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ASYMPTOTIC THEORY OF CEPSTRAL RANDOM FIELDS

BY TUCKER S. MCELROY AND SCOTT H. HOLAN1

U.S. Census Bureau and University of Missouri

Random fields play a central role in the analysis of spatially correlated
data and, as a result, have a significant impact on a broad array of scientific
applications. This paper studies the cepstral random field model, providing
recursive formulas that connect the spatial cepstral coefficients to an equiva-
lent moving-average random field, which facilitates easy computation of the
autocovariance matrix. We also provide a comprehensive treatment of the
asymptotic theory for two-dimensional random field models: we establish
asymptotic results for Bayesian, maximum likelihood and quasi-maximum
likelihood estimation of random field parameters and regression parameters.
The theoretical results are presented generally and are of independent inter-
est, pertaining to a wide class of random field models. The results for the
cepstral model facilitate model-building: because the cepstral coefficients are
unconstrained in practice, numerical optimization is greatly simplified, and
we are always guaranteed a positive definite covariance matrix. We show that
inference for individual coefficients is possible, and one can refine models in
a disciplined manner. Our results are illustrated through simulation and the
analysis of straw yield data in an agricultural field experiment.

1. Introduction. Spatial data feature heavily in many scientific disciplines in-
cluding ecology, environmental science, epidemiology, geography, geology, small
area estimation, and socio-demographics. Although spatial data can be broadly
placed into three categories: geostatistical data, lattice data and spatial pat-
terns [12], our focus mainly resides in the development of cepstral random field
models for spatial lattice data. That is, we consider random fields where the index
set for the variables is Z2, appropriate for image processing, for example.

Research on spatial random fields dates back over half a century; for example,
see Whittle [43]. Other references on spatial random fields include Besag [3, 5],
Guyon [18], Rosenblatt [35], Besag and Green [4] and Rosenblatt [36], among oth-
ers. Comprehensive overviews can be found in Cressie [12], Stein [40], Banerjee,
Carlin and Gelfand [2], Cressie and Wikle [11] and the references therein. Re-
cently, there has been a growing interest in modeling spatial random fields through
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the spectral domain. For example, see Fuentes [14], Fuentes, Guttorp and Samp-
son [15], Tonellato [42], Fuentes and Reich [16], Bandyopadhyay and Lahiri [1]
and the references therein.

For a stationary Gaussian random field, it is natural to impose a Markov struc-
ture, as described in Rue and Held [37], in order to obtain an inverse covariance
matrix (i.e., a precision matrix) that has a sparse structure, because this will ensure
speedy computation of maximum likelihood estimates. Rue and Held [37] show
how careful specification of conditional distributions generates a well-defined ran-
dom field. However, this technique relies upon imposing a priori a sparse structure
on the precision matrix, that is, demanding that many conditional precisions be
zero. In contrast, the cepstral random field does not generate a sparse covariance
(or precision) matrix, and yet always yields a well-defined spatial random field;
this occurs because the model is formulated in the frequency domain by ensuring a
positive spectral density. This frequency-domain approach provides a general way
of specifying a nonisotropic random field, which is useful when we do not have
a prior notion about conditional variances or precisions.

The cepstral random field allows for unconstrained optimization of the objec-
tive function, that is, each model coefficient can be any real number independently
of the others; this appealing property is in marked contrast to other models and
approaches, such as moving averages or Markov random fields (these require con-
straints on parameters to achieve identifiability and/or a well-defined process). In
the development of this model, Solo [39] presents estimation approaches by both
log periodogram regression and Whittle maximum likelihood, but does not derive
the asymptotic properties of estimators. Based on information criterion, Mallows’s
Cp , and hypothesis testing, the author briefly describes methods for model selec-
tion. Some key advantages of the cepstral model are that it is well defined (because
it is defined through the spectral density), it is identifiable and the cepstral param-
eter estimates are asymptotically uncorrelated with one another.

This paper provides a first comprehensive treatment of the theory for cepstral
random field models. In particular, we establish recursive formulas for connecting
cepstral random fields to moving average random fields, thus facilitating efficient
computation of the spatial autocovariances, which are needed for likelihood eval-
uation and prediction. Critically, the resulting autocovariance matrix is guaranteed
to be postive-definite; note that if we were to work with a moving average (MA)
field instead, it would not be identifiable without imposing further complicated
parameter restrictions.

Additionally, we develop asymptotic results for Bayesian, maximum likeli-
hood, and quasi-maximum likelihood estimation of field parameters and regres-
sion parameters under an expanding domain formulation. In particular, we estab-
lish asymptotic consistency in both the Bayesian and likelihood settings and pro-
vide central limit theorems for the frequentist estimators we propose. We discuss
the computational advantages of the cepstral model, and propose an exact Whittle
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likelihood that avoids the burdensome inversion of the autocovariance matrix. Al-
though our primary focus is on cepstral models, the theoretical developments are
presented for general random field models with regression effects. Our results are
of independent interest and extend the existing results of Mardia and Marshall [24],
providing a rigorous framework for conducting model building and inference un-
der an expanding domain framework; this is applicable to lattice random field data
that is sampled at regular fixed intervals, and for which in-filling is either imprac-
tical or of little interest.

As discussed in Sections 2 and 3, the proposed cepstral models are computation-
ally advantageous over many current models (e.g., spatial autoregressive models),
because no constraints need to be imposed on the parameters to ensure the result-
ing autocovariance matrix remains positive definite. In fact, given the recursive
formulas of Section 2, one can model the two-dimensional cepstral coefficients
(i.e., the Fourier coefficients of the two-dimensional log spectrum) and arrive at
the autocovariances without the need for direct Fourier inversion.

Since the model’s first inception [39], the cepstral random field literature has
remained sparse, with relatively few examples to date. For example, Cressie [12],
page 448, makes brief mention of the model. In a different context, Noh and
Solo [29] use cepstral random fields to test for space–time separability. Sandgren
and Stoica [38] use two-dimensional cepstrum thresholding models to estimate the
two-dimensional spectral density. However, this work does not treat the random
field case. Related to our work, Kizilkaya and Kayran [22] derive an algorithm
for computing cepstral coefficients from a known ARMA random field, whereas
Kizilkaya [21] provides a recursive formula for obtaining nonsymmetric half plane
MA random field models for a given cepstral specification. In contrast, our re-
cursive formulas provide unrestricted MA random fields as well as the necessary
autocovariances for expressing the Gaussian likelihood.

This paper proceeds as follows. Section 2 describes the cepstral model and
its computation. Specifically, this section lays out the recursive formulas that are
needed to estimate the autocovariances given the cepstral coefficients. Section 3
details the different model fitting methods, including Bayesian, maximum like-
lihood, quasi-maximum likelihood and exact Whittle likelihood. Our theoretical
results are provided in Section 4. Here, we establish consistency and asymptotic
normality of the proposed estimators. Section 5 illustrates the models effectiveness
through a simulation study, and Section 6 contains concluding discussion. Exten-
sions to missing data, imputation, and signal extraction along with an application
of our methodology to straw yield data from an agricultural experiment, as well as
all proofs, are provided in a Supplementary Appendix (McElroy and Holan [27]).

