

UNITED STATES DEPARTMENT OF COMMERCE Economics and Statistics Administration U.S. Census Bureau

Washington, DC 20233-0001

04/10/2014

$$
\begin{array}{ll}
2014 \text { AMERICAN COMMUNITY SURVEY RESEARCH AND EVALUATION REPORT } \\
\text { MEMORANDUM SERIES \#ACS14-RER-13 } \\
\text { MEMORANDUM FOR } & \text { ACS Research and Evaluation Advisory Group } \\
\text { From: } & \begin{array}{l}
\text { James Treat (signed 4/11/2014) } \\
\text { Chief, American Community Survey Office }
\end{array} \\
\text { Prepared by: } & \begin{array}{l}
\text { Stephanie Baumgardner } \\
\\
\\
\\
\text { Special Studies Staff } \\
\text { American Community Survey Office }
\end{array} \\
\text { Subject: } & \begin{array}{l}
\text { Evaluation of the use of Optical Character Recognition to capture } \\
\text { American Community Survey numeric write-ins in the 2013 } \\
\text { Questionnaire Design }
\end{array}
\end{array}
$$

Attached is the final American Community Survey Research and Evaluation report for the Evaluation of the use of Optical Character Recognition to capture American Community Survey numeric write-ins in the 2013 Questionnaire Design Test. This evaluation examines the use of optical character recognition (OCR) software to capture ACS numeric write-ins and reports on the accuracy of the OCR software as well as the effect of using OCR on the quality of ACS data, including the distribution of numeric values.

If you have any questions about this report, please contact David Raglin ((301) 763-4226) or Stephanie Baumgardner ((301) 763-5893).

Attachment

cc:
ACS Research and Evaluation Work Group
Debbie Griffin (ACSO)
Todd Hughes
Agnes Kee
David Raglin
Andrew Roberts
Jennifer Tancreto (DSSD)
Tony Tersine
Beth Tyszka

Colleen Hughes (POP)
Louisa Miller
Tori Velkoff
Rose Kreider (SEHSD)
Tavia Simmons
Patty Goerman (CSM)
Yuling Pan

Evaluation of the use of Optical Character Recognition to capture American Community Survey numeric write-ins in the 2013 Questionnaire Design Test

FINAL REPORT

Stephanie Baumgardner
American Community Survey Office

Table of Contents

I. Introduction 1
II. Background 1
III. Methodology 3
IV. Results 6
For a given item with a numeric write-in, how often does the OCR value match exactly to the keyed value?How often does OCR fail to read a numeric value?7
Where values differ, how often is the OCR value correct? 11
Of all values read by OCR, how often is the OCR value incorrect? 12
Where values differ, what is the magnitude of that difference? 14
Does the distribution of data for numeric items differ due to the format change needed to accommodate OCR technology? 18
V. Conclusions. 19
References 19
Attachment A - Numeric Items on the Control Form and Associated Field Names (variable name in red) 20
Attachment B - Weighted Distributions of Specific Items - Control vs. OCR Treatments 23

I. Introduction

Since 2007, the American Community Survey (ACS) has employed the Integrated Computer Assisted Data Entry (iCADE) system to capture data on paper questionnaires. This system makes use of Optical Mark Recognition (OMR) technology to detect a presence (mark) in checkboxes. Clerks at the National Processing Center (NPC) currently key all write-in responses from scanned images of the paper questionnaires. The developers of the iCADE system have now introduced Optical Character Recognition (OCR) technology to interpret numeric fields. Other Census Bureau surveys using the iCADE system have incorporated OCR in the data capture of their questionnaires with enhanced efficiencies and reduced costs. It is desirable for the ACS to consider OCR technology to reduce survey costs. Prior to any shift in methods, it is critical to demonstrate that the use of OCR to capture ACS numeric write-ins would not negatively affect the quality of ACS data, including the distribution of numeric values. This evaluation will also inform 2020 decision makers on the current usability of OCR technology in the iCADE system.

II. Background

The 2013 Questionnaire Design Test (QDT) included a treatment to test OCR technology in the data capture of numeric write-ins on ACS paper questionnaires. The control treatment in the QDT employs the same questionnaire currently used in production (the 10.25 inch by 10.5 inch 28-page questionnaire). The OCR treatment paper questionnaire closely resembles the control treatment questionnaire with enhancements to enable the use of OCR (described below). Other treatments in the QDT tested different sizes of questionnaires (number of pages/size of paper) and new/revised content. Please see Davis and Wakim (2014) for a full description of the QDT methodology and more detail on the other treatments.

In current production, clerks in NPC key all numeric and character write-in fields from scanned images. For the OCR treatment in this test, the software electronically extracted the scanned numeric write-in fields and applied OCR technology to interpret the entries. As part of this test, clerks also independently keyed the numeric fields. This evaluation compares the values of the numeric fields resulting from keying and OCR. Numeric write-ins are associated with the items in Table 1 below. Attachment A shows where these numeric write-ins occur on the form.

Table 1. ACS Numeric Write-In Fields		
Cover Page Items	Housing Items	Detailed Person Items
Month	Year built write-in	Citizenship write-in
Day	Move in month	Year of entry
Year	Move in year	Grade attend write-in
Area code	Rooms	Grade comp write-in
Phone prefix	Bedrooms	Migration zip
Phone number	Electricity amount	Year last married
Number of people	Gas amount	Place of work zip
	Water amount	Total riders
Basic Person Items	Heat fuel amount	Leave home hour
Age	Condo amount	Leave home minute
Date of birth month	Rent amount	Travel time to work
Date of birth day	Value amount	Hours worked
Date of birth year	Tax amount	Wages amount
	Insurance amount	Self-employment amount
	Mortgage amount	Interest amount
	Second mortgage amount	SS amount
	Mobile home amount	SSI amount
		Public assist amount
		Retirement amount
		Other income amount

In order to test OCR technology, ACS staff changed the format of numeric write-ins on the ACS form. To aid in the OCR interpretation of numbers, separate boxes (called dentils) for each individual number replace the single segmented box in current production. See Figures 1 and 2 below for an example of the change ${ }^{1}$. Cognitive testing of the new format resulted in no negative comments (Terry, 2013).

[^0]Figure 1. Current Production Numeric Field

Figure 2. OCR Test Numeric Field

In production, the iCADE data capture system would use OCR technology to first attempt to read all numeric entries. OCR may not read some numeric entries if the respondent's answer is undeterminable. All values read by OCR receive a confidence level of accuracy. Field values not read by OCR or below minimum acceptable confidence and any fields that fail surveydefined edits ${ }^{2}$ would not receive an answer during OCR and would go directly to a keyer. Field values that are above the minimum acceptable confidence but below the high confidence threshold are subject to a process named OCR Review. During OCR Review, a clerk reviews individual digits captured by OCR and makes a determination on the accuracy of that digit. The clerk can either confirm that OCR captured the digit correctly or send incorrect values to a keyer.

