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On Invariant Post Randomization for Statistical

Disclosure Control

Tapan K. Nayak∗ and Samson A. Adeshiyan†‡

Abstract

In this paper, we investigate certain operational and inferential aspects of invariant

PRAM (post randomization method) as a tool for disclosure limitation of categorical data.

Invariant PRAMs preserve unbiasedness of certain estimators, but inflate their variances and

distort other attributes. We introduce the concept of strongly invariant PRAM, which does

not affect data utility or the properties of any statistical method. However, the procedure

seems feasible in limited situations. We review methods for constructing invariant PRAM

matrices and prove that a conditional approach, which can preserve the original data on any

subset of variables, is an invariant PRAM. For multinomial sampling, we derive expressions

for variance inflation due to invariant PRAMing and variances of certain estimators of the

cell probabilities and also their tight upper bounds. We discuss estimation of these quantities

and thereby assessing statistical efficiency loss due to invariant PRAMing. We find a connec-

tion between invariant PRAM and creating partially synthetic data using a nonparametric
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approach, and compare estimation variance under the two approaches. Finally, we discuss

some aspects of invariant PRAM in a general survey context.

Key words and Phrases: Categorical data; randomized response; sampling design; synthetic

data; unbiased estimation; variance inflation.
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1. Introduction

The Post Randomization Method (PRAM), introduced by Kooiman et al. (1997) and further

discussed by Gouweleeuw et al. (1998), De Wolf et al. (1998), Willenborg and De Waal (2001),

Ronning (2005), Van den Hout and Elamir (2006), Van den Hout and Kooiman (2006), Cruyff et

al. (2008) and others, is an important technique for categorical data perturbation for confiden-

tiality protection. PRAM stochastically transforms each record in a data set using pre-selected

probabilities. This deliberate misclassification of the original responses introduces uncertainty

about the true category of any respondent. On the other hand, since the misclassification prob-

abilities are known, valid statistical inferences can be derived from PRAMed data. Let X be a

categorical variable with categories c1, . . . , ck. The basic ideas of PRAM are to (i) select a tran-

sition probability matrix P = ((pij)), where
∑
i pij = 1 for j = 1, . . . , k, and then (ii) randomly

change any original category cj to ci with probability pij (i, j = 1, . . . , k). The randomization

step is performed for each record in the data set, independently of all other records. We shall

denote the transformed variable by Z, in which case, pij = P (Z = ci|X = cj). In practice,

data agencies should release PRAMed data along with the transition probability matrix P , also

called the PRAM matrix, to the public, so that users can derive valid statistical inferences from

the released data.

As noted by Gouweleeuw et al. (1998) and Van den Hout and Van der Heijden (2002),

mathematically, PRAM is similar to randomized response (RR) surveys (e.g., Warner, 1965;

Chaudhuri and Mukerjee, 1988; Nayak, 1994; Nayak and Adeshiyan, 2009). Thus, many ideas

and mathematical results developed for RR surveys can be applied to PRAM. Both methods deal

with the dual goals of protecting privacy and preserving statistical information. One difference

is that in RR surveys, each respondent randomizes his response at data gathering stage, whereas

in PRAM, randomization is carried out by the surveyor after the data are collected. Another

divergence, which has not been noted well earlier, is that in RR surveys the transition probability
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matrix P is prespecified and hence fixed, but in PRAM it may depend on the data and hence

be random. This causes certain differences in the variance inflation due to the two procedures,

which we discuss in Section 4.

Let πi = P [X = ci], i = 1, . . . , k, and π = (π1, . . . , πk)′. Let n denote the sample size

and Ti denote the frequency of category ci in the original sample. Most papers on PRAM

assume multinomial sampling, i.e., the original data are collected by random sampling from an

infinite population or by simple random sampling with replacement (SRSWR) if the population

is finite. We shall assume multinomial sampling, except in Section 6, where we consider general

probability sampling. Under multinomial sampling, T = (T1, . . . , Tk)′ ∼ Mult(n, π), but note

that T1, . . . , Tk cannot be ascertained from PRAMed data. Let, Si denote the frequency of

category ci after PRAMing, λi = P (Z = ci), i = 1, . . . , k and λ = (λ1, . . . , λk)′. Then, S =

(S1, . . . , Sk)′ ∼Mult(n, λ), where

λ = Pπ. (1.1)

From (1.1), it follows that for nonsingular P , any unbiased estimator λ̃ of λ yields an unbiased

estimator of π, given by π̃ = P−1λ̃. The MLE (and UMVUE) of λ is λ̂ = S/n, which yields the

following estimator of π:

π̂ = P−1λ̂ = P−1(S/n). (1.2)

It can be seen that π̂ is an unbiased estimator of π and

V ar(π̂) =
(Dπ − ππ′)

n
+

[P−1Dλ(P−1)′ −Dπ]
n

, (1.3)

whereDπ is a diagonal matrix with diagonal elements being π1, . . . , πk andDλ is defined similarly

(see Chaudhuri and Mukerjee, 1988, p. 43). The first term on the right side of (1.3) is the

variance under no randomization and the last term is the additional variance due to PRAMing.

