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Abstract 

Regression Discontinuity (RD) designs have become popular in empirical studies due to their 
attractive properties for estimating causal effects under transparent assumptions. Nonetheless, 
most popular procedures assume i.i.d. data, which is not reasonable in many common ap
plications. To relax this assumption, we derive the properties of traditional non-parametric 
estimators in a setting that incorporates potential clustering at the level of the running vari
able, and propose an accompanying optimal-MSE bandwidth selection rule. Simulation results 
demonstrate that falsely assuming data are i.i.d. when selecting the bandwidth may lead to 
the choice of bandwidths that are too small relative to the optimal-MSE bandwidth. Last, we 
apply our procedure using person-level microdata that exhibits clustering at the census tract 
level to analyze the impact of the Low-Income Housing Tax Credit program on neighborhood 
characteristics and low-income housing supply. 
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1 Introduction 

Regression Discontinuity (RD) designs have become one of the leading empirical strategies in 

economics, public policy evaluation, and other social sciences. While these designs provide 

consistent estimation of causal effects under transparent assumptions, the current literature on 

estimation and inference in RD designs typically assumes that the observations around the cutoff 

are independent and identically distributed,1 which limits the applicability of such procedures 

in at least two relevant empirical settings. First, researchers may wish to use microdata to 

implement a RD design based on a higher-level running variable. 2 An estimation and infer

ence procedure that assumes clustering at the level of the running variable allows the researcher 

to estimate parameters, select bandwidths, and perform inference in a way that is compatible 

with the use of microdata in RD designs. Another salient example of such an application is 

an RD design with a discrete running variable. Following the advice of Lee and Card (2008), 

researchers implementing RD designs in applications with discrete running variables typically 

conduct inference using cluster-robust standard errors.3 This inference procedure directly con

tradicts with commonly used bandwidth selection procedures that assume i.i.d. data, however.4 

Therefore researchers performing RD designs with discrete running variables are left with the 

choice of either using an ad hoc bandwidth or relying on a bandwidth selection procedure whose 

assumptions are clearly violated.5 

In this study, we derive asymptotic distributions for local polynomial estimators of treatment 

effects in RD designs under a setup that allows for unrestricted dependence among observations 

within clusters defined at the running variable level. These results demonstrate that the widely 

used “cluster-robust” standard errors are appropriate in this setting. This finding relates to the 

results found in Lee and Card (2008), who suggest the use of cluster-robust standard errors to 

1See, for example, Hahn, Todd, and Van der Klaauw (2001), Porter (2003), Ludwig and Miller (2007), Imbens 
and Kalyanaraman (2012), or Calonico, Cattaneo, and Titiunik (2014). 

2For example, researchers could use student-level microdata to examine a policy implemented based on a school-
level running variable. 

3These applications are too numerous to adequately summarize here, but recent examples of studies that use a 
variety of discrete running variables include birth weight (Almond et al., 2010), days until unemployment cutoffs 
(Schmieder, Von Wachter, and Bender, 2012), prison inmate security scores (Chen and Shapiro, 2007), discrete test 
scores (Scott-Clayton, 2011), age (Card, Dobkin, and Maestas, 2008), and date of birth (Dobkin and Ferreira, 2010; 
Elder, 2010). 

4In particular, the bandwidth selection procedure developed by Imbens and Kalyanaraman (2012) is very widely 
used by applied researchers. For example, a recent Google Scholar search returns over 600 articles citing Imbens and 
Kalyanaraman (2012), the majority of which are empirical applications. 

5As discussed in Lee and Card (2008), non-parametric identification in the RD design is infeasible with a discrete 
running variable, and the clustered standard errors used by researchers are intended to correct for specification error 
in the conditional mean function. Nevertheless, this procedure still contrasts with a bandwidth selection procedure 
assuming i.i.d. data and our approximation to the data generating process provides a transparent, data-driven 
bandwidth selection procedure for practitioners in these cases. 
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account for specification errors in a specific class of models that are amenable to parametric 

RD designs. Our analysis demonstrates that in the context of our model, the intuitive idea 

of using cluster-robust standard errors holds even when using non-parametric local polynomial 

estimators. 

In addition, we propose an optimal bandwidth selection procedure in RD designs with 

dependence among observations. The procedure extends Imbens and Kalyanaraman (2012) 

(henceforth, “IK”) by allowing for clustered sampling with unrestricted dependence structure 

within cluster, and the resulting optimal bandwidth estimator collapses to traditional optimal 

bandwidth estimators when observations are i.i.d. We provide a simple implementation of the 

algorithm and perform a small simulation study demonstrating that our procedure outperforms 

traditional bandwidth choices in terms of Mean Squared Error (MSE) in many practical settings. 

Finally, we demonstrate the empirical importance and usefulness of the procedure in an 

application analyzing the impact of Low-Income Housing Tax Credits (LIHTC) on neighborhood 

characteristics. The data in this application are person level, but the running variable is defined 

at the census tract level, generating clustering issues. The results show that accounting for this 

clustering in the data when choosing bandwidths can lead to practically significant changes in 

the interpretation of the empirical results. 

The remainder of the paper is structured as follows. Section 2 presents the setup and Section 

3 presents our main results. Section 4 then provides a small simulation study. Finally, Section 

5 presents the application to the impacts of Low-Income Housing Tax Credits on neighborhood 

characteristics, and Section 6 concludes. 

2 Setup 

2.1 General RD Design 

In the typical sharp RD setting, a researcher wishes to estimate the local causal effect of treat

ment at a given threshold. The running variable, Xi, determines treatment assignment. Given 

a known threshold, x̄, set to zero without loss of generality, a unit receives treatment if Xi ≥ 0 

or does not receive treatment if Xi < 0. Let Yi(1) and Yi(0) denote the potential outcomes 

for unit i given it receives treatment and in the absence of treatment, respectively. Hence, the 

observed sample is comprised of the running variable, Xi, and 

Yi = Yi(0):{Xi < 0} + Yi(1):{Xi ≥ 0} (1) 
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(η) (η)
τ (η)ˆ = µ̂ − µ̂+ − 

N

( ˆ ˆ(1) ˆ(p))�	 Xp)2β+, β , . . . , β = argminb0,b1,...,bp :{Xi ≥ 0}(Yi − b0 − b1Xi − · · · − bp · Kh(Xi)+ + i 
i=1 

N
(1) (p)

(β̂−, β̂ , . . . , β̂ )� = argminb0,b1,...,bp :{Xi < 0}(Yi − b0 − b1Xi − · · · − bpX
p)2 · Kh(Xi)− − i 

i=1 

xig 1 (η) β(η)where Kh(xig ) = K 
� � 

and µ̂ = η! ˆ .

where :{·} denotes the indicator function. For convenience, define 

µ(x) = J[Yi|Xi = x]	 (2) 

In most cases the population parameter of interest is τ = J[Y (1) − Y (0)|X = x̄] (i.e., the 

average treatment effect at the threshold). Under continuity and smoothness conditions on both 

the conditional distribution of Xi and the first moments of Y (0) and Y (1) at the cutoff,6 τ is 

nonparametrically identified (Hahn, Todd, and Van der Klaauw, 2001) by: 

τ = µ+ − µ− 

where µ+ = limx→0+ µ(x), and µ− = limx→0− µ(x)	 (3) 

In general one might also be interested in the discontinuity of a higher order derivative of the 

µ(x)conditional expectation at the threshold.7 Let µ(η)(x) = dη 

be the ηth derivative of the dxη 

(η) (η)
unknown regression function and define µ = limx→0+ µ(η)(x) and µ = limx→0− µ(η)(x).+	 − 

(η) (η)
The parameter of interest in those cases is given by τ (η) = µ − µ .+ − 

The estimation of τ (η) in RD designs focuses on the problem of approximating J[Y (1)|X = x] 

and J[Y (0)|X = x] near the cutoff. Due to its desirable properties when estimating regression 

functions at the boundary, the most common approach fits separate kernel-weighted local poly

nomial regressions in neighborhoods on both sides of the threshold.8 For a local polynomial of 

order p, we use the following estimator: 

h h 

6The assumptions used in the derivations and results presented here closely follow IK and are discussed in Appendix 
A.1. 