In normal production, clerks will key only the fields not read by OCR, the OCR fields that were below minimum acceptable confidence, fields that failed survey-defined edits, and fields captured incorrectly as determined by OCR Review. We followed this basic procedure in the test environment, but to determine 'truth', clerks also keyed all numeric entries. Then, the Quality Assurance (QA) staff in NPC adjudicated differences between the OCR and keyed values. Current production procedures captured all other data on the forms designed for the OCR treatment.

III. Methodology

This report focuses on two of the QDT sample treatments, the control treatment and the OCR treatment. We mailed each treatment to about 10,000 addresses. For both the control and OCR treatments, about 24 percent of addresses responded by mail ${ }^{3}$. The research questions below refer only to the mail responses received in each of the treatments.

The data used to answer research questions A, B, C, and D was contained on an OCR analysis file that had the following values for each numeric field:

- the pre-OCR Review OCR value (if sent to OCR Review and found to be incorrect),
- the post-OCR Review OCR value,

[^1]- the independently keyed value, and, if necessary,
- the adjudicated value(s) as determined by the quality assurance staff in NPC. As these are operational data, they are not weighted and we performed no statistical testing.

To answer research question E, we used unedited response data received from NPC for the control and OCR treatments (mail forms only). These data are weighted.

This report answers the following research questions:
A. For a given item with a numeric write-in, how often does the OCR value match exactly to the keyed value? How often does OCR fail to read a numeric value?

We calculate the following metrics for each item and overall. All rates compare the OCR value (post-OCR Review value if sent to OCR Review) to the keyed value. Keyed values refer to both values keyed when OCR does not read a value and values keyed in the 100 percent verification of OCR values. The number of non-missing keyed values in the denominator represents the universe of all numeric values requiring data capture.

$$
\text { OCR Match Rate }=\frac{\text { Number of identical OCR and keyed values }}{\text { Number of non-missing keyed values }} * 100
$$

OCR Value Not Read Rate $=\underset{\text { Number of non-missing keyed values }}{\frac{\text { Number of missing OCR values }}{}} * 100$

$$
\text { OCR Non-Match Rate }=\frac{\text { Number of differing OCR and keyed values }}{\text { Number of non-missing keyed values }} \quad * 100
$$

Some OCR values have leading zeros due to respondents filling in each dentil provided for a given item. Identical OCR and keyed values include values that match when these leading zeros are dropped from the OCR value.
B. Where values differ, how often is the OCR value correct?

To answer this question, we show, of the non-matching OCR and keyed values, which value is 'truth' (as determined by the QA staff in NPC) as a percentage of all non-missing keyed values. We calculated the following metrics for each item and overall.

OCR Incorrect Rate $=$| Number of differing OCR and keyed values |
| :---: |
| $\frac{\text { where OCR value is in error }}{\text { Number of non-missing keyed values }}$ |$* 100$

Number of differing OCR and keyed values
OCR Correct Rate $=\quad \frac{\text { where OCR value is correct }}{\text { Number of non-missing keyed values }} \quad * 100$
C. Of all values read by OCR, how often is the OCR value incorrect?

To answer this question, we consider only those values read by OCR and determine the percentage of OCR values that were read in error. We calculated the following metric for each item and overall.

OCR Read in Error Rate $=\frac{\text { Number of OCR values read in error }}{\text { Number of non-missing OCR values }} * 100$
D. Where values differ, what is the magnitude of that difference?

When the OCR and keyed values differ, we calculate the following metrics:

- Where the OCR value is correct, distributions of differences (minimum, maximum, and quartiles) in the OCR and keyed values by item
- Where the keyed value is correct, distributions of differences (minimum, maximum, and quartiles) in the OCR and keyed values by item
E. Does the distribution of data for numeric items differ due to the format change needed to accommodate OCR technology?

Using unedited response data received from NPC for the control and OCR treatments (data on paper forms only), we compare data distributions and item nonresponse rates for select numeric items. These unedited data represent data provided by the respondent not yet subjected to logic to account for nonresponse and data inconsistencies. For the item nonresponse rates, we calculate standard errors using replicate base weights ${ }^{4}$ and perform statistical testing to determine if the rates are statistically significant at the 0.1 significance level. For the data distributions (not including item nonresponse), we use the chi-square test (significance level of 0.1) to determine if the weighted distributions are different due to the format change.

The numeric items selected for this comparison of distributions are:

- Age
- DOB month

[^2]- DOB year
- Year moved in
- Rooms
- Electricity cost
- Rent
- Value
- Mortgage
- Educational attainment write-in (grades 1-11)
- Year last married
- Commute time
- Hours worked
- Wages
- Self-employment income
- Interest income
- Social Security income
- Supplemental Security income (SSI)
- Public assistance income
- Retirement income
- Other income
- Total income

IV. Results

We captured numeric write-in fields on paper forms in the QDT OCR treatment using OCR technology. Clerks also keyed all numeric entries. The term 'keyed value' in this section refers to both values keyed when OCR does not read a value and values keyed in the 100 percent verification of OCR values. The total number of more than 71,000 keyed values represents the universe of all numeric values requiring data capture. Table 2 shows these keyed values by item. It is important to understand that a small subset of respondents answer some of these items which can make the subsequent results more variable for those items as compared to other items that have a larger universe of responses.

Table 2. Number of Keyed Values For Each ACS Numeric Write-In Fields (Paper Forms in the OCR Treatment)

Cover Page Items		Housing Items		Detailed Person Items	
Month	1,867	Year built write-in	610	Citizenship write-in	386
Day	1,838	Move in month	1,798	Year of entry	799
Year	1,862	Move in year	1,874	Grade attend write-in	717
Area code	1,886	Rooms	1,900	Grade comp write-in	900
Phone prefix	1,881	Bedrooms	1,903	Migration zip	506
Phone number	1,878	Electricity amount	1,773	Year last married	2,516
Number of people	1,931	Gas amount	1,210	Place of work zip	1,444
		Water amount	1,296	Total riders	1,399
Basic Person Items		Heat fuel amount	511	Leave home hour	1,434
Age	4,332	Condo amount	145	Leave home minute	1,415
Date of birth month	4,112	Rent amount	647	Travel time to work	1,524
Date of birth day	4,127	Value amount	1,326	Hours worked	1,930
Date of birth year	4,141	Tax amount	1,233	Wages amount	1,855
		Insurance amount	1,036	Self-employ amount	360
	Mortgage amount	683	Interest amount	609	
	Second mortgage amount	174	SS amount	1,059	
	Mobile home amount	203	SSI amount	380	
			Public assist amount	222	
			Retirement amount	691	
				Ther income amount	352

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

For a given item with a numeric write-in, how often does the OCR value match exactly to the keyed value? How often does OCR fail to read a numeric value?

