Y,R). However, there are two disadvantages

of letting the noise distribution depend on y. First, generating the noise values is not

as simple as it is for the iid case. Second, and more importantly, proper analysis of

masked data is generally more difficult for dependent noise. We may also note that if

P (Y = 0) 6= 0, then any noise contaminated variable Z = h(Y,R) can be expressed as

noise multiplied Y , viz., Z = Y [h(Y,R)/Y ] = Y R∗, taking R∗ = [h(Y,R)/Y ] as the

noise variable whose distribution may depend on Y .

Some researchers, e.g., Kim (1986) and Fuller (1993), have suggested that one

should preserve the means and the covariance matrix of the survey variables, which

are important summary statistics. One approach is to use a (data dependent) linear

transformation after noise inoculation (e.g., Kim, 1986). Suppose k variables are to

be masked and the vector ~yi represents the values of the k variables for unit i. Then,
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~yi(i = 1, · · · , n) are first changed to ~zi = ~yi +~εi, where ~ε1, · · · ,~εn random noise vectors,

independently generated from a common k-dimensional distribution with zero mean

and covariance matrix Λ (diagonal when the noise values are independent). Next,

~zi(i = 1, · · · , n) are changed to ~zi∗ = A~zi +~b, via a linear transformation, where the

matrix A (of order k × k) and ~b are so chosen that the (sample) mean vector and

covariance matrix of ~zi∗(i = 1, · · · , n) are the same as those of ~yi(i = 1, · · · , n). Clearly,

A and ~b are not fixed; they depend on (~yi, ~zi∗), i = 1, · · · , n. This dependence makes

it very difficult to obtain the probability distribution of masked data and to assess

the masking effect on various inferences. Because of the second step, viz., the linear

transformation, known properties of additive noise do not continue to hold for the

overall masking process. We also note the means and the covariance matrix can be

preserved, using a data dependent linear transformation, from arbitrarily generated

~zi, not necessarily through additive noise. Let Y and Z be two data matrices (of

same order) with mean vectors ȳ and z̄ and nonsingular covariance matrices Sy and

Sz. Let, ~zi∗ = A~zi + ~b, i = 1, · · · , n, where A = S1/2
y S−1/2

z and ~b = ȳ − Az̄. Then it

can be seen easily that {~yi, i = 1, · · · , n} and {~z∗i , i = 1, · · · , n} have the same mean

vector and the same covariance matrix. Thus, the task of modifying the original data

while preserving the means and the covariance matrix can be accomplished easily (and

fairly arbitrarily). Interestingly, Kim and Winkler (1995) proved that if the covariance

matrix of the original data is nonsingular, then it is possible to change the values in one

record arbitrarily and yet preserve the means and the covariance matrix, by modifying

other records suitably.

Another approach is to generate the noise vectors from a distribution with mean 0

and covariance matrix δΣ, where δ is a constant chosen by the data provider and Σ is
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the covariance matrix of the survey variables. Then, the noise added variables would

have mean 0 and covariance matrix (1 + δ2)Σ. Since δ is known, Σ can be estimated

unbiasedly (and consistently) from the masked data (see Brand, 2002). Mathematical

treatment of additive noise is fairly easy when both the survey variables and noise

vectors are normally (multivariate) distributed. To utilize multivariate normal theory,

Fuller (1993) suggested to transform observed variables into pseudo normal variables,

add independent normal noise vectors to the transformed records, and finally back

transform the noise added values to the original scale.

The main reason for publishing microdata is to facilitate different types of analyses

by data users. Preserving overall mean and covariance matrix is of limited help if the

analysis involves other features of the data that are perturbed by the masking proce-

dure. Logically, a researcher would need to i) know the effect of the masking procedure

on all summary statistics relevant to his analysis and ii) make corrections for those

changes. We believe both of these are difficult when data are masked using additive

noise in combination with transformations. For example, if the overall means and the

covariance matrix are preserved using linear transformation of noise added values, as

described above, it would generally be very difficult to derive unbiased estimates of the

means for a subdomain of interest, even if the masking procedure is revealed fully. Gen-

erally, the dependency of the transformations on the data would make proper analysis

of masked data and assessment of disclosure risk very difficult.
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3. Tabular Magnitude Data

Often the mean or total of a quantitative variable for various subgroups are of in-

terest. The estimates are presented conveniently in the form of a table, whose cells

represent the subgroups and are defined by cross classification of some geographic and

demographic variables. A published table may report for each cell, its frequency, an es-

timate of the quantity of interest and its standard error. Tables of magnitudes are very

commonly used for disseminating information in data generated by economic surveys

of establishments.