2. The cepstral model and its computation. We begin by introducing some
basic concepts about spatial random fields, and then we specialize to the cepstral
random field, with a focus on computation of autocovariances. References on spa-
tial random fields include Whittle [43], Besag [5], Rosenblatt [35, 36], Solo [39],
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Cressie [12], Kedem and Fokianos [20] and Rue and Held [37]. A random field
Y = {Ys1,s2} is a process with indices on a lattice, which in this paper we take to
be Z

2. Typically a random field has a mean function μs1,s2 = EYs1,s2 , which may
be modeled through regression variables (Cressie [12]). The mean-corrected field
Y− {μs1,s2} will be denoted by W.

Interest focuses upon weakly stationary random fields, which in practice is often
adequate once mean effects are identified and accounted for. When all moments
are defined, this is equivalent to the higher cumulants [8] being dependent only on
lags between the mean-centered variables. The second cumulant function, or auto-
covariance function (acf), is defined via Cov(Ys1,s2,Yr1,r2) = E[Ws1,s2Wr1,r2] =
γs1−r1,s2−r2 for all s1, s2, r1, r2 ∈ Z. It is convenient to summarize this second-order
structure through the spectral density F defined on [−π,π ]2, which depends on
two frequencies. Letting Zj = e−iλj for j = 1,2, the spectral density is related to
the acf via the formula

F(λ1, λ2) = ∑
h1,h2∈Z

γh1,h2(F )Z
h1
1 Z

h2
2 .(2.1)

Here we write γ (F ) for the acf associated with the spectrum F , and it in turn is
expressed in terms of F via Fourier inversion as

γh1,h2(F ) = 1

4π2

∫ π

−π

∫ π

−π
F (λ1, λ2)Z

−h1
1 Z

−h2
2 dλ1 dλ2.(2.2)

As a general notation, let the normalized double integral over both frequen-
cies be abbreviated by the expression 〈·〉, so that γh1,h2(F ) = 〈FZ

−h1
1 Z

−h2
2 〉 is

compactly expressed. Now it follows elementarily from the commutativity of
the field Y variables that γh1,h2(F ) = γ−h1,−h2(F ), and hence the correspond-
ing F in (2.1) must have mirror reflectional symmetry through both axes, that
is, F(λ1, λ2) = F(−λ1,−λ2). Furthermore, the acf of a random field is always
positive-definite [12] and the corresponding spectrum is nonnegative [7].

2.1. The cepstral random field model. A spatial model for continuous-valued
random variables should, at a minimum, capture second-order structure in the data,
which is summarized through the acf. However, a putative acf may or may not have
nonnegative discrete Fourier transform (DFT) (2.1), whereas any valid acf of a sta-
tionary field must have nonnegative spectrum F . One way to ensure our model has
such a valid acf is to model F , utilizing some class of nonnegative functions, and
determine the corresponding covariances via (2.2). This is the philosophy behind
the versatile exponential time series model of Bloomfield [6]. The idea there was
to expand the log spectrum in the complex exponential basis functions, with a
truncation of the expansion corresponding to a postulated model.

The same idea is readily adapted to the spatial context; Solo [39] seems to be the
first formal presentation of this idea. Given that F is strictly positive and bounded,
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we can expand logF in each frequency concurrently, which yields

logF(λ1, λ2) = ∑
j1,j2∈Z

�j1,j2Z
j1
1 Z

j2
2 .

The coefficients {�j1,j2 = 〈logFZ
−j1
1 Z

−j2
2 〉} are called the cepstral coefficients;

see also the recent treatment of Kizilkaya and Kayran [22]. A pleasing feature of
this representation is that F−1 has cepstral coefficients {−�j1,j2}. By truncating
the summation, we obtain a parametric model that can approximate the second-
order structure of any random field with bounded spectrum. So we obtain the cep-
stral model of order (p1,p2) given by

F(λ1, λ2) = exp

{ p1∑
j1=−p1

p2∑
j2=−p2

�j1,j2Z
j1
1 Z

j2
2

}
.(2.3)

Note that the cepstral coefficient �0,0 has no sinusoidal function multiplying it,
and hence exp�0,0 quantifies the scale of the data. In one dimension, this would
be called the innovation variance; note that �0,0 = 〈logF 〉. Because the complex
exponentials form a complete orthonormal basis set, it is impossible for two dis-
tinct values of � to produce an identical function F ; hence the model is identi-
fiable. Further special cases of the general cepstral field model are considered in
Solo [39]. Because F has mirror reflectional symmetry, the cepstral coefficients do
as well, that is, �j1,j2 = �−j1,−j2 .

In order to fit this model to Gaussian data, it is necessary to compute the acf from
a given specification of cepstral coefficients. We next describe two approaches to
this: one is approximate, and the other is exact. Both differ from the fitting tech-
niques in Solo [39], who advocates an asymptotic likelihood (or Whittle) calcula-
tion.

2.2. Fast calculation of autocovariances. We here discuss a straightforward
discretization of (2.2), together with (2.3), utilizing the Riemann approximation.
So long as the spectrum is a bounded function, this method is arbitrarily accurate
(since the practitioner controls the mesh size). In order to accomplish the compu-
tation, without loss of generality let p2 = p1, so that the cepstral coefficients are
given by a (2p1 + 1) × (2p1 + 1) grid � (if p2 < p1, just fill in some entries of �

with zeroes).
Now we refer to the entries of � via �j1,j2 with −p1 ≤ j1, j2 ≤ p1, which is

a Cartesian mode of indexing; this differs from the style of indexing pertinent to
matrices. We can map this grid to a matrix [�] (and back), with the following
rule:

[�]k1,k2 = �k2−p1−1,p1+1−k1, �j1,j2 = [�]p1+1−j2,j1+p1+1(2.4)
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for 1 ≤ k1, k2 ≤ 2p1 + 1 and −p1 ≤ j1, j2 ≤ p1. We will consider a set of fre-
quencies {�1π/M,�2π/M} for −M ≤ �1, �2 ≤ M , which is an order M dis-
cretization of [−π,π ]2. Suppose that we wish to compute the grid of auto-
covariances given by � = {γh1,h2}Hh1,h2=−H for some maximal lag H . To that
end, we consider a complex-valued 2p1 + 1 × 2M + 1 matrix E with entries
Ek1,k2 = exp{iπ(p1 + 1 − k1)(M − k2 + 1)M−1} for k1 = 1,2, . . . ,2p1 + 1 and
k2 = 1,2, . . . ,2M + 1, and also define a (2H + 1)× (2M + 1) dimensional matrix
G via Gj1,j2 = exp{iπ(H + 1 − j1)(M + 1 − j2)M

−1}. Then with [�] defined via
[�]k1,k2 = γk2−H−1,H+1−k1 , the formula

[�]� (2M + 1)−2G exp
{
E

′[�]E}
G

′
(2.5)

provides a practical method of computation. In this formula, which is de-
rived in the Supplement’s Appendix B, we have written the exponential of
a matrix, which here is not the “matrix exponential,” but rather just con-
sists of exponentiating each entry of the matrix. So (2.5) produces an arbi-
trarily fine approximation to the acf (taking M as large as desired). The al-
gorithm takes a given �, produces [�] via (2.4), computes E and G (ahead
of time, as they do not depend upon the parameters) and determines [�]
via (2.5).

