
Applying Bivariate Binomial/Logit Normal Models to Small Area Estimation

Carolina Franco1 and William R. Bell2

1Center for Statistical Research and Methodology, 2Research and Methodology Directorate
U.S. Census Bureau

Washington, DC 20233

Abstract

The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program esti-
mates poverty for various age groups for states, counties, and school districts of the U.S. We focus
here on poverty estimates of school-aged (5-17) children for counties. The corresponding SAIPE
production model applies to log transformed direct survey estimates for each county of the num-
ber of 5-17 year-olds in poverty, with logged covariates obtained from tabulations of administrative
record sources (e.g., tax return data) and a previous census (2000) long form estimate. We explore
an alternative model assuming a binomial distribution for rescaled survey estimates of the number
of school-aged children in poverty, with an effective sample size defined so the variances of the
binomial proportions equal the corresponding sampling variance estimates. The model assumes
a normal distribution for logits of the underlying county poverty rates, with a mean function us-
ing logit covariates derived from the covariates of the production SAIPE model, and with additive
random effects. We apply a bivariate version of this model to direct estimates from the American
Community Survey (ACS) for 2011 and the previous 5-year (2006-2010) ACS estimates.

Keywords: Small Area Estimation; Complex Surveys; American Community Survey; Bivari-
ate Model; SAIPE.

1. Introduction

The U.S. Census Bureau’s SAIPE (Small Area Income and Poverty Estimates) program
provides updated poverty estimates for various age groups for states, counties, and school
districts of the U.S. These estimates are provided to facilitate the administration of federal
programs and the allocation of federal funds to local jurisdictions. This includes the use of
SAIPE’s school district age 5-17 poverty estimates by the U.S. Department of Education in
allocating funds (over $14 billion in 2011) under Title I of the No Child Left Behind Act
of 2001.

SAIPE produces state and county poverty estimates using linear Fay-Herriot models
(Fay and Herriot 1979, Rao 2003) applied to direct poverty estimates from Census Bureau
surveys. Prior to 2005, SAIPE used estimates from the Current Population Survey (CPS)
for this purpose; since 2005, SAIPE has used estimates from the American Community
Survey (ACS) due to its larger sample size. Covariates in the SAIPE Fay-Herriot models
come from tabulations of administrative records data related to income and poverty (tax
data and Supplemental Nutrition Assistance Program (SNAP) data), plus poverty estimates
from the previous Decennial Census. Since there was no long form sample in the 2010 Cen-
sus, and hence no 2010 Census poverty estimates, the “previous Census estimates” since
2000 have been those from Census 2000. Due to lack of reliable updated covariate data
at the school district level, SAIPE has not yet used formal statistical models in producing
the school district poverty estimates. SAIPE has instead relied on an allocation scheme ap-
plied to the model-based county poverty estimates that makes use of both previous census
poverty estimates and current year tabulations of tax data for school districts (Maples and
Bell 2007). Further information on SAIPE models, estimation procedures, and data sources
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is given on the SAIPE web site at http://www.census.gov/did/www/saipe/index.html. Fur-
ther information on the ACS is available at http://www.census.gov/acs/www/.

In this paper, we focus on modeling county poverty rates of school-aged (5-17) chil-
dren. In particular, we examine a model that assumes a binomial distribution for “observed”
sample numbers of school-aged children in poverty by counties. The observed values are
obtained by multiplying the direct ACS estimate of the county poverty rate for school-age
children by an “effective sample size” determined so the resulting binomial variance repro-
duces an estimate of the variance of the direct ACS estimate of the number of 5-17 year-old
children in poverty. The true binomial proportion pi (true 5-17 poverty rate) is assumed to
follow a linear model for log(pi/(1− pi)).