7See, for example, the “regression kink” literature (Card, Lee, and Pei, 2009). 
8See Hahn, Todd, and Van der Klaauw (2001), Porter (2003) or Fan and Gijbels (1992) for discussions of the 

properties of local polynomial regressions for boundary problems. 
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2.2 Clustering in RD Designs
 

Building on this traditional RD setup, we now turn to the setting where clustering exists at 

the level of the running variable. Consider sampling from a large number of clusters and, for 

each group g, we observe data on the outcome, running variable and potential covariates for Ng 

observations.9 This sampling scheme is assumed to generate observations that are independent 

across clusters. Then, for a random sample of G groups of fixed size Ng , we observe 

Yig = µ(xig ) +  ig (4) 

Where the subscript ig refers to unit i in cluster g. The asymptotic theory developed below 

assumes that the number of clusters increases while cluster size is held fixed and the bandwidth 

shrinks (i.e., G → ∞, h → 0, and Gh → ∞). We analyze inference and the optimal choice 

of bandwidth in RD designs under clustering, letting V ar(Y |X) = IG ⊗ Ω(x), where its ele

ments, Ωij , are denoted as σij (x), and its limits limx→0+ σij (x) = σ+ and limx→0− σij (x) = σ− 
ij ij 

throughout the paper.10 

3 Main Results 

3.1 Asymptotic Distribution 

Given this setup, we derive the asymptotic properties of τ̂ (η) and the validity of usual tests. Let  ∞  ∞
νj = uj K(u)du and πj = uj K2(u)du be deterministic functions of the kernel function 

0 0 

chosen by the researcher. Additionally, define Γ and Δ as (p +1)× (p+1) matrices with element 

(i, j) given by νi+j−2 and πi+j−2, respectively. Assumptions for the results presented below 

include the standard smoothness conditions of the conditional expectation and variance of Y 

around the cutoff found in the RD literature and other regularity conditions, and are described 

in Appendix A.1. Proofs are collected in Appendix A.2. 

Lemma 3.1. Suppose assumptions 1-5 hold and Gh → ∞. 

9This reflects the standard clustered data setup as discussed in Wooldridge (2010). 
10An alternative question is whether asymptotic approximations with Ng → ∞ and G → ∞ following Hansen 

(2007) can provide additional insight. This is beyond the scope of this paper. 
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eηΓ
−1 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

⎟⎟⎟⎟⎠ 
+ op

hp+1−η 
(p+1) (p+1)

E[τ̂ (η)|X] =τ (η) + η! − (−1)(p+1+η) (hp+1−η)µ µ−+(p + 1)! 

ν2p+1 

⎞⎛ 

�

� � � ��Ng 
�Ng 

�Ng 
�Ngσ+ σ− 

is isi=1 s=1V ar[τ̂ (η) − τ (η)|X] = η!2 i=1 s=1 eηΓ
−1ΔΓ−1 eη {1 + op(1)}+ 

GN2h2η+1f(0)g GN2h2η+1f(0)g 

(η) − τ (η)τ̂ + →d N(0, 1) 
V ar[τ̂ (η) − τ (η)|X] 

1. (B) If h → 0, then 

2. (V) If h → 0, then 

3. (D) If Gh2p+3 → 0, then 

Hence, the traditional standardized t-statistic and the conventional confidence intervals are 

asymptotically valid. Note that this asymptotic variance formula relates closely with the typical 

cluster-robust standard error formulas and suggests that these estimators can be used in RD 

studies utilizing a non-parametric local polynomial estimator with clustering at the running 

variable level.11 

In a more general setting, one could face a situation where clusters contain observations with 

different values of the running variable. In that case, the covariance terms in the asymptotic 

variance would vanish under the current normalization, and the clustering issue would disappear 

asymptotically.12 This result is similar to the situation described by Bhattacharya (2005) in 

the context of multi-stage sampling. Intuitively, as the number of clusters increases and the 

bandwidth shrinks around the threshold, the proportion of units from a given cluster within the 

bandwidth goes to zero.13 However, as noted in Bhattacharya (2005), in empirical applications 

with finite sample size and nonzero bandwidth, the vanishing clustering may not be ignorable. 

Therefore, even in a general clustering setup, practitioners may with to implement cluster-robust 

methods for inference and bandwidth choice. 
11This is the cluster analogue of the point made by Imbens and Lemieux (2008) that usual parametric 

heteroskedasticity-robust standard errors can be used in traditional RD designs with i.i.d. data. 
12Calculations demonstrating this result are available from the authors upon request. 
13This is not an issue in the current setup because we focus our discussion on the case where clusters are defined 

at the level of the running variable, X and clustering does not vanish asymptotically. 
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3.2 Optimal Bandwidth Selection 

3.2.1 Infeasible Optimal Bandwidth Choice 

This section derives the optimal bandwidth choice for RD designs with clustered sampling. As 

pointed out by IK, the local nature of RD designs makes it desirable to define our error criteria 

in terms of the quality of the local approximation to the conditional expectations at the cutoff. 

We obtain an optimal bandwidth h∗ that minimizes MSE(h): 

  
(τ̂ − τ)2MSE(h) = J (5) 

Lemma 3.2. Suppose assumptions 1-5 in Appendix A.1 hold. Then, 

1. (MSE) 

Ng Ng Ng Ngσ+ σ−1 i=1 s=1 is i=1 s=1 isMSE(h) = C2,η + 
Gh2η+1 Ng 

2f(0) Ng 
2f(0)   2 1(p+1) − (−1)(p+1) (p+1)

+ h2(p+1−η)C1,η µ µ+ + h2(p+1−η)+ op− Gh2η+1 

⎤⎞⎛⎡ 2 ⎢⎢⎢⎢⎣ 

η! 
(p+1)! eηΓ

−1 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

ν2p+1 

⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎠ 
= η!2eηΓ

−1ΔΓ−1eη .Where C1,η and C2,η = 

(p+1) (p+1)
2. (Optimal Bandwidth) If µ  µ , then the optimal bandwidth that minimizes = + − 

the asymptotic approximation to MSE(h) is 

⎡ ⎤ 1�Ng �Ng �Ng �Ngσ+ 
is σ− 2p+3 

iss=1 s=1i=1 i=1+⎢⎣  2 
⎥⎦ 

NNg f (0) NNg f (0)
hopt Cκη (6) = 

⎛ 

(p+1) − (−1)(p+1)µ
(p+1)

µ+ −

1 Γ−1ΔΓ−1 
η(p+1)!2⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

(2η+1)e eη
where Cκη = ⎤⎞ 2 . 

νp+1 

. . . 

ν2p+1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

1 Γ−1 
η2(p+1−η) e

This lemma extends the results in IK to the case in which data is clustered. Comparing 

Equation (6) to the infeasible bandwidth choice in IK, the numerator includes additional variance 

terms that allow for dependence of observations within cluster. Additionally, if the errors are 

indeed i.i.d., this bandwidth collapses to the IK optimal bandwidth. 
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(σ2 + Ngσ
2 ) + (σ2 σ2 

u,+ c,+ u,− + Ng c,−)5C2,0 ⎢⎣ 
⎥⎦ N−1/5 (7)hopt = 24C1,0 (2) (2)

f(0) µ − µ+ − 

⎤⎡

� � � � � �
  

For further insight, consider the case for a linear local estimator (p = 1) in the standard RD 

design (η = 0) with a constant group-level shock, cg, and Ω takes the familiar “random effects” 

structure: ⎞⎛ 

Ωg = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

σ2 + σ2 σ2 · · · σ2 
c u c c 

σ2 σ2 + σ2 · · · σ2 
c c u c 

. . . 
. . . 

. . . 
. . . 

σ2 
c σ2 

c · · · σ2 
c + σ2 

u 

⎟⎟⎟⎟⎟⎟⎟⎠ 

Under this setup, Equation (6) can be written as follows: 

This rewrite makes clear that the key components driving differences in the cluster-robust and 

traditional procedures are cluster size and within-cluster dependence. As cluster size or within-

cluster dependence increase, the current procedure produces bandwidths that differ from a 

bandwidth selection algorithm that assumes i.i.d. data. Intuitively, if there is strong within-

cluster dependence each observation provides relatively less information to the researcher than if 

the observations were independent. This reflects the fact that when using the traditional band

width choice algorithm in the presence of clustering, the researcher is minimizing a restricted 

(incomplete) MSE and the resulting bandwidth does not correctly assess the trade-off between 

bias and variance. 

3.2.2 Feasible Optimal Bandwidth Choice 

A natural feasible bandwidth selector based on the optimal bandwidth described in Lemma 3.2 

replaces all unknown parameters by estimates obtained from the data:14 

⎡ ⎤ 1 
Ng Ng Ng Ng 5σ̂is+ σ̂is−1 i=1 s=1 + i=1 s=1 

C2 
5 ⎢⎣ 

f̂x(0)NNg f̂x ⎥⎦(0)NNgĥopt = (8)24C1 (2) (2)
µ̂ − µ̂+ − 

The denominator in Equation (8) could be close to zero in finite samples due to the lack of 

curvature in the regression using the polynomial of order (p + 1) fitted to the data. Even if 

14Throughout this section we use as example the case of the local linear estimator (p = 1). The extension for 
general p is straightforward and follows from Equation (6). 
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⎡ ⎤ 1 
Ng Ng Ng Ng 5σ̂is+ σ̂is−1 i=1 s=1 + i=1 s=1 

C2 
5 ⎢⎣ 

f̂x(0)NNg f̂x ⎥⎦(0)NNgĥopt = (9)24C1 (2) (2)
µ̂ − µ̂ + r̂+ + r̂−−+ 

� ���
  

�

 

the true value of the bias term is not zero, the precision with which we estimate the second 

(2) (2)
derivatives µ and µ is likely to be low. Hence, following IK and Calonico, Cattaneo, and + − 

Titiunik (2014) we introduce a regularization term that accounts for this lack of precision in the 

(2) (2)
estimation of β and β :+ − 

(2) (2)
3 · V (β̂ ) + V (β̂ )+ − 

(2) (2)ˆ ˆIK propose an approximation for the variance of β+ and β− based on the specific case of 

homoskedasticity and a uniform kernel, which would be incompatible with the clustered sam

(2) (2)
pling analysis implemented in this paper. We propose to set V̂ (β̂ ) and V̂ (β̂ ) equal to the + + 

(2) (2)
“clustered variances” for β̂ and β̂ in the local quadratic regression using a pilot bandwidth + − 

(2) (2) (2) (2)
and the implementation of the optimal bandwidth selector uses µ̂ , µ̂ , V̂ (β̂ ) and V̂ (β̂ )+ − + + 

from an initial local quadratic regression around the cutoff using a pilot bandwidth. Therefore, 

the optimal bandwidth can be implemented by 

 (2) (2)
Where r̂+ = 3 ̂ ˆ ˆ ˆV (β+ ) and r̂− = 3 V (β− ).