Without PRAMing, i.e., based on the original data, the MLE (and the UMVUE) of π is

π̂0 = T/n. Note that E[S|T] = PT and hence E[π̂|T] = π̂0. Thus, the estimator π̂ in (1.2) can
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be regarded as an unbiasedly recovered version of π̂0. However, if E[S|T] = T, i.e.,

PT = T or equivalently Pπ̂0 = π̂0, (1.4)

then S/n is also an unbiased estimator of π, which can be calculated without using P or its

inverse. Also, S/n is always a probability vector, while π̂ in (1.2) may not be so. Observing these

points, Gouweleeuw et al. (1998) defined a PRAM to be an invariant PRAM if P satisfies (1.4).

The main goal of this paper is to examine certain practical and inferential sides of invariant

PRAM and present some results to advance it further as a disclosure control method.

PRAM can be applied to more than one categorical variable, independently or jointly on the

cross-classification of all variables (see, Gouweleeuw et al., 1998). Conceptually, any PRAM can

be regarded as being applied to the compound variable created by cross-classifying all variables,

and that view is both convenient and appropriate for estimating the joint probabilities. When

there are several variables and they are PRAMed independently and invariantly, the marginal

probabilities can be estimated from PRAMed data without any adjustment for PRAMing, but

not the joint probabilities. This is because, independent invariant PRAMing of individual vari-

ables does not imply invariant PRAMing of the compound variable, unless the variables are

independently distributed. So, for estimating the joint probabilities, one will need to obtain the

transition probability matrix for the combined variable and use its inverse. Unbiased estimation

of all cell probabilities without knowing the PRAM matrix requires an invariant PRAM of the

combined variable.

In the next section, we introduce and discuss a stronger version of invariant PRAM that has

no effect on statistical inferences. Choosing a suitable P satisfying (1.4) is central to devising

an invariant PRAM. This requires methods for solving (1.4) for P and assessing the efficacy

of any given P for confidentiality protection and also its effect on variance of estimators. In

Section 3, we review two existing methods for solving equations (1.4) and (2.1) and formalize an

approach that permits PRAMing some of the variables while keeping others unchanged. This
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is useful when there are several variables and the total number of cells is large. In Section 4,

we derive the variance covariance matrix V (π̂∗) of π̂∗ = S/n under multinomial sampling, and

discuss how a data agency can estimate it. However, a user cannot estimate V (π̂∗), unless P

is released along with PRAMed data, which is undesirable from confidentiality perspective. We

derive a tight upper bound for V (π̂∗), which can be estimated from PRAMed data. In Section

5, we relate one type of synthetic data to invariant PRAM. Specifically, we show that creating

nonparametric synthetic data is equivalent to applying a specific invariant PRAM, which also

induces the maximum variance inflation among all invariant PRAMs. In Section 6, we discuss

invariant PRAM for data coming from a probability sample. We give an expression for variance

inflation that can be used by data agencies. However, it is difficult for a user to estimate the

variance inflation or variances of estimators. We state some concluding remarks in Section 7.

2. Strongly Invariant PRAM

We note that (1.4) implies a specific invariance property, viz., unbiasedness of the observed

relative frequency vector (S/n) for estimating π, but not necessarily of other estimators. Even

under (1.4), the distributions of T and S are different (unless P = I), and consequently (i)

the covariance matrices of (T/n) and (S/n) are not the same and (ii) unbiased estimation of

nonlinear functions of π (e.g.,
∑
π2
i ) may not be possible if P is not given. Thus, invariant

PRAMs preserve only certain properties of some estimators.

For stronger implications, we may wish to choose P so that statistical properties of all infer-

ential methods remain invariant under PRAMing, i.e., the validity of any inferential procedure

would not depend on whether it is applied to the original data or a PRAMed version of it. In

such cases, for making inferences about π, data users would not need to know or use the matrix

P and can use any procedure that is valid for the original data. The question of whether it is

possible to find such P or not was left open for future research in Gouweleeuw et al. (1998). Note
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that invariance of all inferential methods essentially requires the distributions of any statistic

calculated from original and PRAMed data, respectively, to be the same. Under multinomial

sampling, this amounts to requiring the frequency counts from original and PRAMed data, i.e.,

(T1, . . . , Tk) and (S1, . . . , Sk) respectively, to have the same distribution, viz., Mult(n, π). This

holds if and only if λ = π or equivalently P satisfies the condition

Pπ = π. (2.1)

We define a PRAM to be a strongly invariant PRAM if P satisfies (2.1). One appealing

property of a strongly invariant PRAM is that it does not affect either data utility or data

analysis; there is no loss of statistical information and PRAMed data can be analyzed without

any adjustment for post-randomization. However, such a strong outcome is usually unattainable

in practice because typically π is unknown and so (2.1) cannot be solved for P (except for P = I).

