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Abstract

Our main objective is to call national statistical agencies’ attention to the need to express uncertainty
in rankings based on data from sample surveys. We share some simple and easy to use methods for
presenting uncertainty in estimated rankings. We see promise with the bootstrap.
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1. INTRODUCTION

We rank k populations with random variables Y; from smallest to largest based on the values of some
associated real-valued parameters 6;, for i = 1, ..., k. When the value of ; is unknown, we use observed values
Yi1, ..., Yin, in a random sample from population ¢ to compute éi as an estimate of 6;, for all i. So assume
k independent sample survey estimates él, ,ék and associated standard errors SFjy, ..., SEy are used to
produce estimated rankings. For example, the U. S. Census Bureau’s American Community Survey (ACS)
produced 85 different rankings of the k = 51 states (50 states and Washington, D.C.) based on observed
sample estimates during 2011. One of those rankings ranks the states based on éi, the estimated mean travel
time to work for workers 16 years and over who did not work at home (minutes) for state i.

Beginning with pair-wise comparisons, we consider and modify some known practices, assisted by visu-
alizations. In Section 2, we illustrate four methods comparing a pair of populations using normal theory,
and in Section 3, we define three uncertainty measures and their estimates for the estimated ranks using the
bootstrap (nonparametric/parametric). For all seven methods illustrated, we only need the k sample esti-
mates 6; and their associated standard errors SE;. We end by introducing the concept of “a most probable
ranking” inspired by classical nonparametric methods.

A nation’s official statistics should be widely understood and robust, among many other properties. These
two desired characteristics are shared by classical probability design-based and model-assisted sampling
methods (e.g., Cochran, 1977; Fuller, 2009; Lohr, 2010; Sirndal, Swensson, and Wretman, 2003) that are
commonly used by national statistical agencies around the world, and they are also inherent in classical
nonparametric methods using ranks (e.g., see Hollander and Wolfe, 1999).

2. VISUALLY COMPARING PAIRS OF STATES USING NORMAL THEORY

2.1. Comparing One Reference State Against Each of the Other States - Version I
For population i, we treat the SE; estimates as though they were known constants. Let * be a specific
reference population among the k populations with estimate 0, and standard error SE,.
Assuming 6, and 6; are independent and each normally distributed for i # x, it is known that a 100(1—«)%
confidence interval for 6; — 6, is given by

(6= 6.) = 24 VSEZ+ (SE? , (6 — b.) + 25 /(SE)? + (SE.)%) (1)

where zg = O-1(1 - %) At significance level «, to test Hy : 0; =0, vs Ha : 0; # 0., reject Hy in favor of
H 4 if the interval (1) does not contain zero (0); otherwise, we do not reject Hp.

Figure 1 gives an estimated ranking of the 51 states based on estimates 0, for the i*" state’s mean travel
time to work. Each column presents results of fifty tests - each comparing the reference state noted at the
bottom with one of the other fifty states. In each column, shaded states do (unshaded states do not) differ
from reference state for mean travel time to work (minutes). The significance level for each test comparing

0, with each 6; is £ = -002 (Bonferroni corrected). The family-wide (or overall) significance level for all

fifty tests simultaneously being compared in each column is 0.1. For the USA, 6 = 25.51 and SE = 0.02.

2.2. Comparing One Reference State Against Each of the Other States - Version II
Relative to zero (0), Figure 2 gives 50 different confidence intervals for the differences 6; — 6, for reference
state * = Colorado (CO) for mean travel time to work and ¢ # . We use a Bonferroni correction for the
tests as noted in Section 2.1. The bold intervals show the states that are statistically significantly different



from CO, while the non-bold intervals show the states that are not statistically significantly different from CO.

2.3. Comparing One Reference State Showing Its Confidence Interval with Each of
the Other States Showing Their “Comparison Intervals”

Given a reference state * with a 100(1 — )% confidence interval for 0, as given in (2), Almond, Lewis,
Tukey, and Yan (2000) show that it is possible to construct an interval (é, —w;, 0; + w;) for state i # x such
that when the two intervals overlap, 6; and 6, are not statistically significantly different at level o, whereas
if the two intervals do not overlap, then 6; and 6, are statistically significantly different.