In summary, the proposed implementation of the plug-in estimator given in Equation (9) 

follows these steps: 

1. Choose a pilot bandwidth using the Silverman Rule, 
1 

h1 = 2.576 N− · Sx 5 for a triangular kernel, where Sx is the sample variance of the running 

variable. 

2. Let Nh,+ and Nh,− be the number of observations within a bandwidth h above and below 

the threshold, respectively. Estimate f(0): 
Nh1,− + Nh1,+f̂(0) = 2h1N 

3. Estimate the variance term using the following estimator: 

1 
σ2ˆc,+ ≡ îg ̂ sg

Nh1,+ 
g|c≤xg <c+h1 i s 

Where îg = yig − ȳ. Then, use the corresponding estimator on the other side of the cutoff. 

(2) (2)
4. Estimate the curvature µ+ and µ− by a local quadratic fit using a second pilot bandwidth, 

9
 



2160 · σ̂2 

r̂+ = c,+ 

h4 
2,+Nh2,+ 

h2.
15  

5. Obtain the estimated regularization terms, which are locally approximated by 

where σ̂2 
c,+ is defined above. As before, use the corresponding estimator on the other side 

of the cutoff. 

6. Plug the estimated quantities into Equation (9), obtaining the estimated optimal band

width. 

4 Simulations 

To illustrate the practical importance of adequately accounting for clustering when performing 

RD designs, we present a simulation study based on two data generating processes (DGPs).16 

For clarity, the setup follows a random effects structure: 

Yig = m(x) + cg + uig 

Here, m(x) is mean function, cg is group-level shock with variance σ2, and uig is idiosyncratic c 

error term with variance σ2 . Simulations are run for various values of within cluster dependence, u


σ2
 
cρ ≡ . Throughout this section estimation is performed using a local linear estimator, the σ2+σ2 

c u 

preferred method in most applications. In the first design, let m(x) take the following form, 

which mimics the data in Lee (2008): 

⎧ ⎨ 50.48 + 1.27x + 7.18x2 + 20.21x3 + 21.54x4 + 7.33x if x < 0 
m1(x) = ⎩ 50.52 + 0.84x − 3.00x2 + 7.99x3 − 9.01x4 + 3.56x if x ≥ 0 

Both u and c are normally distributed, the variance of u is set to 0.12952 and the variance of c 

17is adjusted to obtain the desired value of ρ. 

We present results that utilize both our cluster-robust bandwidth and the traditional IK 

bandwidth that assumes i.i.d. data. Additionally, we perform simulations with data aggregated 

to the running variable level using the traditional bandwidth choice. This ad hoc approach is 

15We follow IK in choosing this bandwidth to be optimal for minimizing MSE.
 
16Results from three additional simulations are available in Appendix B.
 
17This DGP is identical to that found in IK and Calonico, Cattaneo, and Titiunik (2014), with the addition of
 

data dependence as described above. 
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sometimes used by researchers facing clustering issues in RD designs.18 By aggregating the data 

to the running variable level, the researcher collapses the dependence structure and sidesteps 

the cluster issues, but ignores within-cluster variation in the data. 

Based on the results presented in Section 3, we expect accounting for clustering to become 

more important as cluster size or within-cluster dependence increases. In addition, note that our 

procedure requires the estimation of a more complex variance formula that includes off-diagonal 

terms in the variance-covariance matrix. Therefore, our cluster-robust procedure may perform 

worse in practice when there is no within-cluster dependence when compared to a procedure 

that truthfully assumes i.i.d. data. 

The simulation results in Table 1 align with these predictions. As expected, higher levels 

of within-cluster dependence, ρ, lead to situations where the cluster-robust procedure domi

nates procedures using traditional bandwidth selection algorithms in terms of empirical MSE. 

Moreover, as the size of clusters increases the current procedure far outperforms traditional 

bandwidth choices using the microdata. For small cluster sizes, our procedure performs sim

ilarly to IK in the case where ρ = 0 and the data is in fact i.i.d. However, for large cluster 

sizes the cluster-robust procedure can perform poorly for ρ = 0, reflecting the added difficulty 

of estimating the variance terms in bandwidth selection. Nonetheless, improved performance by 

the cluster-robust procedure can be observed for relatively small values of ρ. 

Figure 1 presents these results graphically. Each panel plots the empirical MSE of each 

procedure for different values of ρ, where panels are separated by cluster size and number of 

clusters. Note first that the procedure using aggregated data overlaps almost entirely with 

the cluster-robust procedure, as both procedures perform very similarly for this DGP. These 

plots also make clear that there is a divergence between the cluster-robust procedure and the 

traditional procedure as ρ increases. In particular, the first column shows that with 250 clusters 

the cluster-robust procedure performs very similar to both the traditional procedure for small 

values of ρ, and performs significantly better as ρ increases. With 1000 clusters, the cluster-

robust procedure performs slightly worse than the traditional procedure for small values of ρ, 

but accounting for clustering becomes more important with larger dependence. 

One concern with the cluster-robust procedure proposed is that it often yields larger band

widths. Given the well known trade-off between bias and variance that is inherent in RD 

designs,19 it is useful to consider a situation where local linear estimators will struggle with 

18See, for example, Ahn and Vigdor (2014).
 
19As pointed out in Section 3.2.1, the traditional approach might misrepresent the bias-variance trade-off embedded
 

in the MSE by imposing no within-cluster dependence on the data. 
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bias due to extreme curvature of the conditional mean function near the cutoff. Therefore, in 

the second design we use a DGP studied in Calonico, Cattaneo, and Titiunik (2014) where the 

mean function is altered so that typical estimators will be heavily biased: 

⎧ ⎨ 50.48 + 1.27x − 0.5 · 7.18x2 + 0.7 · 20.21x3 + 1.1 · 21.54x4 + 1.5 · 7.33x if x < 0 
m2(x) = ⎩ 50.52 + 0.84x − 0.1 · 3.00x2 − 0.3 · 7.99x3 − 0.1 · 9.01x4 + 3.56x if x ≥ 0 

This provides a natural setting to check whether our new procedure is able to accommodate 

conditional mean functions with extreme local curvature around the cutoff. 

Table 2 and Figure 2 present the results of this simulation. Here, we can see that the 

cluster-robust procedure in general performs as well or better than traditional bandwidth se

lection procedure. In addition, unlike the first DGP, the cluster-robust procedure consistently 

outperforms the ad hoc procedure using the aggregated data set. Therefore, this case provides 

one example of a situation where the cluster-robust procedure produces improvements in MSE 

relative to a procedure that aggregates the data to the running variable level. As before, account

ing for clustering becomes more important as cluster size or ρ increase. These results provide 

evidence that our procedure produces improvements in MSE in situations with data dependence 

even when there is extreme curvature of the conditional mean function at the cutoff. 

5 Application: LIHTC and Neighborhood Characteristics 

We now demonstrate the usefulness of these new methods using an empirical application that 

examines the effect of low-income housing subsidies on housing development and neighborhood 

characteristics. In particular, we focus the effects of the LIHTC, a program that has provided 

funding for roughly one third of all new units in multifamily housing built in the U.S. over the 

past thirty years (Khadduri, Climaco, and Burnett, 2012).20 We exploit a discontinuity in pro

gram eligibility rules designating whether a particular census tract becomes a Qualified Census 

Tract (QCT). As discussed in Hollar and Usowski (2007) and Baum-Snow and Marion (2009), 

projects located in QCTs are eligible for up to 30 percent larger tax credits than projects in 

tracts not labeled as QCTs. Importantly, this designation is based on the fraction of households 

whose income falls below 60 percent of Area Median Gross Income (AMGI).21 If the majority 

of households in a census tract have household income less than 60 percent of AMGI, the tract

20See Hollar and Usowski (2007) or Freedman and McGavock (2015) for overviews of the LIHTC program. 
21The QCT designation methodology has changed since the period studied in the current analysis, but this does 

not influence the results presented here. 
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becomes eligible to receive QCT status. Therefore, the percent of households below 60 percent 

AMGI forms our running variable and the cutoff is 50 percent. By comparing only individu

als that lived in tracts with a similar percentage of households below 60 percent of AMGI, we 

exploit random variation in QCT designation near the cutoff to identify the impact of the tax 

credits on housing development and neighborhood outcomes. 

