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ABSTRACT

When a monthly economic indicator series contracts sharply for a few mon-

ths and then starts to recover, the published annual and monthly growth rates

can give conflicting signals: the annual growth rate can indicate a decrease and

the monthly growth rate an increase or vice versa. This is well known to the sea-

sonal adjustment community, see, for example, Shiskin (1957). In this paper, we

revisit, illustrate and then explain this potential for conflict more analytically.

For example, the annual differences lag the monthly differences by five and a

half months because the same-month-year-ago difference is the sum of the cur-

rent and eleven preceding monthly differences, and the annual sum has a phase

shift of five and a half months. Illustrative examples are followed by an elemen-

tary formal mathematical derivation using the gain and phase functions of the

annual sum.
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1. INTRODUCTION

Wyman (2010) notes that there has been a growing interest in understanding

the movements in monthly economic time series, most often seasonally ad-

justed series, as a result of the late 2008 economic downturn and its recovery

period. Her paper reviews the basic aspects of seasonal adjustment and how

seasonal adjustment helps analysts interpret the economic trend when such a

situation occurs. Wyman (2010) can be viewed as an updated version of Shiskin

(1957) to publicize the benefits of seasonal adjustment for economic data users.

Both papers discuss year-over-year changes as an alternative to seasonal adjust-

ment, its weaknesses and, of most interest to this study, its main limitation that

it gives an outdated story. Here we revisit this main limitation, illustrate it with

a simple function example and empirically, and then provide an elementary

formal mathematical derivation of the delay of the year-over-year comparison

with respect to the month-to-month comparison.

Shiskin (1957, pp. 230–231), provides a footnote with a reference to

Macaulay (1931, pp. 134–135),

Economists have long been critical of same-month-year-ago-

comparison. Thus in 1931 Frederick R. Macaulay wrote: “There

is a simple and enlightening way to describe the operation of sub-

tracting the quotation for the same month last year from the quota-

tion of the present month [· · · ]. It amounts to taking a 12-months

moving total of the data and using the first differences of this mov-

ing total [· · · ]. Moreover, as the 12-months moving average does

not extend to the end of the data, its first differences do not tell

whether, at the present time, the underlying curve of the data is

high or low or whether it is rising or falling, but simply whether it

was rising or falling six months ago”.

Macaulay (1931, pp. 135–136), further illustrates this delay of six months

with the examples of sine curves of 24-month and 48-month periods.
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Rhoades and Elhawary-Rivet (1983) presents the relationship between the

monthly and annual rates of change that permits reconciliation of possibly con-

tradictory movements. It provides a graphical example, intuitive arguments

and uses the gain and phase shift functions to provide the five and half month

delay of the annual growth rate with respect to the monthly growth rate.

The present tutorial paper provides a reproducible and corrected example,

simplifies the derivation by using differences instead of rates, and supplies miss-

ing details. The most helpful perspective is that an annual difference is the sum

of the twelve intervening monthly differences (1). Hence, the phase shift of the

annual difference relative to the phase shift of the monthly difference is simply

that induced by the annual sum. Equation (D.4) of Findley and Martin (2006)

gives the gain and phase function of the annual sum filter without the details

of its derivation. We provide a detailed derivation, starting from elementary

concepts.

This paper is organized as follows: Section 2 first illustrates the precise

problem graphically with an elementary function. Then the New Car Dealer

Sales series from the Canadian Monthly Retail Trade Survey serves to provide a

real example with sign differences between monthly and annual growth rates.

Section 3 develops the relevant business cycle frequency perspective from basic

concepts and examples. Section 4 provides the formal derivation of the phase

shift induced by the annual sums, leading to the conclusion that annual differ-

ences lag monthly differences by five and a half months in a basic way.

2. ILLUSTRATIVE EXAMPLES

2.1 An Artificial Example

It happens occasionally that a monthly time series indicates an annual decrease

and at the same time a monthly increase. This can create confusion among

users of its data. The following example illustrates the situation. See also the

discussions in Shiskin (1957, p. 229), and in Macaulay (1931, pp. 135–136).

Consider the time series Xt = cos(2πt/24) for t = 0, 1, 2, · · · , 24, dis-

played in Figure 1.
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Figure 1 Xt = cos(2πt/24) for t = 0, 1, 2, · · · , 24

Next consider the monthly differences Xt − Xt−1 for t = 1, · · · , 24 and

the annual differences Xt − Xt−12 for t = 12, · · · , 24 displayed in Figure 2.