Figure 3 shows how often the OCR value matched the keyed value. The figure groups the items by where they occur on the form (cover, basic person, housing, detailed person). Item names ending in 'amount' indicate monetary values. Across more than 71,000 values, the OCR value matched the keyed value about 73 percent of the time ${ }^{5}$. OCR did not read almost 27 percent of all values most often because it could not determine one or more of the numbers in the field with an acceptable level of confidence or because the value read failed an edit. When OCR cannot determine the value for a field, the field goes to a keyer. The OCR value and

[^3]keyed value did not match for 0.3 percent of all keyed values.
Across items, the degree to which OCR was able to read and match the keyed value varied greatly. For the cover and basic person items, the OCR value matched the keyed value about 81 percent of the time and OCR did not read about 19 percent of values. Among these items, the phone number components on the cover had the highest rates of the OCR value not matching the keyed value (about 0.8 percent). This is due to keying rules that direct a keyer to blank all three phone number component fields if any of the fields are blank or incomplete. This occurred for about half of the OCR and keyed values that do not match so a better estimate of the rate of non-matching values for these fields would be about 0.4 percent. For the other items on the cover and in the basic person section, the OCR and keyed values do not match for about 0.2 percent of values.

In the housing section of the form, a few items stand out from the rest. OCR did not read about 70 percent of the year built write-in fields. Upon further investigation, about half of these received an OCR error code indicating that the value determined by OCR failed an edit. This write-in instructs the respondent to provide a year only if the housing unit was built in 2000 or later. While we instruct keyers to key what they see, any OCR values that were before 2000 caused the edit to fail, which sent these fields to a keyer without an OCR answer. If not for this edit for this item, the OCR value would have matched about 67 percent (up from about 30 percent) of the keyed values and the percentage of the values where the OCR and keyed value did not match would have increased from 0.2 percent to 0.8 percent. The percent of year built write-in fields not read by OCR would have decreased by 37 percent or about 225 fields. The legal value edits affected other items in the housing section similarly. If these edits were not in place, the larger percentages of values not read by OCR for heating fuel amount and insurance amount would have seen reductions of about 40 percent and 55 percent respectively.

Condo amount and mobile home amount in the housing section also have large percentages of values not read by OCR due mostly to OCR read failure (one or more characters could not be determined) or OCR confidence failure (one or more characters have a low confidence value). Because few respondents answer these questions, the fields have small universes and therefore these measures may be more variable. In the housing section, the item with the highest percentage of non-matching OCR and keyed values is mobile home amount (1.5 percent). However, this percentage accounts for only three cases where the values did not match.

The detailed person section also shows varying levels of matching OCR and keyed values. For the items where OCR did not read a value for a large percentage of keyed values, it generally had more to do with OCR read failure (one or more characters could not be determined) or OCR confidence failure (one or more characters have a low confidence value) rather than an edit failure. The citizenship write-in and year of entry fields expect a year entry like the year field on the cover and the date of birth year field in the basic person section. However, these fields in the detailed person section have a much higher percentage of values not read by OCR due to OCR read or confidence failure. Upon reviewing images for some of these fields, it was not immediately apparent why OCR had difficulty reading the value. The leave home hour field is a field requiring two digits (keyers will key a leading zero if the respondent writes 7 instead of 07). When OCR reads just the one digit provided by the respondent, it fails a field length
edit and consequently does not provide a value. This occurs for about three-quarters of all values not read by OCR for this field. Other fields in this section with a large percentage of values not read by OCR are some of the income fields, specifically, self-employment, SSI, public assistance, retirement, and other income. For all of these income fields, over half of the values not read by OCR were due to OCR read or confidence failure. Legal value edits affected the retirement and SSI fields the most, accounting for 30 percent and 16 percent of the non-reads respectively. Other OCR non-reads occur when OCR detected a presence in a field but determined it to be a blank value. These detected blanks (all confirmed blanks by a keyer) account for 23 percent of self-employment values not read, 13 percent of SSI values not read, 23 percent of public assistance values not read, and 12 percent of other income values not read. Among all detailed person items, social security amount had the largest percentage of nonmatching values (10 values did not match).

Figure 3. Matching OCR and Keyed Values by Item and Overall

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

As seen from the discussion above, sponsor-defined value and answer length edits implemented by OCR had a great effect on some items. Originating from the iCADE Matrix, most of the legal value and answer length edits are intended as soft edits for keyers. This means that after
checking the value for error, the keyer can input a value that falls outside of the legal value range or expected answer length. These soft edits simply alert a keyer to a possible miskeyed value. A few of the edits require the keyer to enter a value with a specific length. These edits mainly affect date, time, and zipcode fields. In the test, OCR's implementation of these edits blocked the output of values that failed a legal value or answer length edit. The values that would have been captured by OCR had the edit not been in place were included on the analysis file. Therefore, we can simulate the elimination of these edits on the OCR data and observe the effects on the rate of matching OCR and keyed values and the rate of values not read by OCR.

Figure 4 shows the simulation of the elimination of the legal value and answer length edits. Compared to Figure 3, we see that the percentage of values not read by OCR decreases dramatically for some items (year built write-in, heat fuel amount, insurance amount, leave home hour, and retirement amount) and about four percent overall. Across all items, the percent of keyed values that do not match the OCR value increases to about 0.6 percent (compared to 0.3 percent in Figure 3). Items that see some of the biggest increases in the rate of nonmatching keyed and OCR values include some of the year items (cover page, date of birth, year built, and move-in year), condo amount, place of work zip, SSI amount, and public assistance amount. We see the largest increase in the rate of non-matching keyed and OCR values for the public assistance amount field when the edits are eliminated. All of these non-matches are cases where the OCR value is ' 1 ' when the keyed value indicates that the field is blank. A review of the images showed that OCR read a line that the respondent marked through the field to denote that the field was not applicable as a ' 1 '.

Figure 4. Simulated Matching OCR and Keyed Values by Item and Overall - No Legal Value and Answer Length Edits

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

Where values differ, how often is the OCR value correct?

