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Bayesian Seasonal Adjustment of

Long Memory Time Series

Scott H. Holan and Tucker S. McElroy1

1.1 Introduction

Existing approaches to the seasonal adjustment of economic time series are typically either

nonparametric or model-based. In both cases, the goal is to remove seasonal variation from

the time series. In each of the two paradigms, both the seasonally adjusted series and the

seasonal component are latent processes. As such, seasonal adjustment can be viewed as an

unobserved components (UC) problem and specifically that of UC estimation. Though the

nonparametric approach has a rich history going back to the development of X-11 and X-11

ARIMA (Dagum, 1980; Shiskin et al., 1967), our focus centers on model-based methodology.

Within the model-based framework, two directions have emerged. The first direction, and

the direction pursued here, directly specifies models for the components and is known as the

1Disclaimer: This chapter is released to inform interested parties of research and to encourage discussion. The views
expressed on statistical issues are those of the authors and not necessarily those of the U.S. Census Bureau.
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2 CHAPTER 1. SEASONAL ADJUSTMENT OF LONG MEMORY TIME SERIES

structural time series approach (Harvey, 1990). Alternatively, one could start with a model

for the observed time series and derive appropriate models for each component (Hillmer and

Tiao, 1982). This latter approach is often referred to as “canonical decomposition.”

In the seasonal adjustment of economic time series it is common to “preadjust” the se-

ries. This preadjustment often includes interpolation of missing values, outlier adjustment

and adjustment for trading day and holiday effects. In addition to the customary preadjust-

ments, many model-based approaches require that the observed series be differenced (and/or

seasonally differenced) to handle nonstationarity. One question that naturally arises when

implementing such an approach is whether or not the correct number of differencing op-

erations have been imposed. In practice, typically, only integer orders of integration are

considered. Nevertheless, it is possible that differencing the data once results in a series that

still exhibits nonstationary behavior, whereas, imposing a second difference may result in a

series that is “over-differenced” and thus noninvertible. In these cases, a natural alterna-

tive is to difference the observed series and then model the residual series as a fractionally

differenced process.

The models and signal extraction methodology we propose are applied to nonstationary

data. However, the approach we develop assumes that, after suitable differencing, the resid-

ual series is stationary but allows for long-range dependence (in the seasonal and/or trend

component) or anti-persistance (sometimes referred to as intermediate or negative memory).

Long-memory time series modeling has experienced tremendous growth during the past three

decades. Beginning with the seminal papers on fractional differencing by Granger and Joyeux

(1980) and Hosking (1981), many methods have been proposed for modeling long-memory

and seasonal long-memory processes with many of these efforts focused on estimation of the

fractional differencing parameter, also known as the memory parameter.

Although some research on long-memory has taken a Bayesian viewpoint, the literature is

still very heavily frequentist (see Robinson (2003) for a discussion). In general, the literature

on long-memory time series is extensive. Excellent references for long-memory time series

that include discussion of seasonal long-memory can be found in Palma (2007), Bisognin and

Lopes (2009) and the references therein. General discussion regarding long-memory from a
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Bayesian perspective can be found in Palma (2007), Holan et al. (2009) and the references

therein. Together, these references, along with Holan et al. (2010), provide a detailed survey

of the existing literature in long-memory time series.

Even though there exists a substantial body of research on modeling seasonal long-range

dependent processes, relatively few efforts have been made toward the seasonal adjustment

of economic time series exhibiting such behavior. Further, methods for seasonally adjusting

economic time series using Bayesian methodology are also rather limited. The work of Carlin

and Dempster (1989) provides one exception.

Carlin and Dempster (1989) develop a Bayesian approach to seasonal adjustment that

considers long-memory behavior. However, due to computational limitations, the method

they propose is necessarily empirical Bayes and estimates the models using a plug-in approach

on the fractional differencing parameter from a grid of values. One of the principal differ-

ences between our approach and that of Carlin and Dempster (1989) is that our approach

is fully Bayesian. Specifically, our method assumes noninformative priors for the fractional

differencing parameters and estimates them as part of the model. Additionally, our method

uses finite sample minimum mean squared error (MMSE) signal extraction formulas (McEl-

roy, 2008) to facilitate seasonal adjustment. This relies on a matrix representation of the

signal extraction filters that is necessary due to the long-memory behavior; these formulas

were unavailable to Carlin and Dempster (1989). In addition, the fully Bayesian framework

we propose for conducting finite sample MMSE seasonal adjustment extends the current

methodology even when the differenced data does not present long-range dependence. Fi-

nally, using the matrix approach, requires efficient computation of autocovariances for models

with multiple memory parameters (McElroy and Holan, 2011).

Our approach relies on the seasonal fractionally differenced exponential model (SFEXP)

(McElroy and Holan, 2011) and more generally the Gegenbauer exponential (GEXP) model

(Hsu and Tsai, 2009; McElroy and Holan, 2011). Additionally, our approach allows for ver-

satile models on the seasonal component as well as easy inclusion of extra components that

can be modeled rather flexibly. For example, our model allows for straightforward specifica-

tion of a cycle component, of unknown frequency, (with or without long-range dependence)
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and/or a sampling error component using GEXP and EXP models respectively.

Finally, we pose our model from a Bayesian hierarchical perspective and, as a result, it

is straightforward to include regression effects (e.g., holiday and trading day effects) and

to quantify uncertainty. In this context, there are several advantages to proceeding from

a Bayesian hierarchical perspective, rather than taking a maximum likelihood approach to

estimation. In particular, the likelihood surface is complex and so convergence of numerical

optimization algorithms must be carefully monitored. In addition, in the case of maxi-

mum likelihood, standard errors for the parameter estimates are typically obtained through

asymptotic arguments (using the estimated inverse Hessian matrix) and the final signal ex-

traction estimates are conditioned on the estimated UC model parameters instead of directly

accounting for this extra source of uncertainty. In contrast, we design a block Metropolis-

Hastings algorithm for efficient model estimation and explicitly propagate uncertainty from

the model fitting stage to the signal extraction. Although, our primary focus is on Bayesian

methodology, for comparison, we also present results from maximum likelihood estimation

(based on the exact likelihood rather than the so-called Whittle approximation), which is

also novel in this context. Also, maximum likelihood is useful in cases where rapid estimation

is desired and/or as starting values for Bayesian estimation.