The monthly differences, available starting at t = 1, are negative from t = 1 to

t = 12 and then positive from t = 13 to t = 24. They indicate the decrease

in Xt from t = 1 to t = 12 and the subsequent increase in Xt from t = 13

to t = 24. The continuous line that joins the monthly differences crosses the

x-axis at t = 12.5. There is no observation at this mid-time. The annual

differences only start at t = 12. They are negative from t = 12 to t = 17, zero at

time t = 18 and then positive from t = 19 to t = 24. For t = 13, 14, 15, 16, 17

and 18, the monthly differences are positive and the annual differences are not.

Thus, it seems they provide contradictory information. The time plot of the

first differences in Figure 2 clearly indicates that the series started to increase

at t = 13. The first positive increase from the annual differences occurs six

months later at time t = 19.

One can observe that the continuous-time curve of the annual differences

crosses the x-axis exactly 5.5 = 18−12.5 months after the monthly differences.

The explanation will turn out to reside in the fact that each annual difference is

the sum of the last twelve monthly differences:

Xt − Xt−12 = (Xt − Xt−1) + (Xt−1 − Xt−2) + . . . + (Xt−11 − Xt−12) . (1)

As a start, this shows that if series has been decreasing for a few months, it will

generally take a few months of positive increase to make the annual differences
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Figure 2 Monthly (circles) and Annual (squares) Differences of Xt

Figure 3 Monthly Differences (circles) and Rescaled and Shifted Annual
Differences (squares) of Xt

positive.

The larger scale of the annual differences in Figure 2 is exactly explained

by the gain function of annual sums, which will be defined and derived in Sec-

tion 4. For now, consider the re-scaled annual differences obtained by divid-

ing the annual differences by the ratio of the sine functions in Equation (5) at

λ = 1/24, the frequency of a two-year cycle. Also, shift their graph backward by

exactly 5.5 months, corresponding to the phase shift of annual sums at this fre-

quency, derived as (7) below. Now the monthly and re-scaled and time-shifted

annual differences, as displayed in Figure 3, tell the same story. In particular,

the series was decreasing until t = 12 and then started to increase at t = 13.

In conclusion for this section, the annual differences were 5.5 months late
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Figure 4 New Car Dealer Sales:
Raw (circles) and Seasonally Adjusted Series (squares)

in identifying the change from decrease to increase relative to the monthly dif-

ferences. They tell an outdated story. Further information regarding these dif-

ferences and their phase shifts, or time delays, will be provided below.

2.2 New Car Dealer Sales

This section provides a real example with Statistics Canada New Car Dealer

Sales from the Monthly Retail Trade Survey.1 The estimates are available from

Statistics Canada’s web site. They are provided in Table 1 for the period January

2007 to July 2010 and are displayed in Figure 4. The seasonally adjusted series

clearly shows the drop in the sales at the end of 2008 and its recovery early 2009.

Before comparing the monthly growth rates and annual growth rates of

the seasonally adjusted series, we review the statement in Wyman (2010) that

Statistics Canada’s main economic data releases use seasonally adjusted series

to compare year-over-year measures. This is illustrated in Table 1 and Figure

5 where the annual growth rates of both the raw and seasonally adjusted series

are displayed. Figure 5 shows that the growth rate from the seasonally adjusted

series is smoother and achieved its lowest value in December 2008, whereas that

of the raw series achieved its lowest values two months later in February 2009.

The growth rates computed from the raw series are affected by the calendar

effects that include trading-day effects, a 2008 leap year February that affected

1 Older examples are provided in Shiskin (1957).
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Table 1 New Car Dealer Sales from January 2007 to July 2010