2.3. Exact calculation of autocovariances. We now present an exact method
for computing the acf from the cepstral matrix. Our approach is similar to that
of Section 3 of Kizilkaya and Kayran [22], though with one important difference.
They present an algorithm for computing cepstral coefficients from known coef-
ficients of an ARMA random field. Instead, we take the cepstral coefficients as
given, compute coefficients of certain corresponding MA random fields, and from
there obtain the acf. In order to fit the Gaussian likelihood, we need to compute
the acf from the cepstral matrix, not the reverse.

We introduce the device of a “causal” field and a “skew” field as follows. The
causal field is an MA field that only involves coefficients with indices in the posi-
tive quadrant, whereas the skew field essentially is defined over the second quad-
rant. More precisely, we have

γs1,s2(�) = ∑
k1,k2≥0

ψs1+k1,s2+k2ψk1,k2,

(2.6) ∣∣∣∣ ∑
j1,j2≥0

ψj1,j2Z
j1
1 Z

j2
2

∣∣∣∣2 = ∑
s1,s2∈Z

γs1,s2(�)Z
s1
1 Z

s2
2

for the causal field. The causal field may be written formally (in terms of
backshift operators B1,B2) as �(B1,B2) = ∑

j1,j2≥0 ψj1,j2B
j1
1 B

j2
2 . That is, the

ψj1,j2 coefficients define the moving average representation of the causal field,
and {γs1,s2(�)} is its acf. It is important that we set ψ0,0 = 1. Similarly, let
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(B1,B2) = ∑
j1,j2≥0 φj1,j2B

−j1
1 B

j2
2 for the skew-field, which in the first index

depends on the forward shift operator B−1
1 , but on the backshift operator B2 in the

second index. Thus

γs1,s2(
) = ∑
k1,k2≥0

φs1+k1,s2+k2φk1,k2,

(2.7) ∣∣∣∣ ∑
j1,j2≥0

φj1,j2Z
−j1
1 Z

j2
2

∣∣∣∣2 = ∑
s1,s2∈Z

γs1,s2(
)Z
−s1
1 Z

s2
2 .

We also have two time series, corresponding to the axes of the cepstral matrix,
given by �(B1) = ∑

j1≥0 ξj1B
j1
1 and �(B2) = ∑

j2≥0 ωj2B
j2
2 , which have acfs

γh1(�) = ∑
k1≥0 ξk1+h1ξk1 and γh2(�) = ∑

k2≥0 ωk2+h2,ωk2 , respectively. Now
each of these MA random fields has a natural cepstral representation, such that
their acfs can be combined to produce the cepstral acf, as shown in the following
result.

PROPOSITION 2.1. The acf of the cepstral model is given by

γh1,h2(F )
(2.8)

= e�0,0
∑

j1,j2∈Z
γj1,j2(
)

[ ∑
k1,k2∈Z

γh1+j1−k1,h2−j2−k2(�)γk1(�)γk2(�)

]
,

where γ (
), γ (�), γ (�) and γ (�) can be calculated in terms of their coefficients,
which are recursively given by

ψj1,j2 = 1

j1

p1∑
k1=1

k1

( j2∑
k2=1

ψj1−k1,j2−k2�k1,k2

)
,(2.9)

φj1,j2 = 1

j1

p1∑
k1=1

k1

( j2∑
k2=1

φj1−k1,j2−k2�−k1,k2

)
,(2.10)

ξj1 = 1

j1

p1∑
k1=1

k1�k1,0ξj1−k1,(2.11)

ωj2 = 1

j2

p1∑
k2=1

k2�0,k2ωj2−k2(2.12)

for j1 ≥ 1 and j2 ≥ 1.

Proposition 2.1 gives recursive formulas. In the causal case, one would com-
pute ψ1,1,ψ2,1, . . . ,ψp1,1,ψ1,2,ψ2,2, . . . , etc. Alternative computational patterns
could be utilized, noting that ψj1,j2 only requires knowledge of ψ�1,�2 with �1 < j1
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and �2 < j2. When p1 = ∞, equation (2.8) gives the precise mapping of cepstral
coefficients to various MA coefficients, and ultimately to the autocovariance func-
tion. If p1 < ∞, it provides an algorithm for determining autocovariances for a
given cepstral model. These formulas are already much more complicated than
in the time series case (see [33]), and for higher dimensional fields become in-
tractable.

3. Model fitting methods. In this section we give additional details on var-
ious methods for fitting cepstral random field models and present some tools for
refining specified models. Once a model is specified, we can estimate the param-
eters via exact maximum likelihood, Bayesian posterior simulation, an approxi-
mate Whittle likelihood or an exact Whittle likelihood. We focus on these four
techniques due to their mixture of being flexible and possessing good statistical
properties.

We first define Kullback–Leibler (KL) discrepancy, the exact Whittle likelihood
and the quasi-maximum likelihood estimate (QMLE), and then we proceed to de-
scribe the distributional behavior of the maximum likelihood estimates (MLEs)
and QMLEs, extending the results of Mardia and Marshall [24] to non-Gaussian
fields, under an expanding domain asymptotic theory. These results, proved for
fairly general linear random fields with regression effects, are then specialized to
the case of the cepstral field, and model selection is afterwards described.

3.1. Random field data. Now we proceed to discuss spatial modeling (here we
do not assume a cepstral random field structure), adapting the vector time series
treatment in Taniguchi and Kakizawa [41]. Suppose that our data comes to us in
gridded form, corresponding to a N1 × N2 matrix Y

N (with W
N denoting the de-

meaned version). We use the notation N = √
N1 · N2, so that N2 is the sample

size. Both Y
N and W

N can be vectorized into length N2 vectors Y and W via the
so-called lexicographical rule

Yk =Y
N
s1,s2

, Wk = W
N
s1,s2

, k = N2(s1 − 1) + s2.

Here, Y = vec(YN ′
), where vec stands for the vector operation on a matrix, and ′

is the transpose. Note that s1 − 1 = k divN2 and s2 = k modN2. Also let μ = EY ,
so that μk = EYk = EY

N
s1,s2

= μs1,s2 . In the simplest scenario the mean matrix
{μs1,s2} is constant with respect to the indices s1, s2. More generally, we might
model the mean through regressor functions defined upon the grid, that is, μs1,s2 =∑L

�=1 β�X�(s1, s2) for some specified lattice functions {X�}L�=1. Then

μk =
L∑

�=1

β�X�(k divN2 + 1, k modN2) =
L∑

�=1

β�X̃�(k)

maps each X� from a lattice function to a function X̃� of the natural numbers. The
parameters β1, β2, . . . , βL then enter the regression linearly, and we can express



72 T. S. MCELROY AND S. H. HOLAN

things compactly via μ = X̃β , where X̃ is the regression matrix with columns
given by the various X̃�.

The spectral density of a mean zero random field W has already been defined
in (2.1), and the DFT of the field is now defined as

W̃(λ1, λ2) =
N1∑

t1=1

N2∑
t2=1

W
N
t1,t2

e−iλ1t1e−iλ2t2 =
N1∑

t1=1

N2∑
t2=1

WN2(t1−1)+t2Z
t1
1 Z

t2
2

for λ1, λ2 ∈ [−π,π ]. Note that we define this DFT over all pairs of frequencies,
not just at the so-called Fourier frequencies. Also the DFT depends on β through
the mean-centering; if we center the data Y

N by any regression parameter other
than the true β , denoted β̃ , some bias will be introduced. The periodogram will be
defined at all frequencies and is proportional to the squared magnitude of the DFT,

Iβ̃(λ1, λ2) = N−2∣∣W̃(λ1, λ2)
∣∣2 = ∑

|h1|<N1

∑
|h2|<N2

γh1,h2(Iβ̃)Z
h1
1 Z

h2
2 .