We perform this application using restricted access individual-level data from Census 2000 

long form microdata.22 We restrict to census tracts in metropolitan areas, and exclude Alaska 

and Hawaii.23 Table 3 displays descriptive statistics for this data set. The number of LIHTC 

units and projects variables refer to the number of these units in the census tract. Clearly, 

QCT tracts contain much more disadvantaged populations than non-QCT tracts, a fact that 

is obvious due to the construction of the QCT status. In addition, note that QCT tracts 

have much larger numbers of LIHTC units and projects than non-QCT tracts. However, these 

descriptive differences between QCT and non-QCT tracts are not necessarily caused by LIHTC 

development or QCT designation, motivating the use of an RD design. 

Table 4 displays results of three estimation procedures applied to the data. All estimates 

represent the results of local linear regressions using a triangular kernel, with standard errors 

that are robust to clustering at the tract level.24 The first column presents the results of our 

bandwidth selection procedure applied to the microdata. Next, the second column presents re

sults using the traditional IK bandwidth selection algorithm that does not account for clustering 

at the tract level. Finally, the last column presents results from applying this same procedure 

to data that has been aggregated to the tract level. These estimates are intended to replicate 

what a researcher would do when only aggregate data is available and the clustering issue is 

sidestepped. 

The results show that accounting for potential dependence in outcomes within a census tract 

can substantially change the benchmark minimum-MSE bandwidth. As argued in Sections 3.2.1 

and 4, the cluster-robust optimal bandwidth should be similar to the usual IK bandwidth in 

the absence of data dependence. The sizable differences between the bandwidth values obtained 

suggests that the usual algorithms potentially misrepresent the MSE bias/variance trade-off by 

failing to capture the dependence in the data. 

In terms of the point estimates, the results show little evidence of a discontinuity in neigh

22Since QCT classification and eligibility to extra tax credits was based on 1990 census tracts, location in 2000 
is converted to tract location in 1990 using U.S. Census Bureau tract relationship files available at https://www. 
census.gov/geo/maps-data/data/relationship.html. 

23These restrictions are similar to previous work by Baum-Snow and Marion (2009). 
24Note that both procedures using the microdata perform inference with the same “cluster-robust” standard error 

formulas. Tract-level regressions utilize heteroskedasticity-robust standard errors. 
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borhood characteristics at the QCT threshold.25 However, there is clear evidence of jumps 

in the implementation of new LIHTC units and projects at the boundary, indicating that the 

QCT policy is indeed producing increases in LIHTC construction. This is one area where the 

cluster-robust procedure leads to different empirical results than the traditional IK bandwidth 

selection. In particular, the IK procedure on the microdata produces a small and statistically 

insignificant estimate of the effect of QCT status on the number of LIHTC projects in the tract, 

whereas both the aggregated data and the current procedure produce estimates that suggest 

that there is a strong, statistically significant positive effect of QCT status on the number of 

LIHTC projects in a tract, as intended by policymakers. 

Turning to standard error estimates, we see that applying the cluster-robust bandwidth 

choice procedure to the microdata produces estimates that are more precise than those obtained 

using a traditional bandwidth selection algorithm. This result is unsurprising, as accounting 

for the clustering will typically lead to larger bandwidth choices. When comparing the cluster-

robust and aggregated data procedures, there is no clear relationship between the magnitude of 

the standard error estimates. Again, this reinforces the idea that both the cluster-robust and 

the aggregated data procedure are different approaches of accounting for clustering. In fact, on 

the whole both the cluster-robust and the aggregated data procedures provide similar results, 

and give a different empirical perspective than simply applying the IK bandwidth selection 

algorithm to the microdata. 

6 Conclusion 

Even though many recent RD analyses perform inference using cluster-robust standard error 

estimates, the justification for these methods is typically ad hoc. Moreover, current bandwidth 

selection procedures do not account for potential dependence among observations, creating a 

conflict in the assumptions between the bandwidth selection algorithm and inference procedures 

in RD studies. 

In this study, we derive the asymptotic properties of local polynomial estimators in RD 

designs with data clustered at the running variable level and demonstrate a procedure which ex

tends the popular minimum-MSE bandwidth selection algorithm by Imbens and Kalyanaraman 

(2012) to these situations. This procedure can be applied in a number of common applications, 

such as those with treatment being assigned at a higher level than the unit of observation or dis

25This analysis differs from Baum-Snow and Marion (2009) in that it considers levels of neighborhood character
istics in 2000 instead of changes in characteristics from 1990 to 2000. Therefore, the two analyses are not directly 
comparable. 
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crete running variables. Simulation results indicate that in some practically important settings 

failing to account for dependence among observations leads to non-trivial increases in MSE due 

to bandwidth choices that are too small. We also present a simple application that demonstrates 

the practical importance of the cluster-robust optimal bandwidth choice algorithm by analyzing 

the impact of LIHTCs on neighborhood characteristics. 
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Table 1: Simulation Results – DGP 1
 

ρ 
0 0.2 0.4 0.6 0.8 

250 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0022 0.0030 0.0040 0.0068 0.0138 

Traditional Bandwidth MSE 0.0021 0.0030 0.0045 0.0082 0.0189 
Ratio 1.0088 0.9763 0.8757 0.8288 0.7311 

Size=25 Cluster-Robust Bandwidth MSE 0.0016 0.0025 0.0038 0.0061 0.0134 
Traditional Bandwidth MSE 0.0013 0.0025 0.0051 0.0097 0.0255 
Ratio 1.1872 0.9854 0.7461 0.6242 0.5242 

Size=200 Cluster-Robust Bandwidth MSE 0.0009 0.0024 0.0037 0.0063 0.0138 
Traditional Bandwidth MSE 0.0002 0.0029 0.0087 0.1255 0.0637 
Ratio 3.5405 0.8064 0.4266 0.0502 0.2164 

500 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0018 0.0022 0.0030 0.0040 0.0074 

Traditional Bandwidth MSE 0.0018 0.0021 0.0031 0.0046 0.0095 
Ratio 1.0206 1.0327 0.9518 0.8777 0.7826 

Size=25 Cluster-Robust Bandwidth MSE 0.0011 0.0020 0.0026 0.0035 0.0075 
Traditional Bandwidth MSE 0.0008 0.0016 0.0028 0.0051 0.0134 
Ratio 1.3538 1.2289 0.9080 0.6834 0.5567 

Size=200 Cluster-Robust Bandwidth MSE 0.0004 0.0019 0.0026 0.0037 0.0073 
Traditional Bandwidth MSE 0.0001 0.0017 0.0039 0.0085 0.0233 
Ratio 3.5180 1.1666 0.6550 0.4316 0.3129 

1000 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0014 0.0018 0.0022 0.0027 0.0046 

Traditional Bandwidth MSE 0.0014 0.0016 0.0021 0.0028 0.0055 
Ratio 1.0445 1.1304 1.0598 0.9699 0.8295 

Size=25 Cluster-Robust Bandwidth MSE 0.0005 0.0016 0.0021 0.0028 0.0042 
Traditional Bandwidth MSE 0.0004 0.0010 0.0018 0.0030 0.0069 
Ratio 1.4220 1.5429 1.1647 0.9290 0.6134 

Size=200 Cluster-Robust Bandwidth MSE 0.0001 0.0015 0.0020 0.0027 0.0043 
Traditional Bandwidth MSE 0.0000 0.0009 0.0021 0.0046 0.0112 
Ratio 2.9571 1.5970 0.9376 0.5821 0.3841 

Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust 
procedure divided by MSE from traditional procedure. 

18
 



Table 2: Simulation Results – DGP 2
 

ρ 
0 0.2 0.4 0.6 0.8 

250 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0030 0.0050 0.0077 0.0125 0.0269 

Traditional Bandwidth MSE 0.0019 0.0038 0.0064 0.0108 0.0244 
Ratio 1.5324 1.3337 1.2047 1.1578 1.1034 

Size=25 Cluster-Robust Bandwidth MSE 0.0009 0.0029 0.0056 0.0106 0.0257 
Traditional Bandwidth MSE 0.0005 0.0028 0.0063 0.0122 0.0296 
Ratio 1.7908 1.0489 0.8915 0.8682 0.8692 

Size=200 Cluster-Robust Bandwidth MSE 0.0002 0.0022 0.0053 0.0111 0.0240 
Traditional Bandwidth MSE 0.0001 0.0038 0.0111 0.0250 0.0702 
Ratio 2.3749 0.5795 0.4795 0.4429 0.3424 

500 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0013 0.0022 0.0036 0.0064 0.0135 

Traditional Bandwidth MSE 0.0010 0.0019 0.0033 0.0060 0.0128 
Ratio 1.2848 1.1674 1.0963 1.0582 1.0577 

Size=25 Cluster-Robust Bandwidth MSE 0.0004 0.0014 0.0028 0.0053 0.0134 
Traditional Bandwidth MSE 0.0002 0.0015 0.0034 0.0065 0.0158 
Ratio 1.4689 0.9332 0.8504 0.8134 0.8464 