3.1. The p% rule

Usually, the variables that define the cells of a magnitude table are key variables, and

based on external information it may be possible to identify the cell in which a target

unit falls or even all units falling in a cell. If a cell contains only a few units, an estimate

for that cell (based on original data) may induce high disclosure risk for all units in

that cell. To be specific, suppose n respondents contribute to a cell and the total of

the cell, T , is published. Also, suppose all units falling in the cell can be identified

using public information. Then, if n = 1 the unit’s value would be known from the

reported cell total. For n = 2, each contributing unit can obtain the exact value of the

other unit from T , by subtracting its own value (known to itself). So, cells with n = 1

or 2 are highly sensitive. For n ≥ 3, one common rule for defining sensitive cells is the

p% rule (see Federal Committee on Statistical Methodology, 2005), which concerns a

coalition of c units attempting to calculate the value for another unit. Suppose yi is

the target unit’s value, Tc is the coalition total and Tr is the total of the remaining
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units, i.e., Tr = T − yi − Tc. Then, given T and an interval [a, b] for Tr, the coalition

obtains that

(T − Tc)− b ≤ yi ≤ (T − Tc)− a.

In particular, if a = 0 and b = 2Tr, i.e., the endpoints are 100% away from the true

value, the interval for the target unit becomes

(T − Tc)− 2Tr ≤ yi ≤ (T − Tc). (3.1)

Note that the interval in (3.1) is symmetric around yi and can be expressed as yi± Tr.

The p% rule requires (see Federal Committee on Statistical Methodology, 2005) that

for each target unit and each coalition of size c, the two boundaries in (3.1) differ from

the true value (yi) by at least p%, i.e.,

Tr/yi ≥ p/100. (3.2)

It can be verified that if (3.2) holds when the target unit is the largest contributor to

the cell and the coalition consists of the next c largest units, then (3.2) holds in all

other cases. Thus, a cell is declared to violate the p% rule if

y1 ≥
100

p

n∑
i=c+2

yi, (3.3)

where y1 ≥ · · · ≥ yn are the ordered values of the units in the cell. The choice of

c and p is subjective, and the most commonly used value of c is 1. The choice (and

relevance) of the interval [0, 2Tr] for Tr, on which the p% rule is based, is debatable; for

nonnegative variables (e.g., sales revenue) 0 is a natural lower limit of Tr, but taking

2Tr as the upper bound is questionable.

One widely used technique for dealing with sensitive cells is cell suppression, which

begins by suppressing the values of all sensitive cells. In addition, the values of some
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other cells are also suppressed, called secondary suppressions, so that primary sup-

pression values cannot be recovered from non-suppressed cell totals and the marginal

totals. Cell suppression has certain disadvantages (e.g., Evans et al., 1998), including

withholding too much information in many cases and the possibility of disclosure based

on information from multiple tables.

3.2. Effects of noise masking on magnitude tabular data

As an alternative to cell suppression, Evans, Zayatz and Slanta (1998) suggested to

create magnitude tables after noise multiplying the original microdata values. Often

many tables are published from the same microdata and for maintaining consistency

among different tables, it is desirable to first create a masked microdata set and then

generate all tables for public release from it. We shall examine effects of iid noise

multiplication on both confidentiality and data quality for tabular magnitude data,

assuming that the survey variable is nonnegative, as is the case in most applications.

