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Elizabeth T. Huang and William R. Bell 

 
Abstract 

 
The Census Bureau’s Small Area Income and Poverty Estimates Program (SAIPE) produces 

model-based poverty estimates at the county and state level. SAIPE uses Fay-Herriot (1979) 
models with dependent variables obtained from direct survey poverty estimates (currently 
obtained from ACS, but prior to 2005 obtained from CPS), and regression predictor variables 
derived from tabulations of IRS tax data, SNAP (Supplemental Nutrition Assistance Program, 
formerly food stamps) program data, and previous census estimates (since 2000, these have been 
the Census 2000 long form estimates). Although the latter have consistently been important 
predictors in the state and county models, as time advances and the Census 2000 poverty 
estimates become further removed from the production year, questions arise about their 
continued value in the model, and particularly about whether they might be somehow replaced in 
the model by ACS estimates for previous years. At the county level this would suggest 
consideration be given to replacing Census 2000 estimates with ACS 5-year estimates formed 
from data for the 5 years preceding the production year (because the only estimates published for 
all counties are 5-year estimates.) At the state level, the Census 2000 estimates could be replaced 
by single-year ACS estimates for the year immediately preceding the production year. 

 
In using previous census poverty estimates to define regression variables, SAIPE has ignored 

the fact that these are survey estimates obtained from the long form and so contain sampling 
error. At the state level, the sampling errors of the Census 2000 long form estimates used by 
SAIPE are essentially negligible and can be ignored. This is less true at the county level, 
however, particularly for small counties. Furthermore, in considering the replacement in the 
model of previous census estimates with previous ACS estimates, this issue becomes more 
pressing, as the ACS sampling variances are higher. We illustrate this point in the report. When a 
predictor variable, such as Census 2000 long form data or previous ACS data, contains non-
negligible sampling error, a bivariate Fay-Herriot model with that predictor as a second 
dependent variable, can account for that uncertainty.  We take that approach in this study, using 
bivariate models in which “current year” ACS estimates define one of the dependent variables, 
and either Census 2000 estimates or previous ACS estimates define the second dependent 
variable. We then compare prediction error variances (posterior variances) from these models to 
assess which predictor variable—Census 2000 estimates or previous ACS estimates—yields the 
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lowest prediction error variances for the current year. We do this for models at the state and 
county level for which ACS single-year estimates for 2009 provide the current year estimates. 
We also obtain county model results with ACS single-year estimates for 2010 providing the 
current year estimates. 

 
There are two general conclusions from our study. One is that the differences in prediction 

error variances depending on which data define the second dependent variable are generally not 
large. The second conclusion is that, among the three candidates, prediction error variances from 
using ACS multi-year estimates from previous years as the second dependent variable were in 
some cases lower, and were generally not higher, than those from the other two candidate 
models. This suggests that replacing the univariate Fay-Herriot models that use Census 2000 
estimates to define regression predictor variables with bivariate Fay-Herriot models that use 
previous 5-year ACS estimates as the second dependent variable may yield improvements as we 
move further away from Census 2000, and this change is unlikely to do worse. 
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1. Introduction 
 

The U. S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program 
produces median household income and age group poverty estimates for states and counties 
using linear small area models of the form proposed by Fay and Herriot (1979). Dependent 
variables in these models are single-year direct estimates from the American Community Survey 
(ACS).1 Regression variables are obtained from previous census income and poverty estimates 
and from administrative record data. The latter include tax data available under an agreement 
with the Internal Revenue Service (IRS) and Supplemental Nutrition Assistance Program 
(SNAP) participant data obtained from the U.S. Department of Agriculture.2 

 
The previous census estimates provide a very important predictor variable in the SAIPE 

models. These estimates come from the previous census long form sample which, in this decade, 
has been the Census 2000 long form. As time progresses, the Census 2000 long form estimates 
are becoming more distant in time from the income and poverty conditions measured by the 
current ACS estimates, something that one would expect to reduce the usefulness of the previous 
census estimates in the models.3 Since the 2010 Census did not include a long form sample, it 
does not provide an updated replacement for the Census 2000 estimates used in the SAIPE 
models (as was the case when Census 2000 long form estimates replaced 1990 Census long form 
estimates in the SAIPE models). This naturally raises the question as to whether more current 
ACS estimates (particularly 5-year ACS estimates that are available for all counties) should take 
the place of the Census 2000 estimates in the SAIPE models. 

 
Despite the increased timeliness of recent ACS estimates compared to the Census 2000 

estimates, another factor that must be considered is their higher sampling variability compared to 
the Census 2000 estimates. Noise in predictor variables will reduce their usefulness, leading to 
higher prediction error (posterior) variances than would be obtained with noise-free data, with 
more noise (higher sampling variances) having larger negative effects. In addition, while the 
SAIPE models have used previous census estimates to define what have been treated as fixed 
regression variables, their sampling error actually presents a classical “error in variables” 
problem. At the state level, the variances of the census long form income and poverty estimates 
used in the SAIPE models are effectively negligible, so this problem does not arise. At the 
county level, however, and particularly for small counties, variances of the long form estimates 
are not necessarily small. Ignoring the sampling error of the long form estimates can contribute 
to inefficiencies in the predictions, and will also contribute to misstatements of the true 

                                                      
1  Through 2004, the dependent variables were direct estimates from the Annual Social and Economic Supplement (ASEC) of the 
Current Population Survey (CPS). Use of ACS data for this purpose started with the 2005 SAIPE estimates. 
2  The SNAP program was previously called the food stamp program. 
3  Section 4 presents some evidence that as the time interval between estimates (e.g., between current ACS and Census 2000 long 
form estimates) increases, the value of the prior Census estimates in the models decreases. 
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prediction error variances by those produced with the assumed model. Because ACS 5-year 
estimates have higher sampling variances than the long form estimates, replacing the census long 
form estimates by ACS estimates would exacerbate these problems. 

 
One way to account for the sampling error in the census or ACS estimates when they are 

used as a predictor variable is via a bivariate model, with the census or ACS estimates providing 
the dependent variable in the second equation. Sampling variances of these estimates are taken as 
known (from available variance estimates). This approach, which is discussed in the context of 
SAIPE models by Bell (1997, 1998a), is used here. It facilitates comparisons of prediction error 
variances from models that use as a predictor either Census 2000 long form estimates or a more 
recent ACS alternative. Making such comparisons is our primary objective here.  

 
The remainder of this report proceeds as follows. Section 2 defines a general bivariate model 

for SAIPE estimation, and Section 3 specifies three particular bivariate models and defines 
criteria for comparing their posterior variances. For 2009 (2010) estimates, all three models use 
ACS 2009 (2010) poverty estimates to define the dependent variable in the first equation of the 
bivariate model, but the models differ as to whether Census 2000 or more recent ACS data 
define the dependent variable in the second equation. Section 4 provides empirical results when 
applying the three bivariate models at the county level. Section 4.1 provides results for county 
models of log number of school-age children in poverty, while Section 4.2 provides results for 
models of county poverty rates of school-age children. Section 4.3 examines the structure of the 
bivariate model in more detail to show the drawbacks of simply using past ACS or previous 
census estimates as an added regression variable in a univariate Fay-Herriot model. Section 5 
provides bivariate model results for state poverty rate models for various age groups for 2009. 
Finally, Section 6 summarizes the results and discusses future research. 

 
 

2. General Bivariate Model  
 

Let Y1i and Y2i be the “true poverty characteristics” for area (county or state) i that are being 
estimated by surveys 1 and 2, respectively, for areas ݅ ൌ 1,… , ݊. Let y1i and y2i be the direct 
survey estimates of Y1i and Y2i. In general, these “two surveys” could be the same survey 
conducted in two different years or two different surveys conducted in the same year or different 
years. Then we have 
 
ଵݕ        ൌ ଵܻ  ݁ଵ (1) 
 
ଶݕ  ൌ ଶܻ  ݁ଶ (2) 
 
where the sampling errors e1i  and e2i are assumed to be independently distributed as  N(0, vji),  
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j = 1,2. The vji are assumed known although, in practice, they are estimated. We assume that 
Cov(e1i, e2i) = 0, though the model is easily generalized to allow e1i and e2i to be correlated (with 
their correlations also assumed known.) 
 

The model for the true poverty characteristics is: 
 
       ଵܻ ൌ ଵݔ

ᇱ ଵߚ   ଵ (3)ݑ
 
 ଶܻ ൌ ଶݔ

ᇱ ଶߚ   ଶ (4)ݑ
 
where x1i and x2i are vectors of regression variables, β1 and β2 are the corresponding vectors of 
regression parameters, and (u1i ,u2i) are independently and identically normally distributed over i 
with zero means. Note that the vectors x1i and x2i could be the same or different depending on the 
nature of Y1i and Y2i. In this research, x1i and x2i will generally be nominally the same variables 
but defined for different years in the two equations. We write 
 

Var(u1i) = s11,     Var(u2i) = s22,     and     Corr(u1i ,u2i) = ρ. 
 
Equations (1) – (4) specify the full bivariate model. 
 

We use a Bayesian treatment of the model with the following noninformative prior 
distributions for the model parameters: 
 

ࢼ ൌ ሺߚଵ
ᇱ, ଵߚ

ᇱሻᇱ  is distributed as multivariate N(0, cI), with c large (c = 1,000), 
 

s11 and s22 are independently distributed as Uniform (0, m1) and (0, m2), with m1 and m2 large,  
 
ρ is distributed as Uniform (−1,1). 
 