Our model features another change to the SAIPE production county model, this in re-
gard to the use of previous Census estimates. Though the estimates from Census 2000
still provide useful covariates (having statistically significant coefficients) in the state and
county models, there are natural concerns about possible declines in their relevance as they
become further out-of-date. Since the ACS has now supplanted the census long form, it is
also natural to consider ways of using recent past ACS estimates to replace the previous
census estimates in the SAIPE models. Huang and Bell (2012) studied this for linear bi-
variate Fay-Herriot models of state and county level poverty and found no indication that
replacing Census 2000 estimates by prior ACS 5-year estimates would lead to a loss of ac-
curacy, and found some suggestion that this could produce a slight improvement. Further
improvements could be realized as time progresses and the Census 2000 estimates become
more distant from the current production year.

We bring ACS 5-year estimates into our model by using a bivariate binomial/logit nor-
mal model analogous to a linear bivariate Fay-Herriot model. (For discussion of the latter,
see Bell (2000) or Huang and Bell (2012).) The important aspect of the bivariate model is
that it appropriately recognizes the varying levels of sampling error across counties in the
ACS 5-year estimates. This aspect is ignored if prior ACS estimates are simply included
in the model as an additional regressor.1 Huang and Bell (2012, pp. 18-22) illustrate this
point.

The rest of the paper proceeds as follows. Section 2 reviews the production SAIPE
county 5-17 poverty model. Section 3 presents the bivariate binomial / logit normal model,
while Section 4 presents results from application of this model to ACS data for 2011, and
comparisons of these results to results from the production county model. Section 5 con-
siders future research. Some additional alternative bivariate county poverty models are
discussed there, some of whose univariate versions have been previously investigated by
some of our Census Bureau colleagues. These additional alternatives include some non-
linear Gaussian models and some models with alternative (to the logit) link functions. We
also discuss a model that, rather than use past ACS 5-year estimates, incorporates 5 years
of past ACS single-year estimates individually via a first-order autoregressive structure.

1This issue also exists with using previous census estimates as a regression variable in county models,
though it is less important there since the census long form had an even larger sample than that of ACS. The
issue does not arise for using previous census estimates in SAIPE state models, since at the state level the long
form estimates had negligible sampling error.
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2. The SAIPE County 5-17 Poverty Model

The production SAIPE model follows the general model of Fay and Herriot (1979), which
can be written

yi = Yi + ei i = 1, . . . ,m (1)

Yi = x′iβ + ui (2)

where Yi is the population characteristic of interest for area i, yi is the direct survey estimate
of Yi, ei is the sampling error in yi, xi is a p × 1 vector of values of regression variables
for area i, β is the corresponding vector of regression parameters, and m is the number of
small areas. The sampling errors ei are generally assumed to be distributed independently
over i as N(0, vi). The sampling variances vi are typically treated as known although, in
reality, they are estimated from survey microdata. The area random effects ui (also called
“model errors”) are usually assumed to be distributed i.i.d. N(0, σ2u) and independently of
the ei.

The unknown parameters of the model given by (1)–(2) are β and σ2u. Given a value for
σ2u, β can be estimated by weighted least squares regression of yi on xi for i = 1, . . . ,m
using weights (σ2u + vi)

−1. There are various ways of estimating σ2u such as method of
moments, maximum likelihood (ML), or restricted maximum likelihood (REML). One can
apply these in an iteration that alternates estimation of β given σ2u with estimation of σ2u
given β.

If σ2u and the vi are known, standard best linear unbiased prediction (BLUP) results
give the predictors Ŷi and their error variances:

Ŷi = hiyi + (1− hi)x′iβ̂ (3)

Var(Yi − Ŷi) = σ2u(1− hi) + (1− hi)2x′iVar
(
β̂
)
xi (4)

where hi = σ2u/(σ
2
u + vi). In practice, we substitute σ̂2u and the estimated vi into the above

formulas and into the expression for hi. Asymptotic corrections to Var(Yi − Ŷi) are avail-
able to account for error in the estimation of σ2u. One can also use a Bayesian approach to
develop posterior distributions of the model parameters given the data y = (y1, . . . , ym)′,
as well as posteriors of the unobserved population characteristics Yi. The latter provide
Bayesian prediction results analogous to (3) and (4) through the posterior means and vari-
ances, E(Yi|y) and Var(Yi|y). See Rao (2003) for more details on estimation and predic-
tion for the Fay-Herriot model.

