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Multivariate Fay-Herriot (FH) model:

yi = Y, +e
= (XiB+uw)+e
where y; = (yi1, - - -, Yin)" are the nx1 vectors of observations (direct survey estimates)
for areas i = 1,...,m, and Y; are the corresponding n x 1 vectors of true population
quantities estimated by y; with sampling error vectors e;. The t™ equation for
t=1,...,n can be written as

!
Yit = Ty By + it + et

which allows for different regression parameters 3, in each equation. Note that
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One could restrict the model to have common regression parameters 3 in each equa-
tion, in which case X;3 would collapse to
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One could also use intermediate possibilities such as different intercept parameters
for each equation but with the remaining 5;s common across the n equations.

The general multivariate model would have Var(u;) = ¥, where ¥, is a general,
symmetric positive definite n X n matrix (n(n 4 1)/2 distinct elements). If n is not
too large, this general model is feasible. Also, we treat Var(e;) = X, as known
(estimated from survey micro-data, though possibly also smoothed over areas in
some way). Assuming u; and e; are both independent over areas i, our model for the
observed data is

yi ~ind. N(X;8,%,,) i=1,....,m

where
Yy =2y + X,



Autoregressive (AR) models for u;:

If the n observations in y; are for different time points, then we may specify 3,
and ¥, to correspond to time series models reflecting the dependence in u;; and e
where t indexes the time points. For ACS data, we assume the e;; are independent

over time, so that
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Some alternative first-order AR models can be specified for u;;. These determine the
form of ¥,, = X¥,(¢), where ¢ denotes the unknown parameters to be estimated in
the model for wu;;.

Stationary AR(1): uy = puit—1 + €it, €t ~ i.i.d. N(0,02), p € (—1,1),
02 = o2/(1 - ), = (o2, p)
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Heteroskedastic AR(1): v = (62 ,...,02 ,p),
T 2 ! ro pZ:; T 2
s, — Tus p 1 - p ‘ Tus
2]l o,

For the case of n = 2, this model is equivalent to a general bivariate model.

Random walk (AR(1) with p = 1): wy = ujt—1 + €it, €t ~ d.0.d. N(0,02),
Y= (o’%l,ag)/,
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Notice that this 3,becomes singular if either 62, — 0 or 0 — 0, so we must watch
if parameter estimation heads towards either of these boundary values. Also, this
covariance matrix is ill-conditioned if n is large, but this should not be a problem if
n is small.



Maximum likelihood (ML) estimation:

The Gaussian log-likelihood function to be maximized over ¢ and 3 is

n

1, B) = —% log(2m) — % Z {log |=y, | + (yi — XiB)'S, (v — XiB) } -

i=1

Maximizing ¢(1), 3) can be accomplished by minimizing the summation term above,
which can be done by iterative generalized least squares. At iteration r:

1. Given estimates B(T), maximize (") (y)) = E(w,fi‘(r)) over 1) to get updated
5 (r)

estimates 1)

2. Given {b(r), estimate 3 by generalized least squares:

(Z Xi[x X) (Z X[m0~ ) (1)

9 (T))

where B = 2,(0") + 2.

We could start this process by estimating 3 by OLS, or by setting Eg) = 3¢, and
computing 3 from (1). Convergence of the above iterations should be fairly rapid.
At the end, we have the MLEs ¢ and (3. The large sample covariance matrix of 3 is
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Var(3 (Z X' ) (2)

where iyi = Eu(@) + 3,. The large sample covariance matrix of ¥ is given by
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evaluated at ¢. This can be computed using numerical derivatives, though many
optimization routines will automatically provide it. The large sample covariance
between 1) and [ is zero.

One can also use a Bayesian approach to inference, which will require some form of
simulation. A standard prior for these models would be a flat prior just restricting the
variances to be non-negative and p € (—1, 1). With this prior the posterior, p(¢, Bly),
where y = (y1,...,yn) is all the data, is proportional to the likelihood, and a large
sample approximation to the posterior treats it as normal with mean vector given
by the MLEs z} and B, and covariance matrix given by the large sample covariance
matrix of 121 and 3. One can easily simulate from this normal approximation to the
posterior.