One situation where the true π is known is when the data come from a census. Likewise, when

the sample size is large, π can be fairly well estimated from the original data. Thus, a strongly

invariant PRAM is applicable when releasing a random subset of census data (or of a large data

set) for public use. For example, the Public Use Microdata Sample (PUMS) files released by

the U.S. Census Bureau are subsets of census or large survey data. Thus, strongly invariant

PRAMing may serve as another tool for confidentiality protection in creating PUMS files.

3. Constructing Invariant PRAMs

To construct a strongly invariant PRAM, one needs to solve (2.1) for P (for given π) and choose

a solution. Similarly, constructing an invariant PRAM requires solving (1.4). However, (1.4)

and (2.1) are identical, as mathematical equations, and so we shall examine only (2.1). Note

that (2.1) has many solutions for P , with the identity matrix being an obvious solution, and

if P and P∗ satisfy (2.1), then aP + (1 − a)P∗ also satisfies (2.1) for all 0 ≤ a ≤ 1. Thus, the
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solution space of (2.1) is a non-empty convex set. The solution set is also closed under matrix

multiplication, viz. if P and P∗ are strongly invariant transition probability matrices, then so is

the product PP∗.

In many practical applications, X is a compound variable with some structurally empty cells,

i.e., cells with zero probability (see Gouweleeuw et al., 1998). We note some practical points

about such situations. For notational simplicity, suppose π = (π′+, π
′
0)′, where all components

of π+ are positive and π0 is a vector of zeros. Then, partitioning P analogously, (2.1) reduces to P11 P12

P21 P22


 π+

0

 =

 π+

0

 . (3.1)

Clearly, (3.1) can hold only if P21 = 0, and P12 and P22 have no bearing on the validity of (3.1).

In particular, one may take P12 = 0 and P22 = I. Essentially, (2.1) reduces to P11π+ = π+,

and thus one needs to consider only the structurally non-zero cells (which also remain so under

any strongly invariant PRAM). Similarly, for invariant PRAM, i.e., for (1.4), only the cells with

positive frequencies are relevant. Any cell that has zero frequency for the original data will also

have zero frequency after invariant PRAMing. In contrast, a cell with original count of zero and a

positive probability may get a positive count after strongly invariant PRAMing. Thus, strongly

invariant PRAMs may better protect confidentiality than invariant PRAMs. One concern in

micro data perturbation is satisfying edit constraints (see De Wolf et al., 1998; Shlomo and De

Waal, 2008). The preceding observations show that invariant (or strongly invariant) PRAMs

of the cross classification of all variables automatically satisfy all natural edit constraints. For

notational simplicity, we shall continue to use (2.1) considering only structurally non-empty

cells, instead of switching to the equation P11π+ = π+.

We shall now briefly review, partly for later reference, two methods for solving (2.1), pre-

sented in Gouweleeuw et al. (1998). To discuss one class of solutions, assume for notational

simplicity that 0 < πk ≤ πi for i = 1, . . . , k. Then, letting pii = 1 − θ(πk
πi

) and pij = θ[ πk
(k−1)πj

]
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for i 6= j, it can be seen that P = ((pij)) satisfies (2.1) for all 0 ≤ θ ≤ 1. These {pij},

with any 0 ≤ θ ≤ 1, constitute a strongly invariant PRAM matrix. Here, {pij} can be in-

terpreted nicely. Note that P (Z 6= cj |X = cj) = θ(πk
πj

), j = 1, . . . , k, which implies that θ is

the probability of changing a true response of ck to another category. Any other response cj

(j 6= k), changes to another category with probability θ(πk
πj

). Moreover, it can be seen that for

i 6= j, P (Z = ci|X 6= Z) = 1/(k − 1), which means that when a true response is changed, the

perturbed value is selected at random from one of the remaining (k − 1) categories.

Another method for solving (2.1) uses a two step process. Let R = ((rij)) be any transition

probability matrix such that all components of Rπ are positive. Let qij = [rjiπi]/[
∑
l rjlπl],

Q = ((qij)) and P = QR. Then, it can be verified that P satisfies (2.1). This also shows that

any PRAMed data set (with a known transition probability matrix R) can be PRAMed again,

with a suitable transition probability matrix Q, to make the final outcome a strongly invariant

PRAM. In this context, we note that R need not be a square matrix, i.e., X and Z need not

have the same number of cells. For any transition probability matrix R of order m × k with

all components of Rπ being positive, the final matrix P is a strongly invariant PRAM matrix.

However, P would be singular, if m < k or rank(R) < k.

When there are several variables, applying strongly invariant PRAM to each variable sepa-

rately (and independently) does not amount to using a strongly invariant PRAM on the com-

pound variable, unless all variables are independently distributed. So, the two methods discussed

above need to be applied to the cross-classification of all variables, which is unwieldy when the

total number of cells is large. Gouweleeuw et al. (1998) and De Wolf et al. (1998) discuss several

practical issues, such as how to decide which variables are to be PRAMed and how to choose P .