The SAIPE production county 5-17 poverty model is of the form of (1) and (2) with
a transformation, namely, yi equals the logarithm of the ACS estimate of the number of
persons age 5-17 in poverty for county i, and Yi equals the logarithm of the true num-
ber of persons age 5-17 in poverty in the county. The sampling variances of the logged
survey estimates are estimated directly by a replication method that is discussed in the
context of the SAIPE state model by Fay and Train (1995). The unknown model param-
eters β and σ2u are estimated by ML. Prediction results from (3) and (4) apply on the log
scale, and are translated to prediction results for the number of 5-17 year-olds in poverty
using properties of the lognormal distribution. Thus, the predictor of the number of 5-17
year-olds in poverty is exp{Ŷi + 1

2Var(Yi − Ŷi)}, and the estimated prediction MSE is
exp{Var(Yi − Ŷi)− 1} exp{2Ŷi+Var(Yi − Ŷi)}. The predictions are then raked (rescaled)
to force agreement with corresponding state level predictions of the number of 5-17 year-
olds in poverty obtained from the SAIPE state model. Adjustments are also made to the
county prediction error variances to approximately account for this raking.
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The regression variables in xi for the SAIPE 5-17 county poverty model include the
constant 1 for an intercept term, and the following:

• log of the number of “poor child exemptions” for the county, i.e., child exemptions
claimed on tax returns whose adjusted gross income falls below the official poverty
threshold for a family of the size implied by the number of exemptions on the form;

• log of the number of county SNAP benefits recipients in July of the previous year;

• log of the estimated county population age 0-17 as of July 1;

• log of the total number of child exemptions in the county claimed on tax returns; and

• log of the Census 2000 county estimate of the number of related children in poverty
ages 5 to 17.

“SNAP” refers to the Supplemental Nutrition Assistance Program (formerly known as the
Food Stamp Program) managed by the Food and Nutrition Service of the U.S. Department
of Agriculture, which provides the recipients’ data.

For some counties with small samples, the direct ACS estimate of the number of 5-
17 year-olds in poverty is zero. Since logs cannot be taken of these zero estimates, such
counties are dropped from the model fitting. The number of counties dropped varies some
year-to-year, but is always small with ACS data. In 2011, for example, 126 counties were
dropped out of 3,143 counties in the U.S. Also, since the counties dropped invariably have
small samples, the proportion of the sample information dropped is even less than is indi-
cated by the number of counties dropped and so has very little effect on the model fitting
and predictions. Prediction results for the counties dropped can still be obtained with the
estimated model from (3) and (4), treating such counties as if they supplied no data. One
can equivalently look at this as letting vi → ∞ for any county with zero poor 5-17 in
sample, implying hi → 0 and ŷi → x′iβ̂ in (3).

The preceding discussion referred to the county 5-17 poverty model used for the 2011
estimates. Model changes from year-to-year, when any changes at all are made, have gener-
ally been slight, except in 2005 with the switch from using CPS to using ACS data. Further
information on the SAIPE models, including documentation of the models used in prior
years and discussion of the input data sources, can be found on the SAIPE web site at
http://www.census.gov/did/www/saipe/.

3. A Bivariate Binomial/Logit Normal Model for County 5-17 Poverty

The linear Fay-Herriot model may be replaced by a Generalized Linear Mixed Model
(GLMM) as discussed by Ghosh, et al. (1998) and Rao (2003, sections 5.6 and 10.11).
This may be done when the observed data yi are inherently discrete, as when they are (un-
weighted) counts of sampled persons or households with certain characteristics. One such
model assumes a Binomial distribution for yi with success probability pi, and a logistic
regression model for pi with Gaussian errors in the logit scale. The resulting model is

yi|pi, ni ∼ Bin(ni, pi) i = 1, . . . ,m (5)