(9* —z%SE* , 0, +Z%SE*) (2)

The appropriate value of w; is w; = zg \/(SE.)? + (SE;)? — 25 SE. . Relative to 0., we refer to the interval

(éz — wj, él + w;) as a “f. comparison interval for 6;.” The comparison interval for 6; is not a confidence
interval, while the interval for 6, is a confidence interval.

Figure 3 shows results of fifty tests (each Bonferroni corrected at level £ = .002, and overall level v = 0.1)
comparing reference state CO with each of the other states. We see that CO’s mean travel time to work is
significantly different from all of the states except MS, AL, NV, MI, TN, LA, AZ, TX, CT, DE, and WV.
Remark 1: While visually different, Figure 3, Figure 2, and the column for CO in Figure 1, all provide the
same comparison results for CO. In Figure 3, the usual 99.8% confidence interval for the reference state CO
(0.) is shown explicitly; the (Bonferroni-corrected) “comparison intervals” are not usual confidence intervals.
On the other hand, all of the intervals in Figure 2 are the usual 99.8% confidence intervals for 6; — 6., but
we do not see the 99.8% confidence interval for 6,. No confidence intervals are shown in Figure 1.

2.4. Comparing A Pair of States by Presenting Meaningful Overlapping/Non-
overlapping Confidence Intervals Appropriately for Each State in the Pair

Figure 4 gives 90% confidence intervals for each state. What can we say about 6; vs 6; if their confidence
intervals overlap or if they do not overlap? If the desire is that the level of significance be a, Goldstein and
Healy (1995) show how to adjust the confidence coefficient to a value, say 100(1 — a4)%, such that if the
100(1 — @4)% confidence interval for 6; does not overlap an independent 100(1 — a4)% confidence interval
for 0;, then we can declare 6; and §; as statistically significantly different at significance level . Also if the
100(1 — @a)% confidence intervals do overlap, we can not declare that ; and 6; differ at level a.
Comparing One Pair of Populations i and j: Let (SE;;)? = Var(6; —60;) = (SE;)? + (SE;)%. One can
show that |0; — ;] > zoa (SEi + SE;) if and only if the 100(1 — c4)% confidence intervals for 6; and 6; do
not overlap. Thus the probability of a Type I error under the hypothesis 0; = 0; is

vj = P (\éi —0j] > 204 (SE; + SEj)) = 2 (1 - @(ZQTA%)) . (3)
Thus (3) relates v;; and Zea (hence a and Z"TA) for given values of SE; and SE;. So if we want the
probability of a Type I error 7;; to be equal to a specific value, say o, then we are able to determine a4
such that when the two 100(1 — cc4)% confidence intervals for 8; and 6; do not overlap we can correctly say
that 6; and 6; are statistically significantly different at significance level o. Also when they do overlap, we
would not be able to say they differ at level a.

Using estimates 6; and SE; from Figure 1, we give two examples illustrating the method of Goldstein and
Healy (1995). Ezample 1: Comparing the Pair of States AZ and CO - For AZ (6az) and CO (0co), we can
determine for o = 0.1 that we have 100(1 —a4)% = 76% confidence intervals for 647 and ¢ respectively as
(24.62, 24.98) and (24.28, 24.72) which do overlap. Thus we would infer that 647 and Oy y are not different
at o = 0.1. Also, a 90% confidence interval for 47 — 0co is (-0.10, 0.70) which does contain 0. Example 2:
Comparing the Pair of States AZ and WY - For AZ (04z) and WY (Owy), we can determine for a = 0.1
that we have 100(1 — a4)% = 81% confidence intervals for 847 and Oy y respectively as (24.56, 24.96) and
(17.44, 18.76) which do not overlap. Thus we would infer that 847 and Oy y differ at « = 0.1. Also, a 90%
confidence interval for 647 — Oy is (6.57, 6.75) which does not contain 0.

Comparing All Pairs of Populations i and j: Goldstein and Healy (1995) note, “Where there are more
than two (populations), we propose that (a4) should be selected so that the average value of ~;; over all
(i,4) is a predetermined value, say «, typically 0.05 or 0.01. For a given data set, this can be determined by a
straightforward search procedure. A starting point for z oa is the average of z o % taken over all the

pairs (i, 7). The confidence interval for the i*" (population) is then given by (él —Zoa SE; , 0; + Zoa SEi) 7



Remark 2: Figure 5 permits a visual comparison of any pair of states. For example, the 77.49% confidence
intervals for Iowa and Kansas overlap; hence we would not be able to say that Iowa and Kansas differ for an
average significance level of &« = 0.1. On the other hand, the 77.49% confidence intervals for Towa and Idaho
do not overlap. Thus we would say that Iowa and Idaho differ for an average significance level of o = 0.1.