They suggest to group the variables such that any two variables falling in two different groups

are nearly independent. Then, consider all variables in each group as a compound variable and

partition its categories into clusters in such a way that any category can be replaced only by
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categories within its cluster. This approach leads to a block diagonal structure of P for each

compound variable. Finally, choose the block matrices suitably to achieve confidentiality pro-

tection goals. Shlomo and De Waal (2008) applied these recommendations to an Israel Census

sample data set. However, as the compound variables (for the groups) are PRAMed separately,

the overall process may not be an invariant PRAM of the cross-classification of all variables.

Next, we describe another mechanism for constructing strongly invariant PRAMs of several

variables. The procedure uses a conditional approach and has been used by Shlomo and De

Waal (2008). The following discussion gives the procedure a formal footing and helps to bring

out a connection between invariant PRAM and partially synthetic data, presented in Section 5.

Theorem 3.1. Consider two categorical variables X and Y . Suppose X is kept unchanged

and within each category of X, Y is strongly invariantly PRAMed into Z. Then, the stochastic

transformation from (X,Y ) to (X,Z) is a strongly invariant PRAM of (X,Y ).

Proof. Suppose X has k categories, denoted by c1, . . . , ck, and Y and Z have m categories

labeled d1, . . . , dm. Since Y is strongly invariantly PRAMed within each category of X, we have

P (Z = dj |X = ci) = P (Y = dj |X = ci) for all i = 1, . . . , k and j = 1, . . . ,m. Then considering

the joint probabilities, we get

P (X = ci, Z = dj) = P (X = ci)P (Z = dj |X = ci)

= P (X = ci)P (Y = dj |X = ci)

= P (X = ci, Y = dj)

for all i = 1, . . . , k and j = 1, . . . ,m, which completes the proof.

It can be seen similarly that a parallel version of Theorem 3.1 holds for invariant PRAM,

i.e., invariant PRAMing of Y within each X category is an invariant PRAM of (X,Y ). Thus,

the following mechanism can be used for invariant PRAMing. First, divide all variables into two
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groups and let X and Y denote the corresponding compound variables; each variable in the data

set must be a part of either X or Y . Then, for each category of X, apply an invariant PRAM to

Y . One advantage of the conditional approach is that it fully preserves the original data on X,

which may be regarded as a control variable. This is useful for preserving information on some

of the variables that are deemed important to users. For example, we may PRAM zipcodes

within each county to preserve county level counts. We should also note that the conditional

approach requires choosing and using a transition probability matrix for each X category, which

may be burdensome, but that also offers the flexibility to perturb Y in varying degree across the

categories of X. This is helpful for mitigating different disclosure risks for units in different X

categories. When the total number of cells is large and many cells have small counts, invariant

PRAMing may not be convenient or adequate for privacy protection. In such cases, invariant

PRAMing after cell collapsing could be a practical and effective approach.

We believe, the procedure proposed above, viz., dividing all variables into two compound

variables X and Y and then invariantly PRAMing Y within each category of X, would suffice

in most practical situations. However, we may note that repeated applications this process also

result in an invariant PRAM. This follows from the fact that if P and P∗ are invariant transition

probability matrices (i.e., satisfy (1.4)), then PP∗ is also so. In this context, one may put any of

the variables in the control set in each step. For example, for a data set with three categorical

variables X1, X2 and X3, we may first invariantly PRAM X2 and X3 within X1 categories,

creating (X1, X
′
2, X

′
3) and then invariantly PRAM X1 and X ′2 within X3 to form (X ′1, X

′′
2 , X

′
3)

and so on. Such a perturbation process is equivalent to an invariant PRAM.

4. Estimation from Invariantly PRAMed Data

As noted in Section 2, under multinomial sampling, all analytical methods for original data

are equally valid for strongly invariantly PRAMed data. Thus, strongly invariant PRAMs do
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not raise any new inferential issues. Also, a strongly invariant PRAM cannot be constructed

in many practical situations, as π is unknown. So, here we shall discuss estimation based on

invariantly PRAM data, as defined by (1.4). Let P = [P1 : . . . : Pk] be an invariant PRAM

matrix and rewrite (1.4) as
k∑
i=1

TiPi = T. (4.1)

Note that P depends on T and hence is a random matrix. Let Fij denote the number of units

with original category ci and perturbed category cj , and let Fi = (Fi1, . . . , Fik)′. Then, the

frequency vector (S) from PRAMed data can be expressed as S =
∑k
i Fi, where given T and

P , Fi ∼ Mult(Ti, Pi), i = 1, . . . , k, and they are independent. We shall find this representation

helpful for deriving formulas for variance inflation and overall estimation variance.