The remainder of this chapter proceeds as follows. Section 1.2 introduces the SFEXP

model and describes an efficient approach to calculating the necessary model autocovariances.

Section 1.3 describes long-memory unobserved component models and their application to

seasonal adjustment. The methodology is illustrated in Section 1.4 through two real data

examples. Finally, Section 1.5 provides a brief conclusion. Details surrounding our Markov

chain Monte Carlo (MCMC) algorithm and Bayesian signal extraction estimator are left to

the Appendix.

1.2 The SFEXP Model

The structural models of Section 1.3 depend, in large part, on the SFEXP spectral rep-

resentation and efficient autocovariance computation. The necessary background material
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is provided here. In particular, we consider a process {Yt} that has long memory at both

trend and seasonal frequencies. We focus on the case of monthly data, so that the seasonal

frequencies are πj/6 for j = 1, 2, · · · , 6; the trend frequency (j = 0) is treated separately.

Now to each of the seasonal frequencies and the trend frequency, we may associate a pole in

the pseudo-spectral density with rate of explosion governed by the seasonal and non-seasonal

memory parameter δS and δN respectively. These may be numbers greater than .5, indicating

nonstationarity. Letting µt = E(Yt), our basic assumption is that

(1−B)δNU(B)δS(Yt − µt) (1.2.1)

is a mean zero stationary process modeled by an exponential model (Bloomfield, 1973) of

order m, where B is the backshift operator and U(z) = 1+z+z2 + · · ·+z11. The parameters

δN and δS broadly define the dependence structure.

Specifically, when δN ∈ (0, .5), the process has (stationary) long memory at frequency

zero, whereas if δN = 0 the process has short memory. If δN ∈ (−.5, 0), the process has

intermediate memory at frequency zero, which is also stationary. Similar statements apply

to the range of δS, except we substitute seasonal frequencies for frequency zero. It will be

convenient to separate out the integer portion of δN and δS so that we can focus on the

stationary aspects of the model. Since the process Yt is stationary if and only if |δN | < .5

and |δS| < .5, it makes sense to define the integer portion of δN and δS to be given by

rounding to the nearest integer (with fractional values of .5 being rounded upwards), which

will be denoted by the symbol [·]. Hence δN = [δN ] + d and δS = [δS] +D, where the Latin

letters d and D denote the remainders, which are guaranteed to lie in [−.5, .5). If we let Zt

denote the suitably differenced (Yt − µt), such that the result is stationary, we have

Zt = (1−B)[δN ]U(B)[δS ](Yt − µt) = (1−B)[δN ]U(B)[δS ]Yt − ζt.

We use the notation Wt = (1−B)[δN ]U(B)[δS ]Yt for the differenced observed process and

ζt = (1−B)[δN ]U(B)[δS ]µt for the differenced time-varying mean. Thus Wt = ζt + Zt, with

{Zt} stationary and mean zero. It follows that {Zt} has an integrable spectral density
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function f , which given our basic assumption (1.2.1) means that

f(λ) = |1− z|−2d|U(z)|−2D exp

{
m∑

j=−m

gjz
j

}
, (1.2.2)

where we use the convenient abbreviation z = e−iλ. This defines SFEXP model (McElroy

and Holan, 2011), where gj = g−j by assumption.

Example. If δN = 1.33 and δS = 1.15, then the nonstationary integer differencing order is

[δN ] = 1 for trend and [δS] = 1 for seasonal (fairly typical values), and d = .33 and D = .15

are the resulting memory parameters. The values of these memory parameters indicate fairly

strong memory for the trend, but weaker long-range dependence for the seasonal frequencies.

The fitting of the SFEXP model to seasonal data involves firstly the identification of

integer differencing orders, which are the numbers [δN ] and [δS]. These are applied to the

observed time series, resulting in the differenced series {Wt}. Subsequently, a short-memory

model order m is selected and, conditional on m, values for d and D and the {gj}mj=0 are

determined using Bayesian (or maximum likelihood) estimation. Alternatively, in principal,

taking a Bayesian approach similar to Holan et al. (2009), the choice of m (order selection)

can be directly incorporated into the modeling procedure using reversible jump Markov chain

Monte Carlo.

Whether a Bayesian or a maximum likelihood procedure is carried out, it is convenient

to use the Gaussian likelihood function corresponding to (1.2.2), since, conditional on ζt,

this only depends on autocovariances that can be computed directly and accurately via

algorithms described in McElroy and Holan (2011). Note, as demonstrated below, the main

determinants of the seasonal adjustment filters are the parameters d and D, whereas the

short memory parameters have little effect. The key to estimation of a Gaussian SFEXP

model is efficient, accurate computation of the autocovariances. The method of McElroy

and Holan (2011) is extremely general; nonetheless, improvements to speed and precision

of parameter estimates can be achieved in the special case of (1.2.2) when only one pole is

present and is useful in the case of UC models. We provide the details for relevant cases of
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this situation below.

Suppose first that D = 0 in (1.2.2), producing the FEXP model. The best technique is

to compute autocovariances using the splitting method (Bertelli and Caporin, 2002) (which

involves the convolution of short and long memory autocovariances), since the autocovariance

sequence for |1− z|−2d is known analytically and the autocovariance sequence for the short

memory g(λ) = exp{
∑

j gjz
j} decays at geometric rate:

γh =
1

2π

∫ π

−π
|1− z|−2dg(λ)z−hdλ =

∑
k

γk(g)ξh−k(d), (1.2.3)

γk(g) =
1

2π

∫ π

−π
g(λ)z−kdλ,

ξj(d) =
Γ(j + d)Γ(1− 2d)

Γ(j − d+ 1)Γ(d)Γ(1− d)
.

Here ξj(d) is the autocovariance sequence for an ARFIMA(0,d,0) as in Brockwell and Davis

(1991), utilizing the Gamma function. The expression for γh involves an infinite sum that

can be truncated safely, since γk(g) will tend to decay rapidly (since g has no poles).