3. BOOTSTRAPPING AND RANKING

3.1. Some Uncertainty Measures for Estimated Ranks

In Section 2, we presented uncertainty in the estimated ranking through confidence intervals and hy-
pothesis tests for individual 6;’s and for the pairwise differences 6; — 6;. Alternatively, one may consider
the individual ranks as the parameters of interest and make inferences on them directly. The unknown true
ranks are denoted by 1, ra, ..., 7, and formally, we define the rank for the i*" smallest population as

k
ri=» I(0; <0;) =1+ I(6;<0;), for i=12, .k (4)
Jj=1 Jij#i PN A
The estimated ranking, computed based on the estimates 61, 0o, ..., 0, is denoted by 71, 7o, ..., Tg, where
fi=14 Y I(0;<0;), for i=1,2 .k (5)
i

Uncertainty in é,- induces uncertainty in #;. Some uncertainty measures for 7; follow.
(a) A collection of k confidence intervals for the unknown ranks r1,rs, ..., 7, as suggested by Barker,
Smith, Gerzoff, Luman, McCauley, and Strine (2005) and Goldstein and Spiegelhalter (1996).
(b) A collection of k estimates of the probabilities P (|#; — ;| < ¢) for some chosen value of ¢, as
suggested by Klein and Wright (2011).
(¢) An estimate of the joint probability P (|71 — ri| < ¢, |fa — 12| < ¢, ..., |Fr — 1| < ¢) as mentioned
by Klein and Wright (2011).
How are estimates of the quantities (a) - (c¢) computed (by the statistical agency) and how are they
interpreted (by the data user)? See Sections 3.2 and 3.3.

3.2. Bootstrap Estimation

The bootstrap (Efron, 1979) provides a clear-cut way to compute/estimate the uncertainty measures (a)
- (c¢) above; it is a computer intensive statistical method with broad applications (Shao and Tu, 1995).
Nonparametric Bootstrap: In the nonparametric bootstrap, we estimate each of the k£ population cumu-
lative distribution functions Fi(y), F2(y), ..., Fx(y) by the empirical distribution functions defined as

1 & ,

j=1

Note that Fl(y) places equal probability on each of the observed data points Yj1, Yo, ..., Yi,,. An esti-
mate of a quantity such as P (|#; — ;| < ¢) is then obtained by computing this probability for the case that
Fi(y), F5(y), ..., Fr(y) are replaced by their estimates Fi (y), F2(y), ..., Fr(y). Even when Fy(y), Fa(y), .., Fx(v)
are replaced by the estimates, quantities such as (a) - (¢) in Section 3.1 may still be difficult to calculate ana-
lytically, and therefore a Monte Carlo estimator is used. Thus to obtain nonparametric bootstrap estimates,
we use the following algorithm.
Step 1. Draw Y;3,Y;5, ..., Y, as a simple random sample with replacement from Y;1,Yio,...., Yin,. Do
this independently for each i = 1,2, ..., k.
Step 2. (a) Compute the bootstrap analog of §; which is defined as 8 = 6,(Y%, Y55, ..., Y, Vi
(b) Compute the bootstrap analog of #; which is defined as 7 = 1+ Z I(é;k <0 Vi
jiji
Step 3. Repeat Steps 1 and 2 a total of B times where B is sufficiently large to get (7] 1,751, ..., 7} 1),
(P11 2573 95 s T 2)y ooy (P1 5575 gy - 71 g), & collection of bootstrap replications of the ranks.