Date Raw SA A GR Raw A GR SA M GR SA

2007Jan 4969575 6256082

2007Feb 4833879 6174078 −1.31

2007Mar 6833771 6376681 3.28

2007Apr 7268126 6556587 2.82

2007May 8186647 6626927 1.07

2007Jun 7570250 6501631 −1.89

2007Jul 6955440 6464541 −0.57

2007Aug 7338273 6641227 2.73

2007Sep 6130209 6413151 −3.43

2007Oct 6153139 6396495 −0.26

2007Nov 5822440 6428010 0.49

2007Dec 5426751 6653090 3.50

2008Jan 5404653 6689868 8.75 6.93 0.55

2008Feb 5303599 6629311 9.72 7.37 −0.91

2008Mar 6438205 6515989 −5.79 2.18 −1.71

2008Apr 7807596 6406912 7.42 −2.28 −1.67

2008May 7597202 6330020 −7.20 −4.48 −1.20

2008Jun 6928454 6266093 −8.48 −3.62 −1.01

2008Jul 6911068 6105610 −0.64 −5.55 −2.56

2008Aug 6305914 5977386 −14.07 −10.00 −2.10

2008Sep 6245315 6349413 1.88 −0.99 6.22

2008Oct 5950398 6154373 −3.29 −3.79 −3.07

2008Nov 5077802 5827447 −12.79 −9.34 −5.31

2008Dec 4483801 5201588 −17.38 −21.82 −10.74

2009Jan 4232132 5371485 −21.69 −19.71 3.27

2009Feb 4114647 5324453 −22.42 −19.68 −0.88

2009Mar 5852277 5522325 −9.10 −15.25 3.72

2009Apr 6405143 5543801 −17.96 −13.47 0.39

2009May 6684784 5717547 −12.01 −9.68 3.13

2009Jun 6717658 5763867 −3.04 −8.01 0.81

2009Jul 6525669 5873070 −5.58 −3.81 1.89

2009Aug 6240691 5976009 −1.03 −0.02 1.75

2009Sep 6198862 6103334 −0.74 −3.88 2.13

2009Oct 6042329 6219647 1.54 1.06 1.91

2009Nov 5296071 6172845 4.30 5.93 −0.75

2009Dec 5414355 6136234 20.75 17.97 −0.59
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Table 1 New Car Dealer Sales from January 2007 to July 2010 (Continued)

Date Raw SA A GR Raw A GR SA M GR SA

2010Jan 4531819 5941702 7.08 10.62 −3.17

2010Feb 4787190 6175739 16.35 15.99 3.94

2010Mar 6991355 6436994 19.46 16.56 4.23

2010Apr 7062390 6086019 10.26 9.78 −5.45

2010May 6991542 6108290 4.59 6.83 0.37

2010Jun 7475499 6234774 11.28 8.17 2.07

2010Jul 6942796 6302895 6.39 7.32 1.09

Note: Raw, seasonally adjusted (SA), annual growth rate in % in the raw (A GR Raw),
annual growth rate in % in the seasonally adjusted series (A GR SA), monthly
growth rate in % in the seasonally adjusted series (M GR SA).

Figure 5 New Car Dealer Sales: Annual Growth Rate in % for the Raw
(circles) and Seasonally Adjusted Series (squares)

the February 2009 year-over-year comparison, and an April 2009 Easter Sun-

day combined with a March 2008 Easter Sunday that affected both the March

and April comparison. Wyman (2010) discusses these topics in detail. For our

further discussion of this example, the annual growth rates computed from the

seasonally adjusted series will be used.

The monthly and annual growth rates in the seasonally adjusted series are

provided in Table 1 and displayed in Figure 6. The monthly growth rate is pos-

itive in January 2009, slightly drops back to a small negative value in February

2009 and then returns to and remains positive through October 2009. The an-
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Figure 6 New Car Dealer Sales: Annual (circles) and Monthly (squares)
Growth Rates in % for the Seasonally Adjusted Series

nual growth rates are negative through September 2009. Thus there is a sign

contradiction between the monthly and annual growth rates for seven consec-

utive months. Only in October 2009 do they have the same sign. Publishing

only the current monthly and annual growth rates sends a confusing signal be-

cause one is positive and the other is negative. Despite the fact that the annual

growth rates are negative at the beginning of 2009, Figure 6 shows that the

improvement in the annual growth rates also started in January 2009. Most

data publications provide neither this graph nor the previous month’s annual

growth rate.

The Canadian Consumer Price Index publication is a notable exception.

In it, both current and previous month annual growth rates are shown and

the difference is calculated and commented on. Also publishing the previ-

ous month’s annual growth rate and commenting on the difference from the

current month’s annual growth rate would, in general, avoid confusion from

disagreements with the signal provided by the recent values of the seasonally

adjusted series. More on this topic can be found in Wyman (2010).
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3. INTRODUCTORY CONCEPTS

3.1 Frequencies in Time Series

A time series may be considered from two perspectives: time and frequency. In

the time domain, the series Xt is treated as a succession of T regularly observed

values over an interval of months, say, with a time index t varying from 1 to T

or some other designation of the months. This is how a time series is generally

approached and the time plot of Xt against t shows its evolution over time.