Secondly, suppose that d = 0 and D > 0 in (1.2.2). Then rewrite the spectral density

as f(λ) = |1− z12|−2D|1− z|2Dg(λ). Observe that k(λ) = |1− z|2Dg(λ) is a combination

of negative memory (hyperbolic zeroes in spectrum) and short memory behavior, and also

has rapidly decaying autocovariance sequence. This autocovariance sequence need not decay

geometrically, but will tend to decay rapidly nevertheless. The autocovariance function

(acvf) of the spectrum |1− zs|−2D is given by the following result.2

Proposition 1. The autocovariance sequence of |1− zs|−2D is

ξj(D) =
Γ(j/s+D)Γ(1− 2D)

Γ(j/s−D + 1)Γ(D)Γ(1−D)
1{j≡0 mod s}.

2Propoistion 1 is fairly common in the literature on long-memory time series and can be readily deduced from results found
in Brockwell and Davis (1991). Thus, it is presented here without proof.



8 CHAPTER 1. SEASONAL ADJUSTMENT OF LONG MEMORY TIME SERIES

As a result, the desired autocovariance sequence is

γh =
∑
j

γj(k)ξh−j(D) =
∑
j

γh−12j(k)
Γ(j +D)Γ(1− 2D)

Γ(j −D + 1)Γ(D)Γ(1−D)
. (1.2.4)

The calculation of these quantities is therefore fast and accurate.

If D < 0, the process exhibits negative memory and has a rapidly decaying autocovariance

sequence. Therefore, f(λ) = |1− z12|−2D|1− z|2Dg(λ) = |U(z)|−2Dg(λ) can be accurately

and efficiently computed. In this case, several methods could be employed including McElroy

and Holan (2011), a multiple splitting approach or direct Fourier inversion of the spectral

density using numerical integration.

1.3 Long-Memory UC Models and Seasonal Adjustment

In order to apply formulas for finite sample MMSE3 we need autocovariance generating

functions for signal and noise. As previously alluded to, we take a structural approach,

which posits models for signal and noise and, thus, an inferred autocovariance structure is

obtained for the data process via summing the spectra of the component models. Specifically,

we illustrate this for the SFEXP case.

Let Yt equal the sum of two components St and Nt, the seasonal and nonseasonal respec-

tively. In terms of (1.2.1), these have δN = 0 for St and δS = 0 forNt, and potentially different

orders mS and mN for the exponential model portions. These are working assumptions that

are sensible, since we seek a seasonal component that has no trend dynamics, and also a

nonseasonal component with no seasonal dynamics. Including regression effects (i.e., trading

day and/or holiday effects), the two component model can be written as Yt = µt + St +Nt,

where µt = X ′t θ denotes a regression component. Thus, it follows that

Wt = ζt + (1−B)[δN ]Ut + U(B)[δS ]Vt,

3The described estimators are MMSE for Gaussian time series, or alternatively are MMSE among linear estimators in the
data; this depends on certain signal extraction conditions described in McElroy (2008).
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where {Ut} and {Vt} are suitably differenced versions of {St} and {Nt} that are independent

of one another, i.e., Ut = U(B)[δS ]St and Vt = (1−B)[δN ]Nt. Note that if we suppose that

St and Nt follow (1.2.1) then, in general, Zt = Wt− ζt does not follow an exponential model.

In particular, we have

fS(λ) = |U(z)|−2[δS ]fU(λ) fU(λ) = |U(z)|−2DgS(λ)

fN(λ) = |1− z|−2[δN ]fV (λ) fV (λ) = |1− z|−2dgN(λ)

for exponential models gS and gN given by gS(λ) = exp{
∑
|j|≤mS

ujz
j} and gN(λ) = exp{

∑
|j|≤mN

vjz
j}.

Thus it follows that the spectrum for the differenced, mean-centered process Zt is

|1− z|2[δN ]|U(z)|−2DgS(λ) + |U(z)|2[δS ]|1− z|−2dgN(λ), (1.3.1)

which, in general, will not have the form of f given in (1.2.1), as the exponential portion

would have infinitely many nonzero coefficients. Nevertheless, (1.3.1) can easily be used to

construct a Gaussian likelihood function: given d, D, and the parameters of gS and gN (with

[δN ] and [δS] determined before-hand as in Section 2), we compute the autocovariances for

each of the two terms and sum. Let Γ(g) denote the (Toeplitz) covariance matrix associated

with a stationary process having spectral density g. Then for a sample from {Yt} of size n,

the autocovariance matrix associated with Zt can be expressed as

ΣZ = ∆NΓ(fU)∆′N + ∆SΓ(fV )∆′S

where ∆N and ∆S are (n− 12[δS]− [δN ])× (n− 12[δS]) and (n− 12[δS]− [δN ])× (n− [δN ])-

dimensional differencing matrices with entries given by the coefficients of (1−B)[δN ] and

U(B)[δS ] respectively, appropriately shifted. Explicit examples of these matrices can be

found in Bell (2004) and McElroy and Gagnon (2008).

Let ψ denote the full parameter vector for the model (excluding regression parameters);

then ψ = (d, u0, u1, · · · , umS
, D, v0, v1, · · · , vmN

)′. Note that this vector partitions into the

first mS + 2 components corresponding to the seasonal component S, and the latter mN + 2

components for the nonseasonal component N . Using maximum likelihood, and the con-
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cepts of Section 1.2, the actual estimation of the structural model for the data is fast and

accurate to compute. Conditional on the regression parameters, we only need to compute

the autocovariance sequence associated with (1.3.1) to obtain likelihood evaluations. The

first term is a simple linear combination of autocovariances computed using (1.2.4). The

second term is another finite linear combination of autocovariances computed using (1.2.3).

Then one sums the autocovariance sequences to get the autocovariances for the differenced

data.

If one utilizes this procedure in the heart of a maximum likelihood routine, the end result

at convergence is parameter estimates for ψ (and θ - the vector of regression coefficients).