Here γh1,h2(Iβ) is defined as the sample acf of the series demeaned by μ = X̃β

(see Supplementary Appendix B for more detail); moreover it satisfies (2.2) with
F replaced by Iβ . We also will consider an unbiased acf estimate given by

γ̂h1,h2(Iβ) = N2

(N1 − |h1|)(N2 − |h2|)γh1,h2(Iβ).

We emphasize that the computation of this periodogram requires a choice of β ,
and so is written Iβ . This can be used to assess the frequency domain information
in the random field along any row or column; the periodogram can also be viewed
as a crude estimate of the spectral density F [12].

In our context the treatment of the periodogram differs from the treatment pro-
vided in Fuentes [14]. In particular, we consider the periodogram defined at all
frequencies, not just the Fourier frequencies. Additionally, the asymptotic proper-
ties developed in Fuentes [14] rely on shrinking domain asymptotics, whereas our
asymptotic arguments rely on an expanding domain. Finally, our periodogram is
defined in terms of a mean centered random field and, thus, explicitly depends on
the regression parameters β .

3.2. Model fitting criteria. Let the covariance matrix of W
N be denoted

�(F̃ ), which is defined via �(F̃ ) = EWW ′; the resulting block-Toeplitz structure
of this matrix is analyzed in Section 4. The entries of this matrix can be determined
from F̃ via the algorithms of Section 2, along with careful bookkeeping. A model
for the data involves a spectrum Fθ —let the associated block-Toeplitz covariance
matrix be denoted �(Fθ)—which is hoped to be a suitable approximation to �(F̃ ).
Model fitting can be performed and assessed through the Kullback–Leibler (KL)
discrepancy, just as with time series. Although KL is mentioned in Solo [39] and
Cressie [12], we provide an in-depth treatment here; see Lemma 4.2, for example.
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If F and G are two (mean zero) random field spectral densities, their KL discrep-
ancy is defined to be

KL(F,G) = 〈logF + G/F 〉.
This is a convenient mechanism, since KL is convex in F . As β parametrizes mean
effects, we let θ be a parameter vector describing the second-order structure. If the
true data process has spectrum F̃ , and we utilize a model with spectrum Fθ , then
KL(Fθ , F̃ ) can be used to assess proximity of the model to truth. The convexity
of KL guarantees that when the model is correctly specified, the true parameter
θ̃ minimizes the discrepancy. When the model is misspecified, the minima θ̃ are
called pseudo-true values (cf. [41]). For the cepstral model, the parameter vector is
θ = J vec�, where J is a selection matrix that eliminates redundancies in � due
to symmetry. The full parameter vector is written φ, where φ′ = [θ ′, β ′].

It is natural to use KL to fit models as well. For this, consider KL(Fθ , Iβ )—
which is called the exact Whittle likelihood—and minimize with respect to θ ,
which produces by definition the estimate θ̂QMLE. Then using (2.2) we obtain the
practical expression

KL(Fθ , Iβ) = 〈logFθ 〉 + ∑
|h1|<N1

∑
|h2|<N2

γh1,h2(Iβ) · γh1,h2

(
F−1

θ

)
.

This assumes that the correct regression parameters have been specified. In the
case that Fθ is a cepstral spectrum (2.3), the above expression is even easier to
compute: 〈logFθ 〉 = �0,0 and γ (F−1

θ ) = γ (F−θ ), that is, multiply each cepstral
coefficient by −1 to obtain the acf of F−1

θ from the acf of Fθ .
Unfortunately, γh1,h2(Iβ̃) is biased as an estimate of γh1,h2(F̃ ), and this has a

nontrivial impact for spatial data, though not for time series. Essentially, the pres-
ence of “corners” in the observed data set reduces the number of data points that
are separated by a given lag (h1, h2); if either of |h1| or |h2| is large, we have a
very biased estimate. Note, the impact of corners can be visualized by compar-
ing the volume of a d-dimensional cube with that of an inscribed ball; the ratio is
π/(2d) for d ≥ 2, which tends to zero as d increases. Thus, corners increasingly
dominate the region as d increases, which interferes with one’s ability to measure
correlation as a function of lag. This effect is more pronounced as the dimension
increases. For this reason, we propose using γ̂h1,h2(Iβ) instead of γh1,h2(Iβ), be-
cause Eγ̂h1,h2(Iβ̃) = γh1,h2(F̃ ). Let us call the modified KL(Fθ , Iβ ) by K̂L(Fθ )

K̂L(Fθ ) = 〈logFθ 〉 + ∑
|h1|<N1

∑
|h2|<N2

γ̂h1,h2(Iβ) · γh1,h2

(
F−1

θ

)
.

Using this criterion instead will produce asymptotically normal cepstral parameter
estimates, and therefore is to be preferred.

A drawback of utilizing γ̂h1,h2(Iβ) is that the corresponding spectral estimate—
the DFT of the unbiased sample acf—need not be positive at all frequencies. Al-
though this is irrelevant asymptotically, in finite samples it can interfere with infer-
ence. The time domain representation of K̂L(Fθ ) can still be computed, of course
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but the second term in its formula might not be positive. Other types of autocovari-
ance estimators could be utilized, being based on other kinds of spectral estimators
(see Politis and Romano [32] for a discussion of the tradeoff between bias and non-
negativity of the spectral estimate). These alternative estimators might be based on
convolving the periodogram with a spectral window, or equivalently by using a ta-
per (or lag window) with the sample acf. Tapers are known to modify the bias and
variance properties of spectral estimators in time series; see Guyon [18], Dahlhaus
and Künsch [13] and Politis and Romano [31].

If even faster computation of the objective function is desired, we may discretize
K̂L and utilize values of F directly, without having to compute the inverse DFT
γ (F−1

θ ). The result is the approximate Whittle likelihood, denoted K̂LN , and is
obtained by discretizing the integrals in KL(Fθ , Iβ ) with a mesh corresponding
to Fourier frequencies, but replacing Iβ with the DFT of the γ̂h1,h2(Iβ) sequence,
denoted by Îβ . Then the discrepancy is

K̂LN(Fθ) = N−2
N1∑

j1=−N1

N2∑
j2=−N2

{
logFθ

(
πj1

N1
,
πj2

N2

)
+ Îβ(πj1/N1, πj2/N2)

Fθ (πj1/N1, πj2/N2)

}
,

which can be minimized with respect to θ . The resulting estimate has asymptotic
properties identical to the QMLE, and in practice one may use either K̂L or K̂LN

according to computational convenience. It will be convenient to present a notation
for this double discrete sum, which is a Fourier approximation to 〈·〉, denoted by
〈·〉N ; then K̂LN(Fθ) = 〈logFθ + Îβ/Fθ 〉N .