First, we note a subtle point that it makes sense to talk about unconditional distributions of

Fi and S only when a probability model for P is given. Note that while P depends on T, it need

not be a function of T, as (1.4) has many solutions. So, for discussing distributional properties

of relevant statistics, we shall assume that an algorithm for choosing P from T, via (1.4), is

given, i.e., there is a probability model for P that is fully determined by T. The algorithm for

choosing P may be probabilistic or deterministic, and in the latter case the distribution of P

given T is degenerate. However, for our discussion, we mostly do not need to know the actual

probability model for P ; it suffices to know that it exists and is determined by T.

In the above setting, we investigate statistical properties of π̂∗ = S/n as an estimator of π.

Using S =
∑k
i=1 Fi and above mentioned conditional distributions of Fi, i = 1, . . . , k, we get

E(π̂∗|T, P ) =
1
n

k∑
i=1

E[Fi|T, P ] =
1
n

k∑
i=1

TiPi =
1
n
T = π̂0, (4.2)

by (4.1), and

V (π̂∗|T, P ) =
1
n2

k∑
i=1

Ti[DPi − PiP ′i ] =
1
n

[Dπ̂0 −
k∑
i=1

(
Ti
n

)PiP ′i ], (4.3)

12



which represents the added variation due to PRAMing. We believe, data agencies should examine

V (π̂∗|T, P ) when selecting a suitable P . Note that for any given P , the data agency can calculate

(4.3), based on the original data, before applying PRAM.

Since T ∼ Mult(n, π) and π̂0 = T/n, we get E(π̂0) = π and V (π̂0) = [Dπ − ππ′]/n. From

these and (4.2) and (4.3) it follows that E(π̂∗) = π (for any distribution of P ) and

V (π̂∗) = V [E(π̂∗|T, P )] + E[V (π̂∗|T, P )]

= V (π̂0) +
1
n

[Dπ − E{
k∑
i=1

(
Ti
n

)PiP ′i}]. (4.4)

Thus, the relative frequency vector π̂∗ from invariantly PRAMed data is an unbiased estimator of

π and the last term of (4.4) is the variance inflation matrix, which is different from the last term

of (1.3). This difference arises from the fact that (1.3) holds when P is fixed and prespecified,

but in invariant PARM, P is data dependent and random. We can also express (4.4) as

V (π̂∗) =
1
n

[2Dπ − ππ′]−
1
n
E{

k∑
i=1

(
Ti
n

)PiP ′i}]. (4.5)

The expectation in (4.5) may be difficult to derive, depending on the distribution of P . The

data agency knows P and the values of T1, . . . , Tk and hence can estimate (4.5) by

V̂1(π̂∗) =
1
n

[2Dπ̂0 − π̂0π̂
′
0]−

k∑
i=1

(
Ti
n2

)PiP ′i ].

If P is reported along with the perturbed data, a data user may estimate V (π̂∗) (without knowing

T1, . . . , Tk) by

V̂2(π̂∗) =
1
n

[2Dπ̂∗ − π̂∗π̂′∗]−
k∑
i=1

(
Si
n2

)PiP ′i ].

However, the reporting of P is problematic from disclosure perspective. As Gouweleeuw et al.

(1998) noted, T is an eigenvector of P corresponding to the eigenvalue 1 and one might be able

to deduce the original frequencies from P without any error. If P is not published, estimating

V (π̂∗) by data users is challenging. However, a user can apply the following result to obtain an

upper bound for the variance of π̂∗.
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Theorem 4.1. (a) An upper bound of V (π̂∗) is

Vmax(π̂∗) = (2− 1
n

)[
Dπ − ππ′

n
] (4.6)

in the sense that [Vmax(π̂∗)− V (π̂∗)] is non-negative definite for any invariant PRAM.

(b) The upper bound in (4.6) is tight, i.e., there exists an invariant PRAM for which V (π̂∗) =

Vmax(π̂∗).

Proof. For any given vector a of dimension k, consider

a′V (π̂∗)a =
1
n
a′[2Dπ − ππ′]a−

1
n2
E{

k∑
i=1

Ti(a′Pi)2}. (4.7)

Suppose, without loss of generality, that only the first m(m ≤ k) components of T are nonzero.

Then, using (4.1) and the Cauchy-Schwarz inequality, (x′y)2 ≤ (x′Ax)(y′A−1y), with x′ =

(T1, . . . , Tm), y′ = (a′P1, . . . , a
′Pm) and A = diag(1/T1, . . . , 1/Tm), we get

(a′T)2 = [
m∑
i=1

Ti(a′Pi)]2 ≤ n[
m∑
i=1

Ti(a′Pi)2] = n[
k∑
i=1

Ti(a′Pi)2],

which implies that

1
n2
E{

k∑
i=1

Ti(a′Pi)2} ≥
1
n3
E(a′T)2

=
1
n
a′[E(π̂0π̂

′
0)]a

=
1
n
a′[(

Dπ − ππ′

n
) + ππ′]a. (4.8)

Next, using (4.8) in (4.7), we get

a′V (π̂∗)a ≤ (2− 1
n

)a′[
Dπ − ππ′

n
]a. (4.9)

Part (a) of the theorem now follows readily as (4.9) holds for all a.
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For part (b), we show that V (π̂∗) equals Vmax(π̂∗) if the transition probability matrix is

P∗ =
1
n



T1 T1 · · · T1

T2 T2 · · · T2

...
... · · ·

...