This gives complete models for both the seasonal and nonseasonal as well as the autocovari-

ance sequence for Zt. Additionally, it is clear from the previous discussion that the data

spectrum f will have stationary long memory poles at the trend and seasonal frequencies, of

order d and D respectively, since it follows from (1.3.1) that

fψ(λ) =
|1− z|2δNgS(λ) + |U(z)|2δSgN(λ)

|1− z|2d|U(z)|2D
,

where fψ(λ) denotes the spectral density associated with the parameters ψ. For the MMSE

signal extraction formulas, we need the autocovariances associated with both components.

Under the typical assumptions (given in Bell (1984b) and McElroy (2008)), we apply the

matrix formula (1.3.2) given below to the finite sample of data Y = (Y1, Y2, · · · , Yn)′ (the

presence of mean effects changes things slightly; see the discussion in the Appendix). Let ∆S

and ∆N denote differencing matrices for seasonal and nonseasonal, such that when applied

to the signal and noise vectors, yield U and V respectively. Specifically, ∆S and ∆N are

(n − 12[δS]) × n and (n − [δN ]) × n differencing matrices respectively and are constructed

similar to ∆N and ∆S (see McElroy (2008) for more details). Then the signal extraction

matrix associated with ψ is given by

F (ψ) =
(
∆′SΓ−1(fU)∆S + ∆′NΓ−1(fV )∆N

)−1
∆′SΓ−1(fU)∆S. (1.3.2)

The dependence on the parameter vector ψ enters through fU and fV , whose reliance on ψ

is suppressed in the notation.
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Conditional on mS and mN being known, it is straightforward to write down the Gaussian

likelihood associated with a sample of size n. Letting W = (W1,W2, . . . ,Wn′)
′, n′ equal the

length of the differenced series and 1n′ the vector of ones with length n′ we have

p(W |ψ, ζ) = (2π)−n/2|Σ(fψ)|−1/2 exp

{
−1

2
(W − ζ1n′)

′Σ(fψ)−1 (W − ζ1n′)

}
.

It is readily seen that our UC model naturally possesses a hierarchical structure. Ultimately,

for signal extraction, we are interested in estimating the model parameters so that we can

compute the necessary autocovariances. Specifically, the finite sample MMSE formulas will

depend on ψ; the Appendix contains a comprehensive treatment of Bayesian finite sample

MMSE. To this end, we use Bayes rule to obtain the posterior distribution of ψ and ζ (and

ultimately the autocovariances, unobserved components and seasonal adjustments) given the

data

p(ψ, ζ|W ) = p(D, d, u, v, σ2
u, σ

2
v , ζ|W ) ∝ p(W |ψ, ζ)p(u|σ2

u)p(v|σ2
v)p(σ

2
u)p(σ

2
v)p(d)p(D)p(ζ),

where u = (u0, u1, . . . , umS
)′, v = (v0, v1, . . . , vmN

)′, σ2
u = (σ2

u0
, . . . , σ2

umS
)′ and σ2

v = (σ2
v0
, . . . , σ2

vmN
)′

and we have assumed conditional independence between components. To completely specify

a Bayesian model requires us to choose priors for (d, u, σ2
u, D, v, σ

2
v , ζ). For ease of expo-

sition, and to be consistent with our empirical case studies (cf. Section 1.4), we assume

the differenced data to be mean centered via ζ, noting that it is straightforward to in-

clude regression effects such as trading day and holiday effects. Similar to Holan et al.

(2009), for j = 1, . . . ,mS and k = 1, . . . ,mN , we assign hierarchical priors on the unknown

parameters as follows: D ∼ Uniform(−1/2, 1/2); uj|σ2
uj
∼ N(0, σ2

uj
); σ2

uj
∼ IG(Au, Bu);

d ∼ Uniform(−1/2, 1/2); vk|σ2
vk
∼ N(0, σ2

vk
); σ2

vk
∼ IG(Av, Bv); ζ ∼ N(ζ0, σ

2
ζ ). As usual IG

denotes the inverse gamma distribution, so that σ2
` has pdf p(σ2

` ) ∝ (σ2
` )
−(A+1) exp (−B/σ2

` ).

Typically, as is the case in our illustrations, the hyperparameters Au, Bu, Av, Bv, ζ0 and

σ2
ζ are specified so that the prior distributions are vague or noninformative. Comprehensive

details regarding the full conditional distributions and exact MCMC algorithm can be found

in the Appendix.
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1.4 Empirical Case Studies

In order to demonstrate the effectiveness and flexibility of our approach we consider the sea-

sonal adjustment of two time series. Firstly, we considered a dataset from the Current Pop-

ulation Survey (CPS) (Source: U.S. Bureau of Labor Statistics, http://www.bls.gov/data/)

that consists of Employed Males, aged 16-19, from 1/1976-6/2010; henceforth referred to as

the “EM1619” series. Figure 1.1 (top left panel) provides a plot of the time series. Next,

we consider data from the Current Employment Statistics Survey (CES) (Source: U.S. Bu-

reau of Labor Statistics, http://www.bls.gov/data/) that consists of U.S. Total Non-farm

Employment from 1/1939-7/2009. Figure 1.2 (top left panel) provides a plot of the observed

time series.

***Figure 1.1 approximately here***

***Figure 1.2 approximately here***

For both datasets maximum likelihood is conducted using the optim command in R (R

Development Core Team, 2010) to numerically determine the maximum of the likelihood

surface. Conversely, the Bayesian procedure uses the prior specification detailed in Section

1.3. Specifically, for both datasets we take Au = Bu = Av = Bv = .1, ζ0 = 0, σ2
ζ = 103 and

implement the MCMC algorithm described in the Appendix. For model fitting we run a

single MCMC chain for 10,000 iterations discarding the first 1000 iterations for burn-in and

keeping every third iteration for inference, leaving 3000 iterations total. Convergence of the

MCMC is verified through trace plots of the sample chains. All estimated parameters are

taken as the posterior means.

In order to arrive at a model for illustration we informally consider AIC and BIC for

models estimated using maximum likelihood (Beran et al., 1998). In particular, Beran

et al. (1998) provided formal justification for these criterion in the context of fractional

autoregressive models. Nevertheless, we shall use these criteria here to narrow down the

candidate models.

