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Abstract
Small area estimation with area level models requires variance estimates of the direct sur-
vey point estimates being modeled. Small area direct variance estimates are likely to be
unstable, suggesting modeling the variances to improve them. One aspect of such modeling
would be to specify a probability distribution of the variance estimators. Here, we consider
this for Fay’s successive difference replication variance estimator. More specifically, we ex-
amine via simulations whether the variance estimator could be assumed to approximately
follow a scaled chi-squared distribution, and if so, with what value of the degrees of free-
dom? We study these questions for simple random samples of various sizes from various
distributions (normal, Poisson, and Bernoulli). The motivation for this study comes from
county modeling of ACS (American Community Survey) poverty estimates by the Census
Bureau’s Small Area Income and Poverty Estimates program, as direct variances of the
ACS poverty estimates are produced using Fay’s variance estimator.
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1. Introduction

Small area estimation with area level models requires variance estimates of the sam-
pling errors in the direct survey point estimates being modeled. Small area direct
sampling variance estimates are likely to be unstable, suggesting modeling the vari-
ances to improve them. This might be accomplished by simply fitting a generalized
variance function (GVF) to the direct variance estimates to attempt to remove some
of the noise in the estimates. The GVF can be thought of as parameterizing the
mean function of the direct variance estimates, and if the direct variance estimates
are approximately unbiased, then the GVF approximates the true variances. Some
authors (e.g., Otto and Bell 1995, Arora and Lahiri 1997, Gershunskaya and Lahiri
2005, You and Chapman 2006) have gone further and specified full probability mod-
els for direct survey variance estimates. The latter three papers used models that
assumed the direct survey variance estimates were unbiased and followed scaled
chi-squared distributions, generally with known degrees of freedom. Otto and Bell
modeled direct estimates of sampling error covariance matrices assuming a Wishart
distribution (the multivariate version of the chi-squared distribution), and also es-
timated the degrees of freedom as part of the model fitting.

Suppose the characteristic of interest is the population mean, estimated by the
mean of a simple random sample of size n. If the population unit level data are
independent and identically normally distributed, then the usual estimate of the
variance of the mean is well-known to be distributed proportional to a chi-squared
random variable with n − 1 degrees of freedom. The situation in practice is rarely
this simple, however. The sampling may be complex, the unit level data may not be
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normally distributed, and the point estimator may be more complicated than the
sample mean. Also, survey variance estimators are typically more complicated than
the usual sample variance estimate, e.g., they may be based on a replication method
such as jackknife or bootstrap. Thus, in practice, the assumption that sample vari-
ance estimates follow a scaled chi-squared distribution would be an approximation,
probably of unknown accuracy. Furthermore, even if the chi-squared approximation
were adequate, the appropriate value of the degrees of freedom may be unknown.

There appears to have been little if any study of the accuracy of chi-squared
approximations to the distribution of survey variance estimators, of the conditions
under which such approximations are reasonably accurate and conditions under
which they are not, and of the appropriate value of the degrees of freedom and how
this varies over changes in the distribution of the data and changes in the nature of
the survey, such as variations in sample size. In this paper we begin a small inves-
tigation of some of these issues for Fay’s successive difference replication variance
estimator (Fay and Train 1995). We examine, via simulations, the distribution of
Fay’s estimator of the variance of the sample mean under simple random sampling
(srs) from populations with different distributions of the unit level data—normal,
Bernoulli (0-1) with various success probabilities, and Poisson with various occur-
rence rates. For various sample sizes we examine whether the variance estimator
appears distributed approximately proportional to chi-squared and how the degrees
of freedom varies with sample size.

A primary motivation for this investigation is the study of models for variance
estimates of direct county poverty estimates from the American Community Sur-
vey (ACS) that are used in area level models by the Census Bureau’s Small Area
Income and Poverty Estimates (SAIPE) program. Such models for variance esti-
mates of county estimates of the number of school-age (5-17) children in poverty
are explored by Maples, Bell, and Huang (2009). Direct variances of the ACS
poverty estimates are produced using Fay’s variance estimator. For more discussion
of the ACS methodology, including the variance estimation, see U.S. Census Bureau
(2009).