logit(pi) = x′iβ + ui (6)

where logit(pi) = log[pi/(1− pi)], ui ∼ N(0, σ2u), and ni is the sample size for area i.
Slud (2000, 2004) did several analyses comparing results from GLMM models to re-

sults from models similar to the SAIPE county production model (in the form applied in
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earlier years to CPS data). Slud (2000) showed advantages to use of a unit level bino-
mial/logit normal model compared to a linear Fay-Herriot model for logged estimates of
number in poverty when the data were simulated from the GLMM model. Simulation set-
tings were chosen to reflect actual SAIPE data. Slud (2004) compared variants of both the
GLMM model and the SAIPE production model in fits to CPS data and in predictions to
Census 2000 long form estimates, finding the GLMM models fit the CPS data better while
the production model better predicted the Census 2000 estimates.

The model given by (5)–(6) can be readily applied to unweighted sample counts yi, but
this ignores any complex aspects of the survey design. In applications to complex survey
data where the yi are weighted estimates, two problems arise. First, the possible values for
the yi will not be the integers 0, 1, . . . , ni for any direct definition of sample size ni. In-
stead, yi will take a value from a finite set of unequally-spaced numbers determined by the
survey weights that apply to the sample cases in area i. Second, the sampling variance of yi
implied by the Binomial distribution in (5), nipi(1−pi), will be incorrect. We address these
two problems by defining an “effective sample size” ñi, and an “effective sample number
of successes” ỹi determined to maintain: (i) the direct survey estimate p̂i, of the poverty
proportion, i.e., ỹi/ñi; and (ii) a corresponding sampling variance estimate, V̂ar(p̂i).

We set
ñi = p̆i(1− p̆i)

/
V̂ar(p̂i) (7)

where p̆i is a preliminary model-based prediction of the population proportion pi (on which
Var(p̂i) truly depends), and V̂ar(p̂i) depends on p̆i through a fitted generalized variance
function (GVF). The GVF is discussed in Section 4 and detailed instructions for its imple-
mentation are included in the Appendix. We then set ỹi = ñi × p̂i and, after rounding,
substitute (ñi, ỹi) for (ni, yi) in (5). Note that ỹi = 0 if p̂i = 0, but this does not cause
problems since p̆i > 0 in (7) implies ñi > 0. Rounding of ñi and ỹi will likely be re-
quired by most computer software for the fitting of models such as (5)–(6). Liu, Lahiri, and
Kalton (2007) and You (2008) used essentially this sampling variance model, but applied
it in models of directly estimated survey proportions assumed to follow either a normal or
a Beta distribution.

We shall extend the model given by (5)–(6) to a bivariate version, written as

ỹ1i|p1i, ñ1i ∼ Bin(ñ1i, p1i) ỹ2i|p2i, ñ2i ∼ Bin(ñ2i, p2i) (8)

logit(p1i) = x′1iβ1 + u1i logit(p2i) = x′2iβ2 + u2i (9)[
u1i
u2i

]
∼ i.i.d. N(0,Σ), Σ =

[
σ11 σ12
σ12 σ22

]
for i = 1, . . . ,m. In our applications of this model, the ỹ1i and ỹ2i are the (effective) sample
numbers of 5-17 in poverty from the current ACS 1-year estimates and the prior ACS 5-
year estimates, respectively, and, ñ1i and ñ2i are the corresponding effective sample sizes,
determined as in (7). Note that ỹ1i and ỹ2i are assumed conditionally independent (given
p1i, ñ1i and p2i, ñ2i) since the ACS samples are drawn approximately independently each
year.