Figure 5 shows, of all keyed values, the percent where the OCR and keyed value did not match and how often the OCR value was correct. These data are based on the original test data, which includes sponsor-defined edits. The heat fuel, second mortgage, citizenship write-in, public assistance, and other income fields did not have any non-matching OCR and keyed values. Across all fields, there are varying levels of OCR accuracy. For the condo amount, year of entry, migration zip, leave home hour, interest amount, and retirement amount fields, the OCR value was always incorrect. The OCR value was always correct for the year (cover page), bedrooms, and grade completion write-in fields. The mobile home amount field had the highest rate of inconsistent OCR and keyed values (1.5 percent of all keyed values) and for about a third of them, the OCR value was correct. Overall, the OCR value was correct for about 34 percent of the non-matching OCR and keyed values.

Figure 5. Non-Matching OCR and Keyed Values and OCR Accuracy Result by Item and Overall

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

Of all values read by OCR, how often is the OCR value incorrect?

Figure 6, based on the original test data including sponsor-defined edits, considers only the values that OCR read and shows how often those values were in error. This is analogous to the keying error rate that is required to be less than one percent for all items keyed in a batch, which typically consists of 50 forms. Across all items, the OCR error rate is 0.3 percent. Most items have an OCR error rate less than one percent. Only four items have an individual OCR error rate greater than one percent - condo amount, mobile home amount, self-employ amount, and SS amount. However, small portions of the population generally answer these four items, which together account for just 2.4 percent of all numeric items keyed for this treatment in the test.

Figure 6. OCR Values Read in Error by Item and Overall

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013
Figure 7 shows what the worst-case scenario OCR error rate would be if the legal value and answer length edits were removed. Because there is not an adjudicated value for values that were not read by OCR due to the edits, we cannot know if the simulated OCR value or the keyed value is correct when the values do not agree. These error rates are worst-case scenario error rates because they assume that the OCR value is always in error when the simulated OCR value and keyed value does not match. The items with the highest error rates include some of the year fields, place of work zip, condo amount, mobile home amount, and some of the income fields. The public assistance amount field has the highest error rate but this is somewhat misleading as the error rate accounts for just six values where the OCR and keyed values did not match. A similar situation also exists for the SSI amount field. Based on this data, we may want to consider keeping the edits for the year fields (with a change to the year built write-in edit to accept values prior to 2000) and the two zip code fields. In addition, an edit for amount fields that sends values of ' 1 ' to a keyer would avoid the occurrences of OCR reading a line that marked through the field (denoting that the field was not applicable) as a ' 1 ', thus reducing the OCR error rates for those fields. Even without these proposed edits, the OCR error rate without any edits across all items is 0.6 percent.

Figure 7. Simulated OCR Values Read in Error by Item and Overall - No Legal Value and Answer Length Edits

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

Where values differ, what is the magnitude of that difference?

Table 3 shows the magnitude of the differences (OCR value minus keyed value) when the OCR and keyed values differ and the OCR value is correct. In some cases, the keyer incorrectly blanked a field or simply failed to key a field while OCR captured the correct value. We show these cases separately in the table. The biggest difference occurs for the housing value amount field. For this particular value, OCR read 950,000 while the keyer incorrectly keyed 9,500,000. Many of the other differences are the result of the keyer keying an extra digit, omitting a digit, or simply miskeying one digit of the number. In these cases, OCR improves the quality of data on paper forms.

Table 3. Magnitude of Differences when ORC and Keyed Values Differ and OCR Value is Correct

	Total	Keyer Incorrectly Blanked Field; OCR Captured Correct Value						OCR Captured Correct Value				
		Number	Differences					Differences				
Item			Min	Q1	Median	Q3	Max	Min	Q1	Median	Q3	Max

Cover Items												
Month	1							2	2	2	2	2
Day	2							-5	-5	-2	1	1
Year	2							-2	-2	-0.5	1	1
Area code	3	1	77	77	77	77	77	-500	-500	-385	-270	-270
Phone prefix	4	1	611	611	611	611	611	-100	-100	27	30	30
Phone number	5	1	3,639	3,639	3,639	3,639	3,639	-710	-255	1,100	2,649	3,298
Number of people	1							-10	-10	-10	-10	-10

Basic Person Items												
Age	2							1	1	18.5	36	36
DOB Month	2	1	12	12	12	12	12	1	1	1	1	1
DOB Day	6							-10	-5	-2.5	2	3
DOB Year	3							-4	-4	-1	20	20

Housing Items

Move in month	1							1	1	1	1	1
Move in year	3							-10	-10	3	10	10
Rooms	1							-1	-1	-1	-1	-1
Bedrooms	4	1	3	3	3	3	3	-30	-30	-3	-1	-1
Ele amount	2	1	105	105	105	105	105	-50	-50	-50	-50	-50
Gas amount	1	1	0	0	0	0	0					
Water amount	2	1	0	0	0	0	0	100	100	100	100	100
Rent amount	1							50	50	50	50	50
Value amount	2							-8,550,000	-8,550,000	-4,274,997	6	6
Tax amount	1							-9	-9	-9	-9	-9
Insurance amount	3	1	592	592	592	592	592	-50	-50	5	60	60
Mortgage amount	2							2	2	31	60	60
Mobile home amount	1	1	5,337	5,337	5,337	5,337	5,337					

Wages amount	1							$-1,000$	$-1,000$	$-1,000$	$-1,000$

Table 3. Continued...

Item	Total	Keyer Incorrectly Blanked Field; OCR Captured Correct Value						OCR Captured Correct Value				
		Number	Differences					Differences				
			Min	Q1	Median	Q3	Max	Min	Q1	Median	Q3	Max
Self-employ amount	1							-9,000	-9,000	-9,000	-9,000	-9,000
SS amount	4							-15,200	-7,625	-20	5,005	10,000
SSI amount	1							1	1	1	1	1
Total income amount	6							-19,000	-10,000	-997	20	14,517

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013
Table 4 shows the magnitude of the differences (OCR value minus keyed value) when the OCR and keyed values differ and the keyed value is correct. In some cases, OCR captured a value that the keyer correctly blanked. We show these cases separately in the table. The phone number component fields on the cover page account for nearly half of these keyer-blanked fields. The keying procedure instructs keyers to blank all three of these fields if any one of the three fields are incomplete. More than a quarter of the keyer-blanked fields have a difference of -1 which indicates that OCR read the value as ' 1 '. Reviewing the images for some of these fields show that OCR read as a value of ' 1 ' a line that the respondent marked through the field (denoting that the field was not applicable). For those values where the keyer entered the correct value, the difference for the SSI amount field and the largest difference for the SS amount field is due to the respondent entering a monthly value (indicated as monthly) instead of the requested yearly amount. The keyer in each of these cases added the letter ' m ' to the keyed value, which ultimately converts the monthly amount to a yearly amount. The difference shown in Table 4 is the difference between the yearly value and the OCR read monthly value. The majority of the other differences between the OCR value and keyed value are due to the misread of a single digit of the value. Overall, the occurrence of discrepancies between the OCR and keyed values where the OCR value is in error is very low and the magnitude of those discrepancies appears to be nominal in most cases.