If ρ = 0, then the bivariate model reduces to separate univariate models for each of the two years. 
 

To implement Bayesian inference for the bivariate model, we used Gibbs sampling via the 
JAGS program (Plummer 2010) for county models and the WinBUGS program (Spiegelhalter, et 
al. 2003) for state models. (Both programs handle essentially the same model forms and do the 
same calculations, but the much larger number of observations for the county models led to use 
of JAGS, while WinBUGS was simpler to implement for the state models.) For any of the 
models, we used JAGS or WinBUGS to simulate a large number (5000 for county models, 
10,000 for state models) of sets of the model parameters (ρ, s11, s22 ) from their posterior 
distribution. The posterior means and variances of Y1i were then approximated by appropriately  
  



6 

 

averaging results over simulations of [(ρ, s11, s22) | y] to approximate the following formulas: 
 
ሺܧ     ଵܻ|࢟ሻ ൌ ሺܧሾ࢟|ఘ,௦ଵଵ,௦ଶଶܧ ଵܻ|࢟, ,ߩ ,ଵଵݏ  ଶଶሻሿ (5)ݏ

 
ሺݎܸܽ  ଵܻ|࢟ሻ ൌ ሺݎሾܸܽ࢟|ఘ,௦ଵଵ,௦ଶଶܧ ଵܻ|࢟, ,ߩ ,ଵଵݏ ଶଶሻሿݏ  ሺܧሾ࢟|ఘ,௦ଵଵ,௦ଶଶݎܸܽ ଵܻ|࢟, ,ߩ ,ଵଵݏ  ଶଶሻሿ (6)ݏ

 
where y  = {(y1i , y2i), i = 1,…,n} is the observed data. 
 
 
3. Alternative Model Specifications and Model Comparison Criteria 
 

We use three bivariate models to estimate 2009 poverty (county or state level) and examine 
which of these models produces lower posterior variances of the poverty characteristic ଵܻ. In all 
three bivariate models we use the ACS 2009 poverty estimate as y1i in equation (1), and use 
contemporaneous regression variables such as those currently used in 2009 SAIPE production as 
x1i, except we omit the Census 2000 poverty variable. Thus, equation (1) is the same in all three 
models. The three models differ according to the definition of the dependent variable, y2i, in the 
second equation: 

 

 Model I. ݕଶ	~	Cen	2000, meaning that y2i is the Census 2000 long form poverty estimate 
(which is for income reported in 1999). 

 Model II. ݕଶ	~	ACSതതതതതହି଼, where ACSതതതതതହି଼ indicates the average of the ACS estimates 
for 2005 through 2008. This stand-in for an ACS 5-year estimate is necessitated by the 
fact that, for modeling 2009 ACS estimates, only four years of production ACS data prior 
to 2009 are available (the first production 5-year estimates being for 2005-2009). 

 Model III. ݕଶ	~	ACSଶ଼, meaning that y2i is the 2008 ACS poverty estimate. We will 
additionally present some results for cases where y2i is the county ACS estimate for some 
still earlier year, which will be indicated in the same way (e.g.,	ݕଶ	~	ACSଶ). 

 
In Models I and III, the regression variables in ݔଶ are the same as the variables in ݔଵ, but they 
are defined for the same year as ݕଶ. As is the case with ݔଵ, ݔଶ does not include the prior census 
estimate. In Model II, the regression variables in ݔଶ are the averages of the corresponding 
variables for the years 2005-2008 (again, leaving out the census data). 
 

The county poverty models we consider take one of two forms: ݕଵ is either the logarithm of 
the ACS single-year estimate of the county number of 5-17 year-old children in poverty, or the 
ACS single-year county estimate of the county age 5-17 poverty rate. Then, ݕଶ is, 
correspondingly, either the log of the number of 5-17 children in poverty, or the 5-17 poverty 
rate, obtained from Census 2000 or previous ACS estimates, depending on the model. At the 
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state level, we examine only models for poverty rates, but we consider models for four age 
groups: 0-4, 5-17, 18-64, and 65+. 

 
We extend the analysis of county bivariate models to let ݕଵ equal the 2010 ACS poverty 

estimate (log number in poverty or poverty rate), with the regression variables in ݔଵ, the second 
dependent variable ݕଶ, and the latter’s vector of regression variables ݔଶ all shifted forward one 
year. Model II provides a slight exception in that, when applying it for 2010, the multi-year 
ACSതതതതതହି଼ data defining ݕଶ in the 2009 model is replaced by the five-year ACSହିଽ estimates. 
Also, in this case the regression variables in ݔଶ are the regression variables used in the SAIPE 
production model for 2007 (again, leaving out census data). Note that 2007 is the mid-year of the 
2005-2009 5-year estimate period. We did not extend the analysis of state poverty models to 
2010 ACS data. 

 
For each area i used in the modeling, we obtain the posterior mean and variance of ଵܻ using 

equations (5) and (6). We focus on the posterior variances, computing ratios of these from the 
different bivariate models as follows (shown for the case of ݕଵ ~ ACS 2009 estimates): 
 

ܴ1 ൌ ሺݎܸܽ ଵܻ│࢟ଵ, ሺݎܸܽ/ACSଶ଼ሻ	ଶ~࢟ ଵܻ│࢟ଵ,  2000ሻ	Cen	ଶ~࢟
 

	ܴ2 ൌ ሺݎܸܽ ଵܻ│࢟ଵ, ሺݎܸܽ/ACSതതതതതହି଼ሻ	ଶ~࢟ ଵܻ│࢟ଵ,  2000ሻ	Cen	ଶ~࢟
 

ܴ3 ൌ ሺݎܸܽ ଵܻ│࢟ଵ, ሺݎܸܽ/ACSതതതതതହି଼ሻ	ଶ~࢟ ଵܻ│࢟ଵ,  .ACSଶ଼ሻ	ଶ~࢟
 
When ݕଵ ~ ACS 2010 county estimates, we shift the variables in the above expressions forward 
one year, as discussed above. The above three ratios provide measures, comparable across areas, 
indicating which of the three models provides the lowest MSE (posterior variance). Values of the 
ratios close to 1.0 indicate not much difference in the MSEs of the two models involved in the 
ratio. Examining the ratios for the large number of individual areas involved is somewhat 
impractical (especially for the large number of counties), so we instead provide summary 
statistics—mean, minimum, first quartile (Q1), median, third quartile (Q3), and maximum—of 
the ratios across areas. As the results could vary by size of area, for counties the Appendix 
provides results within various groups defined by county population sizes. 
 
 

4. Analyses of County Bivariate Models 
 

This section presents empirical results from county bivariate models applied to the two forms 
of dependent variables mentioned above. Section 4.1 considers models of survey estimates of 
logarithms of the number of 5-17 children in poverty. Section 4.2 considers models of survey 
estimates of 5-17 child poverty rates. These two sections present analogous results, with the 
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exception that Section 4.1 presents some additional results from models where the y2i are defined 
to be logs of ACS single-year poverty estimates for each of several previous years ranging from 
2005-2008 (4 different bivariate models), and the  y1i are the corresponding ACS log poverty 
estimates for 2009. These additional results give some indication of how the value of using past 
ACS data in the models varies as the past estimates are pushed further back in time. 

 
4.1 Bivariate models for county log poverty estimates of related children age 5-17 
 

Table 1 below presents results from fitting the various bivariate models of log poverty 
estimates of related children age 5-17 with ݕଵ corresponding to ACS 2009 estimates. This 
includes Models I and II, and four versions of Model III with y2i corresponding to ACS estimates 
for single years 2008, 2007, 2006, and 2005. The first row of Table 1 shows how many counties 
were included in the model fitting.  Because these models involve taking logarithms of the ACS 
or Census 2000 estimates of the number of 5-17 year-old children in poverty, and because some 
of these estimates are zero (so logs cannot be taken), not all 3,141 U.S. counties could be 
included in the model fitting. The number of counties included thus varied each year depending 
on how many counties had direct survey estimates of zero from either of the two estimates (both 
had to be nonzero for a county to be included in the modeling). Since the models all have the 
same first equation, the variations in n come from variation in the zero poverty estimates related 
to the second equation. Census 2000 had the largest sample among those in the table, resulting in 
the fewest counties being dropped from the modeling due to zero estimates, and so has the 
largest n. The various ACS single-year estimates resulted in the next fewest counties being 
dropped, with fairly similar n values for each of the four years. The ACS 2005-2008 average 
estimates resulted in the most counties being dropped because, for this model, counties were 
dropped if any of their four single-year poverty estimates was zero. (The four-year average here 
is computed after taking logarithms of the single-year ACS poverty estimates, rather than 
averaging the ACS 2005-2008 poverty estimates and then taking logarithms.) 

 
While the dropping of counties from model fitting is not a desirable feature, it is necessary 

here since the models involve taking logarithms, and has been the practice with the SAIPE 
county production model from the beginning. The percentage of counties dropped here is about 
10 percent when single year ACS estimates provide y2i. It is somewhat higher for the ACS 
2005−2008 average estimates and somewhat lower for the Census 2000 estimates. While this 
may seem a large enough percentage to be of potential concern, the actual percentage of the ACS 
sample effectively dropped is far less than 10 percent, since the counties with zero poverty 
estimates are invariably small counties, and so have small samples. A county with a small 
sample contributes much less to the model fitting than does a county with a large sample,4 so that 

                                                      
4  The model fitting weights county estimates inversely proportional to their variances, which implies weights roughly 
proportional to their sample sizes. 
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the model fitting results should not be much affected by the dropping of the zero estimate 
counties. Our summary measures of the MSE ratios for the model prediction results would be 
affected primarily in the sense that the results somewhat under-represent small counties, but that 
is partly addressed in the Appendix by examining results by county size classes. 
 