In the case of the Bayesian hierarchical approach we use deviance information criterion
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(DIC) (Spiegelhalter et al., 2002) to evaluate candidate models. DIC has become common-

place in Bayesian model selection and, similar to AIC and BIC, models with smaller DIC are

preferable. Ultimately, for each dataset, we choose a Bayesian model for illustration based

on DIC. Again, since the goal of our illustration is to demonstrate effective seasonal adjust-

ment, we have not conducted an exhaustive search to find an “optimal” model. Instead, we

choose a competitive model and evaluate its effectiveness in seasonal adjustment.

In order to determine if a transformation and/or differencing is required for either dataset,

we begin with an exploratory analysis. Figures 1.1 and 1.2 provide plots of the observed

series, the first-differenced series and the series obtained from taking the first difference

and then applying the differencing operator U(B). In addition, both figures display the

associated autocovariance functions, acvfs, and AR(30) spectral densities. From an initial

assessment of the plots in Figures 1.1 and 1.2, it seems reasonable to work with the data

obtained from applying the (1− B)U(B) = 1− B12 differencing operator to both observed

series.

1.4.1 Current Population Survey - Employed Males

In seasonal adjustment applications it is common to test for outliers, trading day and holiday

effects in monthly time series such as the EM1619 series. Running different specifications

through X-12 ARIMA, neither trading day (TD) or Easter holiday effects were found sig-

nificant and thus no TD or holiday adjustments were made. The current model used at

the Bureau of Labor Statistics involves removing three level shifts (LS). We fit models with

both the three LS removed and retained and found no appreciable difference. Thus, in what

follows, we detail the analysis with the three LS retained.

Several models were fit using maximum likelihood and although many models appeared

to provide a good fit to the observed data, not all of these models provided adequate seasonal

adjustment. One model identified for further consideration was a long-memory UC model

with one seasonal and three nonseasonal short-memory coefficients (i.e., LM-UC(1,3)). The

estimated long-memory parameters were (D̂, d̂) = (.460, .159) with standard errors of .032
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and .084 respectively. The estimated seasonal short-memory coefficient, û0, equals -4.719

with standard error .312. The estimated nonseasonal short-memory coefficients (v̂0, v̂1, v̂2) =

(−.751,−.749,−.420) with standard errors of .085, .204 and .157 respectively. Finally, ζ̂ the

estimated mean of the differenced data, equals -.555 with standard error .579. Note that xd,

the sample mean of the differenced data, equals -.524 and closely agrees with our estimate.

Figure 1.3 displays the estimated nonseasonal component and associated pointwise 95%

confidence band. To assess whether the seasonality has been removed we plot the AR(30)

spectral density for the first-differenced estimated trend (Figure 1.4). Figure 1.4 clearly

illustrates that the seasonality has been satisfactorily removed. Finally, one can examine the

seasonal adjustment filter through a plot of the gain function for the seasonal and nonseasonal

components. As seen in Figure 1.5, the induced filters sensibly suppress the dynamics at the

correct frequencies.

***Figure 1.3 approximately here***

***Figure 1.4 approximately here***

***Figure 1.5 approximately here***

In contrast, we conducted seasonal adjustment using Bayesian methodology. Specifically,

based on DIC, we estimated a LM-UC(1,5) model. It is important to emphasize that we

have not conducted an exhaustive model selection, but rather chose a candidate model to

illustrate Bayesian long-memory seasonal adjustment. The estimated model parameters were

(D̂, d̂) = (.381, .097) with 95% credible intervals (CI) given by (.224,.471) and (-.143,.321)

respectively. The estimated seasonal short-memory coefficient is -4.251 with 95% CI of

(-5.020,-3.246) whereas the estimated nonseasonal short-memory coefficients are given by

(-.794,-.491,-.377,.233,-.231) with 95% CIs given by (-1.047,-.570), (-1.029,.009), (-.786,.007),

(-.066,.525) and (-.546,.006) respectively. Finally, ζ̂, the estimated mean of the differenced

data equals -.542 with 95% CI equal to (-.587, -.495). Figure 1.6 displays the observed

series along with the estimated nonseasonal component and pointwise 95% CIs. An AR(30)

spectral density and acf plot identical to Figure 1.4 indicate that the induced filters sensibly

suppress the dynamics at the correct frequencies (not displayed).
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***Figure 1.6 approximately here***

In both the maximum likelihood and Bayesian approach, the estimated nonseasonal long-

memory parameter is not statistically significant (at the .05 level). For comparison, we

estimated a model (using classical and Bayesian methodology) with the nonseasonal long-

memory parameter set identically equal to zero. We found that this produced qualitatively

similar seasonal adjustments and, thus, is not presented here. In the Bayesian context this

parameter can be viewed as a nuisance parameter, since our target is an estimated trend

component. The method we propose averages over the distribution of this parameter to

produce a pointwise distribution of trend components. Therefore, it is advantageous to

include this parameter in the model, since a significant portion of the distribution, for the

model parameter, is located away from zero (see Figure 1.7). Importantly, the pointwise

95% CI for the estimated nonseasonal component takes into account parameter uncertainty

and is narrower than the corresponding interval from maximum likelihood that appeals to

large sample approximations (see Holan et al., 2009, for further discussion). Finally, we also

estimated models with three components – trend, seasonal and irregular. The results for the

seasonal adjustments were qualitatively similar in this case and thus are not presented here.

***Figure 1.7 approximately here***

1.4.2 U.S. Total Non-farm Employment

As previously discussed, preadjustment of economic time series in the context of seasonal

adjustment is commonplace in practice. To assess the need for preadjustment, we ran several

specifications in X-12 ARIMA; it was determined that no transformation was necessary

but that stock-trading day effects were significant. Although stock - trading day effects

could be directly incorporated into our model as a regression effect (cf., Section 1.3), and

estimated using Bayesian methods, our focus is on illustrating the long memory aspects of the

model and thus we removed this effect prior to model estimation and seasonal adjustment.