Given the bootstrap replications of ranks, a bootstrap estimate of P{|#; — r;| < ¢} is obtained as

B
. . 1 - .
Poootr{|fs =il < ¢} = & ;Iﬂri,b — il <c}, (7)
and a bootstrap estimate of P (|#1 — r1| < ¢, |fo — ro| < ¢, ..., [P — 7| < ¢) is obtained as
B
> ~ ~ 1 Ak ~ A% ~
Proot (|F1 — 11| < ¢y oy [P — 15| <€) = B ZI{\rl,b =] < TRy — | <} (8)
b=1



An approximate 100(1 — a))% bootstrap confidence interval for r; can be obtained as
*(5)  x(1-%)
. . [P, 7 ] (9)
where 72: %) and ff (1-%) denote, respectively, the empirical § and 1—% quantiles of the bootstrap replications
771,72, 7; g- The confidence interval (9) is called the bootstrap percentile interval (Efron, 1981).

Parametric Bootstrap: When the sampling distribution of each 0; is well approximated by a normal
distribution, and the SE; are provided for all 4, it is natural to use a parametric bootstrap procedure in
which we generate bootstrap replications of 6,605, ..., 0 directly from normal distributions as given in the
following algorithm.

Step 1. Draw é:‘ from N(éi, SE;), independently for i = 1,2, ..., k.

Step 2.  Compute the bootstrap analog of #; which is defined as 7} =1+ Z I( A}‘ < é:) fori=1,2,..., k.

JijFi
Step 3. Repeat Steps 1 and 2 a total of B times where B is sufficiently large to get (7] 1,751, ...,7} 1),
(P11 2573 95 s T 2)y ooy (P11 5575 gy - 71 g), & collection of bootstrap replications of the ranks.
Given the bootstrap replications of the ranks using this procedure, estimates of the various uncertainty

measures are obtained using the estimators (7) - (9). Notice that the parametric bootstrap algorithm gener-
ates éf, é;, . é,ﬁ directly, as opposed to the nonparametric bootstrap which first takes a random sample from
the underlying data Y;i, Yis, ..., Yin,. Thus the parametric bootstrap in this case has three potential advan-
tages over the nonparametric bootstrap: (i) it requires less computation and hence will run more quickly, (ii)
it has less code to debug, and (iii) it can be applied in situations where él, ég, ...,ék and SE{,SE,,...,SE}
are available or otherwise known but the underlying data are not. The normality approximation is critical.
Remark 3: In the spirit of (7) - (9), we can also compute various other “nonparametric or parametric
bootstrap estimates of probabilities,” such as: (1) P(estimated rank of state ¢ is among 5 highest) =
P(r; € {47,48,49,50,51}); (2) P(estimated ranks of states ¢ and j are among 4 highest) = P(7; € {48, ...,51},
7; € {48,...,51}); and (3) P(estimated rank of state 4 is higher than estimated rank of state j) = P(7; > 7).
Remark 4: An alternative form of the parametric bootstrap (actually the more commonly used form in some
applications) can be obtained if we assume a parametric model F;(y|p;) for F;(y), i = 1,2, ..., k, where ¢; is
an unknown parameter vector and F;(y|p;) is known when the value of ¢; is known. We draw samples of
sizes nq, ..., ny from the estimated populations Fi (y|@1), ..., Fi(y|@r ), respectively, where ¢; is an appropriate
estimate of ¢;. To be clear, this alternative form of the bootstrap requires a model assumption on the data,
and not an assumption about the estimates §; where the central limit theorem is more likely to apply.

3.3. Application to American Community Survey Travel Time to Work Data

Using the parametric bootstrap and the 6; and SE; from Figure 1 for the k = 51 states, we estimate the
uncertainty measures (a) - (¢) from Section 3.1; the results are reported in Tables 1 and 2 for B = 100000.
Remark 5: Note that the event |#; — ;| < ¢ is equivalent to the event #; — ¢ < r; < #; 4 ¢, and hence
P{|#; — ri| < c} = P{#; — ¢ <r; <# + c}. Therefore, noting that 1 < r; < k, one can think of