Table 1 provides model fitting results on the posterior means of the parameters ρ, ݏଵଵ, and 

 ଶଶ. Note that the posterior mean of ρ, the correlation between the model errors in the twoݏ

equations, is lowest when the second equation uses Census 2000 data. This is perhaps not 
surprising given that the Census 2000 estimates are the most distant in time from the ACS 2009 
estimates. There is, in fact, a general indication of lower posterior means of ρ the further the 
estimates in the second equation are pushed back into the past, which is again not surprising. The 
posterior means of the model error variances, ݏଵଵ and ݏଶଶ, seem roughly comparable over years 
and across the two equations, with one exception—the posterior mean of ݏଶଶ for the equation 
using the ACS 2005-2008 estimates. This is, in fact, the one case where the model error variance 
is not comparable to the others, as taking the four-year average of the (logged) ACS estimates  
 ଶ also takes, from equation (2), the four-year average of ଶܻ, which will hence reduce the modelݕ
error variance in the second equation. Due to positive correlation between the model errors 
across years, the reduction in the model error variance due to this averaging would not be 
expected to be by a factor of ¼, but rather by a smaller amount.5 

 
 
Table 1. Posterior means of parameters (and observation counts n) for bivariate models of 

log county poverty estimates of children age 5-17: Results for ࢟ ~ ACS 2009 estimates. 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ ACSૠ ACS ACS 

n 2,946 2,661 2,836 2,844 2,862 2,849 
ρ 0.52 0.80 0.88 0.71 0.79 0.74 

s11 0.0224 0.0191 0.0212 0.0210 0.0201 0.0212 
s22 0.0208 0.0152 0.0253 0.0295 0.0234 0.0272 

 
 

 
  

                                                      
5  With a first order autoregressive process with parameter .88 (to match the correlation of the model errors in the ACS 2009 and 
ACS 2008 equations), the variance of the mean of four successive observations would be .86 times the variance of a single 
observation. Dividing the posterior mean of the model error variance for ACSതതതതതହି଼ (.0152) by the average of the posterior means 
of the 2005-2008 ACS model error variances from the 2005-2008 ACS equations (.02635) gives an even lower value, .58. So the 
model error variance for ACSതതതതതହି଼ actually appears somewhat lower in relation to the other model error variances than would be 
expected, given the high values of the correlations. 
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Table 2. Posterior means of parameters (and observation counts n) for bivariate models of 
log county poverty estimates of children age 5-17: Results for ࢟ ~ ACS 2010 estimates. 

ଶݕ ⇒ Cen 2000 ACSିૢ ACSૢ 
n 2,975 2,976 2,860 
ρ 0.50 0.61 0.66 

s11 0.0238 0.0218 0.0226 
s22 0.0212 0.0196 0.0214 

 

Table 2 presents results analogous to those of Table 1, but for models with ݕଵ corresponding 
to ACS 2010 estimates. First note that the numbers of counties n used in the model fitting are 
similar to the numbers n in Table 1, except when ݕଶ corresponds to the multi-year ACSହିଽ 
estimate we have n = 2976, which is much larger than the value of n = 2665 in Table 1 when 
 ଶ ~ ACSതതതതതହି଼ we omitted from the model fittingݕ ଶ ~ ACSതതതതതହି଼. This occurs because whenݕ
any county for which the ACS estimate was zero in any of the individual years 2005-2008, 
whereas when ݕଶ ~ ACSହିଽ we omitted only those counties for which the ACS estimate was 
zero in all of the years 2005-2009 (because logs were then taken of the 5-year estimates, not of 
an average of the single-year estimates).   
 

The posterior means of the correlation ρ between the model errors of the two equations of the 
model with Census 2000 data in the second equation are very similar in Tables 1 and 2: ρ = .52 
when ݕଵ ~ ACS2009, and ρ = .50 when ݕଵ ~ ACS2010.  However, for the models where past ACS 
estimates provide ݕଶ, ρ is smaller when ݕଵ ~ ACS2010 (.61 for ݕଶ ~ ACSହିଽ or .66 for 
 We .(ଶ ~ ACS2008ݕ ଶ ~ ACSതതതതതହି଼ and .88 forݕ 80 for.) ଵ ~ ACS2009ݕ ଶ ~ ACS2009) than whenݕ
believe this simply shows that results like these can vary over time. Posterior means of the model 
error variances, ݏଵଵ	and ݏଶଶ, seem roughly comparable over years and across the two equations. 
The value of ݏଶଶ when ݕଶ ~ ACSହିଽ (.0196, in the model with ݕଵ ~ ACS2010) is not as low as 
when ݕଶ ~ ACSതതതതതହି଼ (.0152, in the model with ݕଵ ~ ACS2009)

6, but the former did not involve 
the same averaging as did the latter. 

 
Table 3 provides summary statistics for the ratios ܴ1, ܴ2, and 	ܴ3 comparing the posterior 

variances of the three bivariate models that use ACS 2009 or ACS 2010 estimates in the first 
equation, and the three corresponding alternative estimates in the second equation.7 For 
 ଵ ~ ACS2009, the results for ܴ1 suggest little difference, in terms of the posterior variances ofݕ

ଵܻ, to using ACSଶ଼ versus Census 2000 data—the ratios are fairly concentrated around 1.0. 

                                                      
6 The value of ݏଶଶ for ACSହିଽ  of 0.0196 is a little higher than 0.0172 = 0.6778750 × 0.02536 that we would obtain from a first 
order autoregressive process with adjacent year correlations of 0.66, and single-year model error variances for 2005-2009 as 
given in Tables 1 and 2. 
7  Since the highest correlation between model errors for the ACS 2009 equation and another single-year ACS equation occurs 
for ݕଶ~ACSଶ଼, the lowest posterior variances of ଵܻ among these alternatives would be expected for ݕଶ~ACSଶ଼,, and so 
Table 3 shows results only for this case. 
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The results for ܴ2 and ܴ3, however, show that the posterior variances of ଵܻ when using the 
model with ACSതതതതതହି଼ data are generally lower than those when using either ACSଶ଼ or Census 
2000 data. While the differences are not large—mean and median variance reductions from using 
ACSതതതതതହି଼ data instead of the others being just a little over 10 percent—one does certainly not see 
any advantage from using either ACSଶ଼ or Census 2000 data instead of the ACSതതതതതହି଼ data. The 
general conclusion here is thus that, for modeling logs of ACS 2009 county poverty estimates of 
children age 5-17, use of ACSതതതതതହି଼ estimates for ݕଶ in the second equation is preferred. 

 
Table 3. Summary statistics of the variance ratios ࡾࡾ ,, and 	ࡾ for 

bivariate models of log county poverty estimates of children age 5-17. 
 

Results for ࢟ ~ ACS 2009 estimates 

ൌ ࡾ 
Var	with	ACS2008
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	ACS2008

 

# counties 2,830 2,655 2,661 
mean 1.01 0.88 0.87 
minimum 0.69 0.65 0.73 
Q1 0.97 0.83 0.84 
median 1.03 0.89 0.87 
Q3 1.06 0.93 0.89 
maximum 1.19 1.05 1.15 

 
 

Results for ࢟ ~ ACS 2010 estimates 

ൌ ࡾ 
Var	with	ACS2009
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACS05‐09
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACS05‐09
Var	with	ACS2009

 

# counties 2,853 2,969 2,858 
mean 1.06 0.96 0.90 
minimum 0.94 0.84 0.78 
Q1 1.03 0.93 0.88 
median 1.06 0.95 0.90 
Q3 1.09 0.98 0.93 
maximum 1.18 1.10 1.01 

 
 

 For ݕଵ ~ ACS2010, the ratios ܴ1, ܴ2, and 	ܴ3 are slightly higher, a result most likely due 
to the lower values of ρ shown in Table 2 for the cases where ݕଶ corresponds to past ACS data. 
However, we still conclude that using past ACS multi-year estimates for the dependent variable 
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in the second equation seems preferred, or at least does not do worse than the other two 
alternatives. 
 

Appendix A provides corresponding tables giving summary statistics within county 
population size groups for ܴ1, ܴ2, and 	ܴ3 from bivariate models of county log poverty 
estimates. Table A.1 presents results for ݕଵ ~ ACS2009, and Table A.2 results for ݕଵ ~ ACS2010. 
Note that these results come from bivariate models fitted to all counties (except those with zero 
ACS estimates), with the prediction error variances then summarized by county size groups. 