While this may not be preferred from a modeling perspective, this is also consistent with

current seasonal adjustment practices in federal statistical agencies and advantageous from
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a computational viewpoint.

Similar to the EM1619 series, several candidate models were investigated. One model

identified for further consideration (under both maximum likelihood and Bayesian estima-

tion) was a LM-UC(2,3) model. Thus, using the Bayesian framework, we conducted sea-

sonal adjustment under this model. In this case, the estimated long-memory parameters

were (D̂, d̂) = (.053, .325) with 95% CIs equal to (-.061,.179) and (.208,.429) respectively.

The estimated seasonal short-memory coefficients, (û0, û1), equal (-6.431, 2.562) with 95%

CIs equal to (-7.168, -5.832) and (2.041, 3.025) respectively. The estimated nonseasonal

short-memory coefficients (v̂0, v̂1, v̂2) = (−3.931, 0.278, 0.569) with 95% CIs equal to (-4.104,

-3.771) and (.004, .595) and (.337, .828) respectively. Finally, ζ̂ the estimated mean of the

differenced data, equals 1.621 with 95% CI (1.609, 1.634). Figure 1.8 shows a plot of the

observed series along with the estimated nonseasonal component. The estimated pointwise

95% CI is intentionally suppressed since the width of this interval is uniformly less than .25.

Finally, to assess whether the seasonality has been adequately removed we plot the AR(30)

spectral density for the first-differenced estimated trend (Figure 1.9). This figure clearly

demonstrates that the seasonality has been removed. Again, similar to the EM1619 series,

one could study properties of the seasonal adjustment filter through an investigation of the

gain function. However, we defer such investigation here, noting that the investigation yields

similar conclusions to the EM1619 series.

***Figure 1.8 approximately here***

***Figure 1.9 approximately here***

Alternatively, using maximum likelihood, the estimated long-memory parameters were

(D̂, d̂) = (.064, .349) with standard errors of .062 and .069 respectively. The estimated

seasonal short-memory coefficients, (û0, û1), equal (-6.475, 2.583) with standard errors of

(.337, .260) respectively. The estimated nonseasonal short-memory coefficients (v̂0, v̂1, v̂2) =

(−3.923, 0.231, 0.533) with standard errors of .082, .168 and .127 respectively. Finally, ζ̂, the

estimated mean of the differenced data, equals 1.613 with standard error 1.054 and agrees

closely with xd = 1.597 (the sample mean of the differenced data). Plots of the estimated

nonseasonal component, from maximum likelihood, and the AR(30) spectral density for the
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first differenced estimated trend demonstrate that the seasonality has been convincingly

removed. These plots are similar to the Bayesian case (Figures 1.8 and 1.9) and, thus, are

not displayed for the sake of brevity.

Similar to the EM1619 series, we could set D ≡ 0. However, our preference is to include

this parameter in the model since its distribution has considerable mass away from zero (see

Figure 1.10). Additionally, our Bayesian approach views this parameter as a nuisance pa-

rameter and averages over the distribution of D to obtain the distribution of the unobserved

components. To verify that this approach was reasonable we fit a model with D ≡ 0 and

found that the results were consistent with those reported here.

***Figure 1.10 approximately here***

1.5 Discussion

Research into long-memory processes has recently spread to the modeling of seasonality

through the use of generalized exponential time series models. This chapter considers the

application of seasonal long memory modeling to the problem of seasonal adjustment of

economic time series. In particular, we introduced the new SFEXP model, and explored

its fit to economic time series data. Subsequently, we discussed a structural approach to

obtaining component models for seasonal and trend in the context of long memory, and use

these models to obtain finite sample MMSE. The approach we propose is fully Bayesian,

producing distributions for the unobserved components, and thus naturally quantifies the

uncertainty in the signal extraction estimates.

One interesting direction for future research is to model the regressors (i.e., Trading Day

and Holiday effects) dynamically. In particular, in order to observe and effectively model

long-range dependence typically requires a long time series, as was the case in our examples.

Thus, it is conceivable that the regression coefficients might change over time. In principal,

modeling these parameters dynamically at another level in the hierarchical model would

constitute a relatively straightforward extension to the models we propose.
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More specifically, the general modeling approach we propose extends seasonal adjustment

methodology in several ways. First, our methodology provides the first attempt at exact

finite sample MMSE signal extraction for long-memory time series. In addition, we propose

a fully Bayesian framework for conducting finite sample MMSE seasonal adjustment, which

extends the current methodology even when the differenced data does not present long-range

dependence.

In order to facilitate Bayesian estimation we develop an efficient block Metropolis-Hastings

(M-H) sampler. The sampling algorithm provides efficient computation by minimizing the

number of expensive evaluations of the likelihood. In addition, we propose an effective

method for computing the necessary model autocovariances. These computational tools

allow us to effectively estimate the SFEXP model and LM-UC models that were introduced

in Sections 1.2 and 1.3.

The methodology is illustrated using two real economic time series, the CPS – Employed

Males, aged 16-19, from 1/1976-6/2010 and the CES - U.S. Total Non-farm Employment

from 1/1939-7/2009. These empirical case studies demonstrate the flexibility and utility of

our approach. In short, we have shown that our proposed methodology provides a necessary

and timely extension to the current practice of seasonal adjustment.