Figure 4 provided such a time plot for the raw and seasonally adjusted New Car

Dealer Sales’ series.

In the frequency domain, a time series Xt of length T can be represented

by a sum of T periodic functions, specifically sine and cosine functions of typ-

ically different amplitudes and possibly different phases. Details of the repre-

sentation will not be needed in this note. The low frequencies correspond to

slowly changing components such as the trend and the business cycle. The high

frequencies correspond to the more quickly changing components including

seasonal components and more volatile components.

The usual domain of sine and cosine functions is the interval [0, 2π], i.e.

0 ≤ ω ≤ 2π , or any translation of it in the interval [−2π, 2π] such as [−π, π].

However it will be seen that, for our purposes, we can focus on positive fre-

quencies in [0, π], even on the smaller subinterval of frequencies relevant for

business cycle analysis. A given frequency ω within the interval [0, π] can

be expressed as ω = 2πλ with 0 ≤ λ ≤ 1/2. For example, the graph of

Xt = cos(2πt/24) in Figure 1 would represent the cosine function of ampli-

tude 1 with λ = 1/24. The function cos(2πλt) repeats itself every 24 months

since

cos[2π(t + 24)/24] = cos(2πt/24 + 2π) = cos(2πt/24).

For monthly series, the number 1/λ indicates the number of months it takes

for a component of the series with frequency λ to go through a full cycle in the

time series, 24 months with λ = 1/24. The cosine function cos(2πt/24) could

provide the fundamental component for modeling a 2-year business cycle in a

monthly time series that oscillates around the value zero.
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Some frequencies of interest for a monthly economic time series are:

• λ = 1/60, associated with the five year cycle because 60 = 5 × 12.

• λ = 1/24, associated with the two year cycle because 24 = 2 × 12.

• The interval [1/60, 1/24], associated with five down to two year business

cycles.

• The interval [0, 1/60), associated with phenomena that take more than 5

years to be fully expressed in the time series. Those with λ close to 0 are

related to the long-term trend.

• The values λ = k/12 with k = 1, 2, 3, 4, 5, 6, which are the fundamental

seasonal frequency (k = 1) and its harmonics. They are associated with

phenomena that recur in the time series 1, 2, 3, 4, 5 or 6 times within a

year.

The frequency ω = 2πλ with λ = 6/12 = 1/2 is associated with the 2-

month cycle. This is the highest frequency that can be observed in a monthly

time series. Hence, in the sequel, λ can be restricted to the interval [0, 1/2],

corresponding to 0 ≤ ω ≤ π .

3.2 Complex Numbers

The use of complex numbers simplifies the analysis of cycles and phase shifts.

A complex number has the form z = x + iy where x and y are real numbers

and i is the imaginary unit with the property i2 = −1; x is called the real part

of the complex number; y is the imaginary part. The complex number x − iy

is called the complex conjugate of z and is denoted z̄.

A complex number z is graphically represented in the plane by its coordi-

nate pair (x, y). The magnitude of z, also known as the modulus or absolute

value, is the distance of (x, y) from the origin (0, 0) and is written r = |z|. By

Pythagoras’ theorem, r = |z| = |x + iy| = √
x2 + y2 = √

z × z̄.

For z ̸= 0, the principal argument of z = x + iy, written arg(z), is the

angle which the line from (x, y) to (0, 0) makes with the positive x axis, mea-

sured in radians, but with a minus sign if y < 0. It is not defined for z = 0.
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The magnitude and argument provide the polar representation z = rei arg(z),

with −π < arg(z) ≤ π . A function definition of arg(z), which we will not

explicitly need, can be given with the aid of the atan2 function.2 See Wikipedia

Contributors (2011) for example.

The combination of the magnitude and argument fully specify the position

of a point in the plane (x, y) = (r cos φ, r sin φ) different from (0, 0). Hence, a

non-zero complex number can be written in various ways: the rectangular form

z = x + iy, the trigonometric form z = r(cos φ + i sin φ) and the exponential

form z = reiφ coming from (x, y) = (r cos φ, r sin φ) and eiφ = cos φ +
i sin φ.

A complex number on the unit circle (r = 1) can be written as eiφ =
cos φ + i sin φ. These representations provide the following equalities used in

this paper: e±i2πk = 1, k = 0, 1, · · · ; i = ei2π/4; and sin φ = (eiφ−e−iφ)/(2i).