We estimate the model given in (8)–(9) by ML using the NLMIXED procedure of SAS
(SAS Institute Inc. 2010). The likelihood function to be maximized is proportional to

L(β1, β2,Σ) =
m∏
i=1

∫ ∫
p(ỹ1i|p1i, ñ1i)p(ỹ2i|p2i, ñ2i)p(u1i, u2i|Σ)du1idu2i (10)

where p(ỹ1i|p1i, ñ1i) ∝ pỹ1i1i (1−p1i)ñ1i−ỹ1i with p1i = exp(x′1iβ1+u1i)/[1+exp(x′1iβ1+
u1i)], and similarly for p(ỹ2i|p2i, ñ2i), and p(u1i, u2i|Σ) is the bivariate normal density with
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mean zero and covariance matrix Σ. NLMIXED approximates the integral in (10) by adap-
tive Gaussian quadrature, and then numerically maximizes the approximated likelihood.
Predictions of u1i and u2i in (9) are obtained by setting them to their “conditional modes,”
û1i and û2i, where these maximize the contribution to the likelihood from area i, this being
the integrand in (10). Predictions of the population targets p1i, the county population 5-17
poverty rates for the current year, are then obtained by substituting û1i and the MLE of
β1 into p1i = exp(x′1iβ1 + u1i)/[1 + exp(x′1iβ1 + u1i)]. The analogous calculation will
predict p2i. Prediction variances are obtained by linearization of the predictors. See the
NLMIXED documentation for details.

When the sampling design is not complex, generalized linear model theory guarantees
the consistency and asymptotic normality of the model estimators (see, for instance, Mc-
Culloch and Searle, 2001). However, clearly we have a deviation from standard theory,
which we attempt to alleviate through use of the design effect. Especially in small do-
mains, the design effect is a heuristic way to capture the complex aspects of the survey.
However, as the area sample size grows, the variance approximation based on the design
effect becomes more accurate.

Very similar prediction results were obtained from a Bayesian approach with flat priors
on β1, β2, σ11, σ22, and ρ = σ12/

√
σ11σ22 using the JAGS software (Plummer 2010).

In application to SAIPE data for county 5-17 poverty, the regression variables used in
x1i and x2i of eq. (9) include the constant 1 for an intercept term, and the following:

• logit of the proportion of child exemptions “in poverty” for the county, i.e., the logit
of the ratio of the number of child exemptions claimed on tax returns whose adjusted
gross income falls below the poverty threshold divided by the total number of child
exemptions for the county;

• logit of an adjusted version of the county “tax child filer rate,” which is defined as
the number of child exemptions in the county claimed on tax returns divided by the
county population age 0-17;

• logit of the ratio of county SNAP benefits recipients in July of the previous year to
the county population of the previous year.

For x2i, which is used in the model for the (adjusted) ACS 5-year poverty estimates ỹ2i, we
use the above variables defined for the middle year of the 5-year interval. Bell et al. (2007)
did some evaluations of log-rate Fay-Herriot models for SAIPE county data with models
that used the log-rate regression variables analogous to the above three logit-rate regression
variables. Very similar untransformed ratios (one change: replacing the filer rate with its
complement, the nonfiler rate) are used as regression variables in the SAIPE state model
(Fay and Train 1995).

An issue arises in that the child tax filer rate often exceeds 1 due to the number of
child exemptions for counties often exceeding their age 0-17 populations. This is primarily
due to the fact that many child exemptions (especially college students) are older than
17. Compensating by increasing the upper age on the child population in the denominator
of the filer rate creates another problem since small to medium size counties with major
universities have a bulge in their age 18-24 populations from the resident college students.
These students are not reflected in the university county’s child exemption totals, but rather
are spread around the counties of residence of the students’ parents. Thus, replacing the 0-
17 population with, say, the 0-24 population depresses the child filer ratios in these counties
in a way that is unrelated to the counties’ levels of poverty. Instead, we addressed the issue
with child filer rates exceeding 1 by multiplying all county child filer rates by .54 prior to
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the logistic transformation. This brought the highest of the child filer rates for 2011 to a
number below 1, allowing the logistic transformation. We obtained similar results using
untransformed child filer rates since, after the rescaling, the great majority of the child filer
rates fell in the interval (.25,.75), a region where the logistic transformation is nearly linear.