1.6 Appendix

1.6.1 Full Conditionals and MCMC

Estimation of the UC model presented in Section 1.3 is computationally demanding due to

expensive likelihood evaluations. Thus, it is essential to minimize the number of likelihood

evaluations in the MCMC algorithm. As in Section 1.3, we assume that the components

Ut and Vt are uncorrelated. Therefore, it is natural to sample the parameters in blocks

according to their respective components. Further, since some of the full conditionals are

not of standard form we have used a Metropolis within Gibbs algorithm (Gelman et al.,

2003). Below we list the necessary full conditional distributions.
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First, since the prior for σ2
uj

(j = 1, . . . ,mS) does not depend on D, d, v, σ2
v or ζ and

since uj (j = 1, . . . ,mS) are independent of each other it follows that

p(σ2
uj
|d,D, u, v, σ2

u−j
, σ2

v , ζ,W ) ∼ IG
{

(Au + 1/2), (u2
j/2 +Bu)

}
, (1.6.1)

where σ2
u−j

is the vector of variances for u0, u1, . . . , uj−1, uj+1, . . . , umS
. Similarly, for k =

1, . . . ,mN , the full conditional of σ2
vk

is given by

p(σ2
vk
|d,D, u, v, σ2

u, σ
2
v−k
, ζ,W ) ∼ IG

{
(Av + 1/2), (v2

k/2 +Bv)
}
. (1.6.2)

Furthermore, the joint full conditional of D and u is not conjugate under this model but is

straightforward to derive

p(D, u|d, v, σ2
u, σ

2
v , ζ,W ) ∝ |Σ(fψ)|−1/2 exp

{
Z ′Σ(fψ)−1Z

}
× |Σu|−1/2 exp

{
u′Σ−1

u u
}

× I(−1/2, 1/2)(D), (1.6.3)

where Z = (W − ζ1n′), Σu = diag(σ2
u1
, . . . , σ2

umS
) and I(−1/2, 1/2)(D) is the indicator function

(i.e., equal to 1 if D ∈ (−1/2, 1/2) and 0 otherwise). Similarly, the joint full conditional of

d and v can be expressed as

p(d, v|D, u, σ2
u, σ

2
v , ζ,W ) ∝ |Σ(fψ)|−1/2 exp

{
Z ′Σ(fψ)−1Z

}
× |Σv|−1/2 exp

{
v′Σ−1

v v
}

× I(−1/2, 1/2)(d). (1.6.4)

Finally, the full conditional of ζ is given by

p(ζ|d,D, u, v, σ2
u, σ

2
v ,W ) ∼ N

(
ζ, σ2

ζ

)
, (1.6.5)

where ζ = c2/c1, and σ2
ζ = 1/c1 with c1 =

{
1′n′Σ

−1(fψ)1n′ + σ−2
ζ

}
and c2 =

{
W ′Σ−1(fψ)1n′ + ζ0σ

−2
ζ

}
.

Given the calculated likelihood, implementation of the MCMC requires M-H updates

in order to sample from the joint full conditional distributions of (D, u) and (d, v). To

summarize, our MCMC algorithm proceeds as follows:
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Step 1: Set initial values for all parameter values.

Step 2: For j = 1, . . . ,mS, generate samples from (1.6.1).

Step 3: For k = 1, . . . ,mN , generate samples from (1.6.2).

Step 4: Using a Random-Walk M-H step, jointly sample (D, u) from (1.6.3).

Step 5: Using a Random-Walk M-H step, jointly sample (d, v) from (1.6.4).

Step 6: Generate samples from (1.6.5).

Step 7: Repeat until convergence.

In many cases it is possible to estimate the parameters of the UC model using maximum

likelihood. Under these circumstances it is advantageous to use the maximum likelihood

values for the initial values described in Step 1. In doing so, the MCMC algorithm essentially

starts in the stationary distribution or at least close to it.

For implementation of the Random-Walk M-H (RW M-H) algorithm, one needs a candi-

date generating density. Chib and Greenberg (1995) have several proposals in this regard.

However, since d and D both have bounded support it is beneficial to take a transfor-

mation and work with a proposal distribution on the transformed space. Specifically, let

D∞ = logit(D + 1/2) where logit(r) = log{r/(1 − r)}, and let d∞ be defined analogously.

For specificity, let µ∗S = (D∗∞, u
∗) denote the current state for the parameters µS = (D, u);

we then draw a candidate value of µ∗S using a N(µS,ΣS) proposal distribution where ΣS is

chosen as {2.42/(mS + 1)}CS with CS equal to the empirical covariance matrix of µS deter-

mined from a pilot simulation (Gelman et al., 2003). Choosing ΣS in this manner produces

a jumping rule shaped like an estimate of the target distribution and thus produces efficient

simulation (i.e., acceptance rates around 25% with adequate mixing).

The algorithm accepts µ∗S as a new value of µS with acceptance probability

αµS = min

{
1,
p(W |D∗, u∗, d, v, σ2

u, σ
2
v , ζ)p(u∗|Σu)|J∗|

p(W |D, u, d, v, σ2
u, σ

2
v , ζ)p(u|Σu)|J |

}
,

where |J∗| = {1 + exp(D∗∞)}−2 and |J | = {1 + exp(D∞)}−2 denote the necessary Jacobians
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for the transformation described above. Finally, a completely analogous RW M-H step is

used to sample from the joint full conditional distribution of (d, v).

1.6.2 Derivation of Signal Extraction Estimator

For this section only we reserve S for signal and N for noise, whereas in the remainder of

this chapter N is the nonseasonal – the actual signal of interest – and S is the seasonal noise.

Our goal is estimation of the signal conditional on the data Y , which has mean vector µ.

Suppose that the signal consists of a mean zero stochastic component S plus its mean effect

µS. This fixed component is typically viewed as a regression component Xθ for deterministic

θ, though in the Bayesian framework θ is just a subset of the full parameter vector ψ and

hence is random as well. Likewise, the noise component is assumed to consist of stochastic

N plus its mean µN , and Y = S +N + µS + µN , the sum of the signal and noise.

Note that conditional on ψ, the mean effects µS and µN are the expectations of the signal

and noise respectively. Write S = {S1, S2, · · · , Sn}′. The MMSE solution to the estimation

problem is given by conditional expectations.

E(S + µS|Y ) =

∫
s pS+µS |Y (s) ds.

This equality is to be understood component-wise, i.e., that E(Sj+µ
S
j |Y ) =

∫
spSj+µSj |Y (s) ds

for all j = 1, 2, · · · , n. Integrals are over all the real numbers and pSj+µSj |Y denotes the

probability density function of Sj + µSj conditional on Y . Further, this density can be

expressed as

pSj+µSj |Y (s) =

∫
pSj+µSj |Y,Ψ(s) pΨ|Y (ψ)dψ.