Size=200 Cluster-Robust Bandwidth MSE 0.0001 0.0011 0.0026 0.0054 0.0122 
Traditional Bandwidth MSE 0.0000 0.0020 0.0052 0.0102 0.0262 
Ratio 1.9594 0.5765 0.5014 0.5291 0.4671 

1000 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0006 0.0011 0.0018 0.0031 0.0072 

Traditional Bandwidth MSE 0.0005 0.0010 0.0018 0.0031 0.0071 
Ratio 1.1352 1.0615 1.0135 1.0096 1.0150 

Size=25 Cluster-Robust Bandwidth MSE 0.0002 0.0007 0.0015 0.0027 0.0064 
Traditional Bandwidth MSE 0.0001 0.0008 0.0019 0.0037 0.0085 
Ratio 1.2308 0.8559 0.7856 0.7411 0.7574 

Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0006 0.0013 0.0028 0.0067 
Traditional Bandwidth MSE 0.0000 0.0011 0.0025 0.0056 0.0132 
Ratio 1.6494 0.5820 0.5170 0.4901 0.5064 

Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust 
procedure divided by MSE from traditional procedure. 
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Table 3: Descriptive Statistics
 

QCT Non-QCT 
Homeownership 

Fraction Non-White 

High School Diploma or Higher 

Bachelors Degree or Higher 

Employment Population Ratio 

Number of LIHTC Projects 

Number of LIHTC Units 

Running Variable 

0.3316 
(0.4708) 
0.7565 
(0.4292) 
0.5744 
(0.4944) 
0.1110 
(0.3142) 
0.4808 
(0.4996) 
0.2714 
(0.7147) 
16.8094 
(55.7813) 
0.1155 
(0.0913) 

0.6984 
(0.4590) 
0.2778 
(0.4479) 
0.8367 
(0.3696) 
0.2819 
(0.4499) 
0.6363 
(0.4811) 
0.1096 
(0.5675) 
8.8745 

(43.7748) 
-0.2514 
(0.1097) 

N 
N Clusters 

3,063,042 
6,778 

27,879,680 
37,938 

Source: 
means. 

Microdata from the 
Standard deviations 

long form of the 2000 
are in parentheses. 

decennial census. Cells contains sample 
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Table 4: Local Linear Estimates of the Effect of QCT Status
 

Dependent Variable Cluster-Robust Bandwidth Traditional Bandwidth Tract-Level 
Homeownership 

Fraction Non-White 

High School Diploma or Higher 

Bachelors Degree or Higher 

Employment Rate 

Number of LIHTC Units 

Number of LIHTC Projects 

-0.0054 
[0.0085] 
w=0.246 

0.0054 
[0.0168] 
w=0.114 

-0.0075 
[0.0074] 
w=0.142 

0.0055 
[0.0040] 
w=0.231 

0.0046 
[0.0032] 
w=0.289 

7.279*** 
[2.074] 
w=0.224 

0.0731*** 
[0.0237] 
w=0.342 

-0.0098 
[0.0145] 
w=0.074 

-0.0080 
[0.0374] 
w=0.023 

-0.0001 
[0.0112] 
w=0.061 

0.0040 
[0.0055] 
w=0.121 

0.0065 
[0.0052] 
w=0.088 

10.945** 
[5.285] 
w=0.029 

0.0297 
[0.0578] 
w=0.058 

-0.0044 
[0.0063] 
w=0.240 

0.0051 
[0.0149] 
w=0.109 

-0.0102** 
[0.0049] 
w=0.197 

0.0021 
[0.0047] 
w=0.203 

-0.0024 
[0.0039] 
w=0.151 

4.949*** 
[1.370] 
w=0.281 

0.0753*** 
[0.0183] 
w=0.258 

N 
N Clusters 

30,330,540 
44,716 

30,330,540 
44,716 

45,294 
45,294 

Source: Microdata and tract-level data from the long form of the 2000 
are adjusted for clustering at the tract level. “w” refers to bandwidth, 
IK bandwidth. All estimates are from local linear regressions using a 
the .05 level, *** indicates significance at the .01 level. 

decennial census. Standard errors in brackets 
where tract-level regressions use the standard 
triangular kernel. ** indicates significance at 
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Figure 1: Simulation Results – Data Generating Process 1
 

(a) Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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(c) Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 
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(e) Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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(g) Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the 
cluster-robust procedure. 
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Figure 2: Simulation Results – Data Generating Process 2 (High Bias)
 

(a) Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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(c) Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 
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(e) Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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(g) Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the 
cluster-robust procedure. 
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A Assumptions and Proofs 

A.1 Assumptions 

We use the following standard assumptions in the RD literature. For some κ0 > 0, the following 

holds in the neighborhood (−κ0, κ0) around the threshold x̄ = 0. 

1. We have G independent and identically distributed clusters, with data (Yg, Xg ) , where Yg 

and Xg are 1 × Ng vectors for g = 1, ..., G and for any given cluster Xg = (xg, xg, ..., xg). 

2.	 m(x) = E[Y |X] is at least p + 2 times continuously differentiable. 

3. The density of the forcing variable	 X, denoted f(X), is continuous and bounded away 

from zero. 

4. The conditional variance Ω(x) = V ar(Y |X) = IG ⊗ Ω(x) is bounded and right and left 

continuous at x̄. The right and left limit at the threshold exist and are positive definite. 

5. The kernel K(·) is non-negative, bounded, differs from zero on a compact interval [0, κ], 

and is continuous on (0, κ) for some κ > 0. 

A.2 Proofs � �
Lemma A.1. Define F 1 G N

= g j 1 �G 1 �Ng j
j G g=1 i=1 Kh(Zig )Zig = g=1 Ng i=1 Kh(Zig)Zig = G N� g 
 

1 G  �  	 1 Ng j

g=1 NgAjg, where Ajg =

 

i=1 Kh(Zig)Zig. If Ng is equal for all G clusters, then G N� g 

1 G
Fj = g=1 Ajg . Under Assumptions 1-5, (i) for non-negative integer jG

Fj = Ngh
j f(0)νj + op(h

j ) = Ngh
j (F ∗ + op(1))j 

with νj defined in the main text and Fj 
∗ ≡ f(0)νj and (ii) if j ≥ 1, Fj = op(hj−1). 

Proof. Focusing at Ajg for each cluster g = 1, ..., G: 

⎡	 ⎤ 
Ng	  ∞1 jE [Ajg] = E ⎣ Kh(Zig)Z ⎦ = hj K (x) xj f(hx)dx 

Ng 
ig 

0i=1  ∞	  ∞ f(hx) − f(0) 
= hj K (x) xj f(0)dx + hj+1 K (x) xj+1 dx 

hx0	 0 

= hj f(0)vj + O(hj+1) 
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�G 
1 

E[Fj ] = NgE[Ajg]
G 

g=1 

= Ngh
j f(0)vj + O(hj+1) 

  
�   
 � � � �

2
V ar [Ajg] = E Ajg 

2 − E [Ajg]⎡ ⎤ 
Ng

1 12j 2j≤ E ⎣ Kh(Zig )Zig 
⎦ = E Kh

2(Zig )ZigN2 
g Ngi=1 

∞ h2j−1 

h2j−1 h2j−1 =
1 

K2(x)x 2j f(xh)dx = O = O 
Ng 0 Ng 

� � � �
� � � � � � � � �� � �

G G 
1 1 

V ar [Fg] = V ar NgAjg = N2V ar [Ajg ]
G G2 g 

g=1 g=1 

G 
h2j−1 G 

h2j−11 1 2 
N2 h2j−1 hj= O = O = O = ogG2 Ng G2 G 

g=1 g=1 

� � �
� � � � �

Then, 

For the variance, 

By noting that Ajg are independent across clusters. 

Then, 

Fj = E[Fj ] + Op(V ar(Fj )
1/2) 

= Ngh
j f(0)vj + O(hj+1) + op(h

j ) 

= Ngh
j (f(0)vj + op(1)) 

As discussed in the main text, we focus our attentions to the case in which cluster deter

mination is based on the value of the running variable or, conversely, the running variable is 

defined at the group level, so Xig = Xg. With this in mind we can show the following result. 

= G−1 G Ng Ng K2 t+jLemma A.2. Define Qtj (zg )z σis (zg). Then,g=1 i=1 s=1 h g 

G Ng Ng σis (0)g=1 i=1 s=1 
= ht+j−1Qtj f(0)πt+j + op (1)

G 
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��⎡ ⎤ 
Ng Ng 

Qtj = ht+j−1 ⎣f(0)πt+j σis (0) + op (1)⎦ 
i=1 s=1 

���
� � � ��

 ��
��  
��

  2
V ar [Qtj ] = E (Qtj )

2 − E [Qtj ]

  ���
� ��
� ��

⎡ ⎤⎛ ⎞2 
G Ng Ng⎢⎝G−1 K2 t+j ⎠ ⎥E (Qtj )

2 = E ⎣ h(zg)z σis (zg) ⎦g 
g=1 i=1 s=1 ⎡⎛ 

G Ng Ng 

= G−2 ⎢⎝K2 t+jE ⎣ h(zg )zg 

⎤⎞2 

σis (zg)⎠ ⎦⎥ 

g=1 i=1 s=1 ⎡ ⎤⎛ ⎞ 
G Ng Ng⎢ 2(t+j) ⎥ 

= G−2 E ⎣Kh
4(zg)zg 

⎝ σis (zg)⎠ ⎦ 
g=1 i=1 s=1 

2 

If Ng is the same for all clusters and Ωg = Ω for all g, 

with πj defined in the text. 