Notice that we do not include the logit of the Census 2000 county estimate of the 5-17
poverty rate in x1i or x2i. This is because our model effectively replaces it with the prior
ACS 5-year estimates that are used in determining ỹ2i. While we could also include the
Census 2000 estimates in our model (most appropriately as a third dependent variable in
a trivariate model), preliminary results obtained with analogous linear models at the state
level (along the lines of Huang and Bell (2012)) suggested this would be of little benefit.

4. Application of the Bivariate Binomial/Logit Normal Model to ACS 2011 estimates

We applied the bivariate binomial/logit normal model jointly to the ACS 2011 1-year
county estimates and the ACS 2006-2010 5-year county estimates. We then used SAS’s
NLMIXED procedure to fit the model and compared model predictions to corresponding
unraked predictions from the SAIPE county production model. In the future, we are also in-
terested in raking the results from the proposed model to ascertain if less raking is required
than with the production model.

The GVFs for the sampling variances of either the ACS 2011 1-year county estimates
or 2006-2010 5-year county estimates were constructed as follows. Let

Ri =

ni∑
j=1

w2
ij

/
(

ni∑
j=1

wij)
2 ,

where wij is the survey weight of household j in county i, and ni is the number of respond-
ing households in the sample for county i, i = 1, . . . ,m. This estimates the inverse of the
effective sample size due (only) to differential weights for county i —see Kish (1987). The
GVF for the sampling variance of p̂i, the direct ACS estimate of the county i 5-17 poverty
rate, is defined separately for each dataset (2011 ACS 1-year and 2006-2010 ACS 5-year)
as:

E(s2i ) = GVFi = γ0(pi(1− pi))γ1(Ri)γ2 . (11)

Initial estimates for the pi were computed as p̆i = g(x′iη̂) = exp(x′iη̂)/[1 + exp(x′iη̂)]
where η̂ solves the nonlinear least squares problem

min

m∑
i=1

(p̂i − g(x′iη))2.

Since the p̂i are the direct ACS poverty rate estimates, they can be zero. Note that p̆i cannot
be zero.

Taking logs of (11) and using the direct ACS sampling variance estimates as estimates
of the left hand side of (11) yields a linear model which can be fit by regression. (We
did this in R using the glm function.) Here we used all counties that did not have zero
poverty counts and that met a certain sample size threshold (of 25 households, see Maples,
2012). The direct sampling variance estimator has large biases for small sample sizes,
which can distort the model fit; hence the use of the threshold. Plugging p̆i and the least
squares estimates of γ0, γ1, and γ2 into (11) provided predicted values V̂ar(p̂i) that were
the GVF sampling variance estimates for all counties, including those with ỹi = 0. We
then used these sampling variances estimates in the model defined by equations (5) and (6),
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Table 1: Regression Coefficients and Standard Errors, Binomial/Logit Normal Model
Parameter Estimate Standard Error T-statistic
α1 0.083 0.030 2.76
β11 0.732 0.032 22.56
β12 -0.094 0.067 -1.41
β13 0.295 0.025 11.76
α2 0.0882 0.017 5.096
β21 0.785 0.018 43.42
β22 -0.200 0.024 -8.25
β23 0.222 0.012 18.16
σ11 0.274 0.012 23.27
σ22 0.183 0.005 34.48
σ12 0.017 0.003 6.84
ρ 0.3360 0.048 7.050

as described in the previous section, both when fitting the model and to obtain predictions
of the true 2011 county school-age child poverty rates, p1i.

We applied an iterative approach where, given the V̂ar(p̂i), we updated the p̆i and then
updated the V̂ar(p̂i), etc. We subsequently found, however, that the first iteration of this
process appeared to have attained convergence. Appendix I is a detailed, step-by-step ex-
planation on how we performed this iterative approach. Note that, as in the Fay-Herriot
model, we assumed that sampling variances are known. In reality, we have estimates of the
sampling variances through fitted GVFs, and errors in these estimates would be expected
to produce biases in the predictions of poverty rates and their MSEs.