Here we represent multiple integration through a single integral sign, for economy of nota-

tion. This introduces the posterior for the parameter random vector Ψ, denoted pΨ|Y . This

function is assumed to be already known, being determined during the model estimation

phase via usual sampling methods. If we substitute into the expression for the conditional
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expectation we obtain

E(Sj + µSj |Y ) =

∫ ∫
s pSj+µSj |Y,Ψ(s) ds pΨ|Y (ψ) dψ.

The expression in the interior is equal to E(Sj + µSj |Y, ψ), which is given by a simple for-

mula. This is because, conditional on ψ, both Sj and Y are Gaussian, and µSj and µN are

deterministic. Simple extensions of McElroy (2008) to the case of fixed effects reveals that

E(S + µS|Y, ψ) = F (ψ) [Y − µ] + µS. That is, we first remove the fixed effects from Y (this

is possible since they are known conditional on ψ) then apply the matrix F (ψ), and then

add µS back in. In some cases F (ψ)µ = µS so that we can just apply F (ψ) to Y , but this

need not always be the case (see below). So the final solution can be expressed as

E(S + µS|Y ) =

∫ (
µS + F (ψ) [Y − µ]

)
pΨ|Y (ψ) dψ,

interpreted component-wise. One way to approach this computation is integrate on the

coefficients of the matrix F (ψ) and the fixed effects. For example, component j can be

written

E(Sj+µ
S
j |Y ) =

∫
µSj pΨ|Y (ψ) dψ−

n∑
k=1

∫
Fjk(ψ)µk pΨ|Y (ψ) dψ+

n∑
k=1

∫
Fjk(ψ)pΨ|Y (ψ) dψ Yk.

So one could take simulations of ψ from its posterior distribution, plug these values into the

formula for F (ψ), µS, and µN , to get Fjk(ψ) and the fixed effects for each j, k = 1, 2, · · · , n,

and average over the whole chain. This gives the Monte Carlo approximation to the above in-

tegrals. When this is finished, we apply the smoothed matrix to Y and add the appropriately

smoothed fixed effects.

Application. We now discuss the particular application of the above exposition to the

framework of this paper. To avoid confusion, we now let S denote the seasonal and N

the nonseasonal once again. Consider the case of seasonal differencing 1 − B12 for data

with no trading day or other fixed effects (or assume they have been previously removed).

Then the mean effects µt naturally break into two portions: a centered periodic effect µSt

and a linear trend effect µNt (see Bell, 1984a, 1995, 2004, for discussion). The former is
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annihilated by U(B), whereas the latter can be written α0 + α1t. Then it follows that

ζ = 12α1; thus when we estimate the mean from the differenced data, it is interpretable

as being proportional to the slope in the trend mean effect. With F the signal extraction

matrix for the nonseasonal, from (1.3.2) we know that FµS is identically zero (essentially, F

contains the U(B) operator). Moreover, letting In denote the n-dimensional identity matrix,

In−F is the seasonal extraction matrix and hence contains a 1−B factor; thus we can write

FµN = µN − (In − F )µN = µN −α1 ·H1n, where In−F = H∆N defines the matrix H. This

is true because single differencing on the linear trend reduces it to constancy, represented

through the vector α11n. Hence it follows that E(N + µN |Y, ψ) = FY + α1H1n, which we

note does not depend on α0. Finally, E(N + µN |Y ) =
∫

(α1H(ψ)1n + F (ψ)Y )pΨ|Y (ψ) dψ.
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Figure 1.1: Exploratory data analysis plot for the Current Population Survey - Employed
Males aged 16 -19 from 1/1976-6/2010 (EM1619). The first row displays the time series
plot, the autocovariance (acvf) plot and the AR(30) spectrum. The second row displays the
first differenced data (i.e. (1 − B)Yt) along with the corresponding acvf plot and AR(30)
spectrum. The third row displays U(B)(1 − B)Yt along with the corresponding acvf plot
and AR(30) spectrum
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Figure 1.2: Exploratory data analysis plot for the U.S. Total Non-farm Employment from
1/1939-7/2009. The first row displays the time series plot, the autocovariance (acvf) plot
and the AR(30) spectrum. The second row displays the first differenced data (i.e. (1 −
B)Yt) along with the corresponding acvf plot and AR(30) spectrum. The third row displays
U(B)(1−B)Yt along with the corresponding acvf plot and AR(30) spectrum
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Figure 1.3: Time plot, for the Employed Males series (EM1619), with estimated nonseasonal
component derived from a LM-UC(1,3) model using maximum likelihood. The dashed lines
represent the estimated pointwise 95% confidence interval
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Figure 1.4: Employed Males series (EM1619) - maximum likelihood: The top panel plots the
AR(30) spectrum of the differenced estimated trend (nonseasonal) estimate. The bottom plot
displays the sample autocorrelation function of the differenced trend (nonseasonal) estimate.
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Figure 1.5: Employed Males series (EM1619): The top panel plots the gain function for the
seasonal filter. The bottom panel displays the gain function for the nonseasonal filter.
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Figure 1.6: Employed Males series (EM1619): Time plot with estimated nonseasonal com-
ponent derived from a LM-UC(1,5) model using Bayesian estimation. The dashed lines
represent the estimated pointwise 95% credible interval
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Figure 1.7: Employed Males series (EM1619): Kernel density estimate of the posterior
distribution of the memory parameters D and d from a Bayesian LM-UC(1,5) (using the
default density command in R).
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Figure 1.8: Non-farm employment series - Bayesian estimation: Time plot with estimated
nonseasonal component derived from a LM-UC(2,3) model using Bayesian estimation. The
estimated pointwise 95% CI has been suppressed since the width is uniformly less than .25.
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Figure 1.9: Non-farm employment series - Bayesian estimation: The top panel plots the
AR(30) spectrum of the differenced estimated trend (nonseasonal) estimate. The bottom plot
displays the sample autocorrelation function of the differenced trend (nonseasonal) estimate.
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Figure 1.10: Non-farm employment series: Kernel density estimate of the posterior distri-
bution of the memory parameters D and d from a Bayesian LM-UC(2,3) (using the default
density command in R).