For establishment survey data, Evans et al. (1998) changed all establishment values

within a company in the same direction (up or down), which makes some noise factors

dependent. We do not consider that case here and for simplicity assume that all noise

factors are generated independently from a common noise distribution.

i) Effect on data quality

We shall consider the effect of multiplicative noise on a cell total. Suppose a cell

contains n units with values y1, · · · , yn and T = y1 + · · · + yn is the cell total. Let T∗

denote the perturbed total, i.e.,

T∗ =
n∑

i=1

yiRi,
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where Ri are iid random noise multipliers. Random noises make T∗ a random variable.

It follows easily that E[T∗|y1, · · · , yn] = T , i.e., T∗ is an unbiased estimator of T , and

the cell level noise variance is

σ2
C = V (T∗|y1, · · · , yn) = σ2

R

n∑
i=1

y2
i . (3.4)

The fact that T∗ is an unbiased estimator of T was noted by Evans et al. (1998). They

also observed, through simulations and numerical examples, that cell level noise CVs

are generally higher for sensitive cells compared to non-sensitive cells. We explain this

phenomenon theoretically in the following.

From (3.4) we see that the square of cell level noise CV is

ψ2 = σ2
R

n∑
i=1

(yi

T

)2
= σ2

R

n∑
i=1

g2
i , (3.5)

where gi = yi/T is the “share” of unit i in the cell total. Recall (from Section 2) that

σR is the noise CV for each individual value. So, (3.5) gives a simple relationship: cell

level noise CV equals unit level noise CV multiplied by [
∑
g2

i ]1/2.

For any nonnegative variable Y , gi ≥ 0, i = 1, · · · , n and g1 + · · · + gn = 1. It is

easy to see that ψ2, considered as a function of g1, · · · , gn, for given n, is permutation

symmetric and strictly convex in each argument, which implies that ψ2 is a Schur-

convex function (Marshall and Olkin, 1979). This implies the following: (i) ψ2 (or

equivalently the cell level noise CV (ψ) increases as {gi}, i.e., the shares of the n units,

become more heterogeneous, (ii) the maximum possible value of ψ2 is σ2
R, which is

attained when gi = 1 for some i and 0 for others and (iii) the minimum of ψ2 is σ2
R/n,

which is attained when g1 = · · · = gn(= 1/n). According to the p% rule (with c = 1),

a cell is sensitive essentially if the share of the largest unit is very high (as (3.3) shows)
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and hence g1, · · · , gn are hetereogeneous. For non-sensitive cells, g1, · · · , gn are likely to

be fairly homogeneous. So, Schur-convexity of ψ2 implies that noise CV of a cell total

is likely to be higher for sensitive cells than for non-sensitive cells (with the same cell

frequency, n). As Evans et al. (1998) noted, this is a desirable property because non-

sensitive cells do not pose much disclosure risk and hence don’t need to be perturbed

much.

One might expect the effect of noise on a cell total to diminish as the cell frequency

increases. We note that if a new value yn+1 is added to a cell that already has n values

y1, . . . , yn, the noise variance, σ2
C given by (3.4), increases but noise CV (ψ) decreases

unless the added value is very large. Specifically, it can be seen that the noise CV

decreases, with the addition of the value yn+1, if and only if

yn+1 <
2(
∑n

i=1 yi)(
∑n

i=1 y
2
i )

(
∑n

i=1 yi)2 −∑n
i=1 y

2
i

= 2(
n∑

i=1

yi)[
1

γ2
− 1]−1, (3.6)

where γ2 =
∑n

i=1(yi/T )2 (with T =
∑n

i=1 yi) measures the heterogeneity of y1, · · · , yn.

As a numerical example, if n = 5 and y1, · · · , y5 are 10, 6, 3, 2 and 1, then the

right side of (3.6) is 19.76. Note that, in general, 1/n ≤ γ2 ≤ 1, which implies that

[(1/γ2)− 1]−1 ≥ 1/(n− 1) and hence (3.6) holds if yn+1 < [2/(n− 1)]
∑n

i=1 yi ≈ 2ȳ.

ii) Disclosure control

We now examine the efficacy of noise multiplication for confidentiality protection.