Proof. 

⎡ ⎤ 
G Ng Ng ⎣G−1 K2 t+j ⎦E [Qtj ] = E h(zg)z σis (zg)g 

g=1 i=1 s=1 

G Ng Ng∞ 1 z 
= G−1 K2 t+jz σis (z) f(z)dz 

0 h2 h 
g=1 i=1 s=1 

Ng Ng 

= ht+j−1K2 (x) x t+j σis (hx) f(hx)dx 
∞ 

0 i=1 s=1 

Ng Ng ∞ 

= ht+j−1f(0) σis (0) K2 (x) x t+j dx + O(ht+j ) 
−∞i=1 s=1 

Ng Ng
 

= ht+j−1f(0)πt+j σis (0) + O(ht+j )
 
i=1 s=1
 

Now, to bound V ar(Qtj |X): 

The first term: 
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� � �� � � �� � � �� � �

  � ��
�����   
����� �� � �
�� � �

�� � � �� � � �� � �

�� � �
��

1 
2 )Qtj = E[Qtj ] + Op(V ar(Qj ) 

Ng Ng 

ht+j−1 = ht+j−1f(0)πt+j σis (0) + op 

i=1 s=1⎡ ⎤ 
Ng Ng 

= ht+j−1 ⎣f(0)πt+j σis (0) + op (1)⎦ 
i=1 s=1 

Note that all cross products will be of the type: 

E Kh
4(zg)z 2qσgis (zg ) σgtl (zg )g 

Where q ranges from 0 to 2p, with p being the order of the polynomial used. Then, 

∞ 

K4 2q K4E h(zg)zg σis (zg) σtl (zg ) = h(z)z 2qσis (z) σtl (z) f(z)dz 
0 
∞ h2q 

= 
h4 

K4(x)x 2qσis (hx) σgtl (hx) f(hx)hdx 
0 

∞ 

= h2q−3 K4(x)x 2q σis (hx) σtl (hx) f(hx)dx 
0 

hq−1 2 
hq−1 2 

h2q−3 hq−1 = O = O = o = o 
h1 

2h 

Then, 

⎡ ⎤⎛ ⎞2 
G Ng Ng 

= N−2 ⎢ 2(t+j) ⎝ ⎠ ⎥E (Qtj )
2 E ⎣Kh

4(zg)zg σgis (zg) ⎦ 
g=1 i=1 s=1 

G Ng Ng Ng Ng 

2(t+j)= G−2 E Kh
4(zg )z σis (zg) σtl (zg)g 

g=1 i=1 s=1 t=1 l=1 

G Ng Ng Ng Ng 
2 

= G−2 h(t+j)−1 o 
g=1 i=1 s=1 t=1 l=1 

2 
= G−1N4 h(t+j)−1 og 

2 2 2 
= o G− 1 

2 N2 
g 

1 
2ht+j−1 G−= o ht+j−1 ht+j−1 = o 

and 

With the results from the two lemmas above we can analyze the asymptotic distribution 

presented in 3.1 as well as the approximation to MSE(h) in Lemma 3.2 and the subsequent 
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�

� � � � � �

optimal bandwidth formula. 

Proof. Proof of Lemma 3.1 For analyzing the asymptotic approximation to the bias term, note 

that yig = µ(xig) + ig . Let R = ι X · · · Xp with typical row given by rp(x) = 

p1 x · · · x and eη be a vector of zeros except for the (η + 1)th entry equal to one, e.g., 

e0 = 1 0 · · · 0 . Then, 

µ̂
(η) 

= η!eη(R WR)−1R WY = η!eη(R WR)−1R W [µ(X) + ] (10)+ 

= η!eη(R WR)−1R Wµ(X) + η!eη(R WR)−1R W (11) 

We separate the analysis of the asymptotic properties of the estimator in three parts, the bias 

due to the potential local misspecification in the neighborhood of the cutoff, the estimator’s 

variance, and its distribution which will be inherited from the second term in the equation above. 

Bias 

Let E(µ̂(0)|X) = e0(R WR)−1R WM , where M is defined below. Taking a Taylor expansion 

of m(·) around 0: 

1 12 p+1 µ(xig) = µ(0) + µ(1)(0)xig + · µ(2)(0)xig + · · · + · µ(p+1)(0)x + Tigig2 (p + 1)! 

Where |Tig| ≤ supx|µ(p+2)(x)xp+2|.ig 

Let M = (µ(x11), µ(x21), ..., m(x12), µ(x22), ..., µ(xNGG)) . Then 

⎞⎛ 

M = R 

⎜⎜⎜⎜⎜⎜⎜⎝ 

µ(0) 

µ(1)(0) 
. . . 

(p)µ (0) 
p! 

⎟⎟⎟⎟⎟⎟⎟⎠ 

+ S + T 

1 p+1Where Sig = µ(p+1)(0)x .(p+1)! ig 

Then, 

Bias(µ̂(η)) = η!eη(R WR)−1R WM − µ(η)(0) = η!eη (R WR)−1R W (S + T ) 

Note that, 
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�

� � � � � �
� � � � � �
� � � � � �

⎞⎛ 
G Ng G Ng G Ng p· · · g=1 i=1 Kh(xig) g=1 i=1 xigKh(xig ) g=1 i=1 xigKh(xig) 

R WR = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

G 
g=1 

Ng 

i=1 xig Kh(xig) 
G 
g=1 

Ng 

i=1 x
2 
igKh(xig ) · · · G 

g=1 
Ng 

i=1 x
p+1 
ig Kh(xig ) 

. . . 
. . . 

G 
g=1 

Ng 

i=1 x
p 
ig Kh(xig) 

G 
g=1 

Ng 

i=1 x
p+1 
ig Kh(xig) · · · G 

g=1 
Ng 

i=1 x 2p 
ig Kh(x)ig 

⎟⎟⎟⎟⎟⎟⎟⎠ 

�

  
  

      

F0 F1 · · · Fp 

F1 F2 · · · Fp+1 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

1 
R WR = 

G . . . . .. 

Fp Fp+1 · · · F2p 

∗ 
⎞⎛ 

∗h [F ∗ + op (1)] · · · hp F1F (1) + op (1)0 + op⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

p 

∗ hp+1h [F1 + op (1)] h2 [F2 
∗ + op (1)] · · · Fp

∗ 
+1 + op (1) 

. . . . .. 

hp ∗ hp+1 F ∗ h2p F ∗F + op (1) (1) · · · + op (1)p p+1 + op 2p 

= 

⎛⎞⎛⎞⎛ 
∗ ∗ + op (1) F ∗ + op (1) · · · F1⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 · · · 0 

0 h · · · 0 
. . . . . . 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

F (1) ⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

1 0 · · · 0 

0 h · · · 0 
. . . . . . 

+ op0 p 

∗ + op (1) F2 
∗ + op (1) · · · Fp

∗ 
+1 + opF (1)1 

= . . . . .. 

∗ ∗ ∗0 0 · · · hp F + op (1) F (1) · · · F + op (1) 0 0 · · · hp 
p p+1 + op 2p 

Using the definition and results on Lemma A.1: 

⎞⎛ 

⎞

1Recalling that F ∗ ≡ Ngf(0)νj and that op(1) = op(1):j f (0) 

⎞⎛⎞⎛⎞⎛ 
1 0 · · · 0 

0 h · · · 0 
. . . . . . 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

ν0 + op (1) ν1 + op (1) · · · νp + op (1) 

ν1 + op (1) ν2 + op (1) · · · νp+1 + op (1) 
. . . . . . 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

1 0 · · · 0 

0 h · · · 0 
. . . . . . 

= f(0)Ng 

⎜⎜⎜⎜⎜⎜⎜⎝ 
0 0 · · · hp νp + op (1) νp+1 + op (1) · · · ν2p + op (1) 0 0 · · · hp 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎟⎟⎟⎠ 
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�
�

�
1 

⎞⎛⎞⎛ −1 

1 0 · · · 0 ν0 + op (1) ν1 + op (1) · · · νp + op (1) 

ν1 + op (1) ν2 + op (1) · · · νp+1 + op (1) 
. . 

−1 

R WR = 
1 

G f(0)Ng 

⎜⎜⎜⎜⎜⎜⎜⎝ 

0 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

h−10 · · · 
· . . . . . . . .. . 

h−p0 0 · · · νp + op (1) νp+1 + op (1) · · · ν2p + op (1) ⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 · · · 0 

h−10 · · · 0 
. . . . .. 

h−p0 0 · · · 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

�
�

� � �−1
1 1 1 
R WR = [γij + op(1)] = Op

G ij hi+j−2Ngf(0) hi+j−2 

�

� �

�
�

���� ����
⎞⎛ 

p+2 supx|µ(p+2)(x)||x |11 

. . . 
1 
G 

R WT 
1 ≤ R |W |
G 

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 
(p+2)(x)||xp+2 ⎛ ⎜⎜⎜⎜⎝ 

|µ |supx NGG ⎞ 
1 
G 

N 
i=1 K(xi)x

p+2 
i 

. . . 