We can also extend the KL formula to handle regression effects,

KL(Fθ , Iβ) = 〈logFθ 〉 + N−2(Y − X̃β)
′
�
(
F−1

θ

)
(Y − X̃β).(3.1)

This formula is proved in Supplementary Appendix B. We propose using (3.1) to
estimate regression parameters, but θ is to be determined by K̂L. The formula for
the regression QMLE is then

β̂QMLE = [
X̃′�

(
F−1

θ̂QMLE

)
X̃
]−1

X̃′�
(
F−1

θ̂QMLE

)
Y,(3.2)

where θ̂QMLE minimizes K̂L(Fθ ), which in turn depends upon β̂QMLE through Îβ .
These formulas do not apply when we use the approximate Whittle, although the
same asymptotic properties will hold as for the exact Whittle.

On the other hand, we can also compute the exact Gaussian likelihood for the
field. The log Gaussian likelihood is equal (up to constants) to

L(θ, β) = −1
2 log

∣∣�(Fθ)
∣∣ − 1

2(Y − X̃β)
′
�−1(Fθ )(Y − X̃β).(3.3)

Maximizing this function with respect to θ yields the MLE θ̂MLE; also β̂MLE
is given by the generalized least squares (GLS) estimate by standard arguments
(see [24]),

β̂MLE = [
X̃′�−1(Fθ̂MLE

)X̃
]−1

X̃′�−1(Fθ̂MLE
)Y,(3.4)
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which expresses the regression parameter in terms of θ̂MLE. For the computation
of (3.3) we must calculate the acf corresponding to Fθ , which can be done using
the algorithms of Section 2. Contrast (3.3) with (3.1); they are similar, the main
difference being the replacement of the inverse of �(Fθ) by �(F−1

θ ), which is
equal to �(F−θ ) for the cepstral model.

Most prior literature on random fields seems to utilize approximate Whittle es-
timation, or QMLE, since the objective function is quite simple to write down. The
parameter MLEs do not have the bias problem of QMLEs, discussed above, but re-
quire more effort to compute due to matrix inversion. We can use the approximate
algorithm given by equation (2.5), together with (3.3), to compute the MLEs. The
QMLEs, based on unbiased γ̂h1,h2(Iβ) acf estimates, are faster to compute than
MLEs and enjoy the same asymptotic normality and efficiency.

However, if one prefers a Bayesian estimation of θ (and β), it is necessary to
compute expL(θ, β), which is proportional to the data likelihood p(Y |θ,β). The
posterior for θ is proportional to the likelihood times the prior, and one can use
Markov chain Monte Carlo (MCMC) methods to approximate p(θ |Y) [17]. Recall
that the mean of this distribution, which is the conditional expectation of θ given Y ,
is called the posterior mean, and will be denoted θ̂B .

Note that equations (3.3) and (3.4) can each be used in an iterative estimation
scheme. To determine the MLE, minimize (3.3) to obtain an estimate of θ for a
given β computed via (3.4); then update β̂ by plugging into (3.4), and iterate. For
the QMLE, de-mean the data by computing Y − Xβ and determining Îβ , for a
given β , and then minimize either K̂L or K̂LN to obtain θ estimates (either exact
or approximate); then update β by plugging into (3.2) and iterate. From now on,
we refer to these estimates as the exact/approximate QMLEs [if using biased acf
estimates γh1,h2(Iβ), only consistency holds, and not asymptotic normality].

3.3. Distributional properties of parameter estimates. We now provide a de-
scription of the asymptotics for the various estimates; a rigorous treatment is given
in Section 4, with formal statements of sufficient conditions and auxiliary re-
sults. First, the Bayesian estimates θ̂B and β̂B are consistent when the data is a
Gaussian random field that satisfies suitable regularity conditions (Theorem 4.2).
For the frequentist case, recall that the number of observations equals N1 · N2,
so that a central limit theorem result requires scaling by

√
N1 · N2; we require

that both dimensions expand, that is, min{N1,N2} → ∞. Let the Hessian of the
KL be denoted H(θ) = ∇∇′ KL(Fθ , F̃ ), which will be invertible at the unique
pseudo-true value θ̃ by assumption. Then the exact QMLE, approximate QMLE
and MLE for θ are all consistent, and are also asymptotically normal at rate N

with mean θ̃ and variance H−1(θ̃)V (θ̃)H †(θ̃), where † denotes inverse transpose
and V (θ) = 2〈F̃ 2∇F−1

θ ∇′F−1
θ 〉. (This assumes that the fourth cumulants are zero;

otherwise a more complicated expression for V results, involving the fourth-order
spectral density.) The estimates of the regression parameters are asymptotically
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normal and independent of the θ estimates (when the third cumulants are zero),
for all three types of estimates.

These theoretical results can be used to refine models. Typically, one uses these
types of asymptotic results under the null hypothesis that the model is correctly
specified, so that θ̃ is the true parameter and V = 2〈∇ logFθ∇′ logFθ 〉, which
equals twice H . See McElroy and Holan [25] and McElroy and Findley [26] for
more exposition on model misspecification in the frequency domain. Thus, the
asymptotic variance is twice the inverse Hessian, or the inverse of H/2. Note that
the Fisher information matrix is the Hessian of the asymptotic form of the Whittle
likelihood, and hence is equal to one half of the Hessian of KL, that is, H/2.
Therefore when the model is correctly specified, parameter estimation is efficient.

Furthermore, the Fisher information matrix has a particularly elegant form in
the case of a cepstral model. The gradient of the log spectrum is in this case just
the various Z

j1
1 or Z

j2
2 , so that as in the time series case the Hessian equals twice

the identity matrix (because of mirror reflectional symmetry in �, there is a dou-
bling that occurs), except for the case of the entry corresponding to �0,0—in this
case the derivative of the log spectrum with respect to �0,0 equals one. Thus the
Fisher information matrix for all the parameters except �0,0 is equal to the identity
matrix, and hence the asymptotic variance of any cepstral coefficient estimate is
N−2 (or 2N−2 in the case of �0,0). The lack of cross-correlation in the parameter
estimates asymptotically indicates there is no redundancy in the information they
convey, which is a type of “maximal efficiency” in the cepstral model.

In terms of model-building with cepstral random fields, one procedure is the fol-
lowing: postulate a low order cepstral field model (e.g., order p1 = 1) and jointly
test for whether any coefficients (estimated via MLE or QMLE) are equal to zero.
We might consider expanding the model—in the direction of one spatial axis or
another as appropriate—if coefficients are significantly different from zero. Al-
though this is not an optimal method of model selection, this type of forward
addition strategy would stop once all additional coefficients are negligible. Al-
ternatively, one could start with a somewhat larger cepstral model, and iteratively
delete insignificant coefficients.

Gaussian likelihood ratio test statistics can be utilized for nested cepstral mod-
els, along the lines given in Taniguchi and Kakizawa [41]—which ultimately just
depend on the asymptotic normality of the parameter estimates—in order to han-
dle batches of parameters concurrently. Model selection and assessment can also
be assisted by examination of spatial residuals, which are defined by applying the
inverse square root of the estimated data covariance matrix �(Fθ̂ ) to the vector-
ized centered data W—the result is a vectorized residual sequence, which should
behave like white noise if the model has extracted all correlation structure. Note
that examining whiteness of the vectorized residuals is equivalent to looking at all
spatial correlations of the spatial residuals defined by undoing the vec operation.
In the context of lattice data, one popular method for testing the null hypothesis
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of the absence of spatial autocorrelation is through the use of Moran’s I statistic
[10, 28]. For a comprehensive discussion regarding Moran’s I statistic and its lim-
itations see Cressie [12], Li, Calder and Cressie [23], Cressie and Wikle [11] and
the references therein. In our case (Supplementary Appendix A), we will evaluate
goodness-of-fit by applying Moran’s I statistic to the spatial residuals obtained
from the estimated model.