Suppose a cell contains n units with values y1, · · · , yn and let T and T∗ denote the

true and noisy cell totals. What can an intruder infer about the value of a specific

(target) unit, say the value y1, from a reported noisy total? Assume that the intruder

has full knowledge about the masking procedure, i.e., the noise distribution is revealed

to the public. The intruder’s uncertainty about y1, after learning a noisy total T∗,
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depends on his prior knowledge about y1, · · · , yn. Logically, his uncertainty should be

expressed using his posterior distribution derived using the Bayes theorem, where the

likelihood function comes from the noise distribution. It may be noted that derivation

of the posterior distribution requires the intruder’s prior information about y1, · · · , yn;

a prior distribution of y1 alone is not sufficient (see Lambert, 1993). Thus, a proper

Bayesian updating of an intruder’s knowledge is usually very difficult. Also, there are

many intruders, who have different prior information and hence would gain different

amounts of knowledge from the reported T∗. Which intruder’s information gain should

a data agency consider for assessing disclosure risk? A further complication is that the

information gain also depends on the target unit.

We shall consider a conservative situation: the intruder knows all original values in

the cell except y1, and has no information about y1. In the context of the p% rule, this

means that the coalition consists of all units except the first one. Consider the natural

estimator of y1, given by

ŷ1 = T∗ −
n∑

i=2

yi.

Letting, e1 = ŷ1− y1 the error of this estimate, it can be seen easily that the mean and

variance of e1, for given y1, · · · , yn are 0 and

V (e1) = V (ŷ1 − y1) = σ2
R

n∑
i=1

y2
i . (3.7)

More realistically and thinking along the p% rule, an intruder may know the true

total (Tc) of a coalition and have an estimate (guess) T̃r for the total of the remaining

units, excluding y1. Such an intruder may calculate (estimate) y1 as

ỹ1 = T∗ − Tc − T̃r.
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It can be seen that the error of this estimate, e∗1 = ỹ1 − y1 has mean (Tr − T̃r), where

Tr is the true total of the remaining units, and V ar(e∗1) = σ2
R

∑n
i=1 y

2
i (both with

respect to the noise distribution). Also, if the noise distribution is symmetric, then e∗1

is also symmetrically distributed. In addition, if the distribution of e∗1 is continuous

and unimodal, then for any given k, P (|e∗1| < k) is a decreasing function of |Tr − T̃r|

and consequently e∗1 is most accurate when T̃r = Tr.

Comparing (3.7) with (3.4), we see that multiplicative noise induces the same level

of uncertainty (noise variance) about any specific value as about the total of the cell

containing that value. Actually, since a cell total is larger than any specific value in

the cell, in terms of CV, uncertainty about any individual value is larger than the

uncertainty about the cell total. Also note that the expression in (3.7) is a symmetric

function of y1, · · · , yn, and hence it can be used to assess uncertainty about any one of

the cell values y1, · · · , yn when the other ones are known.

How should we choose the noise distribution? To answer the this question, we

should take both data quality and confidentiality into account, but the two issues are

very closely related, as can be seen from (3.4) and (3.7). The p% rule, being based

on deterministic logic, is not applicable to masked data, but in the same spirit and in

view of (3.7), we may require

2σR(
n∑

i=1

y2
i )1/2 ≥ yi(

p

100
) i = 1, · · · , n, (3.8)

so that approximate 95% error bounds for each value yi are at least p% away from

its actual value. As our assumption that the intruder knows all values except yi is

rather conservative, we believe a modest value of p, perhaps between 5 and 10, would

be reasonable in practical applications. Note that (3.8) is satisfied if and only if the
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inequality holds for the largest value in the cell, i.e.,

1 + (
y2

y1

)2 + · · ·+ (
yn

y1

)2 ≥ 1

4σ2
R

(
p

100
)2, (3.9)

where y1 ≥ · · · ≥ yn are the ordered values in the cell.