1 N 2(p+1)
K(xi)xG i=1 i 

⎟⎟⎟⎟⎠|µ(p+2)(x)|= supx

⎞⎛⎞⎛ 
(hp+1)⎜⎜⎜⎜⎝ 

Fp+2 

. . . 

⎟⎟⎟⎟⎠ 
≤ 

⎜⎜⎜⎜⎝ 

op ⎟⎟⎟⎟⎠ 

. .|µ(p+2)(x)|= supx . 

(h2p+1)F2(p+1) op

� � � (hp+1−η ).eη(R WR)−1R WT = op

�

Then, 

Each term of the matrix in the middle above will be a a combination of products of the terms 

νj plus an op(1) term. 

Where γij is a deterministic function of ν known and computable for a given kernel and poly

nomial order. Examining | 1 R WT |:N 

Combining the results above, we obtain 

1For the first term, G R WS, 
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�

�
�

⎞⎛ 
1 N 

Kh(Xi)X
p+1 

G i=1 i⎜⎜⎜⎜⎝ 

. . . 

⎟⎟⎟⎟⎠ 

1 1 (p+1)(0)R WS = µ
G (p + 1)! 

1 N 2p+1Kh(Xi)XG i=1 i ⎞⎛⎞⎛ ⎜⎜⎜⎜⎝ 

Fp+1 

. . . 

⎟⎟⎟⎟⎠ 

1 
= µ

(p + 1)! 
(p+1)(0)Ngf(0) 

⎜⎜⎜⎜⎝ 

νp+1h
p+1 + op(hp+1) 

. . . 

⎟⎟⎟⎟⎠ 

1 
= µ

(p + 1)! 
(p+1)(0) 

ν2p+1h
2p+1 (h2p+1)F2p+1 + op


� � � 1
 
eη(R WR)−1R WS + op(h

p+1−η) = µ(p+1)(0)Ngf(0)
(p + 1)! �

�       �

� �

�

⎞⎛ 

eηΓ
−1 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

⎟⎟⎟⎟⎠ 
+ op(h

p+1−η) 
hp+1−η 

(η) (η) (p+1)− µ |X] =η!E[µ̂ µ+ + +(p + 1)! 

ν2p+1 

1 1γ(η+1)1 + op(1) · · · γ(η+1)(p+1) + op(1) · 
hη Ng f(0) hη+p Ng f (0)⎛ ⎞ 
νp+1h

p+1 + op(hp+1) 
. . . 

ν2p+1h
2p+1 (h2p+1)+ op

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 
(hp+1−η)+ op

1 (p+1)(0)= µ
(p + 1)! 

1 1 1 
hη γ(η+1)1 + op(1) hη+1 γ(η+1)2 + op(1) · · · hη+p γ(η+1)(p+1) + op(1) ⎞⎛ ⎜⎜⎜⎜⎝ 

νp+1h
p+1 + op(hp+1) 

. . . 

ν2p+1h
2p+1 (h2p+1)+ op

⎟⎟⎟⎟⎠ 
(hp+1−η)+ op

⎞⎛ 

hp+1−η 

= µ
(p + 1)! 

(p+1)(0) γ(η+1)1 γ(η+1)2 · · · γ(η+1)(p+1) 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

⎟⎟⎟⎟⎠ 
ν2p+1 

+ op(h
p+1−η) 

Hence, 

    �

Let Γ−1 be a (p + 1) × (p + 1) matrix with typical element γij . Then,
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� � � �V (µ̂(η)(0)|X) = η!2 eη(R WR)−1R W ΣWR(R WR)−1 eη 

�

� � � � � �
� � � � � �

R W ΣWR = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

G Ng Ng G Ng Ng p 
g=1 i=1 s=1 K(xig)K(xsg)σgis · · · g=1 i=1 s=1 K(xig )K(xsg)xsg σgis 

G Ng Ng G Ng Ng p 
g=1 i=1 s=1 K(xig)K(xsg )xig σgis · · · g=1 i=1 s=1 K(xig)K(xsg)xigxsg σgis 

. .. . . . .. . 

G Ng Ng p G Ng Ng p 
g=1 i=1 s=1 K(xig)K(xsg )xig σgis · · · g=1 i=1 s=1 K(xig)K(xsg)xigxsg

p σgis 

⎟⎟⎟⎟⎟⎟⎟⎠ 

� � � � � �⎛ 

�1 
R W ΣWR = 

G 

⎜⎜⎜⎜⎜⎜⎜⎝ 

Q00 Q01 · · · Q0p 

Q10 Q11 · · · Q1p 

. . . 
. . . 

Qp0 Qp1 · · · Qpp 

⎟⎟⎟⎟⎟⎟⎟⎠ 

⎞⎛ 

�
��

��

Ng Ng 

G−1R W ΣWR = f(0) σis (0) 
i=1 s=1 

⎜⎜⎜⎜⎜⎜⎜⎝ 

h−1 (π0 + op (1)) π1 + op (1) · · · hp−1 (πp + op (1)) 

π1 + op (1) h1 (π2 + op (1)) · · · hp (πp+1 + op (1)) 
. . . . . 

hp−1 (πp + op (1)) hp (πp+1 + op (1)) · · · h2p−1 (π2p + op (1)) 

. 

⎞⎛ 

Ng Ng 

= h−1f(0) σis (0) H 

⎜⎜⎜⎜⎜⎜⎜⎝ 

π0 + op (1) π1 + op (1) · · · πp + op (1) 

π1 + op (1) π2 + op (1) · · · πp+1 + op (1) 
. . . . 

⎟⎟⎟⎟⎟⎟⎟⎠ 

H 

⎟⎟⎟⎟⎟⎟⎟⎠ 

i=1 s=1 . 

πp + op (1) πp+1 + op (1) · · · π2p + op (1) 

. 

⎞⎛ 

(η) (η)
And similarly to the estimates obtained below the threshold E[µ̂ − µ |X].− − 

Asymptotic Variance 

For the variance component, note that the conditional variance can be written as follows: 

Defining Σ as the block diagonal matrix with blocks given by Ωg , the variance-covariance 

matrix for the error term in cluster g, for g = 1, · · · , G the middle term is given by: 

⎞

Where σtj is the term in the i − th line and j − th column in Ωg. 

− �G �N �
Q  N

Where g g 
tj = G 1 

g=1 i=1 s=1 K(x ( t j
ig)K xsg)xigxsg σgis. 

Focusing on the case that X is defined at the cluster level and, hence, x = x ∀i = 1, ..., N ,  ig g  g �N �
substitute   N

from the Lemma A.2, Q = ht+j−1 g g
tj f(0)πt+j i=1 s=1 σis (0) + op (1)
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� � �

� �

� �

1 

1 

G(R WR)−1R W ΣWR(R WR)−1 = ⎞⎛ −1 ⎜⎜⎜⎜⎜⎜⎜⎝ 

ν0 + op (1) ν1 + op (1) · · · νp + op (1) 

ν1 + op (1) ν2 + op (1) · · · νp+1 + op (1) 
. . . . . 

νp + op (1) νp+1 + op (1) · · · ν2p + op (1) 

. 

⎟⎟⎟⎟⎟⎟⎟⎠ 

Ng Ng 

i=1 s=1 σis (0) 
H−1 = · 

hf(0) N2 
g 

⎞⎛⎞⎛ −1 ⎜⎜⎜⎜⎜⎜⎜⎝ 

π0 + op (1) π1 + op (1) · · · πp + op (1) 

π1 + op (1) π2 + op (1) · · · πp+1 + op (1) 
. . . . . . 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

ν0 + op (1) ν1 + op (1) · · · νp + op (1) 

ν1 + op (1) ν2 + op (1) · · · νp+1 + op (1) 
. . . . .. 

πp + op (1) πp+1 + op (1) · · · π2p + op (1) νp + op (1) νp+1 + op (1) · · · ν2p + op (1) 

Ng Ng σis (0)i=1 s=1 = H−1AH−1 

hf(0) Ng 
2 

⎟⎟⎟⎟⎟⎟⎟⎠ 

� � � � � � �

� � � � � � �   � �

� �
�

� �
� �

�
� �

Ng Ng σ+1 1(η) (η) i=1 s=1 isV ar[µ̂ − µ |X] = η!2 eηΓ
−1ΔΓ−1 eη + op+ + Gh2η+1f(0) N2 Gh2η+1 

g 

Ng Ng σ+1 1i=1 s=1 is = η!2 eηΓ
−1ΔΓ−1 eη + op

Nh2η+1f(0) Ng Gh2η+1 

⎞⎛ 
1 0 · · · 0 

0 h1 · · · 0 
 = . Then, 

⎜⎜⎜⎜⎜⎜⎜⎝ 

. . . 
. . . 