[max{#; — ¢, 1}, min{#; + ¢, k}| (10)

as a confidence interval for the unknown rank r;, where the bootstrap estimated probabilities in Table 1 give
estimates of the confidence coefficient of the interval for ¢ = 0,1,2,3. As an illustration, suppose we want
a 0.90 level confidence interval for Nebraska’s rank (whose estimate is #; = 3). From Table 1, we find that
the estimates of P{|f; — r;| < ¢} are 0.31, 0.71, 0.94, and 1.00 for ¢ =0, 1, 2, and 3, respectively. Thus we
would take [3 — 2,3 + 2] = [1, 5] as an approximate level 0.90 (approximate confidence coefficient is actually
0.94) confidence interval for Nebraska’s rank.
Remark 6: Next consider the quantities 7; (9 and 7y (:9) " also displayed in the last two columns of Table
1 for each state ¢ = 1,..., k. Based on the bootstrap percentile method for obtaining a confidence interval,
these quantities can be interpreted as the left and right endpoints, respectively, of an approximate level
0.90 confidence interval for the unknown rank r;. Thus, based on this method, we find that a 0.90 level
confidence interval for the rank of Nebraska is [3, 6], which is different from the interval of [1, 5] reported in
the preceding paragraph as an approximate 0.94 level confidence interval for Nebraska’s rank. It is worth
noting that Nebraska’s point estimate (18.06) with #; = 3 is much closer to those point estimates (18.10,
18.18, and 18.39) of states with 7; = 4,5, or 6 than those (16.86 and 16.91) for states with 7#; =1 or 2. So
the symmetric 7; £+ 2 confidence interval is quite different from the equal tail bootstrap percentile interval.
Remark 7: The estimates of the joint probability P(|f1—r1| < ¢, |[fa—ra| < ¢, ..., [P —1%| < ¢) are presented in
Table 2 for ¢ = 0,1, ..., 8. One can interpret the estimated probabilities as approximate confidence coefficients
for a joint confidence set on the entire ranking (r1,7s, ..., 7x) whose form is the rectangular region:



[max{7; — ¢, 1}, min{#; + ¢, k}] X -+ X [max{7x — ¢, 1}, min{# + ¢, k}]. (11)
For example, we see from Table 2 that with ¢ = 5 the estimated confidence coefficient of the above region (11)
is approximately 0.93. Therefore we can claim that we are an estimated 90% confident that simultaneously
the rank of each state is contained within the interval formed by adding and subtracting 5 from each estimated
rank. This method provides a straightforward way to make an overall inference on the ranking, without the
need for any further adjustment for multiple comparisons.
Remark 8: Notice that we have two reasonable methods for obtaining an approximate confidence interval on
an individual rank r;, namely, (i) take the interval as (10) and use the bootstrap to estimate the confidence
coefficient, and (ii) the bootstrap percentile confidence interval given by (9). The question of which of these
intervals is preferable requires further investigation and we will not pursue it here.

4. MOST PROBABLE RANKING

So far in this paper, we have focused on ranking by considering an ordering of 6;. We will briefly explore
consideration of comparing populations with probability statements such as P(Y; < Y3), where Y; and Y5 are
independent continuous random variables associated with populations 1 and 2, respectively. In the context of
the travel time to work variable used throughout this paper, this probability can be viewed as the probability
that a random person selected from state 1 has a shorter travel time to work than a random person from
state 2.

Assuming k = 3, we motivate the concept of a most probable ranking. Assume random variables Y7, Y5,
and Y3 with independent continuous distributions. For the 3! = 6 possible orderings, define the probabilities
Pioz = P{Y1 < Y3 < Y3}, Pigo = P{Y1 < Y3 <Ya}, Pz = P{Yo <Y1 < Y3}, Poz1 = P{Yo < Y3 <Y1},
P32 = P{Y5 < Y1 < Yo}, and P91 = P{Y3 < Yo < Y;}. We define the most probable ranking of the
three populations as the permutation of {1,2,3} that corresponds to max{ P23, Pi32, P213, P231, Ps12, P321}-
Because there could be more than one ordering with the largest probability, we will think of the expression,
a most probable ranking. Given independent random samples of sizes ni,ns, and n3 respectively from the
three populations, it seems reasonable that one could estimate a most probable ranking by considering all
tuplets of order £ = 3 with one observation from each sample and counting the frequency of each of the 6
orderings based on the samples. An estimator of a most probable ranking is the ordering among the tuplets
with the highest frequency. If more than one ordering has the highest frequency, we can report all such
orderings as most probable rankings. The extension to k populations is conceptually straightforward. There
seems to be a role for bootstrap in this.

5. CONCLUDING COMMENTS

See Remarks 1 - 8. Future research will evaluate the confidence regions in (9) - (11) and explore the
concept of a most probable ranking.
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