Sections 2 and 3 of this paper review Fay’s successive difference replication
variance estimator and derive some of its properties when applied to estimating the
variance of the mean of independent identically distributed (i.i.d.) data. Section 4
presents simulation results studying the behavior of this variance estimator for data
simulated from normal, Bernoulli, and Poisson populations. We examine bias of the
variance estimator, how well its distribution resembles a chi-squared distribution,
and the degrees of freedom of a chi-squared approximation. In addition, Section 4
provides such results for samples drawn from an artificial population constructed
by pooling 2005 ACS sample data over several counties from the state of Maryland.
Section 5 then offers some conclusions.

2. Fay’s Successive Difference Replication Variance Estimator

Fay and Train (1995) discuss the successive difference replication variance estimator
and its application to CPS (Current Population Survey) Annual Social and Eco-
nomic Supplement data. Until 2005, CPS data were used as the source of direct
state and county poverty estimates that formed the basis of the SAIPE models.
U.S. Census Bureau (2009, chapter 12) discusses application of the successive dif-
ference replication variance estimator to ACS data. Though the ACS and CPS
designs differ substantially, the application of the variance estimator is essentially



similar though based on different numbers of replicates—80 for ACS versus 160 for
CPS. Here we review the variance estimator, expressing it in a form that facilitates
derivation of some of its properties.

Suppose the quantity being estimated, which we denote by Y0, is the population
mean, and that it is being estimated by the sample mean, Ŷ0 = ȳ = n−1

∑n
i=1 yi,

where y1, . . . , yn are the values of the units in the sample of size n. To estimate the
variance we form replicate estimates Ŷr defined by

Ŷr =
1

n

n∑
i=1

firyi =
1

n
f ′ry r = 1, . . . , R (1)

where the fir are the replicate factors, fr = (f1r, . . . , fnr)
′, y = (y1, . . . , yn)

′, and R
is the number of replicates. For now we assume that R = 4k for some k, and that
R ≥ n+ 2. The replicate factors are defined by

fir = 1 +
1

2
√
2
(ai+1,r − ai+2,r) i = 1, . . . , n

for r = 1, . . . , R, and where A = [aij ] is an R×R Hadamard matrix, which has the
orthogonality property that AA′ = R× IR (Plackett and Burman 1946). Note that
only rows 2 through n + 2 of the Hadamard matrix are used in constructing the
fir; the first row of A is generally a vector of ones and is not used. The variance
estimator of Ŷ0 is then

vr =
4

R
(1− f)

R∑
r=1

(Ŷr − Ŷ0)
2 (2)

where f = n/N is the sampling fraction and N is the population size.
More generally, Ŷ0 could be a survey weighted estimator, Ŷ0 =

∑n
i=1wiyi, and

then for the replicate estimates the replicate factors multiply the survey weights, i.e.,
Ŷr =

∑n
i=1 firwiyi. Even more generally, Ŷ0 could be a nonlinear function of such

survey weighted totals, in which case the replicate estimates would be constructed
analogously by multiplying the survey weights in the estimated totals by the repli-
cate factors. Here we examine the simple case of the sample mean (wi = n−1)
because we can readily examine some properties of vr for this case.

From (1) we note that the replicate estimates are linear functions of y. Collecting
all these into a vector Ŷ = (Ŷ1, . . . , ŶR)

′, we can write this as Ŷ =n−1Fy, where
F = [f1, . . . , fR]

′ is an R× n matrix. We can then write

F = 1R1
′
n +

1

2
√
2
Ã′D′

where 1n is the n × 1 vector of ones, Ã consists of rows 2 through n + 2 of the
Hadamard matrix A, and D is the n× (n+ 1) differencing matrix defined by

D =

⎡
⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎦ .



The replicate variance estimator can then be written

vr =
4

R
(1− f)

∥∥∥Ŷ−Ŷ01R

∥∥∥2

=
4

R
(1− f)n−2

∥∥(F − 1R1
′
n)y

∥∥2
=

1− f

2Rn2
y′Qy (3)

where Q = DÃÃ′D′. From the orthogonality property of the rows of the Hadamard
matrix A, it follows that ÃÃ′ = R × In+1, so that Q = R ×DD′ and, in this case
(n ≤ R− 2), the Hadamard matrix A is not actually needed. Fay and Train (1995)
obtained a closely related result to show that a related variance estimator reduces
to the successive difference variance estimator (Wolter 1985).

The preceding leaves open the question of what happens when the sample size
n exceeds R − 2, assuming the number of replicates R to be fixed at some value.
In this case the matrix Ã is obtained by repeating rows of the Hadamard matrix
A (continuing to leave out the first row of ones), and then Q does not reduce to
R×DD′. In practice at the Census Bureau this repetition of rows of A is not done
in the numerical order of the rows, but follows a more involved pattern (Navarro
2001). Also, one additional row of A is omitted from Ã.

The expression (3) can be used to establish some properties of vr for the case
where yi ∼ i.i.d. (μ, σ2). First, note that E(vr) = [(1 − f)/(2Rn2)]tr[QE(yy′)] =
[(1− f)/(2Rn2)][σ2tr(Q)+μ21′nQ1n]. For the case of n ≤ R− 2, so Q = R×DD′,
one can easily show that tr(Q) =2nR and 1′nQ1n = 2R. Then

E(vr) =
1− f

2Rn2
[σ22nR+ 2Rμ2] =

1− f

n
σ2 +

1− f

n2
μ2. (4)

Since Var(Ŷ0) ≡ Var(ȳ) = (1 − f)σ2/n, we see that vr is unbiased if and only if
μ = 0. The relative bias in vr is easily shown to be (μ2/σ2)/n, which depends on
μ2/σ2 and decreases proportional to n−1. The bias in vr should thus be small for
moderate to large samples (though this result requires n ≤ R− 2).

For the case where μ = 0, and writing Q = [qij], one can show that

Var(y′Qy) = 2σ4tr(Q2) + (q211 + · · ·+ q2nn)[E(y4i )− 3σ4]. (5)

From (3), we then have that Var(vr) = [(1 − f)/(2Rn2)]2Var(y′Qy). For the case
of n ≤ R− 2, it turns out that this simplifies to

Var(vr) =
(1− f)2

n3

[
E(y4i )−

σ4

n

]
. (6)

The relative variance of vr is then

RelVar(vr) ≡ Var(vr)

[E(vr)]2
=

1

n

[
E(y4i )

σ4
− 1

n

]
. (7)

Formulas analogous to (5)–(7) could be developed for the case of μ �= 0, but these
would be complicated and thus not particularly instructive. For the case where
yi ∼ i.i.d. N(0, σ2), E(y4i ) = 3σ4, so that (7) then simplifies to

yi ∼ i.i.d. N(0, σ2) ⇒ RelVar(vr) =
1

n

[
3− 1

n

]
. (8)



3. A Working Model for the Variance Estimator

As noted earlier, for i.i.d. normal data the usual unbiased estimator of σ2, s2 =
(n−1)−1

∑n
i=1(yi− ȳ)2 is distributed as (n−1)s2/σ2 ∼ χ2

n−1. This suggests consid-
ering whether other variance estimators, such as vr, might be assumed distributed
proportional to χ2

k for some value of the degrees of freedom k.
In the case of vr this would need to be an approximation due to a well-known

result (e.g., Rao 1973, p. 186), which states that when the yi are i.i.d. N(0, 1),
y′Qy ∼ χ2

k if and only if Q is idempotent with k = rank(Q) = tr(Q). If Q is
instead proportional to an idempotent matrix, or if Q is idempotent but σ2 �= 1,
then y′Qy would be distributed proportional to χ2