Tk Tk · · · Tk


.

Note that P∗ satisfies (1.4) and hence it is an invariant PRAM matrix. As each column of P∗ is

π̂0, the sum in (4.4) equals π̂0π̂
′
0 and hence V (π̂∗) reduces to

V (π̂∗) = V (π̂0) +
1
n

[Dπ − E(π̂0π̂
′
0)]

= V (π̂0) +
1
n

[Dπ − {V (π̂0) + ππ′}]

= (2− 1
n

)V (π̂0),

which is the same as Vmax(π̂∗) in (4.6).

Estimating linear combinations of π, say a′π, is a common problem. One special case is

estimating the total probability of a set of categories, which can be expressed as a′π, where

ai = 1 if category ci is included in the set and ai = 0 otherwise. A natural estimator of a′π is

a′π̂∗ and its variance is a′V (π̂∗)a, for which (4.9) gives an upper bound. Data users can estimate

the upper bounds in (4.6) and (4.9) by replacing π by π̂∗. An obvious lower bound for V (a′π̂∗)

is V (a′π̂0) = a′[{Dπ−ππ′}/n]a. Recall that π̂0 and π̂∗ are estimators of π based on original and

invariantly PRAMed data, respectively, and from (4.6), Vmax(π̂∗) = (2 − 1/n)V (π̂0) ≈ 2V (π̂0);

a similar comparison holds for V (a′π̂∗) and V (a′π̂0). As the upper bounds in (4.6) and (4.9) are

tight, the variance of an estimator under an invariant PRAM may be almost twice the variance

of a corresponding estimator based on the original data.
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5. Invariant PRAM and Synthetic Data

One significant approach to disclosure avoidance is to release fully or partially synthetic data;

see e.g., Rubin (1993), Raghunathan et al. (2003), Little (1993), Reiter (2002, 2003), An and

Little (2007), Hawala (2008) and Slavkovic and Lee (2010). The basic idea in creating partially

synthetic data is to replace the observed values of some selected variables by simulated data from

pertinent predictive distributions. A synthetic data set consisting of original X and synthetic Y

values, where both X and Y may be vectors, is created by replacing the observed Y of each unit

by a simulated value from a predictive distribution f(y|x), where x is the unit’s observed value

of X. Usually, f(y|x) is a posterior predictive distribution, but one may also use f(y|x, θ̂), where

θ̂ is some estimate (such as MLE) of the parameter(s) of an assumed model; see Hawala (2008)

and Reiter and Kinney (2012). In the following, we present a link between invariant PRAM and

nonparametric partially synthetic data and compare the variance of estimators under the two

approaches.

Suppose a data set has only two categorical variables X and Y (both can be compounded

variables) with categories labeled as in Theorem 3.1. Let Tij denote the frequency of (X =

ci, Y = dj), i = 1, . . . k, j = 1, . . .m, in the original data and let Ti. denote the marginal fre-

quency of (X = ci). Let pj|i = Tij/Ti.. Here, pj|i is a natural and nonparametric estimate of

f(y|x = ci). So, a nonparametric approach to creating partially synthetic data set would be

as follows. For any unit with X = ci, replace its observed Y category by one of d1, . . . , dm,

with respective probabilities p1|i, . . . , pm|i. However, this is equivalent to ordering the cells as

c1d1, . . . , c1dm, c2d1, . . . c2dm, . . . , ckd1, . . . ckdm and then applying a PRAM with a block diago-

nal PRAM matrix, whose ith (i = 1, . . . , k) block, say P i, is an m×m matrix with each column

being (p1|i, . . . , pm|i)′. It is easy to see that P i is an invariant PRAM matrix for PRAMing Y

within the category ci of X. The whole process is an invariant PRAM, in view of Theorem 3.1.

In summary, for categorical variables, a nonparametric synthetic data set can be viewed as an
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invariantly PRAMed data set.

Our results of Section 4 can be extended to the case where Y is invariantly PRAMed within

each X category. Here, the PRAMing process divides all cells into k groups, one for each category

of X, and then perturbs the frequencies of the cells in each group; it does not alter the marginal

frequencies of X categories. To see how the method affects the frequencies in each group, let

us consider the cells within X = ci. Let ~Ti = (Ti1, . . . , Tim)′ and let P i = (P i1 : · · · : P im) be an

invariant PRAM matrix for this group, i.e.,

P i ~Ti = ~Ti or
m∑
j=1

TijP
i
j = ~Ti. (5.1)

Let Sij denote the frequency of the (i, j)th cell based on PRAMed data and let ~Si = (Si1, . . . , Sim)′.