Table 1 shows the ML parameter estimates obtained by fitting the bivariate binomial/logit
normal model (5) and (6) to the ACS data using SAS’s NLMIXED procedure. Note that
the estimate of the correlation coefficient ρ = σ12/

√
(σ11σ22) is positive. If ρ were zero,

the bivariate model would reduce to two independent univariate models, and the data from
the 5-year ACS estimates would not affect prediction of the true 1-year poverty rates, p1i.
The only coefficient that is not statistically significant is β12, the regression coefficient of
logit(p1i) on the logit of the tax child filer rate.

Figure 1 compares the production model county predictions of the proportion of school-
aged children in poverty with those from the bivariate binomial/logit normal model. Fig-
ure 2 compares the respective prediction intervals. The predictions from the bivariate bi-
nomial/logit normal model are broadly similar to those of the current production model,
while the corresponding prediction intervals tend to be a little wider, except for those coun-
ties with the widest intervals from the production model. Further investigation and com-
parisons to results from other alternative models discussed next will be pursued in future
research.
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Figure 1: Comparison of Bivariate Estimates with Estimates from Production Model by
County, 2011

Figure 2: Comparison of Confidence Interval Widths by County, 2011

5. Future Research

In future research we plan to compare results from the bivariate binomial/logit normal
model with results from the following additional models.

Log rate model: We consider a bivariate version of the linear Fay-Herriot model given by
(1)–(2) where y1i is the log of the ACS estimated 5-17 poverty rate for county i, and y2i is
the log of the prior ACS 5-year estimate of the 5-17 poverty rate for county i. Regression
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variables in x1i and x2i include intercepts and the logs of the same ratios for which logits
were taken for the bivariate binomial/logit normal model as described in Section 3. Sam-
pling variances v1i and v2i for y1i and y2i are estimated directly by replication methods.
For this model, it is necessary to drop from the model fitting the data for counties whose
estimated 5-17 poverty rates are zero. As noted earlier, univariate versions of such models
were investigated by Bell, et al. (2007).

Unmatched sampling and linking models (You and Rao 2002): Replace the Binomial as-
sumption in eq. (8) with an assumption of normality. Letting p̂1i and p̂2i denote the ACS
current 1-year and prior 5-year direct estimates of poverty rates, this becomes

p̂1i|p1i, v1i ∼ N(p1i, v1i) p̂2i|p2i, v2i ∼ N(p2i, v2i). (12)

Nonlinear regression in the Fay-Herriot model: The model defined by eqs. (12) and (9)
has random effects in the models for the logistically transformed population poverty rates.
A simpler version keeps eq. (12), but replaces eq. (9) with Gaussian models for (untrans-
formed) p1i and p2i:

p1i =
exp(x′1iβ1)

1 + exp(x′1iβ1)
+ u1i p2i =

exp(x′2iβ2)

1 + exp(x′2iβ2)
+ u2i

with the same assumptions made on [u1i, u2i]
′ as for eq. (9). This model is unrealistic in

that it allows for values of p1i and p2i that fall outside the interval [0, 1]. In the univariate
version of this model, predictions of p1i will be a weighted average of p̂1i and the nonlinear
regression prediction, and so must fall within [0, 1]. This is not true for predictions from the
bivariate model, though how likely predictions are to fall outside [0, 1] is unclear. Prediction
intervals from either the univariate or bivariate models can certainly range outside [0, 1].

Alternative link functions in the Bivariate GLMM model: This alternative modifies just
eq. (9) by substituting a different link function for the logit. Common alternatives include
the probit and the log-log (Agresti 1990).