4. Theory of inference. This section provides rigorous mathematical results
regarding the inference problems delineated in Section 3. We do not assume a cep-
stral random field process, retaining greater generality, but assume a fair amount
of regularity on the higher moments of the field through the Brillinger-type cumu-
lant conditions [8]. We need not assume the field is Gaussian for Theorem 4.1, but
we require a Gaussian assumption for Theorem 4.2. We first list technical assump-
tions, and then describe the mathematical results.

Previous rigorous work on asymptotics for parameter estimates of lattice ran-
dom fields includes Guyon [18] and Mardia and Marshall [24]. Although Solo [39]
advocates the approximate QMLE method in practice, asymptotic results are
not proved in that paper. Our approach, like Mardia and Marshall [24] and
Pierce [30], handles regression effects together with parameter estimates, but we
utilize broader data process assumptions formulated in terms of cumulants; Mardia
and Marshall [24] assumes that the random field is Gaussian, whereas we do not.
Pierce [30] treats the d = 1 time series case, allows for non-Gaussian marginals
and shows that skewness can produce asymptotic correlation between regression
and model parameter estimates; an analogous story for d = 2 is described in The-
orem 4.1. Our contribution broadens the applicability of Mardia and Marshall [24]
to non-Gaussian fields, and we moreover provide sufficient conditions under which
our Lemma 4.1 yields the validity of condition (iii) of Theorem 2 of Mardia and
Marshall [24]. This highlights our frequentist contribution; for Bayesian analysis,
we are unaware of any published work on asymptotic concentration for random
fields. Theorem 4.2 assumes a Gaussian field, which is natural given that the like-
lihood is Gaussian.

4.1. Regularity assumptions. We first set out some notation and working as-
sumptions: define a block-Toeplitz matrix �(F) associated with spectral density
F and an N1 × N2 data matrix Y

N to be N2 × N2, with j1, k1th block (for
1 ≤ j1, k1 ≤ N1) given by the N2 × N2-dimensional matrix �(Fj1−k1), which is
defined as follows. If we integrate over the second variable of F we obtain a func-
tion of the first frequency,

Fh1(λ2) = 1

2π

∫ π

−π
F (λ1, λ2)e

ih1λ1 dλ1 with 0 ≤ h1 < N1.
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Then �(Fh1) is the N2 × N2-dimensional matrix of inverse DFTs of Fh1 , with
j2, k2th entry given by

γh1,j2−k2(F ) = 1

4π2

∫ π

−π

∫ π

−π
F (λ1, λ2)e

ih1λ1 dλ1e
i(j2−k2)λ2 dλ2

= 〈
FZ

−h1
1 Z

k2−j2
2

〉
.

Based on how we have defined W
N and W = vec(WN ′

), it follows that �(F̃ ) =
E[WW ′], where F̃ corresponds to the true data process. That is, lexicographical
ordering of a stationary field produces this structure in the covariance matrix; there
are N2

1 blocks, each of which are N2 × N2-dimensional.
Also let F denote the set of admissible spectra for two-dimensional ran-

dom fields, defined as follows. For any spatial autocovariance function {γh1,h2},
consider the sums Sh1,· = ∑

h2
|h2||γh1,h2 |, S·,h2 = ∑

h1
|h1||γh1,h2 |, and S·,· =∑

h1,h2
|h1||h2||γh1,h2 | and define the set

F =
{
F : [−π,π]2 → R

+,F (λ1, λ2) = ∑
h1,h2

γh1,h2(F )Z
h1
1 Z

h2
2 , Sh1,· < ∞

∀h1, S·,h2 < ∞ ∀h2, S·,· < ∞
}
.

Note that this class excludes spectra with zeroes, which is a minor imposition in
practice.

In this paper we take Brillinger’s approach to asymptotic derivations, stipulating
summability conditions on higher cumulants of the spatial field. Let us denote an
integer-valued bivariate index by t ∈ Z

2, which has integer coordinates (t1, t2).
Then a collection of spatial variables can be written {Wt (1) ,Wt (2) , . . .}. The weak
stationarity condition stipulates that joint moments of such variables only depend
upon differences between indices, t (1) − t (2) = (t

(1)
1 − t

(2)
1 , t

(1)
2 − t

(2)
2 ), etc. If we

sum a function with respect to t ∈ Z
2, the notation refers to a double sum over

t1 and t2. A similar notation is used for frequencies λ ∈ [−π,π]2, in that λ =
(λ1, λ2).

Suppose that spatial data is sampled from a true spatial field with spectrum F̃ ,
and that we have a collection of continuous weighting functions Gj : [−π,π]2 
→
R

+. The second cumulant function of the spatial field is the autocovariance func-
tion γh with h ∈ Z

2, whereas the (k + 1)th cumulant function is denoted

γh(1),h(2),...,h(k) = cum[Wt ,Wt+h(1) ,Wt+h(2) , . . . ,Wt+h(k)].
We require absolute summability of these second and fourth cumulant functions.
Then the fourth-order spectrum is well defined via

F̃F
(
λ(1), λ(2), λ(3)) = ∑

h(1),h(2),h(3)

γh(1),h(2),h(3)e
{−iλ(1)·h(1)−iλ(2)·h(2)−iλ(3)·h(3)},
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with · denoting the dot product of bivariate vectors. More regularity can be im-
posed via the condition∑

h(1),h(2),...,h(k)

(
1 + ∣∣h(1)

∣∣∣∣h(2)
∣∣ · · · ∣∣h(k)

∣∣)∣∣γh(1),h(2),...,h(k)

∣∣ < ∞,(4.1)

where t denotes the product of the components of t . This will be referred to as
Condition Bk , for any k ≥ 1; note that B2 implies the summability conditions of
the set F . Finally, recall that the periodogram is computed from a sample of size
N2 = N1 · N2. When the regressors are correctly specified, we will write β̃ for the
true parameter. Then Iβ̃ denotes the periodogram of the data Y correctly adjusted
for mean effects; equivalently, it is the periodogram of WN .

In addition to assuming that the regressors are correctly specified, with β̃ the
true regression parameter and X̃ the regression matrix, we require the following
key assumptions.

ASSUMPTIONS.

(A1) F̃ ∈ F .
(A2) The spectral density Fθ is twice continuously differentiable and uniformly

bounded above and away from zero, and moreover all components of Fθ , ∇Fθ ,
∇∇′Fθ are in F .

(A3) The process is weakly stationary of order k, and the Brillinger conditions
Bk (4.1) hold for all k ≥ 1.

(A4) The pseudo-true value θ̃ exists uniquely in the interior of the parameter
space.

(A5) H(θ) = ∇∇′ KL(Fθ , F̃ ) is invertible at θ̃ .

Conditions (A1), (A3) and (A5) cannot be verified from data, but some assump-
tions of this nature must be made to obtain asymptotic formulas. Condition (A2)
will hold for cepstral models (and other random field models as well) by the fol-
lowing argument. The coefficients of the causal and skew fields will have expo-
nential decay in either index argument, by extensions of the classical time series
argument (see, e.g., Hurvich [19]) applied to (2.9) and (2.10). [The time series
argument can be directly applied to (2.11) and (2.12) as well.] Combining these
results using (2.8), the acf of the cepstral field will also have exponential decay
so that Fθ ∈ F . Of course, another way to verify this condition is to examine the
boundedness of partial derivatives of the spectrum; at once we see that (A2) holds
for the cepstral model, as it does for moving average random fields.