Table 4. Magnitude of Differences when ORC and Keyed Values Differ and Keyed Value is Correct

Item	Total	Keyer Correctly Blanked Field						Keyer Entered Correct Value				
		Number	Differences					Differences				
			Min	Q1	Median	Q3	Max	Min	Q1	Median	Q3	Max
Cover Items												
Month	5							-2	-2	-2	5	5
Day	1							3	3	3	3	3
Area code	14	10	-915	-803	-530	-202	0	-50	-30	-8	-1	5
Phone prefix	10	8	-788	-503	-159	0	0	-60	-60	-29	2	2
Phone number	11	4	-428	-214	0	0	0	-6	2	60	500	2,000
Number of people	1							-9	-9	-9	-9	-9
Basic Person Items												
Age	6	6	-83	-7	-4	-1	-1					
DOB Month	6	1	-4	-4	-4	-4	-4	1	5	6	10	10

Table 4. Continued...

Item	Total	Keyer Correctly Blanked Field						Keyer Entered Correct Value				
		Number	Differences					Differences				
			Min	Q1	Median	Q3	Max	Min	Q1	Median	Q3	Max
DOB Year	9	1	-1,940	-1,940	-1,940	-1,940	-1,940	-10	0	11	50	50

Housing Items

Year built write-in	1							1	1	1	1	1
Move in month	3							-1	-1	-1	3	3
Move in year	3							1	1	2	70	70
Rooms	1							5	5	5	5	5
Ele amount	4							-600	-396	-106	-15	-10
Gas amount	1							-10	-10	-10	-10	-10
Water amount	6							-123	-40	0	267	385
Condo amount	1							-10	-10	-10	-10	-10
Rent amount	3	1	$-1,950$	$-1,950$	$-1,950$	$-1,950$	$-1,950$	-50	-50	-35	-20	-20
Value amount	1							-900	-900	-900	-900	-900
Tax amount	5	2	-7	-7	-4	-1	-1	-90	-90	-50	10	10
Insurance amount	4	3	-11	-11	-7	-1	-1	100	100	100	100	100
Mortgage amount	1							600	600	600	600	600
Mobile home amount	2	1	-1	-1	-1	-1	-1	2,200	2,200	2,200	2,200	2,200

Detailed Person Items

Year of entry	1							50	50	50	50	50
Grade attend write-in	1	1	-9	-9	-9	-9	-9					
Migration zip	1							-50	-50	-50	-50	-50
Year last married	3	1	$-1,960$	$-1,960$	$-1,960$	$-1,960$	$-1,960$	-6	-6	27	60	60
Place of work zip	3							$-5,000$	$-5,000$	-700	-2	-2
Total riders	3	1	-1	-1	-1	-1	-1	-6	-6	-5	-3	-3
Leave home hour	3							2	2	4	9	9
Leave home minute	2							-8	-8	-8	-7	-7
Travel time to work	4	1	-1	-1	-1	-1	-1	1	1	2	4	4
Hours worked	11	3	-1	-1	-1	-1	-1	-338	-263	-75	3	20
Wages amount	2							10,000	10,000	55,000	100,000	100,000
Self-employ amount	2	2	-1	-1	-1	-1	-1					
Interest amount	3	1	-1	-1	-1	-1	-1	-4	-4	248	500	500
SS amount	6							-80	4	3,662	12,309	24,200
SSI amount	1							9,427	9,427	9,427	9,427	9,427
Retirement amount	1							2	2	2	2	2
Total income amount	12	1	-1	-1	-1	-1	-1	$-5,000$	-100	-60	-2	6,000

Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

Does the distribution of data for numeric items differ due to the format change needed to accommodate OCR technology?

To accommodate OCR technology for numeric values, the numeric write-in boxes on the paper forms for this treatment changed from a single box meant to contain the entire numeric value to multiple separate boxes, called dentils, meant to contain single digits of the numeric value. See Figure 1 and Figure 2 in the Background section for an example of this change. While this change in format is not radical, we wanted to ensure that it did not cause respondents to answer the numeric questions differently.

We compared the item nonresponse rates from the control and OCR treatments for these selected numeric items:

- age,
- date of birth month,
- date of birth year,
- year moved in,
- rooms,
- electricity cost,
- rent, value,
- mortgage,
- educational attainment write-in,
- year last married,
- commute time,
- hours worked,
- and all income fields (wages, self-employment income, interest income, Social Security income, Supplemental Security income, public assistance income, retirement income, other income, and total income).

T-tests performed at a significance level of 0.1 indicate that the item nonresponse rates do not differ between the control and OCR treatments for any of the items listed. See Attachment B for a table containing the nonresponse rates and associated test statistics for each item.

We also compared the response distributions from the control and OCR treatments for the selected numeric items noted above. The chi-square test, performed at a significance level of 0.1 , rejected the null hypothesis of independence for four items: age, rooms, hours worked, and self-employment income. This suggests that respondents may have answered these items differently due to the format of the numeric write-in boxes. However, these items are not concentrated in any one section of the form that would indicate a specific issue in using dentils for a series of questions (i.e. income questions). For most of the items analyzed, the format change did not cause respondents to answer the numeric questions differently. Attachment B contains a table showing the distributions for each of the items evaluated.

V. Conclusions

The use of OCR technology for numeric items in the OCR treatment of the QDT displays great promise. Overall, the OCR value matched the keyed value about 73 percent of the time. The OCR value and keyed value did not match for just 0.3 percent of all keyed values and for about 34 percent of these, the OCR value was correct. When the OCR value was not correct, the magnitude of the differences between the OCR and keyed value appears to be nominal in most cases. Additionally, of all values read by OCR, just 0.3 percent were in error, which is less than the one percent error rate required for keyed batches.

By simulating the elimination of legal value and answer length edits that are used by OCR, we see that the percentage of OCR and keyed values that matched increases by about four percent, the percentage of keyed values not read by OCR decreases by about four percent while the OCR error rate increases by about 0.3 percent. The elimination of these edits adversely affects some items more than others. Retaining just an edit for the year fields and an edit restricting OCR values of ' 1 ' in the amount fields would mitigate many of those adverse effects.