k. It is easily checked, however,
that the matrix Q used in Section 2 in the definition of vr is not proportional to an
idempotent matrix. In fact, for the case of n ≤ R− 2, Q = R×DD′, and DD′ is a
modification of the second difference matrix, which features a band with elements
[−1, 2,−1] centered about the diagonal in all but the first and last row. In contrast,
(DD′)2 is a modification of the fourth difference matrix, which features a diagonal
band with elements [1,−4, 6,−4, 1] in all but the first two and last two rows. Hence,
vr cannot be exactly distributed proportional to χ2

k even for i.i.d. N(0, 1) data. Still,
we can ask whether this would be approximately the case. We use simulations to
examine this question in the next section, with both normal and non-normal data
(the latter presumably leading to a further degree of approximation.)

If a χ2
k distribution provides a reasonable approximation, there is still the ques-

tion of what is the appropriate value of k? Recall that E(χ2
k) = k and Var(χ2

k) = 2k,
so that RelVar(χ2

k) = 2k/k2 = 2/k, and hence k = 2/ RelVar(χ2
k). Thus, given

RelVar(vr) we can use this result – the “Satterthwaite approximation” (Ames and
Webster 1991) – to determine the degrees of freedom for the chi-squared approxi-
mation. For N(0, σ2) data, equation (8) shows that we would have approximately
(ignoring the n−2 term) k = (2/3)n, at least up through n = R− 2. What happens
for n > R − 2 is unclear, though we would presume that k would not exceed the
number of replicates R. For non-normal data with mean zero, the behavior of k
as n increases could be obtained using the more general equation (7) (again for
n up through R − 2). However, since most of our simulations in the next section
involve data with nonzero means, we shall also use these simulations to determine
RelVar(vr) and thus k.

4. Simulation Study of Fay’s Successive Difference Replication Variance
Estimator with Samples from Various Populations

To study properties of the successive difference replication variance estimator vr (of
the sample mean, ȳ), we simulated data from various distributions to create artificial
populations, drew a large number (10,000) of simple random samples of various sizes
from each population, computed vr for each sample, and examined the behavior of
vr for a given sample size over the simulations. In all cases the population size was
N = 10, 000. We know the true variance of ȳ from a sample of size n is n−1(1−f)S2

where f = n/N is the sampling fraction and S2 = (N − 1)−1
∑N

i=1(yi − Ȳ )2 is the
population variance with Ȳ the population mean (Cochran 1977, p. 23). We can
compute S2 from the simulated population (since N is large S2 ≈ σ2 ≡ Var(yi)),
and can thus examine the percent relative bias of vr, computed as

Percent Rel Bias (vr) = 100× E(vr)− Var(ȳ)

Var(ȳ)
(9)



where E(vr) is estimated by averaging vr over the simulations. We can also es-
timate Var(vr) from the simulations, hence estimate RelVar(vr) and CV(vr) =√

RelVar(vr), and from this compute the approximate degrees of freedom k = 2/
RelVar(vr).

Having determined k, we can also examine how closely the distribution of k ×
vr/E(vr) matches a χ2

k distribution. For this let G(v) be the empirical cumulative
distribution function (cdf) of k×vr/E(vr) over the simulations, and let F (v) be the
corresponding χ2

k cdf. To judge how well F (v) approximates the true distribution,
we use a modified version of the Kolmogorov-Smirnov statistic (Rao 1973, p. 421):

K-S = sup
v

|G(v) − F (v)|. (10)