Autoregressive Models Using Multiple Years of ACS Data: Instead of summarizing the
information in 5 prior years of ACS data through the resulting 5-year estimates, a logical
alternative to consider is to use the corresponding 5 individual 1-year estimates. Putting
this together with the current 1-year estimates, this implies modeling 6 years of ACS 1-
year estimates. We do this by extending (8)–(9) using a first-order autoregressive structure
(AR(1)) as follows:

ỹit|pit, ñi ∼ Bin(ñit, pit) i = 1, . . . ,m, t = 1, . . . , T (13)

logit(pit) = x′itβt + uit (14)

uit = φui,t−1 + εit (15)

where the εit are assumed i.i.d. N(0, σ2ε ), and −1 < φ < 1 for stationarity. For simplicity,
we label the years as t = 1, . . . , T ; our interest lies in predicting poverty rates in the final
year, piT . Here we use T = 6 years of data, though one could obviously use more or fewer
years.2 With the stationarity assumption, the covariance matrix of ui = (ui1, . . . , uiT ) has

2Currently, we could use at most seven years of ACS data, since the ACS estimates start in 2005 and the
last estimates available as of this writing are for 2011.
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the general form (Box and Jenkins 1970, pp. 56-58)

var(ui) =
σ2ε

1− φ2


1 φ φ2 · · · φT−1

φ 1 φ · · · φT−2

φ2 φ 1
. . .

...
...

...
. . . . . . φ

φT−1 φT−2 · · · φ 1

 .

Prediction MSEs from this model can be compared against those from the bivariate bino-
mial/logit normal model (8)–(9) to assess the value of using the individual 1-year estimates.
Analogous linear Gaussian models with AR(1) structure were investigated by Taciak and
Basel (2012) for application to logs of ACS county 5-17 poverty estimates, and by Hawala
and Lahiri (2012) for application to ACS estimates of county 5-17 poverty rates. Neither
compared prediction MSEs against those of bivariate models applied to current ACS 1-year
and prior ACS 5-year estimates, however.
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6. APPENDIX: Steps for Implementation of the Bivariate Binomial/Logit Normal
Model

Steps 1–7 below are applied separately for each of the model’s two equations (for ACS
2011 1-year estimates and ACS 2006-2010 5-year estimates), so in these steps we omit
from the notation subscripts to indicate the model equation. Steps 8 and 9 relate directly to
the bivariate model.

1. For each county, compute

Ri =

∑ni
j=1w

2
ij

(
∑ni

j=1wij)
2
,

where wij is the weight of household j in county i, and ni is the sample size of
county i, i = 1, . . . ,m.

2. Compute η̂ as the nonlinear least squares estimator through the following optimiza-
tion problem:

min

m∑
i=1

(p̂i − g(x′iη))2

where p̂i i = 1, . . . ,m are the direct county level 5-17 poverty rate estimates, and
g : R→ (0, 1). Initially, g will be the inverse logit function.

3. Compute preliminary estimates p̆i = g(x′iη̂), i = 1, . . . ,m and note that, by con-
struction, these cannot be outside the interval (0, 1). Here xi are the covariates used
in our rate model.

4. Drop all counties that have less than 25 households in the sample. The number 25 is
based on results from Maples (2012).

5. Using the counties meeting the threshold identified in Step 4 that do not have zero
poverty counts, find an estimate of the sampling variance V̂ar(p̂i) through the follow-
ing model:

E(s2i ) = GVFi = γ0((pi(1− pi))γ1(Ri)γ2 . (16)

Taking logs this becomes

log GVFi = γ∗0 + γ1 log(p̆i(1− p̆i)) + γ2 log(Ri)

which can be fit by linear regression.

6. Plug the γ̂i obtained in step 5 into eq. (16) to produce GVF estimates ŝ2i of s2i for
every county.

7. For each county, compute the effective sample size ñi and the effective count of
school aged children in poverty ỹi as

ñi = p̆i(1− p̆i)/V̂ar(p̂i), (17)

ỹi = ñi × p̂i. (18)

8. Fit the bivariate binomial/logit normal model using the (ñ1i, ỹ1i) and (ñ2i, ỹ2i) from
the previous step, with these values rounded to the nearest integers, and obtain new
estimates for the pi1 and the pi2.

9. Update the p̆1i and p̆2i using the results of Step 8. Repeat steps 5-8 until prediction
results for p1i and p2i appear to have converged.
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