Another area of possible improvement to the OCR methodology is not sending values that OCR reads as a blank to a keyer. In the test, keyers keyed all values that OCR detected as a blank. For the self-employment amount, SSI amount, public assistance amount, and other income amount fields, keyers confirmed all of the OCR detected blanks. Further research into all OCR detected blanks shows that keyers confirmed all but four of the 601 detected blanks (0.7 detected blank in error). By accepting the values that OCR detects as blanks, we can further decrease the keying workload with little change to the OCR error rate.

References

Davis, Mary C. and Wakim, Anne (2014). 2014 American Community Survey Research and Evaluation Report Memorandum Series \#ACS14-RER-03, DSSD 2014 American Community Survey Memorandum Series \#ACS14-MP-02, "2013 American Community Survey Questionnaire Design Final Report", U.S. Census Bureau.

Terry, Rodney L. (2013), "Cognitive Pretesting for Navigation of 2013 ACS Questionnaire Design Test Questionnaires," U.S. Census Bureau, http://www.census.gov/srd/papers/pdf/ssm2013-17.pdf
U.S. Census Bureau (2009), "(ACS) Design and Methodology," available at: http://www.census.gov/acs/www/methodology/methodology_main/ last accessed in April 2014.

Attachment A - Numeric Items on the Control Form and Associated Field Names (variable name in red)

	13193008																					
the American	ommunity Survey																					
Start Here Respond online today at: https://respond.census.gov/acs OR Complete this form and mail it back as soon as possible.																						
	Θ Please p print today's date. IMN \square \square Please print the name and telephone number of the person who is filling out this for																					
This form asks for information about the people who are living or staying at the address on the mailing label and about the house, apartment, or mobile home located at the address on the mailing label.	Last Name First Name																					
If you need help or have questions about completing this form, please call $1-800-354-7271$. The telephone call is free. Telephone Device for the Deaf (TDD): Call 1-800-582-8330. The telephone call is ¿NECESITA AYUDA? Si usted habla español y llame sin cargo alguno al 1-877-833-5625. Usted tambien puede completar su entrevista español. O puede responder por Internet en: https://respond.census.gov/acs For more information about the American http://www.census.gov/acs/www/	Area Code + Number \square RTEL How many people are living or staying at this address? - INCLUDE everyone who is living or staying here for more than 2 months. - INCLUDE yourself if you are living here for more than 2 months. stay, even if they are here for 2 months or less. 2 months, such as a college stu anyone who is living somewhere else for more than Number of people \square RPER Fill out pages 2, 3, and 4 for everyone, including yourself, who is living or staying at this address complete the rest of the form.																					
\|	I																					

ACS-1 (2013)KFI, Page 1, Base (Black) \qquad

ACS-1(2013)KFI, Page 3, Base (Black)

ACS-1(2013)KFI, Page 5, Base (Black)
ACS-12013)KFL Page 5, Green Pantone $354(10,20,40, \& 50 \%)$

6 |IIIIIIIIIIII|||||||||

1

8 |||||||||||||||||||||

ACS-1(2013)KFI, Page 9, Base (Black)
ACS-1(2013)KFl, Page 9, Green Pantone 354 ($10,20,40, \& 50 \%$)
1

ACS-1(2013)KFl, Page 10, Base (Black) \qquad

Attachment B - Weighted Distributions of Specific Items - Control vs. OCR Treatments
Source: U.S. Census Bureau, 2013 American Community Survey Questionnaire Design Test, July to August 2013

Age	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	1.1	0.2	1.5	0.3	0.4	0.4	no
Response Distribution							
0-17	18.2	1.1	16.9	1.0	Chi-Square Test Result: Distribution is statistically different$\left(\chi^{2}=12.4, p \text {-value }=0.0146\right)$		
18-24	7.9	0.7	5.6	0.6			
25-44	18.1	1.0	18.7	1.0			
45-64	30.5	1.0	29.9	1.1			
65 and over	25.2	1.2	29.0	1.2			

Date of birth month	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.4	0.5	5.5	0.6	1.1	0.8	no
Response Distribution							
1	8.7	0.7	9.2	0.8	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=7.9, p \text {-value }=0.7209\right)$		
2	8.5	0.7	8.0	0.7			
3	8.2	0.7	7.8	0.7			
4	9.0	0.7	8.7	0.7			
5	7.4	0.6	8.2	0.7			
6	6.4	0.7	8.3	0.7			
7	8.7	0.6	7.5	0.7			
8	8.5	0.7	8.4	0.6			
9	8.1	0.7	8.9	0.7			
10	8.8	0.7	8.1	0.7			
11	8.3	0.7	8.5	0.7			
12	9.4	0.8	8.5	0.8			

Date of birth year	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.0	0.5	4.7	0.5	0.7	0.8	no
Response Distribution							
1890-1899	0.0	0.0	0.0	0.0	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=10.5, p \text {-value }=0.3989\right)$		
1900-1909	0.0	0.0	0.0	0.0			
1910-1919	0.3	0.1	0.3	0.2			
1920-1929	4.4	0.5	4.0	0.6			
1930-1939	9.8	0.8	10.3	0.7			
1940-1949	13.8	0.9	16.5	1.1			
1950-1959	17.2	1.0	16.9	0.9			
1960-1969	13.0	0.8	13.3	0.8			
1970-1979	9.1	0.7	9.6	0.7			
1980-1989	8.3	0.7	8.7	0.8			
1990-1999	12.0	0.8	10.2	0.7			
2000-2009	8.7	0.9	7.8	0.7			
2010 or later	3.3	0.5	2.4	0.4			

	Control		OCR		Difference (OCR - Control)		
Year moved in	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.0	0.7	4.9	0.7	0.9	1.0	no
Response distribution							
Before 1970	8.6	1.0	8.2	1.1	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=4.3, p \text {-value }=0.5013\right)$		
Between 1970 to 1979	7.0	1.0	8.0	1.0			
Between 1980 to 1989	9.9	1.2	8.2	1.0			
Between 1990 to 1999	20.1	1.2	18.8	1.6			
Between 2000 to 2009	32.9	1.7	31.6	1.4			
After 2009	21.5	1.8	25.2	1.5			

	Control		OCR		Difference (OCR - Control)		
Rooms	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.3	0.7	3.5	0.7	-0.7	0.9	no
Response distribution							
1 rooms	1.3	0.5	0.8	0.3	Chi-Square Test Result: Distribution is statistically different$\left(\chi^{2}=13.9, p \text {-value }=0.0856\right)$		
2 rooms	3.0	0.6	3.9	0.7			
3 rooms	7.3	1.0	6.8	1.0			
4 rooms	13.5	1.1	13.4	1.2			
5 rooms	15.6	1.4	19.7	1.3			
6 rooms	18.8	1.5	18.3	1.3			
7 rooms	17.0	1.2	12.6	1.1			
8 rooms	9.7	1.0	12.1	1.2			
9 rooms or more	13.9	1.2	12.5	1.3			