Multiplication of two complex numbers is simple using the exponential

form since (r1e
iφ1) · (r2e

iφ2) = r1r2e
i(φ1+φ2). When φ1 + φ2 falls outside the

interval (−π, π], the principal argument φ1 + φ2 ± 2π in the interval (−π, π]

is usually taken to resolve that ambiguity that z = rei arg(z)±2πk for any k =
1, 2, · · · .

3.3 Moving Averages/Filters

A moving average is a weighted sum of a fixed number of time series values

that is applied in a sequential manner over a subinterval of the time series data

X1, · · · , XT , adding and dropping one observation at each step. The value X̂t

of the moving average at time t is given by a formula

X̂t =
+f∑

k=−p

θkXt+k,

2

arg(z) = atan2(y, x) = φ =



arctan(y/x) x > 0;
arctan(y/x) + π y ≥ 0, x < 0;
arctan(y/x) − π y < 0, x < 0;
π/2 y > 0, x = 0;
−π/2 y < 0, x = 0;
undefined y = 0, x = 0.
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where the coefficients θk, k = −p, · · · , f are often called the weights of the

moving average. (The weights can have negative values and need not sum to

1.0, so the name can be misleading.) A moving average is also called a filter,

which is the term we will use. Then the values X̂t are called the filter output

and those of Xt the filter input. The output defines a time series in which the

value at instant t of the series Xt is replaced by a weighted average of p “past”

values of the series, the current value, and f “future” values of the series. Its

values cannot be calculated for the first p values and the last f values of the

time interval of the Xt values.

We will be concerned with the filter that transforms monthly differences

to annual differences. The formula (1) shows that this is the annual sum filter

with p = 11, f = 0, and θk = 1.0, k = −11, · · · , 0.

3.4 Gain and Phase Shift Functions

Consider Xt = Reiωt = R[cos(ωt) + i sin(ωt)], a time series at frequency ω

with amplitude R. When a filter is applied to Xt the output is

X̂t =
+f∑

k=−p

θkReiω(t+k)

= Reiωt

+f∑
k=−p

θke
iωk

= Xt

+f∑
k=−p

θke
iωk,

which is the initial value Xt multiplied by complex number
∑+f

k=−p θke
iωk.

For ω in the interval (−π, π], the function

G(ω) =
+f∑

k=−p

θke
iωk =

+f∑
k=−p

θk cos(ωk) + i

+f∑
k=−p

θk sin(ωk),

is called the transfer function of the filter. It can be expressed as G(ω) =
|G(ω)|eiφ(ω) using the polar representation of a complex number.
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Figure 7 Gain Function of the Annual Sum Filter for 0 ≤ λ ≤ 1/2

• The function |G(ω)| = | ∑+f

k=−p θke
iωk| is called the gain function of

the filter. For economic indicator data, usually ω = 2πλ, with λ in units

of cycles per year. The graph of |G(2πλ)| against 0 ≤ λ ≤ 1/2 (see Figure

7 for the annual sum filter) shows the frequencies suppressed, preserved

or amplified by the filter. The gain function is graphed only for 0 ≤ λ ≤
1/2 because |G(−2πλ)| = |G(2πλ)|.

• The function φ(ω) = arg[G(ω)], defined only where G(ω) ̸= 0, is called

the phase shift function of the filter. It can be directly calculated for the

business cycle frequencies of interest for our example. In general, it is

given by

φ(ω) = atan2

 +f∑
k=−p

θk sin(ωk),

+f∑
k=−p

θk cos(ωk)

 .

Graphing φ(2πλ) over 0 ≤ λ ≤ 1/2 or over the business cycle frequen-

cies of interest can show the extent to which the cyclical component at

frequency λ is shifted by the filter. For 0 < λ ≤ 1/2, the phase shift
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is commonly graphed as φ(2πλ)/2πλ. This expresses the phase shift as

a time shift in units of months (or whatever the sampling interval is).

The graphing interval is again restricted to positive frequencies because

φ(−2πλ) = −φ(2πλ) and φ(−2πλ)/ − 2πλ = φ(2πλ)/2πλ. The lat-

ter function can be defined at λ = 0 via limλ→0 φ(2πλ)/2πλ = φ′(0)

when this limit exists.