Naturally, we would like (3.9) to hold for each published cell. If the goal is to

publish only one table, this can be accomplished by using, in each cell, the smallest σ2
R

satisfying (3.9). Note that in this approach σ2
R would be different for different cells. If

many tables are to be published based on the masked data, then satisfying (3.9) for all

cells in all tables is a more challenging task. One possibility is to use σR = p/200 and

thereby protect all values at unit level. This approach, however, uses the largest σR for

a given p and hence is not attractive from data quality perspective. The following may

be a better compromise: use a common noise distribution with tolerable σR (perhaps

around .02 or .03) and then publish only those tables whose cells satisfy (3.9). Clearly,

this approach may require redefining the cells of a table.

4. Properties of Balanced Noise Methods

The disclosure risk from publishing the observed total of a cell is small if the cell has

several fairly homogeneous contributors. Generally, the need for perturbing a cell total

decreases as the cell frequency increases. However, as (3.4) shows, in independent noise

masking, the cell-level noise variance increases as more contributors join a cell. For

distorting the cell totals differently for sensitive and non-sensitive cells, Massell and

Funk (2007a, b) proposed a balanced noise procedure, where the direction of change

of a value is determined by the preceding perturbations within the cell. For balanced
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noise, one must select and use a specific table to balance noise factors, but as one

traverses the cells in the table, assigns noise factors to the microdata. The procedure

can be described as follows (for simplicity, we consider independent noise factors and

do not require that all establishment values within a company be changed in the same

direction).

Suppose a cell contains n values, y1 ≥ · · · ≥ yn. The balanced noise procedure

changes them sequentially to y∗1, · · · , y∗n, where

y∗i = (1 +WiUi)yi, i = 1, · · · , n, (4.1)

U1, · · · , Un are iid random variables with a common pdf fU(.) whose support is a

subset of [0,∞), W1 is 1 or −1 with equal probability and for i ≥ 2, Wi = 1 if∑i−1
j=1(y

∗
j − yj) < 0, Wi = −1 if

∑i−1
j=1(y

∗
j − yj) > 0 and Wi is 1 or −1 with equal proba-

bility if
∑i−1

j=1(y
∗
j −yj) = 0. For simplicity, we shall assume that

∑i−1
j=1(y

∗
j −yj) 6= 0 with

probability 1. From (4.1) we see that Wi determines the direction of change of yi and

Ui determines the magnitude. The direction of change of the largest value (y1) is ran-

domly selected and the subsequent values (i.e., y2, · · · , yn) are increased or decreased

depending on the sign of the cumulative effect of the preceding changes. Thus, per-

turbation magnitudes U1, · · · , Un are determined independently, but the directions are

dependent. The distribution fU(.) is known and is selected by the data agency. Note

that the noise factors are Ri = 1 +WiUi, i = 1, · · · , n, and they are not independent.

In the balanced noise method, starting with the second largest value, each pertur-

bation aims to undo in part the cumulative effect of the previous changes on the cell

total. Intuitively, if n is moderately large and y1, · · · , yn are fairly uniform, the cell to-

tal is expected to change little. However, due to dependencies among the noise factors,
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distributional properties of the change in a cell total are not obvious. In the following,

we present some theoretical results for the balanced noise procedure. In particular, we

prove that a perturbed cell total T∗ is symmetrically distributed around the observed

total, which implies that T∗ is an unbiased estimate of the observed total. We also

ascertain the gain in data quality yielded by the balancing procedure.

To investigate statistical properties of the balanced noise procedure, let

Ti =
i∑

j=1

yj, Ti∗ =
i∑

j=1

y∗j and Di = Ti∗ − Ti =
i∑

j=1

WjUjyj,

for i = 1, · · · , n. Note that T∗ = Tn∗ and Wi = −sign(Di−1), i = 2, · · · , n. For given

y1, · · · , yn, note that D1 is a function of (W1, U1) and for i ≥ 2, Wi is a function

of (W1, U1, · · · , Ui−1) and Di is a function of (W1, U1, · · · , Ui). So, let’s write D1 =

D1(W1, U1) and for i ≥ 2, Wi = Wi(W1, U1, · · · , Ui−1) and Di = Di(W1, U1, · · · , Ui).