	Control		OCR		Difference (OCR - Control)		
Electricity cost	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	6.9	1.0	5.2	0.8	-1.7	1.3	no
Response distribution							
\$1 to \$99	41.9	2.0	46.1	1.8	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=6.9, p \text {-value }=0.2298\right)$		
\$100 to \$199	38.7	2.0	36.8	1.7			
\$200 to \$299	12.1	1.3	10.3	1.1			
\$300 to \$399	3.8	0.7	4.1	0.8			
\$400 to \$999	2.7	0.6	1.4	0.4			
\$1,000 or more	0.7	0.3	1.3	0.4			

	Control		OCR		Difference (OCR - Control)		
Rent	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	2.8	1.2	5.5	1.6	2.7	2.1	no
Response distribution							
No rent	0.0	0.0	0.0	0.0	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=0.2, p \text {-value }=0.9750\right)$		
\$1 to \$999	70.5	3.6	68.6	2.9			
\$1,000 to \$1,999	23.1	3.4	25.0	3.1			
\$2,000 to \$2,999	3.5	1.3	3.7	1.4			
\$3,000 to \$3,999	0.0	0.0	0.0	0.0			
\$4,000 or more	2.9	1.2	2.7	1.2			

Value	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	11.6	1.3	11.9	1.5	0.3	2.2	no
Response distribution							
Less than \$10,000	3.5	0.8	3.5	0.9	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=29.1, p \text {-value }=0.1773\right)$		
\$10,000 to \$14,999	0.6	0.4	2.1	0.6			
\$15,000 to \$19,999	1.9	0.6	0.6	0.3			
\$20,000 to \$24,999	1.0	0.4	0.6	0.4			
\$25,000 to \$29,999	0.6	0.4	1.5	0.5			
\$30,000 to \$34,999	0.2	0.2	1.2	0.5			
\$35,000 to \$39,999	0.2	0.2	1.2	0.5			
\$40,000 to \$49,999	2.1	0.6	2.3	0.6			
$\$ 50,000 \text { to } \$ 59,999$	2.7	0.7	1.9	0.6			
\$60,000 to \$69,999	3.5	0.9	3.7	0.8			
\$70,000 to \$79,999	2.7	0.8	4.2	1.0			
\$80,000 to \$89,999	4.8	1.0	5.2	1.0			
\$90,000 to \$99,999	5.0	0.9	4.2	0.9			
$\begin{aligned} & \hline \$ 100,000 \text { to } \$ 124,999 \\ & \hline \end{aligned}$	9.8	1.5	9.4	1.4			
\$125,000 to \$149,999	6.3	1.0	8.3	1.2			
\$150,000 to \$174,999	7.5	1.3	8.1	1.3			
\$175,000 to \$199,999	7.1	1.2	7.5	1.2			
\$200,000 to \$249,999	12.1	1.5	7.7	1.3			
\$250,000 to \$299,999	6.5	1.2	4.2	1.0			
\$300,000 to \$399,999	9.6	1.3	10.4	1.5			
\$400,000 to \$499,999	5.0	1.0	4.8	1.1			
\$500,000 to \$749,999	2.7	0.7	3.1	0.8			
\$750,000 to \$999,999	1.9	0.6	1.7	0.6			
\$1,000,000 or more	2.5	0.6	2.7	0.7			

	Control		OCR		Difference (OCR - Control)		
Mortgage	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	5.2	1.1	6.3	1.1	1.1	1.4	no
Response distribution	50.1	2.2	50.9	2.3			
No mortgage	22.1	1.9	26.2	2.1	Chi-Square Test Result:		
$\$ 1$ to $\$ 999$	21.7	1.7	17.5	1.6	Distribution is not statistically		
different							

Educational attainment write-in (grades 1-11)	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.6	1.5	3.2	1.2	-1.5	1.7	no
Response Distribution							
1	6.5	1.8	3.3	1.3	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=8.6, p \text {-value }=0.6562\right)$		
2	7.0	1.8	3.7	1.5			
3	5.4	2.0	6.0	1.6			
4	7.5	1.9	8.4	1.8			
5	8.6	2.1	10.2	2.1			
6	7.5	2.1	4.7	1.3			
7	5.3	1.6	4.2	1.3			
8	9.1	1.9	12.1	2.1			
9	8.6	1.9	12.6	1.9			
10	17.7	2.6	16.7	2.7			
11	16.1	2.8	17.2	2.6			
12	0.5	0.5	0.9	0.6			

	Control		OCR		Difference (OCR - Control)		
Year last married	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.1	0.6	4.1	0.7	0.0	1.0	no
Response Distribution							
1949 or before	3.1	0.5	3.4	0.6	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=5.6, p \text {-value }=0.4660\right)$		
1950 to 1959	8.4	1.0	8.9	0.9			
1960 to 1969	15.2	1.1	13.5	1.2			
1970 to 1979	13.5	1.2	16.0	1.3			
1980 to 1989	17.6	1.1	18.5	1.1			
1990 to 1999	17.8	1.0	15.7	1.0			
2000 or later	24.4	1.3	23.9	1.5			

Commute time	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	3.7	0.8	5.6	0.9	1.9	1.3	no
Response distribution							
1 to 15 minutes	42.8	1.9	40.8	2.2	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=3.7, p \text {-value }=0.5988\right)$		
16 to 30 minutes	34.4	2.2	35.1	2.0			
31 to 45 minutes	12.0	1.3	14.3	1.5			
46 to 60 minutes	5.6	1.1	5.7	0.9			
61 to 120 minutes	4.7	1.0	3.2	0.8			
121 and over minutes	0.5	0.3	0.9	0.4			

	Control		OCR		Difference (OCR - Control)		
Hours worked	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	4.4	0.7	5.7	0.8	1.3	1.0	no
Response distribution	8.8	1.0	5.7	0.8	Chi-Square Test Result: Distribution is statistically different		
$1-14$	21.0	1.5	20.0	1.3			
$15-34$	70.2	1.7	74.3	1.5			
35 or more	$\chi^{2}=7.1, p$-value $\left.=0.0284\right)$						