 
The upper section of Table A.1 shows that, for small counties, using ݕଶ	~	ACSଶ଼ to 

borrow information from last year’s ACS estimates produces slightly higher posterior variances 
of ଵܻ for 2009 than does using ݕଶ	~	Cen	2000 (values of  ܴ1 tend to exceed 1.0), while, for 
large counties, using ݕଶ	~	ACSଶ଼ produces substantially lower posterior variances. This 
suggests that the stronger correlation of the model errors for the estimates closer together in time 
(the ACSଶଽ and ACSଶ଼ estimates) is of benefit for larger counties, but for smaller counties the 
lower sampling variance of the Census 2000 estimates outweighs this advantage. The upper 
section of Table A.2 shows somewhat similar results for posterior variances of ଵܻ using 
 2000, though the advantages to the former for large counties are	Cen	~	ଶݕ ACSଶଽ versus	~	ଶݕ
less, presumably due to the reduced value of ρ from Table 2, whereas the corresponding ρ with 
 .2000 changes little from Table 1	Cen	~	ଶݕ

 
The middle section of Table A.1 shows that borrowing information from the four-year 

average ACS estimates (ACSതതതതതହି଼) yields lower posterior variances of ଵܻ for 2009 than does 
borrowing information from Census 2000 estimates. As with ݕଶ	~	ACSଶଽ, the advantage to 
using the ACSതതതതതହି଼ estimates presumably comes from their being closer together in time to the 
ACSଶଽ estimates than are the Census 2000 estimates. For large counties this is the determining 
factor, while for small counties this is partly, though not completely, offset by the lower 
sampling variances of the Census 2000 estimates. The middle section of Table A.2 shows 
somewhat similar results for borrowing information from ACS05-09 for predicting ଵܻ for 2010 
versus borrowing information from Census 2000 although, as in the preceding paragraph, the 
advantages to borrowing from the ACS estimates are less due to the reduced value of ρ for this 
case from Table 2. 
 

The lower section of Table A.1 shows that borrowing information from the four-year average 
ACS estimates (ACSതതതതതହି଼) yields mostly lower posterior variances of ଵܻ for 2009 than does 
borrowing information from last year’s (ACSଶ଼) estimates. While the ACSଶ଼ equation model 
errors have a higher correlation with the model errors from the ACSଶଽ equation, this advantage 
is offset by the lower sampling variance of the ACSതതതതതହି଼ estimates. In the group of largest 
counties (> 1,000,000 population), the result is about a wash, with the ܴ3 values concentrated 
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around 1.0. As counties get smaller, however, the ACSതതതതതହି଼ estimates generally tend to do better. 
The lower section of Table A.2 shows similar results for posterior variances of ଵܻ for 2010. 

 
The general conclusion is that using last year’s ACS estimate (of log of 5-17 children in 

poverty) in a bivariate model can do better for large counties than using the previous census 
estimate in the model, though the former might do worse for small counties. Using the most 
recent prior ACS multi-year estimate appears to do better, or at least as well, as the other two 
alternatives for both large and small counties. 

 
4.2 Bivariate models for county poverty rates of related children age 5-17  
 

In this section we provide results corresponding to those of Section 4.1, but using models for 
(untransformed) county poverty rates. In practice, these models have the disadvantage that they 
have the potential of producing negative predictions of poverty rates, or at least of producing 
prediction intervals that include negative values. The models are useful for our purposes here to 
provide a robustness check on the results of Section 4.1, by allowing us to see if changing the 
model form has an appreciable influence on the results. 

 
Regression variables in our model for untransformed county poverty rates are untransformed 

ratio variables analogous to the regression variables used in a model for log county poverty rates 
explored by Bell, et al. (2007). These are the tax poor child exemption rate, the tax child filing 
rate, the SNAP (food stamp) participation rate, and the child (0-17) population proportion 
(county population of ages 0-17 divided by the county population of all ages). The last of these, 
which is obtained from the Census Bureau’s Population Estimates Program (PEP), replaces the 
log county 0-17 population variable used in a log poverty rate model by Bell, et al. (2007, pp. 36-
39). The child population proportion seems an appropriate variable for an untransformed poverty 
rate model. Again, we omit Census 2000 estimates from the regression variables so we can 
assess their value in a bivariate model relative to the use of the ACS alternatives. 

 
Table 4 provides results on the posterior means of the parameters ρ, ݏଵଵ, and ݏଶଶ	for the 

bivariate poverty rate models for 2009 and 2010. For both years the posterior mean of ρ is lowest 

when the second equation uses Census 2000 data, and considerably lower than the values given 
for the 2009 and 2010 log number 5-17 in poverty models in Tables 1 (0.52) and 2 (0.50). These 
lower values of ρ suggest there will be less benefit in the poverty rate models to borrowing 

information from the Census 2000 estimates, than there was in the log number in poverty 
models. The values of ρ are higher when the second equation uses past ACS single-year or multi-

year estimates, and not so different from the values in Tables 1 and 2. The slightly higher values 
of ρ when ݕଶ is last year’s ACS estimate rather than the previous ACS multi-year estimate, 

suggests that again this higher correlation will compete against the lower sampling variance of 
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the ACS multi-year estimate to determine which provides the most benefit to predicting the 
current year’s ଵܻ. The posterior means of ݏଶଶ are distinctly different for the three alternative 
models for each year, more so than was the case in Tables 1 and 2, although, again, the values 
corresponding to the ACS multi-year estimates stand out as the lowest. 

 
 

Table 4. Posterior means of parameters (and observation counts n) for 
bivariate models of county poverty rates of children age 5-17 

 
Results for ࢟ ~ ACS 2009 estimates 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

n 2,952 2,665 2,840 
ρ 0.30 0.72 0.80 

s11 0.0023 0.0022 0.0024 
s22 0.0013 0.0005 0.0024 

 
Results for ࢟ ~ ACS 2010 estimates 

ଶݕ ⇒ Cen 2000 ACSିૢ ACSૢ 
n 2,973 2,976 2,865 
ρ 0.33 0.62 0.77 

s11 0.0034 0.0035 0.0034 
s22 0.0013 0.0007 0.0024 

 
 

 Table 5 presents summary statistics for the ratios ܴ1, ܴ2, and 	ܴ3 comparing the posterior 
variances of the bivariate county poverty rate models that use ACS 2009 or ACS 2010 estimates 
in the first equation and one of the three corresponding alternative estimates in the second 
equation. First, the results for ܴ2 appear quite comparable to those in Table 3, suggesting 
roughly the same amount of potential improvement from using previous ACS multi-year 
estimates versus using Census 2000 estimates for ݕଶ. The results for ܴ1, on the other hand, are 
more favorable to use of last year’s ACS estimates versus Census 2000 estimates for ݕଶ than 
was the case in Table 3 (in which the mean and median values of  ܴ1 are close to, and even 
slightly larger than, 1). The results for ܴ3 are rather neutral between the choice of last year’s 
ACS estimates versus previous ACS multi-year estimates for ݕଶ — the mean and median values 
of ܴ3 are close to 1 in 2009, and slightly larger than 1 in 2010. 
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Table 5. Summary statistics of the variance ratios ࡾࡾ ,, and 	ࡾ for 
bivariate models of county poverty rates of children age 5-17. 

 

Results for ࢟ ~ ACS 2009 estimates 

ൌ ࡾ 
Var	with	ACS2008
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	ACS2008

 

# counties 2,834 2,659 2,664 
mean 0.90 0.91 1.03 
minimum 0.45 0.73 0.85 
Q1 0.83 0.88 0.95 
median 0.91 0.91 1.01 
Q3 0.98 0.94 1.05 
maximum 1.10 1.00 2.03 

 
 

Results for ࢟ ~ ACS 2010 estimates 

ൌ ࡾ 
Var	with	ACS2009
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACS05‐09
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACS05‐09
Var	with	ACS2009

 

# counties 2,858 2,969 2,864 
mean 0.92 0.97 1.06 
minimum 0.54 0.80 0.86 
Q1 0.88 0.94 1.01 
median 0.93 0.97 1.04 
Q3 0.97 1.00 1.08 
maximum 1.06 1.08 1.79 

 
 

The main impression from the combined results of Tables 3 and 5 is that using previous ACS 
multi-year estimates for ݕଶ instead of Census 2000 values has some chance of producing better 
results, and there is no suggestion this would do worse. Results for using last year’s single-year 
ACS estimates are more equivocal—they perform comparably overall to the ACS multi-year 
estimates for the poverty rate models (Table 5), but don’t do quite as well as the ACS multi-year 
estimates for the log number in poverty models (Table 3). With this limited amount of data, the 
logical choice would be to replace the Census 2000 estimates in a bivariate model with the 
previous ACS multi-year estimates. (Note this does not suggest simply using previous ACS 
multi-year estimates as regression variables in a univariate model for current single-year ACS 
estimates—see Section 4.3.) This choice is also appealing in that it will continually keep the ݕଶ 
variable reasonably current, whereas continuing to use Census 2000 estimates for ݕଶ would 
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result in its becoming increasingly distant from the current year, with an expected deterioration 
in performance. 
 

Appendix B provides tables giving summary statistics within county population size groups 
for ܴ1, ܴ2, and 	ܴ3 from bivariate models of the county 5-17 poverty rate estimates. 
Tables B.1 and B.2 present results for ݕଵ ~ ACS2009 and for ݕଵ ~ ACS2010, respectively. In 
comparison to the results in Tables A.1 and A.2 for the log number in poverty models, the results 
of Tables B.1 and B.2 show somewhat less indication that potential advantages from using ACS 
estimates in place of Census 2000 estimates are larger for large counties and smaller for small 
counties. The results in the first two sections of Tables B.1 and B.2 do show this tendency for 
county population size groups up to 65,000 – 250,000, but less so beyond this point. (However, 
even Tables A.1 and A.2 show slight upticks in ܴ1 and ܴ2 for the group of largest counties.) 