Here, ~Si is a perturbed version of ~Ti and as in Section 4, we have ~Si = F i1 + · · · + F im, where

F ij ∼ mult(Tij , P ij ), j = 1, . . . ,m, are independent. Then, for any P i satisfying (5.1), it follows

that E(~Si|~Ti, P i) = ~Ti and

V (~Si|~Ti, P i) = D~Ti
−

m∑
j=1

TijP
i
j (P

i
j )
′. (5.2)

If P ij = (1/Ti.)(Ti1, . . . , Tim)′, j = 1, . . . ,m, which yields nonparametric partial synthetic data,

the sum in (5.2) reduces to (1/Ti.)~Ti ~T ′i . Moreover, it can be seen, as in the proof of Theorem

4.1, that [
∑m
j=1 TijP

i
j (P

i
j )
′−(1/Ti.)~Ti ~T ′i ] is non-negative definite for all P i satisfying (5.1), which

leads to the following:

Theorem 5.1. The induced variation of the cell frequencies due to replacing observed Y by

nonparametric synthetic values is at least as large as the variation induced by any invariant

PRAM of Y within the categories of X.

The preceding discussions show that generating synthetic Y in a nonparametric way is equiv-

alent to invariantly PRAMing Y within X categories, with automatically using the most variance

inflationary PRAM matrices. In practice, this extreme invariant PRAMing may be unduly per-

turbative. We believe, data agencies would prefer to invariantly PRAM Y within X categories,
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with more flexible and judicious choice of the PRAM matrices. The general approach also

permits to apply different amount of perturbation to data in different categories of X. Oper-

ationally, one needs to choose and use a solution P i of (5.1), for each i = 1, . . . , k. Here, the

first method that we reviewed in Section 3, due to Gouweleeuw et al. (1998), may be useful

as it requires just one number, viz. choosing a value of θ, for each X category. Recall that θ

represents the probability of changing any value of Y that has the lowest frequency. Usually, the

units falling in cells with small counts have high disclosure risk and require greater protection.

So, the value of θ for category ci of X should decrease as minj{Tij} increases. In particular, if

all Tij , j = 1, . . . ,m are fairly large, θ should be close to 0 and P i ≈ I.

The preceding discussion should not be viewed as a sweeping criticism of disclosure limitation

via synthetic data. Clearly, our observations and Theorem 5.1 are about a specific synthetic

approach and they do not apply to synthetic data based on models and priors, which may serve

well in some applications. However, the nonparametric approach has a particular appeal as

models and priors may lead to much biases when they are not correct. Obviously, PRAM is

only for categorical variables whereas synthetic data can be created for both categorical and

quantitative variables. Also, synthetic data based on multiple imputation involves additional

inferential and disclosure control issues. For a more comprehensive comparison of PRAM with

synthetic data one should examine both estimation error and disclosure control, which we leave

for future research.

6. Estimation Under Probability Sampling

Practical surveys rarely use simple random sampling with replacement (i.e, multinomial sam-

pling). Most surveys use a combination of stratified, cluster, systematic and multi-stage sam-

pling. Also, nonresponse is a common phenomenon. Consequently, one uses a weighted com-

bination of the data for estimating the population probability vector π. Thus, it is important
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to examine properties of PRAM when applied to data coming from a general finite population

survey. Let N denote the population size and consider a general survey design p(s), where s is

a subset of the population and p(s) is the probability of selecting s. As in Section 1, let X be a

categorical variable with k categories c1, . . . , ck and let π denote the corresponding probability

vector. Let Ui (i = 1, . . . , N) be a k-dimensional indicator vector representing the X category

of unit i. Specifically, if unit i falls in category cj , then the jth component of Ui is 1 and the

remaining components are 0. A similar indicator vector Vi will represent the category of unit i

after PRAMing. Suppose

π̂w =
∑
i∈s

wsiUi (6.1)

is an estimator of π based on the original data, where the sampled units are weighted by {wsi}.

Suppose the data are PRAMed using a fixed non-singular PRAM matrix P = [P1 : · · · : Pk].