Although condition (A4) may be problematic for certain moving average mod-
els (which may have complicated constraints on coefficients), the cepstral model
uses no constraints on θ , because the distinct entries of � can be any real number,
independently of all other distinct entries. Euclidean space is open, so any pseudo-
true value is necessarily contained in the interior. Also, existence of a pseudo-true
value is guaranteed by convexity of the KL discrepancy.
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For the result on Bayesian estimation, we will assume that the model is correctly
specified; the model must also be identifiable, that is, Fθ1 = Fθ2 implies θ1 = θ2,
which helps ensure asymptotic concentration of the likelihood. We assume the
parameters belong to some compact subset of Euclidean space, and the true pa-
rameter vector lies in the interior. This assumption can often be accomplished by
prior transformation (and is easily accomplished for the cepstral coefficients in
the cepstral model). Also define the matrix 2-norm of a matrix A via the notation
‖A‖2.

4.2. Technical results. We begin with an important lemma that extends
Lemma 4.1.2 of Taniguchi and Kakizawa [41] to the spatial context.

LEMMA 4.1. Let �(Fj ) and �(Gj) be block-Toeplitz matrices with Fj ,

G−1
j ∈ F for 1 ≤ j ≤ m. Assuming that N∗ = min{N1,N2} → ∞, and N =√
N1 · N2,

N−2 tr

{
m∏

j=1

�(Fj )�
−1(Gj )

}
=

〈
m∏

j=1

FjG
−1
j

〉
+ O

(
N−2).

Next, we discuss a lemma that provides a central limit theorem for weighted
averages of the spatial periodogram, which is a natural extension of Lemma 3.1.1
of Taniguchi and Kakizawa [41]. Define the bias-correction quantities

B1(λ) = ∑
h1,h2

|h1|γh1,h2e
−iλ·h, B2(λ) = ∑

h1,h2

|h2|γh1,h2e
−iλ·h,(4.2)

and use 〈〈g(λ(1), λ(2))〉〉 as a short hand for (2π)−4 ∫
[−π,π ]4 g(λ(1), λ(2)) dλ(1) dλ(2).

LEMMA 4.2. Assume that N∗ = min{N1,N2} → ∞ and let N = √
N1 · N2.

Suppose assumption (A3) holds, and that Gj for 1 ≤ j ≤ J are continuous func-
tions. Let G∗

j (λ) = Gj(−λ). Then:

(i) For the unbiased acf estimators, as N∗ → ∞, 〈Gj Îβ̃〉 − 〈Gj Îβ̃〉
N

P−→ 0

and 〈Gj Îβ̃〉 P−→ 〈GjF̃ 〉 for any 1 ≤ j ≤ J . Also

N
{〈
Gj(Îβ̃ − F̃ )

〉}J

j=1
L�⇒ N (0,V ),

where the covariance matrix V has jkth entry〈〈
GjGkF̃F

(
λ(1),−λ(2), λ(2))〉〉 + 〈(

GjG
∗
k + GjGk

)
F̃ 2〉.

(ii) For the biased acf estimators, 〈GjIβ̃〉 − 〈GjIβ̃〉
N

P−→ 0 and 〈GjIβ̃〉 P−→
〈GjF̃ 〉 for any 1 ≤ j ≤ J . Also, for the same V given in case (i),

N
{〈
Gj

(
Iβ̃ − F̃ + N−1B1 + N−1B2

)〉}J

j=1
L�⇒ N (0,V ),
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where the bias correction terms are defined in (4.2).

The last assertion of Lemma 4.2 means that utilizing Iβ̃ instead of Îβ̃ will re-
quire a bias correction; cf. Guyon [18]. Both lemmas are important preliminary
results for our main theorems, but also are of interest in their own right, extend-
ing known time series results to the spatial context. Although generalizations to
dimensions higher than two seem feasible, the actual mechanics become consider-
ably more technical. We now state the limit theorems for our parameter estimates.
For the QMLE estimates, we suppose that they are either exact or approximate
Whittle estimates defined using the unbiased acf estimates.

THEOREM 4.1. Assume that conditions (A1)–(A5) hold and that the regres-
sors are correctly specified with (X̃′X̃)

−1 → 0 as N∗ = min{N1,N2} → ∞. Then
in the case of MLE or the QMLE, both β̂ and θ̂ are jointly asymptotically normal
with distributions given by

N(θ̂ − θ̃ )
L�⇒ N

(
0,H−1(θ̃)V (θ̃)H †(θ̃)

)
,

H(θ) = ∇∇′ KL(Fθ , F̃ ),

V (θ) = 2
〈
F̃ 2∇F−1

θ ∇′F−1
θ

〉 + 〈〈∇F−1
θ ∇′F−1

θ F̃F
(
λ(1),−λ(2), λ(2))〉〉,

where † denotes an inverse transpose and N = √
N1 · N2. Also N(β̂ − β̃) is asymp-

totically normal with mean zero and covariance matrix

M−1
X (θ̃)

[
X̃′�

(
F−1

θ̃

)
�(F̃ )�

(
F−1

θ̃

)
X̃
]
M

†
X(θ̃),

where MX(θ) = X̃′�(F−1
θ )X̃. Finally, β̂ and θ̂ are asymptotically independent if

the third cumulants of the process are zero.

REMARK 4.1. For a Gaussian process, third and fourth cumulants are
zero, which implies that regression and model parameter estimates are asymp-
totically independent, and that V has a simpler form, being given just by
2〈F̃ 2∇F−1

θ ∇′F−1
θ 〉.

REMARK 4.2. Application of the same techniques in the case of a one-
dimensional random field, or time series, yields asymptotic normality of regres-
sion and time series parameters under Brillinger’s conditions. To our knowledge,
the only other results of this flavor for time series with regression effects is the
work of Pierce [30], which focuses on ARIMA models but allows for skewed non-
Gaussian distributions.

THEOREM 4.2. Assume that the data process is Gaussian and (A2) and (A4)
hold, and that the model is correctly specified and is identifiable. Also suppose
that the regressors are correctly specified, with N−2X̃′�−1(Fθ )X̃ → M(θ) for

some M(θ) satisfying 0 < supθ ‖M(θ)‖2 < ∞. Then β̂B
P−→ β̃ and θ̂B

P−→ θ̃ as
N∗ = min{N1,N2} → ∞.
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It is worth comparing the conditions of the two theorems. In Theorem 4.2 the
assumption of a correct model makes (A1) automatic, and the Gaussian assump-
tion makes (A3) automatic. Furthermore, the assumption in Theorem 4.2 on the
parameters—together with the assumption of a correct model—automatically en-
tails (A4) as well. Theorem 4.1 also assumes (A5), which is chiefly needed to
establish asymptotic normality of the frequentist estimates. The Bayesian result
requires a slightly stronger assumption on the regression matrix in order to get
asymptotic concentration of the likelihood. For example, if we seek to estimate a
constant mean by taking X̃ to be a column vector of all ones, then M(θ) exists and
is just the scalar F−θ (0,0); this will be bounded away from zero and infinity in the
cepstral model if all the cepstral coefficients are restricted to a range of values.