The modification is to omit the normalization by square root of sample size, where
in this context the sample size would be the number of simulations (10,000). This
normalization would be needed for hypothesis testing, but that is not of interest
here since we know from Section 3 that the true distribution of k× vr/E(vr) is not
exactly χ2

k. We are using K-S from (10) merely to get an approximate measure of the
difference between the true distribution of k×vr/E(vr) (approximated by G(v) from
the large number of simulations) and the approximating χ2

k distribution. We shall
take .10 as a rough criterion value for K-S to indicate when the χ2

k approximation
seems reasonable. So if K-S is substantially less than .10 we would be very satisfied
with the χ2

k approximation, while if K-S were substantially more than .10 we would
regard the χ2

k approximation as inadequate. Values of K-S near .10 are marginal.
In the subsections to follow we report results from simulations using the following

population distributions: Normal(0, 1); Bernoulli(p) with p = 0.1, 0.25, or 0.5; and
Poisson(μ) with μ = 0.02, 0.1, 0.3, or 0.5. We also used some data from the 2005
ACS to create an artificial population from which we drew samples. For all these
population distributions we drew samples of various sizes from n = 2 to n = 760.
For each sample size we computed the following quantities from the values of vr
over the simulated samples: (i) K-S from (10), (ii) CV(vr) =

√
RelVar(vr), (iii)

the degrees of freedom k = 2/ RelVar(vr), and (iv) Percent Rel Bias (vr) from
(9). We present these results in a set of graphs that plot these statistics against
sample size, with one graph for each statistic, and with one set of these four graphs
for each population distribution. For the Bernoulli and Poisson cases, each graph
contains a different curve for each different parameter value used. We examine the
graphs to determine, for each population distribution, for what sample sizes the χ2

k

approximation seems reasonable (judged by comparing K-S to .10), for what sample
sizes vr is approximately unbiased, and how CV(vr) and the degrees of freedom k
vary with sample size.

Note that the interpretation of k as degrees of freedom is only appropriate for
cases where the χ2

k approximation seems reasonable. Note also that we expect that
the degrees of freedom should not exceed the number of replicates (here 80). Recall
that, in our application of vr, two rows of the 80× 80 Hadamard matrix A are not
used in constructing the replicates, requiring us to repeat rows of A for n > 78.
This suggests that the expected upper limit on k should probably be 78 not 80. It
also raises some interesting questions about the behavior of k as n increases. Does
k approach 78 and then stop increasing? Does k increase steadily up to n = 78 but
then stop increasing or increase more slowly, for n > 78? Does k even approach 78
within the sample sizes considered?

In the figures showing the simulation results the four graphs on each page are
arranged as follows: The graph of K-S values is in the upper left, the graph of



degrees of freedom is in the upper right, the graph of CV(vr) is in the lower left,
and the graph of the percent relative bias of vr is in the lower right.

4.1 Simulation results for the Normal(0, 1) population

For this case and for n ≤ 78, some of our results of interest follow exactly from results
given in Section 2. In particular, since μ = 0 we know from equation (4) that vr is
unbiased for these n. Also, equation (8) shows that RelVar(vr) = n−1(3− n−1), so
that CV(vr) ≈

√
3/n and

k =
2

RelVar(vr)
=

2n

3− 1
n

≈ 2

3
n. (11)

At n = 78 this gives k ≈ 52. Results for n > 78 and for K-S for all n can be
obtained from the simulations. Changing the variance would not affect any of the
results presented here, so they apply to N(0, σ2) populations not just N(0, 1). The
restriction to μ = 0 is important, however, as follows from equation (4).

The graphs of the simulation results with the N(0, 1) data are given by Figure 1.
We discuss them in their clockwise order, starting from the plot of K-S values in the
upper left. The circles in the plots give the values determined from the simulations
for each sample size. In addition, for this case we have added to the plots solid
curves showing the corresponding theoretical results for the usual variance estimator
for this case, s2(1 − f)/n. This variance estimator is known to be unbiased and
distributed proportional to χ2

n−1 for all n. Hence, the “curves” in the K-S plot and
relative bias plot are just the horizontal axis at 0, and the curve in the degrees of
freedom plot is the straight line with intercept −1 and slope 1. The corresponding
curve in the CV plot is

√
2/(n − 1). The latter two results provide a comparison of

interest with the results for vr.
The plot of K-S values shows that they are below 0.03 for all sample sizes (2 to

760) considered. Thus, for N(0, σ2) populations, the distribution of k× vr/E(vr) is
well approximated by the chi-squared distribution.