For exact Bayesian calculations it is useful to note that

p(, Bly) = p(¥ly)p(Bly )

where p(B|y,?) is a normal density with mean and covariance matrix given by the
GLS results (1) and (2), and p(|y) can be readily calculated from p(v, Bly)/p(Bly.¢)

= p(v, B)(¢, B)/p(Bly,») where p(¢,3) is the prior (possibly just a constant). If
one can simulate from p(v|y), appending to each simulated 1 a simulation of 3 from
its conditional normal distribution, p(8|y,%), yields a simulation from p(1, Bly). For
the first and third models discussed above, ¥ has only two elements, so independent
simulations from p(¢|y) could be obtained by rejection sampling. Alternatively,
the Metropolis-Hastings (MH) MCMC algorithm could be used. The MH approach
could also be used when 1) has a large enough dimension to make rejection sampling
inefficient, which can be the case for the heteroskedastic model when n is not very
small.

Small area prediction:

If we knew the parameters ¢ and 3, the minimum mean squared error predictor
of Y; would be, from standard multivariate normal results

E(Yily,v.8) = E(Yilyi, v, 8) = Xif + Zu(¥) ! (yi — XiB). (3)
In practice, we can substitute the MLEs, ¢ and 3, into (3) yielding
Vi = XiB + Zu ()3, (vi — Xi). (4)

Note that X, also depends on 121 For the Bayesian approach, (4) with 1 instead
of gives F(Y;|y,®). Given simulations of ¢ from its posterior, p(¢)|y), we can
calculate (4) for each simulated 1 and then average the results over the simulations
to approximate the posterior mean, E(Y;|y), which is the Bayesian MMSE predictor.

The prediction error of Y can be written
Y, - Yi=(Y; - Y)+ (Y, - Y)) (5)

where we use the notation Y; for E(Yilyi, ¢, 8) given by (3). The two terms on
the right-hand-side of (5) are orthogonal, so the prediction error variance of Y; is
Var(Y; —Y;) = Var(Y; — Y;)+Var(Y; —Y;). To derive this we rewrite (3) as

E(Yily,,v,8) = yi— Eleily:i, v, 8)
= yi— 32, (vi — XiB)

and similarly for (4), from which one can easily see that

Y- Y =%, 2,'X:(8 - B).
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Also, from standard results, given 1, Var(Y; — Y;) = 2, (1) — Su(¥)8, 0 (¥) =
Ye, — 2, 2;1_1261.. Therefore,

Var(Y; — ¥i) = {Se, = 26,5, 5, } + .5, X Var(8 - B)X,Z,'%.,.  (6)

Notice that this depends on ¢ through X, and Var(8 — B) This result accounts
for error due to estimating 3, but not for error due to estimating 1. If the number
of observations is large compared to the number of elements of ¢, the error due to
estimating v should be unimportant.

For the Bayesian approach, (6) gives the variance of Y; conditional on both y
and v, Var(Y;|ly,®). Given simulations of ¢ from its posterior, p(¢|y), we can
approximate the posterior variance, Var(Y;|y), using

Var(Y;ly) = Eyy[Var(Y;ly, ¥)] + Varyy [E(Yly, )]

where Var(Y;|y, ) is given by (6), E(Y;|ly,¢) is given by (4) with v replacing
1%, and Ey, and Vary, denote the expectation and variance under the posterior
p(1]y). We approximate Ey,[Var(Y;ly,v)] by averaging the values of Var(Y;|y,)
computed for each simulated value of 9, and we approximate Var,, [E(Y;|y, )] by
taking the sample variance of FE(Y;|y,%) across the simulations of ¥. If we use a
normal approximation to p(i|y) to obtain the simulations of v, these results could
also be taken as an extension to the ML prediction results to obtain an improved
Var(Y; — Y;) that also accounts for the error in estimating 1.