Then, one can use

π̂w∗ =
∑
i∈s

wsiP
−1Vi = P−1(

∑
i∈s

wsiVi)

to estimate π based on PRAMed data. Note that the conditional distribution of Vi given Ui is

mult(1, PUi), which shows that E[π̂w∗|s] = π̂w and

V [π̂w∗|s] = P−1
[ ∑
i∈s

w2
si{DPUi − PUiU ′iP ′}

]
(P−1)′

= P−1
[ ∑
i∈s

w2
siDPUi

]
(P−1)′ −

∑
i∈s

w2
siUiU

′
i . (6.2)

From these, we see that π̂w∗ unbiasedly recovers π̂w and

V (π̂w∗) = Vp(π̂w) + Ep{V [π̂w∗|s]}, (6.3)

where Vp and Ep are with respect to the sampling design. The last term of (6.3) is variance

inflation due to PRAMing, which the data agency can unbiasedly estimate by (6.2). The data

agency should examine the size of the matrix in (6.2), measured for example by its trace or

determinant, for judging the suitability of P from data utility perspective.
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Next consider using

π̃w =
∑
i∈s

wsiVi

for estimating π, i.e., applying the estimator (6.1) for the original data to PRAMed data. Here,

E[π̃w|s] =
∑
i∈s

wsiPUi = P [
∑
i∈s

wsiUi] = Pπ̂w,

which coincides with π̂w if and only if

Pπ̂w = π̂w. (6.4)

Based on this observation, Kooiman et al. (1997) and Gouweleeuw et al. (1998) defined invariant

PRAM by (6.4) when the survey weights are unequal. We note some properties of these invariant

PRAMs in the following.

We shall assume that π̂w is a proper probability vector, i.e., all of its components are non-

negative and add to 1. Then, any of the methods discussed in Section 3 can be used to find

solutions of (6.4). For using the conditional approach, we would use relevant conditional proba-

bilities implied by π̂w. We can still keep data on some variables (X) unchanged and invariantly

PRAM the remaining variables (Y ) within the categories of X. This is quite important when the

survey weights depend on some of the variables. PRAMing of those variables would introduce

randomness in the survey weights and hence the above treatment of E[π̃w|s] would not be cor-

rect. To define invariant PRAM via (6.4) it is necessary to assume that all variables determining

the survey weights are kept unchanged.

As before, choosing a P satisfying (6.4) depends on the data, via π̂w, and the algorithm for

calculating P . Thus, the distribution of {Vi} also depends on the procedure for selecting one

of many solutions of (6.4). Conditionally given s and P = [P1 : · · · : Pk], {Vi} are independent

mult(1, PUi), which implies that E[π̃w|s, P ] = π̂w and

V [π̃w|s, P ] =
∑
i∈s

w2
si{DPUi − PUiU ′iP ′}
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=
∑
i∈s

w2
siDPUi − P

[ ∑
i∈s

w2
siUiU

′
i

]
P ′. (6.5)

Consequently, if π̂w is an unbiased estimator of π, then so is π̃w and

V (π̃w) = V (π̂w) + E{V [π̃w|s, P ]},

where the expectation is with respect to both the distribution of P given s and the sampling

design, which a user cannot evaluate if the mechanism for generating P is not released. However,

the data agency can calculate (6.5) and use it to assess the level of variance inflation.

7 Discussion

Of the few methods that are available for perturbing categorical microdata for disclosure control,

invariant PRAM is appealing because it allows unbiased estimation of all cell probabilities, with-

out any adjustment for data perturbation. We believe, our results and observations contribute

to its further development as a useful tool. We noted that preserving all properties of all esti-

mators require a stronger version of invariant PRAM, which is applicable in limited situations.

We gave further reasons for using the conditional approach, i.e., invariantly PRAMing some

variables within the categories of the remaining variables, for devising an invariant PRAM. It

results in a proper invariant PRAM and allows the data agency to selectively retain the original

data on some variables, which is particularly important when some of the variables determine

the survey weights. We examined the effect of invariant PRAM on the variance of estimators,

which previously had not been appreciated well. Our results are useful to data agencies for

assessing variance inflation and selecting suitable PRAM matrices. We found a connection be-

tween invariant PRAM and nonparametric synthetic data and observed that the former is more

flexible and gives greater control to data agencies to balance disclosure control and data utility.

In this paper, we focused mainly on constructing invariant PRAM matrices and effect of

invariant PRAMing on the variance of estimators of cell probabilities. We did not go into
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measuring disclosure risk. Some general approaches and related issues have been discussed

by Duncan and Lambert (1986, 1989), Greenberg and Zayatz (1992), Lambert (1993), Reiter

(2005), Skinner and Elliott (2002), Shlomo and Skinner (2010, 2012) and others. Invariant

PRAM (or more generally PRAM) is a significant disclosure control technique, but we believe

that additional research and directives are needed for it to become a common method. In

particular, further guidance on how to choose the PRAM matrix will be helpful. In principle, the

choice should achieve disclosure control goals at minimum loss of information, one consequence

of which is variance inflation. De Wolf et al. (1998), Gouweleeuw et al. (1998), Skinner and

Elliott (2002), Shlomo (2010), Shlomo and De Waal (2008), Shlomo and Skinner (2010, 2012),

Van den Hout and Elamir (2006), Willenborg (2000), Yancey et al. (2002) and others have

made significant contribution to disclosure risk assessment and the choice of a PRAM matrix.

Additional empirical and theoretical research on effects of invariant PRAM on both information

loss and disclosure risk will help expand its the scope of applications for disclosure control.
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