The plot of the degrees of freedom for n ≤ 78 is consistent with the relation
(11), and in fact at n = 78 the simulation results give k = 52.9. For n > 78 the
degrees of freedom continue to increase, though more slowly and not as regularly.
The maximum degrees of freedom is 74.4 for sample size of 760. Compared to the
usual variance estimator for this case, the degrees of freedom of vr is fewer by 1/3
up to n = 78, and for larger n is more substantially lower.

The plot of the CVs of vr starts at 1.13 for n = 2, and deceases to 0.31, 0.20,
and 0.16 for sample sizes of 30, 75, and 760, respectively. Interestingly, the CV of
the usual variance estimator is higher for n = 2 (at 1.42), though it decreases more
rapidly with n to values of 0.26, 0.16, and 0.05 for sample sizes of 30, 75, and 760,
and the CV approaches 0 as n → ∞. In contrast, the simulation results suggest
that the CV of vr will not decline much below 0.16 as n continues to increase.

Since vr is known to be unbiased for n ≤ 78, the deviations from 0 over this
range of sample sizes in the plot of percent relative biases are due to simulation
error. For n > 78 the percent relative biases from the simulations are still small,
never exceeding 0.5%. So, for normal data with mean 0, in addition to being exactly
unbiased for n ≤ 78, we can conclude that vr can be regarded as essentially unbiased
with n > 78.



4.2 Simulation results for the Bernoulli populations

Figure 2 plots the simulation results when vr was applied to simple random samples
drawn from Bernoulli(p) populations for p values of 0.1, 0.25, and 0.5. In these
graphs the black solid line is for p = 0.1, the green dashed line is for p = 0.25, and
the red dot-dashed line is for p = 0.5. The plot of K-S values shows that a scaled
χ2
k distribution provides a poor approximation to the distribution of vr for small to

moderate sample sizes. The sample sizes needed for K-S values to become smaller
than 0.1 are 90, 80, and 78, for p = 0.1, 0.25, and 0.5, respectively. The computed
values of k are thus not really interpretable as degrees of freedom much below these
values of n where the χ2 approximation is poor.

In the plot of the degrees of freedom we see for p = 0.1 and p = 0.25 that k
mostly increases with n. The increase in k is fairly smooth for p = 0.1, with k
reaching a maximum value of about 61 at n = 760, though it appears k would
continue to increase beyond that point. For p = 0.25 the increase in k is nearly
linear up to n = 78, for which k is about 66. For n > 78 there is an overall general
increase (with some undulations) up to around n = 400, followed by a leveling off,
with a maximum value for k of around 77. While the behavior of k for p = 0.25 is
reminiscent of the results for N(0, 1), the behavior of k when p = 0.5 is rather odd.
It increases faster than n up to a maximum of 157 at n = 75, and then decreases,
first rapidly, then more slowly. After about n > 400, it approximately stabilizes with
values of k ranging from around 81 to around 85. We have no concrete explanation
for this unusual behavior, but would note again that, in this case, for small values
of n the χ2 approximation is quite poor.

In the CV plot the curve for p = 0.1 appears uniformly higher than that for
p = 0.25, which appears uniformly higher than that for p = 0.5, suggesting that the
precision of vr increases with p for a given n. For a given p, the CVs decrease mostly
monotonically with increasing n, though with a few points of exception where the
CV increases. The most pronounced exceptions occur just after n = 78, and are
largest for p = 0.5. Due to the scale of the CV plot, the undulations there are not
so readily apparent as they are in the plot of k = 2/ CV2. (These two graphs for
p = 0.5 may thus appear inconsistent, though they are, in fact, consistent.)

Since E(yi) = p �= 0, we know from equation (4) that vr is biased. The plot
of the relative biases shows that the bias is large for small n and large p, but is
otherwise negligible. Where the bias is not negligible it is positive. Still, even for
p = 0.5 the bias goes below 5% for n ≥ 20. For p = 0.25 or 0.10 the bias is
appreciable only for very small n.