 
Another result of note in Table 5 is that two values are extreme: the minimum ܴ1 of 0.45 

and the maximum	ܴ3 of 2.03. The first of these may seem to suggest that for one county (and 
probably others as well that are not individually discernible from the summary statistics of 
Table 5), use of the single year ACS 2008 estimates for ݕଶ produced a dramatically lower 
posterior variance compared to use of Census 2000 estimates. The second may seem to suggest a 
similar result for use of the single year ACS 2008 estimates in comparison to use of ACSതതതതതହି଼ 
estimates. These particular results seem surprising given the overall results. What is the 
explanation? 

 
The explanation lies in errors in sampling variance estimates based on small samples. One 

assumption of the standard Fay-Herriot models, univariate and bivariate, is that sampling 
variances, vji, of the survey estimates are known when, in reality, they are estimated. When 
samples are small, both the direct survey point estimates and the direct sampling variance 
estimates will be subject to large errors (large sampling errors in ݕଵ being the motivation for 
doing modeling in the first place). For counties with small samples, some of the sampling 
variance estimates will substantially underestimate the true variances, and some will 
substantially overestimate the true variances. Note that, for small counties, if the true variance 
(which will be large when the sample is small) were known and were used, the direct estimate 
for the county would get little weight in the posterior mean, and the posterior variance would be 
similar to that which would be obtained if there were no direct estimate. Thus, for counties with 
small samples, overestimating the sampling variance will have little effect. 

 
When the sampling variance is substantially underestimated for a small county, however, the 

calculations will give too much weight to the direct point estimates in forming the posterior 
mean, and the posterior variance calculation will place too much confidence in the direct point 
estimates, so the posterior variance will be substantially too low. Bell (2008) illustrates this 
phenomenon for univariate Fay-Herriot models, but the same principle applies to the bivariate 
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versions as well. The problem for the calculation of posterior variances is essentially that the 
term ܸܽݎሺ ଵܻ|ݕଵ, ,ଶݕ ,ߩ ,ଵଵݏ  ଶଶሻ in equation (6) (taking a slight liberty with the notation to makeݏ
the point clear), will be understated (for all nonzero ρ) whenever the sampling variance of either 
 ଵ is underestimated, thisݕ ଶ is substantially underestimated. If the sampling variance ofݕ ଵ orݕ
will affect the posterior variances calculated for all three of our bivariate models in similar ways, 
and thus have only minor effects on the variance ratios ܴ1, ܴ2, and	ܴ3. If the sampling 
variance of last year’s single-year ACS estimate is substantially underestimated, however, this 
likely will result in substantial understatement of the posterior variance only for the model where 
 ଶ corresponds to last year’s single-year ACS estimate. It is unlikely that the sampling varianceݕ
of the corresponding ACS multi-year estimate will be similarly underestimated, since this 
estimate involves additional years of data and a 4-5 times larger sample. Thus, the posterior 
variances for the models using ACS multi-year estimates or Census 2000 estimates are much less 
likely to be substantially understated. The net effect on the variance ratios of substantial 
underestimation of the sampling variance of last year’s single-year ACS estimate for a given 
county will thus be a value for ܴ1 that is substantially too low, and a value for	ܴ3 that is 
substantially too high. 

 
The table in Appendix C provides evidence of this phenomenon. In this table, for the 

bivariate county 5-17 poverty rate model with ݕଵ corresponding to ACS 2009 estimates, we 
show, for each county size group shown, the five lowest values of ܴ1 along with the 
corresponding values of	ܴ3, the ACS 2008 and 2009 county poverty rate estimates, and the 
corresponding sampling variance estimates. Note that, especially for the first three groups 
corresponding to the smallest county population sizes, the ACS 2008 direct poverty rate 
estimates and sampling variances are all quite low. In fact, the first row shows a vanishingly 
small ACS 2008 poverty rate estimate of 0.0067, and a correspondingly low sampling variance 
estimate of 0.000103 (corresponding to a standard error of about .01, implying extreme 
confidence that the true poverty rate is indeed very small). Corresponding entries in other rows 
of the table are also quite small. It appears these are all likely to be substantial underestimates 
due to a large amount of random estimation error arising from small ACS (single-year) samples. 
This leads to the extreme values shown for ܴ1 and 	ܴ3, as discussed in the previous paragraph. 

 
We can explain further in general terms how this arises. For small counties a single year of 

ACS data typically provides a small sample. For estimating the poverty rate of 5-17 year-olds, 
the sample effectively shrinks because we use data from only those households containing at 
least one 5-17 year old child. This might be only 10-15 households. With such a small sample, 
there may be no households in poverty (leading to an estimated poverty rate of zero), or there 
might be one household in poverty. In the latter case, it could occur that this one household has 
only one 5-17 child. When this happens, the direct estimated poverty rate is the sampling weight 
for this one poor 5-17 child divided by the sum of the sampling weights for all the 5-17 children 
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in the sample. Sampling weights vary across persons depending on differential sampling rates 
across geographic areas, on differential effects of population controls, and on whether the 
household’s data came from a mail or telephone response versus a CAPI (computer assisted 
person interview) response. CAPI cases get higher weights because they are subsampled.8 If the 
one poor 5-17 child came from a mail or telephone response, it would have a much lower weight 
than would the 5-17 child responses from CAPI cases. If the one 5-17 child also happens to have 
a sampling weight lower than the weights of other 5-17 child mail or telephone responses, this 
can result in a very low estimated 5-17 poverty rate. It turns out that the corresponding variance 
estimate will then also be very low, for reasons we won’t bother going into here. 

 
Without disclosing specifics of the data, this is essentially the explanation for the very low 

estimated poverty rates and variances in the table of Appendix C. This led to low posterior 
variances for these counties from the model with ݕଶ defined by these ACS 2008 estimates, 
resulting in extremely low values of ܴ1 and, generally, extremely high values of 	ܴ3. (There 
are a few exceptions to the last point, especially in the largest county size group, where sample 
sizes are not so small.) These results are not truly indicating superior performance for these 
counties of the model with ݕଶ defined by the ACS 2008 estimates, they are merely reflecting the 
effects on sampling variance estimates, and the resultant effects on the posterior variance ratios, 
of random estimation error from small samples. 
 
4.3 Further analysis of the bivariate model 
 

We now reconsider the general bivariate model, which we restate for convenience here in a 
way that combines equations (1) and (3), and also combines equations (2) and (4): 
 
ଵݕ      ൌ ଵܻ  ݁ଵ ൌ ଵݔ

ᇱ ଵߚ  ଵݑ  ݁ଵ (7) 
 
ଶݕ  ൌ ଶܻ  ݁ଶ ൌ ଶݔ

ᇱ ଶߚ  ଶݑ  ݁ଶ. (8) 
 
We can project (regress) ଵܻ on ݕଶ, using results on conditional expectations in a normal 
distribution, to write 
 
     ଵܻ ൌ ଵݔ

ᇱ ଵߚ  ଶݕሺߛ െ ଶݔ
ᇱ ଶሻߚ    (9)ݓ

 
where the regression coefficient on the second equation regression residuals, ݕଶ െ ଶݔ

ᇱ  ଶ, isߚ
 
ߛ  ൌ

௦భమ
௦మమା௩మ

 (10) 

  

                                                      
8 For more information on the ACS sample design and estimation, see the ACS web site at 
http://www.census.gov/acs/www/methodology/methodology_main/. 
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and the residual ݓ has variance 
 

ሻݓሺݎܸܽ  ൌ ሺݎܸܽ ଵܻ|ݕଶሻ ൌ ଵଵݏ െ
௦భమ
మ

ሺ௦మమା௩మሻ
	. (11) 

 
Note that both ߛ and ܸܽݎሺݓሻ vary over counties as ݒଶ, the sampling variance of ݕଶ, varies. 
Note also that as ݒଶ gets large, ߛ approaches zero. Thus, for counties with very small samples 
and correspondingly large sampling variances, the variable ݕଶ െ ଶݔ

ᇱ  ଶ coming from the secondߚ
equation will get very little weight in the predictions of ଵܻ. This makes intuitive sense—we 
should give more weight to past data that is quite reliable (low sampling variance) than to past 
data that is very unreliable (high sampling variance). 
 
 Combining equations (7) and (9) gives 
 
ଵݕ     ൌ ଵܻ  ݁ଵ ൌ ሾݔଵ

ᇱ ଵߚ  ଶݕሺߛ െ ଶݔ
ᇱ ଶሻߚ  ሿݓ  ݁ଵ, (12) 

 
which looks like a univariate Fay-Herriot model with the one added regressor, ݕଶ െ ଶݔ

ᇱ  ଶ, butߚ
with a regression coefficient and model error variance, ߛ and ܸܽݎሺݓሻ, that vary over counties. 
If this variation over counties is small, which will be the case if the ݒଶ are all small (as occurs 
with the use of Census 2000 estimates in the SAIPE state models), then treating (12) as a 
univariate Fay-Herriot model—forcing a constant ߛ and ܸܽݎሺݓሻ—will provide a good 
approximation to the bivariate model. If the variation in ݒଶ is large (relative to ݏଶଶ), however, 
then doing this will give too much weight to ݕଶ െ ଶݔ

ᇱ  ଶ from counties with small samples, andߚ
too little weight to this data from counties with large samples. 
 