Lemma 4.1. The functions D1, · · · , Dn and W2, · · · ,Wn are skew-symmetric in W1,

that is, for all u1, · · · , un,

Di(1, u1, · · · , ui) = −Di(−1, u1, · · · , ui), i = 1, · · · , n (4.2)

and hence

Wi(1, u1, · · · , ui−1) = −Wi(−1, u1, · · · , ui−1), i = 2, · · · , n. (4.3)

Proof. Note that (4.3) follows from (4.2) as Wi = −sign(Di−1). So, we only need

to prove (4.2). Clearly, D1(1, u1) = u1y1 = −[−u1y1] = −D1(−1, u1), and hence

W2(1, u1) = −W2(−1, u1), as Wi = −sign(Di−1). We can now use induction to prove

the lemma. Suppose (4.2) holds for i = 1, · · · , k − 1 (and hence (4.3) holds for i =

2, · · · , k). Note that, for l = ±1,

Dk(l, u1, · · · , uk) = Dk−1(l, u1, · · · , uk−1) +Wk(l, u1, · · · , uk−1)ukyk. (4.4)
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The proof can now be completed easily using the induction hypothesis on (4.4) and

the fact that (4.2) holds for i = 1.

Theorem 4.1. For all i ≥ 1, (i) Di is symmetrically distributed around 0 and (ii) the

marginal distribution of Wi is uniform over {−1, 1}, i.e.,

P (Wi = 1) = P (Wi = −1) = 0.5. (4.5)

Proof. Considering the joint distribution of D1, U1, · · · , Ui and generically denoting

relevant densities by p(.), we see that for all ui = (u1, · · · , ui),

p(1,ui) = p(1)p(ui) =
1

2
p(ui) = p(−1)p(ui) = p(−1,ui). (4.6)

Take any fixed interval [a, b]. For k = −1, 1, let A(k) = {ui : a ≤ Di(k,ui) ≤ b} and

A∗(k) = {ui : −b ≤ Di(k,ui) ≤ −a}. By Lemma 4.1, A(k) = A∗(−k) and

P (a ≤ Di ≤ b) = P (W1 = 1)P [Ui ∈ A(1)] + P (W1 = −1)P [Ui ∈ A(−1)]

= P (W1 = −1)P [Ui ∈ A∗(−1)] + P (W1 = 1)P [Ui ∈ A∗(1)]

= P (−b ≤ Di ≤ −a), (4.7)

as P (W1 = −1) = P (W1 = −1) = 1/2. Since (4.7) holds for all a ≤ b, Di is

symmetrically distributed around 0. The second part follows from part (i) and the fact

that Wi = −sign(Di−1).

Since the distribution of Ui does not depend on any of the other variables, including

Wi, part (ii) of Theorem 4.1 yields the following:

Corollary 4.1. Marginally, each noise factor Ri = 1 + WiUi is symmetrically dis-

tributed with E(Ri) = 1 and V (Ri) = E[V (Ri|Wi)] + V [E(Ri|Wi)] = σ2
U + µ2

U , where

µU and σ2
U are the mean and variance of fU(.).
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Theorem 4.1 also implies that a perturbed cell total (T ∗) is symmetrically dis-

tributed around observed total (T ) and hence T ∗ is an unbiased estimate of T . As

the balanced noise procedure is applied at cell level, the cells must be pre-defined.

However, in practice, data agencies are obliged to prepare and publish many different

tables based on the same data set. Thus, while balanced noise masking of a microdata

set must be done with a “reference” table, it is important to assess its effect on cell

totals of other tables. By Corollary 4.1, the magnitude of perturbation of any value,

i.e., (yi − yiRi), is symmetrically distributed around 0 and hence
∑

i∈A(yi − yiRi) is

also symmetrically distributed around 0, for any set of units A. The main practical

implication of this discussion is the following:

Proposition 4.1. For any set of units A, the noisy total
∑

i∈A yiRi is symmetrically

distributed around the corresponding total in the original data set, i.e.,
∑

i∈A yi. So,

for any cell in any table, the noisy total is an unbiased estimator of the true total.

We shall now examine the noise variance for the total of a reference cell and the

gain in data quality from the balancing procedure.