4.3 Simulation results for the Poisson populations

Figure 3 plots the simulation results when vr was applied to simple random samples
drawn from Poisson(μ) populations for μ values of 0.02, 0.1, 0.3, and 0.5. In these
graphs the black solid line is for μ = 0.02, the red small dashed line is for μ = 0.1,
the blue dot-dashed line is for μ = 0.3, and the green dashed line is for μ = 0.5. The
plot of K-S values shows decreasing values with increasing n except for μ = 0.02, for
which there is initially (up to n = 10) an increase in the K-S values, which is then
followed by a sharp decrease. In this case the K-S value does not drop below 0.1 until
n = 300. For μ = 0.1, 0.3, and 0.5, the K-S values initially decrease more sharply
with increasing n, and drop below 0.1 when n = 50, 16, and 10, respectively. Thus,
the smaller the μ value is, the larger is the sample size needed for the distribution
of vr to be well-approximated by a scaled chi-squared distribution.



The plot of the degrees of freedom shows that, for all values of μ considered, the
value of k increases fairly steadily with n, though for μ = 0.3 and μ = 0.5 it appears
that k may level off shortly beyond n = 760. The maximum values of k are about
26 (μ = 0.02), 52 (μ = 0.1), 65 (μ = 0.3), and 69 (μ = 0.5). Correspondingly, the
plot of CV values shows these to initially decrease rapidly with increasing n, then
level off, with lower CVs for the higher values of μ.

The plot of the relative biases of vr shows some large values for μ = 0.5, but
only for very small sample sizes. The largest relative bias is 26% for n = 2, but it
drops below 5% at n = 15, and continues to drop towards 0 (though the plotted
values aren’t 0 due to some simulation error). As would be expected from equation
(4), the relative biases are smaller for smaller values of μ.

4.4 Simulations results using ACS 2005 data

The ACS is a nationwide survey designed to provide annual estimates of population
and housing characteristics nationally and for states, counties, and other substate
areas. SAIPE uses state and county poverty estimates constructed from ACS data
as the basis for its state and county poverty models. Here we use some ACS micro
data from 2005 to create an artificial population from which we can repeatedly
draw samples, create sample based poverty estimates, and apply vr to estimate
the variances of the poverty estimates. We then study the properties of vr over
the samples drawn. Relative to the results just presented which used simulated
data, this approach has the advantage of using an artificial population that more
accurately reflects the real properties of the ACS poverty data.

ACS has an annual national sample size of about 3,000,000 addresses. Rather
than use the full national sample, we wanted a more homogeneous artificial popu-
lation of the sort that might be present for an actual county. We also wanted to
create an artificial population large enough to support drawing samples of a sub-
stantial size (we again used 760 as the largest sample size) without this resulting
in an unduly large sampling fraction. To achieve these goals we combined data
from 19,264 ACS 2005 sample households taken from Maryland’s 5 largest county
equivalents (Anne Arundel County, Baltimore County, Montgomery County, Prince
George’s County, and Baltimore city) to define our artificial population.

For the target population parameter of interest we used the mean number per
household of 5-17 year-old related (to the head of the household) children in poverty.
(This is Ȳ if, for each household i in the artificial population that is in poverty, yi
is defined as the number of 5-17 related children, and for all other households yi
is defined as 0.) This characteristic was chosen to provide some comparability
with the previous results (which involved variances of sample means) and because
multiplying this quantity by the number of households would produce the number
of 5-17 related children in poverty, a key characteristic for the SAIPE models. We
drew 10,000 simple random samples of households from this population, formed
estimates of the target characteristic, and computed variance estimates using vr. A
couple points are worth noting. First, only 26.3% of the households in our artificial
population include any related 5-17 year-old children. Second, only about 2% of
households in the artificial population both are in poverty and have a related 5-17
year-old.