 Figures 1 and 2 illustrate these results for the case where ݕଵ corresponds to ACS 2010 
county poverty estimates. Figure 1 shows results for the log number in poverty model, and 
Figure 2 shows results for the poverty rate model. In both figures the left column of plots shows 
the values of ߛ for the three models (with ݕଶ corresponding to ACS 2009 estimates, or ACS 
2005-2009 estimates, or Census 2000 estimates, respectively), and the right column of plots 
shows the corresponding values of ܸܽݎሺݓሻ. The values of ߛ and ܸܽݎሺݓሻ were obtained by 
plugging posterior means of the parameters ݏଵଵ	, ݏଵଶ, and ݏଶଶ into (10) and (11). 
 
 Figures 1 and 2 show considerable variation over counties in the values of ߛ and ܸܽݎሺݓሻ, 
with more variation for the models using ACS data for ݕଶ than for the models using Census 
2000 data. This is because of the lower sampling variances of the Census 2000 estimates. This 
shows why using a bivariate county model is more important when borrowing information from 
past ACS estimates than when borrowing information from previous census estimates. 
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Figure 1. Implied regression coefficients and residual variances from county bivariate models of log 
number of children in poverty. The first equation corresponds to the ACS 2010 estimates, the second to 
either the ACS 2009 estimates, the average of the ACS 2005-2008 estimates, or the Census 2000 
estimates. The graphs show the implied regression coefficients on the second equation regression 
residuals when used as a predictor variable in the first equation, and the corresponding residual variances, 
which become the variances of the county level random effects in the implied univariate model for the 
ACS 2010 estimates. See equations (7)-(12). 
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Figure 2. Implied regression coefficients and residual variances from county bivariate models of 5-17 
child poverty rates. The plots are analogous to those of Figure 1. 
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There are other differences in the results across the three different forms of the bivariate 
models. For the log number in poverty model (Figure 1), the consistently largest values of ߛ 
occur for the model with ݕଶ corresponding to the Census 2000 estimates, and the consistently 
smallest values of ߛ occur for the model with ݕଶ corresponding to the ACS 2009 estimates. For 
the poverty rate model (Figure 2), this is not the case as many counties have values of ߛ for the 
model with ݕଶ corresponding to the ACS 2009 estimates that are larger than the values of ߛ for 
any county from the model with ݕଶ corresponding to the Census 2000 estimates. Recall that the 
value of ߛ depends on ݏଵଶ (in addition to ݒଶ), which in turn depends on ρ, ݏଵଵ (roughly the same 
for all three models), and ݏଶଶ. The low values of ρ (0.30 and 0.33) for the poverty rate models 
using Census 2000 estimates lead to somewhat lower values of ߛ. 

 
The general message from Figures 1 and 2 is that simply using past ACS data to define a 

regression variable for a univariate Fay-Herriot model would misstate the relationship between 
the target population quantities ଵܻ and the past ACS data. In small counties, the strength of the 
relationship would be overstated, while in large counties it would be understated. Model error 
variances would also be misstated, leading directly to misstatements of posterior (prediction 
error) variances. These problems exist to an extent in the current SAIPE univariate Fay-Herriot 
county models, which use Census 2000 data, but to a lesser degree than would be the case with 
ACS data, due to the lower sampling variances of the Census 2000 estimates. 

 
 
5. Bivariate Models for 2009 State Poverty Ratios by Age Groups 
 

In this section we provide results on models for ACS 2009 state poverty ratios by 4 age 
groups (age 0-4, 5-17, 18-64, and 65+). The SAIPE state poverty ratio model for age 5-17 related 
children and its regression variables are given in Bell, et  al. (2007, pp. 66-69). These models use 
regression variables analogous to those of the county poverty rate model discussed in 
Section 4.2. In addition to the intercept term, these are ratios related to poverty, including the 
tax-poor child exemption rate, the tax nonfiler ratio, the state SNAP participation rate, and 
“census residuals” obtained by regression of the previous census (Census 2000) state 5-17 
poverty ratio estimates on the other regression variables defined in the census income year (1999 
for Census 2000). Since sampling errors of the Census 2000 state poverty ratios are negligible, 
use of the census residuals as a regression variable is nearly equivalent to use of the bivariate 
model9—note the development in Section 4.3 if ݒଶ ൌ 0. For age 65+, the Supplemental Security 
Income (SSI) state participation rate is used instead of the SNAP variable, and the census 
poverty rate for age 65+ is used instead of the “census residual”. 

 

                                                      
9 There is a difference between the two models in how the model parameters would be estimated, but the prediction results given 
the estimated parameters are identical. 
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Table 6 presents results on the posterior means of the model parameters in the state poverty 
ratio bivariate models. The posterior mean of the correlation between the model errors in the two 
equations of the bivariate state poverty ratio model is lowest, 0.65, when ݕଶ ~ Census 2000, and 

highest, 0.86, when ݕଶ~	ACSതതതതതതହି଼. The correlation when ݕଶ~	ACSଶ଼ is in between at 0.77. 
These results suggest that using ݕଶ~	ACSതതതതതതହି଼ may be best, given the high correlation and the 
fact that sampling variances of the ACSതതതതതതହି଼ state poverty ratios are small, if somewhat larger 
than those of the Census 2000 estimates. The posterior mean of s22 is smallest when 
 .ACSതതതതതതହି଼, which again may have something to do with the 4-year averaging	ଶ~ݕ

 
 

Table 6. Posterior means of parameters (and standard errors of ρ) for  

bivariate models of 2009 state poverty rates of children age 5-17. 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

ρ 0.65 
(0.12) 

0.86 
(0.07) 

0.77 
(0.10) 

s11 1.618 1.593 1.516 

s22 1.750 1.542 1.666 

 
 
The posterior means of the parameters of the state poverty ratio models for the other age 

groups are given in Table D.1 of Appendix D. For all age groups, the posterior means of ρ are 
higher when ݕଶ corresponds to past ACS estimates than when it corresponds to Census 2000 
estimates, due, presumably, to the smaller time difference. Note the extremely high value of ρ for 
age 65+. This reflects the greater stability over time of the true age 65+ poverty ratios. 

 
Table 7 provides summary statistics for the ratios ܴ1, ܴ2, and 	ܴ3 comparing the posterior 

variances of the three bivariate models for the 5-17 state poverty ratios. The results for ܴ1 
suggest not much difference, in terms of the posterior variances of ଵܻ, to using ACSଶ଼ versus 
Census 2000 data—the mean ratios are fairly concentrated around 0.98. It appears that the higher 
value of ρ when using the ACSଶ଼ estimates is offset by their having non-negligible sampling 
variances at least for small states. The values for ܴ2 and ܴ3 show that, as expected, the model 

with ݕଶ~	ACSതതതതതതହି଼ performs best. Table D.2 in Appendix D provides corresponding tables 
giving summary statistics for ܴ1, ܴ2, and 	ܴ3 for the models for the other three age groups of 

0-4, 18-64, and 65+. These also show better performance for the models with ݕଶ~	ACSതതതതതതହି଼. 
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Table 7. Summary statistics of the variance ratios ࡾࡾ ,, and 	ࡾ for bivariate models 
of 2009 state poverty rates of children age 5-17. 

ൌ ࡾ 
Var	with	ACS2008
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	ACS2008

 

mean 0.98 0.82 0.84 
minimum 0.90 0.70 0.72 
Q1 0.95 0.77 0.79 
median 0.96 0.82 0.84 
Q3 0.99 0.86 0.90 
maximum 1.08 0.96 0.99 

 
 
Table 8 provides summary statistics of Var( ଵܻ) for the direct ACS 2009 estimates, the 

SAIPE production model and the three bivariate models of the state 5-17 poverty ratio estimates. 
The table shows that all the models make substantial improvements in average state variances 
over the direct ACS estimates. For the largest states, however, such as California, modeling has 
little effect since for these states the ACS sampling variances are quite small. The variance 
improvement comes in the small states such as the District of Columbia (DC) and Wyoming (see 
note to Table 8). 
 
 
Table 8. Summary statistics of Var(ࢅ) for direct ACS 2009 estimates, SAIPE production, 

and bivariate models of 2009 state poverty ratio estimates of children age 5-17. 

 
ACS 2009 
direct est. 

SAIPE 
production 

Variance with 
Census 2000 

Variance 
with ACSૡ 

Variance with 
ACSതതതതതതିૡ 

mean 0.821 0.375 0.379 0.377 0.304 
min (CA) 0.052 0.050 0.050 0.049 0.048 
Q1 0.226 0.180 0.180 0.171 0.150 
median 0.419 0.303 0.302 0.284 0.240 
Q3 1.052 0.515 0.530 0.507 0.396 
max1* 2.353 0.731 0.778 0.598 0.748 
max2* (DC) 9.271 1.913 2.033 2.199 1.757 

 
*Note: Starting in 2009, the SAIPE estimate of age 5-17 poverty for the District of Columbia (DC) is obtained from 
the county model for this age group, rather than from the state model. (Information about this change is available at 
http://www.census.gov/did/www/saipe/methods/09change.html.) For the table above, results were obtained from a 
state model that included DC, and DC had the maximum variance in all five columns. Given the production move of 
DC to the county model, the table also shows the entries with the maximum variances among the 50 states. 
Delaware had the maximum among the 50 state direct variance estimates, while the maximum in the other four 
columns was for Wyoming. 
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Table D.3 of Appendix D provides summary statistics of Var( ଵܻ) analogous to those of 

Table 8 for the models for the other three age groups (0-4,18-64, and 65+). It also shows that the 
bivariate model with ݕଶ~	ACSതതതതതതହି଼ makes the largest variance improvements. 