5. Simulation study. To demonstrate the effectiveness of our approach, we
conducted a small simulation study using maximum likelihood estimation as out-
lined in Sections 2 and 3. The model autocovariances were calculated accord-
ing (2.5), with M = 1000 and p1 = p2 = 2. The exact parameter values for the
simulation were calibrated to the straw yield data analysis presented in the Sup-
plement’s Appendix A. Grid sizes of (15×15), (20×20), (20×25) and (25×25)

were considered, where (20 × 25) constitutes the size grid in our real-data exam-
ple.

For this simulation, we generated 200 Gaussian datasets with parameters θ =
J� corresponding to quadrants I and II of the grid �,2 and β = (β0, β1, β2)

′; see
Table 1. In this case, β1 and β2 correspond to “row” and “column” effects, respec-
tively, in the agricultural experiment considered. Here, the row and column effects
are obtained by regressing the vectorized response on the corresponding row and
column indices (since rows and columns are equally spaced). The X̃ matrix used
in this simulation consisted of a column of ones followed by columns associated
with the row and column effects and was taken from the analysis presented in the
Supplement’s Appendix A. Given θ and β , we simulate directly from the corre-
sponding multivariate Gaussian distribution. However, in cases where the grid size
is extremely large, another potential approach to simulation would be circular em-
bedding (Chan and Wood [9], Wood and Chan [44]), though it would be necessary
to properly account for any regression effects. The log Gaussian likelihood (up to
constants) given by (3.3) was numerically maximized for each simulated dataset
using the optim function in R (R Development Core Team [34]).

As demonstrated in Table 1, through an assessment of mean square error (mse),
the model parameters can be estimated with a high degree of precision. Addition-
ally, Table 1 illustrates that our asymptotic theory agrees with the finite sample
estimates for different grid sizes. Specifically, we provide the difference between

2That is, θ = [�−2,2,�−2,1,�−1,2,�−1,1,�0,2,�0,1,�1,2,�1,1,�2,2,�2,1,�−2,0,�−1,0,

�0,0]′ = (θ1, θ2, . . . , θ13)′.
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TABLE 1
Simulation results for the simulation presented in Section 5 (p1 = p2 = 2). Note, there were 200 simulated datasets and σθ denotes the mean standard
deviation for parameters θ1, . . . , θ12 for a given simulation (over the 200 datasets). Recall that, for j = 1, . . . ,12, the asymptotic standard error for θj

equals 1/N . Therefore, σθ − 1/N represents the average difference between the estimated and asymptotic standard error for θ1, . . . , θ12. The values in
the table below are only reported to three decimal places and the elements of θ are described in Section 5. Note that N = √

N1 · N2 and that θ13 = �0,0

N1 × N2

15 × 15 20 × 20 20 × 25 25 × 25

True Mean SD MSE Mean SD MSE Mean SD MSE Mean SD MSE

θ1 0.009 −0.019 0.084 0.008 0.000 0.056 0.003 −0.001 0.049 0.003 −0.002 0.041 0.002
θ2 −0.028 −0.037 0.079 0.006 −0.029 0.057 0.003 −0.033 0.048 0.002 −0.039 0.044 0.002
θ3 0.132 0.123 0.081 0.007 0.127 0.059 0.003 0.133 0.044 0.002 0.129 0.045 0.002
θ4 0.067 0.054 0.080 0.007 0.057 0.059 0.004 0.058 0.047 0.002 0.063 0.049 0.002
θ5 0.271 0.266 0.078 0.006 0.265 0.056 0.003 0.269 0.052 0.003 0.259 0.043 0.002
θ6 0.383 0.367 0.074 0.006 0.370 0.057 0.003 0.377 0.047 0.002 0.379 0.038 0.001
θ7 0.001 −0.006 0.079 0.006 −0.001 0.060 0.004 −0.005 0.050 0.003 −0.001 0.044 0.002
θ8 −0.017 −0.028 0.077 0.006 −0.023 0.059 0.004 −0.022 0.049 0.002 −0.020 0.045 0.002
θ9 −0.003 −0.023 0.082 0.007 −0.012 0.052 0.003 −0.009 0.047 0.002 −0.009 0.046 0.002
θ10 −0.055 −0.090 0.079 0.008 −0.064 0.049 0.002 −0.053 0.053 0.003 −0.061 0.040 0.002
θ11 −0.015 −0.035 0.085 0.008 −0.022 0.054 0.003 −0.021 0.048 0.002 −0.021 0.044 0.002
θ12 0.144 0.129 0.072 0.005 0.134 0.053 0.003 0.138 0.047 0.002 0.137 0.042 0.002
θ13 −0.871 −0.968 0.096 0.019 −0.922 0.080 0.009 −0.902 0.064 0.005 −0.902 0.060 0.004
β0 7.646 7.632 0.275 0.076 7.651 0.200 0.040 7.627 0.167 0.028 7.645 0.173 0.030
β1 −0.035 −0.035 0.020 0.000 −0.034 0.011 0.000 −0.034 0.011 0.000 −0.034 0.008 0.000
β2 −0.059 −0.056 0.024 0.001 −0.060 0.013 0.000 −0.059 0.009 0.000 −0.060 0.009 0.000

σθ − (1/N) 0.0124 0.0059 0.0037 0.0033
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the mean standard deviation (over all of the cepstral parameters, except �0,0) and
the asymptotic standard deviation. This simulation shows that, as the grid size in-
creases, the difference between the estimated standard error and the asymptotic
standard error goes to zero on average. We also provide the mean, standard devia-
tion and mse for the individual parameters, including the mean parameters β; this
demonstrates the bias properties, as well as the fact that the mse goes to zero as
the grid size increases. Finally, the average p-value for the Shapiro–Wilks test of
normality for each simulation grid size (over all of the cepstral parameters) was
greater than 0.4, with only one parameter out of the thirteen cepstral parameters
from each simulation not exhibiting normality. Hence, the estimated parameters
converge to their asymptotic distribution and, as expected, their precision increases
with sample size.

6. Conclusion. The general modeling approach and asymptotic theory we
propose extends the spatial random field literature in several directions. By pro-
viding recursive formulas for calculating autocovariances, from a given cepstral
random field model, we have facilitated usage of these models in both Bayesian
and likelihood settings. This is extremely notable as many models suffer from a
constrained parameter space, whereas the cepstral random field model imposes no
constraints on the parameter values. More specifically, the autocovariance matrix
obtained from our approach is guaranteed to be positive definite.

In addition, we establish results on consistency and asymptotic normality for an
expanding domain. This provides a rigorous platform for conducting model selec-
tion and statistical inference. The asymptotic results are proven generally and can
be viewed as an independent contribution to the random field literature, expand-
ing on the results of Mardia and Marshall [24] and others, such as Guyon [18].
The simulation results support the theory, and the methods are illustrated through
an application to straw yield data from an agricultural field experiment (Supple-
ment’s Appendix A). In this setting, it is readily seen that our model is easily able
to characterize the underlying spatial dependence structure.
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SUPPLEMENTARY MATERIAL

Supplement to asymptotic theory of cepstral random fields (DOI: 10.1214/
13-AOS1180SUPP; .pdf). The supplement contains a description of further appli-
cations of the cepstral model, analysis of straw yield data, as well as all proofs.
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