4. THE ANNUAL SUM FILTER

The transfer function of the annual sum filter in (1) is

GAS(ω) = 1 + e−iω + e−2iω + · · · + e−11iω.

Using the formula (1 − z)(1 + z + z2 + . . . + z11) = 1 − z12, we obtain

GAS(ω) =
{

12, ω = 0;
1−e−i12ω

1−e−iω , ω ̸= 0.
(2)

Substituting ω = 2πλ, we can obtain a formula for GAS(2πλ) that bet-

ter reveals the gain and phase-shift functions. To do this, we re-express the

denominator and numerator in (2) as

1 − e−i2πλ = (
ei2πλ/2 − e−i2πλ/2) e−i2πλ/2

= 2i sin (2πλ/2) e−i2πλ/2

= 2 sin (2πλ/2) ei2π(1/4−λ/2), (3)

and

1 − e−i12×2πλ = (
ei2π12λ/2 − e−i2π12λ/2) e−i2π12λ/2

= 2i sin (2π12λ/2) e−i2π12λ/2

= 2 sin (2π12λ/2) ei2π(1/4−12λ/2), (4)
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respectively. Substitution into (2) yields

GAS(2πλ) =
{

12, λ = 0;
sin(2π12λ/2)

sin(2πλ/2)
ei2π(−11λ/2), λ ̸= 0, − 1/2 < λ ≤ 1/2.

(5)

The gain function thus has the formula

|GAS(2πλ)| =
{

12, λ = 0;∣∣∣ sin(2π12λ/2)
sin(2πλ/2)

∣∣∣ , 0 < λ ≤ 1/2.
(6)

Its graph in Figure 7 shows that it decreases to 0 at the fundamental seasonal

frequency λ = 1/12 and its harmonics, λ = k/12, k = 2, · · · , 6. This reveals

that annual sums damp seasonal variations.

The formula (5) also immediately reveals the phase shift function of the

annual sum filter for 0 < λ < 1/12, which is adequate for cyclical analysis,

because it covers all cycles of length greater than one year. Indeed, the sine

functions in the formula (5) are both positive for 0 < λ < 1/12, so their ratio is

positive and coincides with the gain function over this interval. Consequently,

the argument function in the exponential factor coincides with the phase shift

function on this interval.

Specifically, for 0 ≤ λ < 1/12, (5) shows that the phase shift function for

the annual sums filter is

φAS(2πλ) = 2π(−11λ/2),

in months
φAS(2πλ)

2πλ
= −5.5, (7)

(as a limit at λ = 0). Because this phase shift is constant, it need not be graphed.

The frequency λ = 1/12 is excluded because the phase shift is not defined

where the gain function is zero.

This result explains how annual differences reveal cyclical information later

than monthly differences. It confirms the annual sum phase shift formula (D.4)
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of Findley and Martin (2006), stated without a detailed derivation. This refer-

ence also provides phase shift graphs of various seasonal adjustment filters that

show how seasonal adjustments of recent data can exhibit phase shift.

Remark The transfer functions of the monthly and annual difference filters

are shown in (3) and (4) factorized in a way that is analogous to (5) for the

annual sum filter. Only the annual sum filter and its constant phase shift are

relevant to the goals of this paper.

5. CONCLUSIONS

The annual difference is the sum of the twelve intervening monthly differences;

hence, the phase shift of the annual difference relative to the phase shift of the

monthly difference is simply that induced by the annual sum, which we have

shown to be −5.5 months quite generally. From a practical point of view, this

shows why an analyst who uses both monthly and annual differences may ob-

serve contradictory movement, especially right after a turning point. Com-

paring the current month’s annual difference with the annual difference of the

previous month may help to resolve such an apparent conflict.
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摘 要

當一個經濟月指標出現數個月劇烈收縮後開始復甦時, 發佈的年成長

率和月成長率可能會出現相互矛盾的訊號 — 年成長率呈現降低而月成長

率則出現增加, 或反之亦然。 這種現象係季節調整專家眾所周知的, 如參

閱 Shiskin (1957)。 在本文中, 我們重新深入分析、 闡明、 並解釋出現這種

潛在矛盾的現象。 例如因為與上年同月的差分是當前水準值與之前 11 個

月差分的總和, 且全年的加總有一個 5.5 個月的相平移, 年差分落後月差

分 5.5 個月。 本文先對全年加總作增益及相函數的基本理論推導, 然後輔

以實際資料解析。
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