Figure 4 plots, for various sample sizes, the usual four statistics on vr, obtained
from the samples drawn from the artificial population as just described. These are
indicated by the circles on the plots. We also applied the usual variance estimator



defined by s2(1 − f)/n. Results for this variance estimator are shown by the solid
lines on the plots. The two sets of results are very similar. The usual variance
estimator is slightly more precise, as can be seen for the larger sample sizes in the
plot of degrees of freedom (though this is hard to spot in the corresponding plot of
CVs of the variance estimators.) Because the two sets of results are so similar, we
shall not comment further on the results for the usual variance estimator.

The pattern of the plot of the K-S values for vr is similar to that for the simulated
Poisson(0.02) population, but the K-S values are smaller. The K-S value of vr is
0.13 for n = 2, increases to a maximum of 0.46 for n = 25, and then decreases
sharply with leveling off starting around n = 200. The K-S values fall below 0.1 for
n ≥ 120.

The degrees of freedom for the chi-squared approximation increase very nearly
linearly with n, but increase slowly, reaching a maximum of only 9.9 for n = 760.
These values are even lower than those for the simulated Poisson(0.02) population.
The CVs show the corresponding rapid decrease with increasing n followed by a
leveling off.

The percent relative biases of vr are negligible except possibly for a few of the
smallest sample sizes, and even there only three of the values exceed 4%.

5. Conclusions

We have examined some properties of Fay’s successive difference replication variance
estimator vr for estimating the variance of the sample mean from simple random
samples. We did this by creating artificial populations simulated from various dis-
tributions (normal, Bernoulli, and Poisson), and also by taking sample poverty data
for a group of counties from the 2005 ACS to define an artificial population. Our
goals were to examine, for these different populations and for various sample sizes
n, (1) whether vr could be regarded as distributed approximately proportional to
χ2
k, (2) how the degrees of freedom k varied with n, and (3) whether vr had an

appreciable bias.
With large samples (say, n ≥ 100) the simulation results are mostly supportive of

using a chi-squared approximation to the distribution of vr. With smaller samples
the results are less clear, being dependent on the form of the distribution of the
data and its parameter values. The chi-squared approximation was poorest for the
Poisson data with very small mean, the artificial population constructed from ACS
poverty data, and the Bernoulli data for all values of the success probability. For
normally distributed data with mean zero the chi-squared approximation was good
for all sample sizes, and for Poisson data with a substantial mean the approximation
was good for all but the very smallest sample sizes.

The degrees of freedom, k, of vr for the chi-squared approximation (when it
seemed reasonable) varied substantially across the various cases considered. While
k did generally increase with sample size, it increased at very different rates for
various cases. Two things that could be said are (i) k increased more slowly than n
(it increased at rate (2/3)n for normal data with mean zero, but at a much slower
rate in many other cases), and (ii) k generally remained less than the number
of replicates used for vr (here 80), even as n increased to large values (here up to
n = 760). An isolated exception to these conclusions occurred for the Bernoulli(0.5)
data. Though we have no concrete explanation for this exception, in this case for
small n the chi-squared assumption was poor anyway.

Bias of vr appeared to be of little concern in our results, with a bias of substance



appearing only for a few cases with very small sample sizes (n smaller than 15).
This investigation could be extended in any of four directions: (i) consideration

of other variance estimators, (ii) consideration of variance estimators for population
characteristics other than the mean, (iii) variance estimation with survey designs
other than simple random sampling, and (iv) consideration of some additional pop-
ulation distributions beyond those examined here.
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 Figure 1. The K−S, Degrees of Freedom, CV and Bias of Fay’s variance estimates of Mean−N(0,1)
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 Figure 2. The K−S, Degrees of Freedom, CV and Bias of Fay’s variance estimates of Mean−B(p)−p=0.1,0.25,0.5
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 Figure 3. The K−S, Degrees of Freedom, CV and Bias of Fay’s variance estimates of Mean−P(mu)−mu=0.02,0.1,0.3,0.5
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Figure 4. The K−S, Degrees of Freedom, CV and Bias of two variance estimates of mean−ACS05−MD−G1