 
Note from Tables 8 and D.3 that the results from the SAIPE production model for age groups 

of 0-4, 5-17, and 18-64 are very similar to those from the respective bivariate models with ݕଶ 
corresponding to Census 2000 estimates. This is because for these three age groups the SAIPE 
production models use census residuals as a regression variable, thus making the models nearly 
equivalent to the corresponding bivariate models. For age 65+, the results for the SAIPE 
production model and the bivariate model with Census 2000 estimates are not as close, because 
for this age group the actual census poverty rate is used as a regression variable in the SAIPE 
state model instead of census residuals. 
 

 

6. Summary 
 

We have examined three bivariate models to assess the value of borrowing information from 
Census 2000, previous ACS single-year, or previous ACS multi-year estimates when using the 
models to predict true current year poverty. Direct ACS single-year estimates for the current year 
provided data for the other dependent variable in the bivariate model. We applied the bivariate 
models to county estimates of the log number of age 5-17 children in poverty, as well as to 
county estimates of age 5-17 child poverty rates, for 2009 and 2010. We also applied the 
bivariate models to state estimates of 5-17 child poverty rates for 2009. We then compared 
posterior variances of the current year true poverty measures from the alternative models. In 
every case the results showed that posterior variances from the bivariate model using previous 
ACS multi-year estimates were generally lower than, or at least not larger than, the posterior 
variances from the other two models. We thus conclude that use of previous ACS multi-year 
estimates in SAIPE models in place of Census 2000 estimates may improve results, particularly 
as time advances and the Census 2000 estimates thus become more and more distant from the 
current year. While the differences in posterior variances are not large, at least there is no 
indication from the results that this change would do worse. We also conclude that use of 
previous ACS multi-year estimates may yield better results than using the prior ACS single-year 
estimates. While the greater timeliness of the prior ACS single-year estimates can produce a 
higher correlation between the poverty characteristics estimated by the current year and previous 
estimates, the results suggest that this advantage tends to be offset by the higher sampling error 
of the single-year ACS estimates. 

 
Our analyses, and hence our conclusions, were limited by the use of only two years (2009 

and 2010) of ACS single-year estimates to provide the first dependent variable in our bivariate 
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models. These were the only two years that we could reasonably use at this time in a model 
whose second dependent variable was provided by ACS multi-year estimates for a previous set 
of years. When the first equation was for 2009, we in fact stretched the definition of “multi-year” 
to include the four-year average of ACS estimates from 2005-2008. Despite this limitation, we 
think our basic conclusion that use of ACS multi-year estimates may yield better performance, 
and should at least not produce worse performance than the two alternatives, is solid given two 
considerations. First, we would not expect great differences in performance between using 
previous ACS multi-year versus single-year estimates, just some small to moderate differences 
driven by the trade-off between the slightly better timeliness of the single-year estimates versus 
the lower sampling error of the multi-year estimates. Second, we would expect the performance 
of models with Census 2000 estimates to deteriorate as they become more distant from the 
current year. 

 
Our analyses leave open the question of possible benefits of using more than one of our 

alternative dependent variables in combination with current year ACS estimates in a trivariate 
model. We have started to examine this question and may report some results at a later date. 
Given the strong relations among the variables, however, and given our results, we doubt that a 
trivariate model will yield substantial gains, though such a model would be more complicated. 
Another possibility, a little more complicated, is to combine several years of ACS single-year 
estimates in a multivariate model with a time series structure. Note that use of previous ACS 
multi-year estimates gives equal weight to the data from each of the previous years that comprise 
the multi-year estimate. A time series perspective would suggest effectively downweighting the 
data somehow the further it is from the current year—see Bell (1998b). While it seems doubtful 
to us that this additional complexity would yield substantial improvements, this remains for now 
an open question. 
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APPENDIX A. Summary statistics by county population size groups of the 
variance ratios ࡾࡾ ,, and 	ࡾ for bivariate models of log county poverty 
estimates of children age 5-17. 
 

Table A.1: Results for ࢟ ~ ACS2009 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS2008 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,830 465 571 1,006 537 125 85 41 
mean 1.01 1.05 1.06 1.03 0.96 0.88 0.83 0.84 
min. 0.69 0.86 0.84 0.69 0.70 0.74 0.75 0.74 
Q1 0.97 1.02 1.03 1.00 0.91 0.83 0.80 0.80 
median 1.03 1.05 1.06 1.04 0.97 0.89 0.83 0.84 
Q3 1.06 1.09 1.09 1.07 1.02 0.92 0.85 0.86 
max. 1.19 1.18 1.19 1.19 1.07 1.07 1.04 0.94 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACSതതതതത
05‐08 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,655 342 532 993 537 125 85 41 
mean 0.88 0.94 0.93 0.89 0.81 0.77 0.76 0.83 
min. 0.65 0.82 0.81 0.67 0.65 0.67 0.70 0.74 
Q1 0.83 0.92 0.91 0.86 0.77 0.74 0.74 0.77 
median 0.89 0.94 0.93 0.89 0.82 0.76 0.76 0.82 
Q3 0.93 0.97 0.95 0.92 0.85 0.79 0.78 0.87 
max. 1.05 1.05 1.05 1.02 0.97 0.89 0.87 0.96 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACSതതതതത
05‐08 Var	with	ACSૡ⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,661 342 534 993 537 128 85 41 
mean 0.87 0.89 0.88 0.86 0.85 0.88 0.92 0.99 
min. 0.73 0.82 0.79 0.73 0.73 0.75 0.80 0.84 
Q1 0.84 0.88 0.86 0.84 0.82 0.84 0.88 0.95 
median 0.87 0.89 0.88 0.86 0.85 0.87 0.92 1.00 
Q3 0.89 0.90 0.89 0.89 0.88 0.91 0.96 1.03 
max. 1.15 1.01 1.15 1.04 1.06 1.01 1.05 1.05 
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Table A.2: Results for ࢟ ~ ACS2010 
 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS2009 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,853 461 573 1,019 543 130 88 39 
mean 1.06 1.07 1.08 1.07 1.04 0.99 0.97 0.97 
min. 0.94 0.95 0.98 0.95 0.95 0.94 0.94 0.94 
Q1 1.03 1.04 1.05 1.05 1.01 0.97 0.96 0.95 
median 1.06 1.07 1.08 1.07 1.04 0.99 0.97 0.96 
Q3 1.09 1.10 1.11 1.10 1.07 1.01 0.98 0.97 
max. 1.18 1.18 1.18 1.18 1.17 1.10 1.06 0.99 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS05‐09 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,969 547 594 1028 543 130 88 39 
mean 0.96 0.98 0.97 0.96 0.93 0.92 0.93 0.96 
min. 0.84 0.87 0.87 0.86 0.84 0.86 0.88 0.91 
Q1 0.93 0.96 0.94 0.93 0.91 0.91 0.92 0.94 
median 0.95 0.98 0.97 0.95 0.93 0.92 0.93 0.96 
Q3 0.98 1.00 0.99 0.98 0.94 0.93 0.94 0.97 
max. 1.10 1.10 1.09 1.06 1.01 0.98 0.97 0.99 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS05‐09 Var	with	ACSૢ⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,858 460 575 1019 543 133 89 39 
mean 0.90 0.91 0.90 0.89 0.89 0.93 0.96 0.99 
min. 0.78 0.79 0.78 0.78 0.79 0.84 0.87 0.92 
Q1 0.88 0.89 0.87 0.87 0.87 0.91 0.94 0.98 
median 0.90 0.92 0.90 0.89 0.89 0.93 0.97 1.00 
Q3 0.93 0.94 0.92 0.91 0.91 0.95 0.98 1.00 
max. 1.01 0.97 0.98 1.00 0.98 1.00 1.01 1.01 
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APPENDIX B. Summary statistics by county population size groups of the 
variance ratios ࡾࡾ ,, and 	ࡾ for bivariate models of county poverty 
estimates of children age 5-17. 
 