Wages	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	12.7	1.1	13.2	1.1	0.4	1.4	no
Response distribution							
\$1-\$9,999	19.7	1.5	15.3	1.3	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=9.1, p \text {-value }=0.1658\right)$		
\$10,000-\$24,999	20.5	1.5	19.4	1.4			
\$25,000-\$49,999	22.8	1.5	21.9	1.5			
\$50,000-\$99,999	17.9	1.3	19.8	1.3			
\$100,000-\$249,999	4.1	0.9	5.4	0.8			
\$250,000 or more	1.0	0.3	0.7	0.3			
No wages	14.0	1.2	17.5	1.3			

	Control		OCR		Difference (OCR - Control)		
Total income	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	23.0	1.0	22.8	1.0	-0.2	1.5	no
Response distribution							
\$1-\$9,999	31.4	1.2	33.0	1.5	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=2.9, p \text {-value }=0.7154\right)$		
\$10,000-\$24,999	25.2	1.4	22.4	1.3			
\$25,000-\$49,999	22.0	1.2	22.1	1.3			
\$50,000-\$99,999	16.2	1.0	16.9	1.1			
\$100,000-\$249,999	4.2	0.8	4.8	0.7			
\$250,000 or more	1.0	0.3	0.8	0.3			

Self-Employment Income	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	17.9	1.4	18.8	1.4	0.9	1.8	no
Response distribution							
\$1-\$9,999	1.5	0.5	4.2	0.8	Chi-Square Test Result: Distribution is statistically different$\left(\chi^{2}=11.1, p \text {-value }=0.0868\right)$		
\$10,000-\$24,999	2.7	0.7	1.9	0.6			
\$25,000-\$49,999	1.5	0.4	0.9	0.4			
\$50,000-\$99,999	0.7	0.3	0.6	0.3			
\$100,000-\$249,999	0.3	0.2	0.6	0.3			
\$250,000 or more	0.3	0.2	0.1	0.1			
No income	93.0	0.9	91.6	1.1			

Interest Income	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	25.5	1.1	26.1	1.0	0.6	1.5	no
Response distribution							
\$1-\$9,999	13.7	1.1	15.1	1.1	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=4.3, p \text {-value }=0.5090\right)$		
\$10,000-\$24,999	2.4	0.5	1.8	0.4			
\$25,000-\$49,999	1.0	0.3	0.5	0.2			
\$50,000-\$99,999	0.7	0.2	0.6	0.2			
\$100,000-\$249,999	0.3	0.2	0.5	0.2			
\$250,000 or more	0.0	0.0	0.0	0.0			
No income	82.0	1.2	81.6	1.1			

Social Security Income	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	21.4	1.0	19.8	1.0	-1.5	1.5	no
Response distribution							
\$1-\$9,999	12.5	1.0	13.7	0.9	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=3.7, p \text {-value }=0.4470\right)$		
\$10,000-\$24,999	16.2	1.1	18.4	1.1			
\$25,000-\$49,999	1.2	0.3	0.9	0.3			
\$50,000-\$99,999	0.2	0.1	0.2	0.1			
\$100,000-\$249,999	0.0	0.0	0.0	0.0			
\$250,000 or more	0.0	0.0	0.0	0.0			
No income	70.0	1.4	66.8	1.3			

	Control		OCR		Difference (OCR - Control)		
SSI Income	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	22.0	1.0	20.9	1.1	-1.1	1.4	no
Response distribution							
\$1-\$9,999	6.2	0.7	6.3	0.5	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=0.3, p \text {-value }=0.8692\right)$		
\$10,000-\$49,999	1.4	0.3	1.1	0.2			
\$50,000-\$99,999	0.0	0.0	0.0	0.0			
\$100,000-\$249,999	0.0	0.0	0.0	0.0			
\$250,000 or more	0.0	0.0	0.0	0.0			
No income	92.4	0.8	92.6	1.2			

Public Assistance Income	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	21.2	0.9	19.6	1.1	-1.6	1.4	no
Response distribution							
\$1-\$24,999	3.7	0.6	3.4	0.5	Chi-Square Test Result: Distribution is not statistically different $\left(\chi^{2}=0.1, p \text {-value }=0.7009\right)$		
\$25,000-\$49,999	0.0	0.0	0.0	0.0			
\$50,000-\$99,999	0.0	0.0	0.0	0.0			
\$100,000-\$249,999	0.0	0.0	0.0	0.0			
\$250,000 or more	0.0	0.0	0.0	0.0			
No income	96.3	0.6	96.6	1.5			

	Control		OCR		Difference (OCR - Control)		
Retirement Income	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	21.1	1.0	19.9	1.1	-1.2	1.5	no
Response distribution							
\$1-\$9,999	7.9	0.8	8.4	0.7	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=2.8, p \text {-value }=0.7276\right)$		
\$10,000-\$24,999	4.6	0.6	5.6	0.7			
\$25,000-\$49,999	2.7	0.6	3.3	0.5			
\$50,000-\$99,999	1.1	0.3	0.9	0.3			
\$100,000 or more	0.1	0.1	0.2	0.1			
No income	83.6	1.1	81.7	1.0			

Other Income	Control		OCR		Difference (OCR - Control)		
	Estimate	SE	Estimate	SE	Estimate	SE	Significant?
Nonresponse	21.0	1.0	19.9	1.2	-1.1	1.5	no
Response distribution							
\$1-\$9,999	4.8	0.6	4.4	0.7	Chi-Square Test Result: Distribution is not statistically different$\left(\chi^{2}=0.4, p \text {-value }=0.9304\right)$		
\$10,000-\$24,999	1.1	0.3	1.3	0.3			
\$25,000-\$249,999	0.5	0.2	0.5	0.2			
\$250,000 or more	0.0	0.0	0.0	0.0			
No income	93.7	0.7	93.8	0.7			

[^0]: ${ }^{1}$ In addition to the introduction of dentils in the test, the test format also changed the color of the border of checkboxes and entry boxes from black to green. The color of the page border and vertical lines separating the three columns on the page also changed from black to green in the test format. This change is an enhancement of the form to aid in data capture by the iCADE system.

[^1]: ${ }^{2}$ Survey-defined edits used as part of the OCR module determine if the OCR-read answer makes contextual sense for the survey. For this test, these edits are answer length and legal value edits.
 ${ }^{3}$ About 28 percent of the control treatment and 29 percent of the OCR treatment responded by Internet. The total selfresponse rate for the control and OCR treatment is about 52 percent and about 53 percent respectively.

[^2]: ${ }^{4}$ See U.S Census Bureau (2009), chapter 12, for more information on variance estimation.

[^3]: ${ }^{5}$ Fields requiring the keyer to enter a value with a specific length are often keyed with a leading zero. Likewise, OCR will read leading zeros provided by the respondent that keyers may not key (for fields not requiring a specific length). For comparison purposes, leading zeros are dropped in the determination of matching OCR and keyed values.