Theorem 4.2. Suppose a cell in the reference table has n units with ordered values y1 ≥

· · · ≥ yn. Then, the conditional variance of the perturbed total T∗ = y1R1 + · · ·+ ynRn,

given the original data, has the following representation:

V (T∗) = σ2
R

n∑
i=1

y2
i − 2µU

n−1∑
i=1

yi+1E[|Di|], (4.8)

where σ2
R = µ2

U + σ2
U , and µU and σ2

U are the mean and variance of fU(.).

Proof. From definitions and preceding discussions it can be verified easily that for

i = 2, · · · , n, i) Di = Di−1 + WiUiyi, ii) E(Wi) = 0 and W 2
i = 1 with probability 1
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and iii) Di−1Wi = −|Di−1| with probability 1. From these and the fact that {Ui} are

independent of all other variables we get

V (T∗) = V (Dn)

= V [Dn−1 +WnUnyn]

= V (Dn−1) + V (WnUnyn) + 2cov(Dn−1,WnUnyn)

= V (Dn−1) + E(U2
n)y2

n + 2µUynE[Dn−1Wn]

= V (Dn−1) + σ2
Ry

2
n − 2µUynE[|Dn−1|]. (4.9)

The proof can now be completed easily by expanding the recurrence relation in (4.9)

and noting that V (D1) = σ2
Ry

2
1.

Comparing (4.8) with (3.4), we see that balanced noises reduce the noise variance

of a cell total (in the reference table) by 2µU
∑n−1

i=1 yi+1E[|Di|]. Also, unlike in the

case of independent noise multiplication where the variance of a perturbed total always

increases with the addition of an extra value, here the variance of a perturbed total with

increasing number of components may increase or decrease depending on the actual

values being added as well as on the mean and the variance of the noise distribution.

Specifically,

V (T(n+1)∗)− V (Tn∗) = σ2
Ry

2
(n+1) − 2µUyn+1E[|Dn|]

= y(n+1){σ2
Ry(n+1) − 2µUE[|Dn|]},

which can be positive or negative.
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5 Discussion

In this paper we have presented some theoretical properties of multiplicative noise

masking for preserving confidentiality of private information in statistical databases.

We showed that the sample moments and correlations based on the original data can

be recovered unbiasedly from the masked data, and unbiased polynomial estimators

based on the original data can be adapted easily for the masked data. These results

are important from data analysis perspective. We believe our results and discussions

are helpful for clarifying the effects of multiplicative noise on tabular magnitude data.

In particular, the results that the Evans et al. (1998) procedure has little effect on the

total of a non-sensitive cell and that the balanced noise procedure of Massell and Funk

(2007a, b) is unbiased are reassuring.

For assessing disclosure risk and choosing a noise distribution, in connection with

the Evans et al. (1998) procedure, we considered a rather conservative scenario, where

the intruder knows all values in a cell except that of the target unit. It would be useful

to consider other and more realistic scenarios. One inherent difficulty in ascertaining

disclosure risk is that different intruders have different target units as well as different

prior information. We believe further research on modeling intrusion behavior and

developing an aggregate measure of disclosure risk would be of much practical value.

The balanced noise method of Massell and Funk (2007a, b) is a useful procedure as

it retains unbiasedness and at the same time reduces noise variance of the cell totals

in the reference table. Intuitively, we expect the gain from balancing to depend on the

choice of the reference table. This aspect as well as how to choose the reference table

deserves further investigation. Other balancing methods, e.g., randomly order the units
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in each cell and then apply the procedure, may also be explored and compared.

Multiplicative noise masking is a useful tool for preserving confidentiality of private

information in statistical databases. One attractive feature of multiplicative noise, for

positive quantitative variables, is that it provides uniform record level protection to all

values, as the noise CV is constant (same as the noise variance). However, multiplica-

tive noise perturbation is not a panacea. Obviously, the procedure is not applicable

to qualitative variables. Also, while moments and correlations can be estimated easily,

estimation of other population parameters, such as quantiles, and adapting standard

non-polynomial estimators for applying to the perturbed data may be difficult. We

hope to address some of these issues in a future communication.
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