Table B.1: Results for ࢟ ~ ACS2009 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS2008 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,834 466 573 1,007 537 125 85 41 
mean 0.90 0.95 0.93 0.89 0.84 0.86 0.89 0.93 
min. 0.45 0.46 0.45 0.53 0.63 0.74 0.82 0.85 
Q1 0.83 0.91 0.89 0.83 0.80 0.83 0.87 0.91 
median 0.91 1.01 0.97 0.91 0.85 0.86 0.89 0.93 
Q3 0.98 1.04 1.02 0.96 0.88 0.88 0.91 0.95 
max. 1.10 1.10 1.08 1.07 0.99 0.99 0.98 0.98 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACSതതതതത
05‐08 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,659 344 533 994 537 125 85 41 
mean 0.91 0.95 0.93 0.90 0.87 0.89 0.92 0.95 
min. 0.73 0.77 0.74 0.72 0.74 0.82 0.85 0.88 
Q1 0.88 0.94 0.92 0.87 0.85 0.87 0.90 0.94 
median 0.91 0.96 0.94 0.90 0.87 0.89 0.92 0.95 
Q3 0.94 0.97 0.96 0.93 0.89 0.91 0.94 0.97 
max. 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

 

 
Summary statistics for ࡾ 	ൌ Var	with	ACSതതതതത

05‐08 Var	with	ACSૡ⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,664 343 535 994 537 128 86 41 
mean 1.03 1.03 1.02 1.02 1.04 1.04 1.03 1.02 
min. 0.85 0.87 0.86 0.85 0.92 1.00 1.00 1.01 
Q1 0.95 0.92 0.94 0.95 1.00 1.02 1.03 1.02 
median 1.01 0.95 0.97 0.99 1.03 1.04 1.03 1.02 
Q3 1.05 1.04 1.03 1.05 1.07 1.05 1.04 1.03 
max. 2.03 2.03 1.98 1.66 1.34 1.11 1.06 1.05 
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Table B.2: Results for ࢟ ~ ACS2010 
 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS2009 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,858 464 575 1,019 543 130 88 39 
mean 0.92 0.96 0.94 0.91 0.88 0.90 0.93 0.95 
min. 0.54 0.54 0.54 0.59 0.69 0.81 0.87 0.91 
Q1 0.88 0.94 0.92 0.87 0.85 0.88 0.91 0.94 
median 0.93 0.99 0.97 0.92 0.88 0.90 0.93 0.95 
Q3 0.97 0.94 1.00 0.96 0.91 0.92 0.95 0.97 
max. 1.06 1.06 1.05 1.04 0.99 0.97 0.97 0.99 

 
 

Summary statistics for ࡾ 	ൌ Var	with	ACS05‐09 Var	with	Cen	2000⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,969 546 595 1028 543 130 88 39 
mean 0.97 1.00 0.98 0.96 0.94 0.95 0.97 0.98 
min. 0.80 0.80 0.83 0.82 0.87 0.91 0.94 0.96 
Q1 0.94 0.98 0.97 0.94 0.92 0.94 0.96 0.98 
median 0.97 1.00 0.99 0.96 0.94 0.95 0.97 0.98 
Q3 1.00 1.03 1.01 0.98 0.95 0.96 0.98 0.99 
max. 1.08 1.08 1.06 1.05 0.99 0.99 0.99 1.00 

 

 
Summary statistics for ࡾ 	ൌ Var	with	ACS05‐09 Var	with	ACSૢ⁄  

 All <10k 10-20k 20-65k 65-250k 
250k-
500k 

500k-
1000k 

>1000k 

# counties 2,864 464 577 1019 543 133 89 39 
mean 1.06 1.05 1.06 1.06 1.07 1.06 1.04 1.03 
min. 0.86 0.86 0.92 0.92 0.98 1.02 1.02 1.01 
Q1 1.01 1.00 1.00 1.01 1.04 1.05 1.03 1.02 
median 1.04 1.02 1.03 1.04 1.06 1.06 1.05 1.03 
Q3 1.08 1.06 1.07 1.09 1.09 1.08 1.05 1.04 
max. 1.79 1.78 1.79 1.58 1.31 1.14 1.08 1.06 
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APPENDIX C. The five lowest ࡾ and the corresponding ࡾ in 4 small 
county population size groups from 2009 county poverty rate bivariate models 

 
 

2009 pop 	ܴ1 ܴ3  
ACS 
2008 

Pov rate 

ACS 2008 
Pov rate 

Var 

ACS 
2009 

Pov rate 

ACS 2009
Pov rate 

Var 

 
 

< 10K 

 
0.46 
0.47 
0.50 
0.52 

 
2.03 
2.00 
1.67 
1.66 

 
0.00668 
0.00325 
0.01650 
0.01347 

 
0.000103 
0.000024 
0.000322 
0.000180 

 
0.18 
0.16 
0.30 
0.09 

 
0.0164 
0.0226 
0.0307 
0.0078 

 0.52 1.55 0.01354 0.000189 0.12 0.0074 

 
 

10 – 20K 

 
0.45 
0.45 
0.48 
0.49 

 
1.66 
1.98 
1.95 
1.89 

 
0.00556 
0.00277 
0.00905 
0.00626 

 
0.000031 
0.000011 
0.000096 
0.000044 

 
0.23 
0.21 
0.27 
0.11 

 
0.0144 
0.0115 
0.0147 
0.0067 

 0.51 1.65 0.01138 0.000158 0.17 0.0072 

 
 

20 – 65K 

 
0.53 
0.56 
0.56 
0.57 

 
1.65 
1.66 
1.59 
1.30 

 
0.00962 
0.02597 
0.01451 
0.03065 

 
0.000068 
0.000371 
0.000262 
0.000395 

 
0.21 
0.27 
0.18 
0.11 

 
0.0051 
0.0111 
0.0062 
0.0073 

 0.57 1.44 0.00628 0.000048 0.09 0.0027 

 
 

65 – 250K 

 
0.63 
0.63 
0.66 
0.66 

 
1.34 
1.16 
1.23 
1.27 

 
0.05474 
0.09470 
0.05891 
0.04232 

 
0.000407 
0.000408 
0.000277 
0.000476 

 
0.22 
0.17 
0.20 
0.14 

 
0.0039 
0.0030 
0.0022 
0.0028 

 0.66 1.24 0.08035 0.000269 0.20 0.0019 
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APPENDIX D. Results for bivariate models of 2009 state poverty rates for 
four age groups 

 
Table D.1 Posterior means of parameters (and standard errors of ρ) 

 
 

Age 0-4 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

ρ 0.68 
(0.11) 

0.90 
(0.06) 

0.92 
(0.06) 

s11 4.62 3.83 3.83 

s22 2.48 2.57 2.59 

 
 

Age 5-17 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

ρ 0.65 
(0.12) 

0.86 
(0.07) 

0.77 
(0.10) 

s11 1.62 1.59 1.52 

s22 1.75 1.54 1.67 

 
 

Age 18-64 

ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

ρ 0.67 
(0.10) 

0.93 
(0.06) 

0.87 
(0.06) 

s11 1.16 1.13 1.05 

s22 0.62 0.65 0.65 

 
 

Age 65+ 
ଶݕ ⇒ Cen 2000 ACSതതതതതതିૡ ACSૡ 

ρ 0.88 
(0.05) 

0.99 
(0.01) 

0.98 
(0.02) 

s11 1.56 1.59 1.62 

s22 2.01 2.16 2.33 
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Table D.2 Summary statistics of the variance ratios ࡾࡾ ,, and 	ࡾ 
for three age groups (results for age 5-17 are given in Table 7). 

 
 

Age 0-4 

ൌ ࡾ 
Var	with	ACS2008
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	Cen	2000

ൌ ࡾ 
Var	with	ACSതതതതതషૡ
Var	with	ACS2008

 

mean 0.89 0.76 0.86 
minimum 0.78 0.65 0.69 
Q1 0.86 0.71 0.78 
median 0.89 0.71 0.84 
Q3 0.91 0.81 0.92 
maximum 1.04 0.94 1.03 

 
 

 
Age 18-64 

 ࡾ ࡾ ࡾ 
mean 0.92 0.79 0.86 
minimum 0.84 0.62 0.69 
Q1 0.90 0.72 0.80 
median 0.92 0.79 0.87 
Q3 0.95 0.87 0.93 
maximum 0.98 0.97 0.98 

 
 
 

Age 65+ 
 ࡾ ࡾ ࡾ 

mean 0.82 0.55 0.68 
minimum 0.67 0.43 0.46 
Q1 0.74 0.50 0.59 
median 0.78 0.53 0.67 
Q3 0.85 0.59 0.76 
maximum 1.13 0.94 0.98 
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Table D.3 Summary statistics of Var(ࢅ) for the direct ACS 2009 estimates, 
the SAIPE production model, and bivariate models of the estimates for three age groups 

(results for age 5-17 are given in Table 8). 
 
 

Age 0-4 

 
ACS 2009 
direct est. 

SAIPE 
production 

Variance with 
Census 2000 

Variance 
with ACSૡ 

Variance with 
ACSതതതതതതିૡ 

mean 1.612 0.896 0.894 0.808 0.660 
min (CA) 0.095 0.092 0.092 0.087 0.087 
Q1 0.458 0.397 0.396 0.342 0.319 
median 0.989 0.752 0.742 0.646 0.543 
Q3 2.139 1.215 1.217 1.070 0.892 
max (DC) 7.570 3.578 3.677 3.424 2.878 

 
 

 

Age 18-64 

 
ACS 2009 
direct est. 

SAIPE 
production 

Variance with 
Census 2000 

Variance 
with ACSૡ 

Variance with 
ACSതതതതതതିૡ 

mean 0.128 0.0997 0.09996 0.090 0.073 

min (CA) 0.010 0.0099 0.0099 0.0097 0.0096 

Q1 0.039 0.037 0.0366 0.034 0.0318 

median 0.081 0.072 0.072 0.066 0.056 

Q3 0.162 0.134 0.134 0.125 0.100 

max (DC) 0.724 0.490 0.499 0.440 0.333 

 
 
 

Age 65+ 

 
ACS 2009 
direct est. 

SAIPE 
production 

Variance with 
Census 2000 

Variance 
with ACSૡ 

Variance with 
ACSതതതതതതିૡ 

mean 0.261 0.151 0.141 0.122 0.076 

min (CA) 0.021 0.020 0.020 0.020 0.019 

Q1 0.084 0.071 0.068 0.050 0.040 

median 0.150 0.115 0.109 0.088 0.055 

Q3 0.376 0.232 0.203 0.160 0.095 

max (DC) 1.932 0.516 0.580 0.654 0.391 

 