0 0 · · · hp 

⎟⎟⎟⎟⎟⎟⎟⎠ 

where, H

H−1 

Note that each term in matrix A will be a combination of products of the terms νj and πj plus 

an op(1) term, hence 

Ng Ng[aij + op(1)] 1 σts (0)t=1 s=1G(R WR)−1R W ΣWR(R WR)−1 = 
ij hi+j−2 N2hf(0) g 

Where aij is a deterministic function of ν and π known and computable for a given kernel and 

polynomial order. 

Ng Nga(η+1)(η+1) + op(1) σis (0)i=1 s=1G eη (R WR)−1R W ΣWR(R WR)−1 eη = 
h2η+1f(0) N2 

g 
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(η) (η) (η) (η)(η) (η)
 
+ +
µ̂ − µ µ̂+ − E µ̂+ |X + E µ̂+ |X − µ+ =  (12) 

(η) (η) (η) (η)
V ar[µ̂ − µ |X] V ar[µ̂ − µ |X]+ + + + 

= ε1 + ε2 = ε1 + op(1) (13) 
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� � �  
�

1 
2

1 
2

−
(η) (η) (η) (η)− µ |X] − E |Xε1 = V ar[µ̂ µ̂ µ̂ (14)+ + + + 

η!eη(R WR)−1R W −
(η) (η)

V ar[µ̂ − µ |X]+ + (15)= 
G 

�   �
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�
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Asymptotic Distribution 

We have seen that: 

Then, 

and, 

(η) (η)
E µ̂ |X − µ+ +

ε2 =  (16) 
(η) (η)

V ar[µ̂ − µ |X]+ + 

√ √ 
hp+1−η Gh3+2p= Op Gh2η+1 Op = Op = op(1) (17) 

Note that, 

G G 

R W = R Wg g = K(xg)R g (18)g g 
g=1 g=1 

G Ng G Ng 

= K(xg) rp(xig) ig = K(xg)rp(xg) ig (19) 
g=1 i=1 g=1 i=1 

and, ε1 = ε̃1 + op(1), where 

G 

ε̃1 = ωg g (20) 
g=1 

1 
2Ng Ng 

−
σ+ 
is h−ηeη Γ

−1K(xg)rp(xg)1 i=1 s=1 eηΓ
−1ΔΓ−1ωg = (21)eη

GNg h2η+1f(0) Ng G 

Since the vector of disturbances is independent across clusters and the clusters are randomly 

sampled we have that E[ε̃1] = 0 and V [ε̃1] → 1. Hence, it will follow a central limit theorem 

(η)
converging to a N(0, 1). And similar results holds for µ̂ .− 
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η! 
(p+1)! eη Γ

−1 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

ν2p+1 

⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎠ 
and C2η = η!2eηΓ

−1ΔΓ−1eη.1η = 

⎤⎞⎛⎡
 The optimal bandwidth Where C

Proof. Proof of Lemma 3.2 

MSE(h): 

(η) (η) (η) (η)
E[(τ̂ (η) − τ (η))2|X] = E[(µ̂ − µ̂ − (µ − µ ))2|X]+	 − + − 

(η) (η) (η) (η) (η) (η) (η) (η)
= V ar[µ̂ − µ |X] + V ar[µ̂ − µ |X] + {E[µ̂ − µ |X] − E[µ̂ − µ |X]}2 

+ + − − + + − − 

Ng Ng Ng Ngσ+ σ− 1i=1 s=1 is i=1 s=1 is = η!2	 + eη Γ
−1ΔΓ−1 eη + op

GN2h2η+1f(0) GN2h2η+1f(0)	 Gh2η+1 
g	 g ⎤⎞⎛⎡ 2 

eηΓ
−1 

⎜⎜⎜⎜⎝
νp+1 

. . . 

⎟⎟⎟⎟⎠ 
+ op(h

p+1−η) 

⎢⎢⎢⎢⎣ 
η! 

⎥⎥⎥⎥⎦ 

hp+1−η 
(p+1) (p+1)− (−1)(p+1)+ µ µ−+(p + 1)! 

ν2p+1 

Ng Ng Ng Ngσ+ σ− 
i=1 s=1 is i=1 s=1 is = η!2 1	

+ eηΓ
−1ΔΓ−1 eη

Gh2η+1 N2f(0) N2f(0)g	 g ⎤⎞⎛⎡ 2 

eηΓ
−1 

⎜⎜⎜⎜⎝ 

νp+1 

. . . 

⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎠ 

⎢⎢⎢⎢⎣ 
µ

h2(p+1−η) 
(p+1) (p+1)

+ η!2 − (−1)(p+1)µ−+(p + 1)!2 

ν2p+1 

1 
+ h2(p+1−η)+ op 

Gh2η+1
 

Ng Ng Ng Ng
σ+ σ−1 i=1 s=1 is i=1 s=1 is = C2η	 + 
Gh2η+1 Ng 

2f(0) Ng 
2f(0)
 

2
 1 
+ h2(p+1−η)C1η 

(p+1) − (−1)(p+1) (p+1)	 
+ h2(p+1−η)µ	 µ + op+	 − Gh2η+1 
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   i=1 s=1 σ  σ
h = argmin C is
opt 2η +	 i=1 s=1 is  2(p+1−η) (p+1) 

+ h C1η − (p+1) (p+1)
µ+ (−1) µ

2η+1 2 2η+1 2 −Gh N f(0) Gh N f(0)g	 g ⎤⎡ 1 
Ng Ng σ+ Ng Ng σ− 2p+3 
i=1 s=1 is i=1 s=1 is+C2η(2η + 1) GN2 GN2⎢⎣ 

⎥⎦ 
f(0) f (0)g g= 22(p + 1 − η)C1η (p+1) − (−1)(p+1)µ

(p+1)
µ+	 − ⎤⎡ 1 

Ng Ng σ+ Ng Ng σ− 2p+3 
i=1 s=1 is i=1 s=1 is+GN 2 GN2⎢⎣Cκη 

⎥⎦ 
f (0) f(0)g g= 2

(p+1) − (−1)(p+1)µ
(p+1)

µ+	 − ⎤⎡ 1 
Ng Ng Ng Ng 2p+3

σ+ σ− 
i=1 s=1 is i=1 s=1 is+⎢⎣Cκη 

⎥⎦ 
NNg f(0) NNg f (0) 

= 2
(p+1) − (−1)(p+1)µ

(p+1)
µ+	 −
 

1 Γ−1
(p+1)!2(2η+1)e ΔΓ−1 
η⎛⎡ 

eη
where Cκη = ⎤⎞ 2 . ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

νp+1 

. . . 

ν2p+1 

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

1 Γ−12(p+1−η) eη 

solves 
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B Supplemental Simulations 

In addition, we consider two additional data generating processes derived from those studied 

in IK.26 The cluster dependence setup is the same as before, but here we consider alternative 

conditional mean functions proposed in IK: 

m3(x) = 

m4(x) = 

⎧⎨ ⎩⎧⎨⎩ 

23x if x < 0 

24x if x ≥ 0 

0.42 + 0.84x − 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 if x < 0 

0.52 + 0.84x − 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 if x ≥ 0 

DGP 3 is of interest as the quadratic data generating process implies that the regularization 

term will be more important. In addition, DGP 4 shows a case similar to that in the first 

simulation, but with a constant average treatment effect. 

Tables B.1-B.2 and Figures B.1-B.2 present results from the quadratic and constant average 

treatment effect data generating processes, respectively. All graphs show that the new procedure 

often performs better than the traditional IK bandwidth, particularly in settings where cluster 

size or ρ are large. 

Last, Table B.3 and Figure B.3 presents simulation results from a linear DGP where the 

local linear model is correctly specified: 

m5(x) = 
⎨ ⎩ 

0.48 + 1.27x if x < 0 

0.52 + 0.84x if x ≥ 0 

⎧

These results show that the cluster-robust procedure performs well in this setting as well. 

26These simulations are simulation designs 2 and 3 in IK. 
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Table B.1: Simulation Results – Quadratic DGP 

ρ 
0 0.2 0.4 0.6 0.8 

250 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0021 0.0025 0.0036 0.0057 0.0131 

Traditional Bandwidth MSE 0.0022 0.0029 0.0046 0.0074 0.0189 
Ratio 0.9537 0.8637 0.7831 0.7631 0.6922 

Size=25 Cluster-Robust Bandwidth MSE 0.0019 0.0023 0.0032 0.0053 0.0128 
Traditional Bandwidth MSE 0.0019 0.0030 0.0053 0.0099 0.0264 
Ratio 0.9932 0.7870 0.6026 0.5303 0.4853 

Size=200 Cluster-Robust Bandwidth MSE 0.0018 0.0022 0.0033 0.0057 0.0126 
Traditional Bandwidth MSE 0.0017 0.0037 0.0088 0.0228 0.0644 
Ratio 1.0181 0.6078 0.3748 0.2499 0.1955 

500 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0019 0.0022 0.0024 0.0034 0.0066 

Traditional Bandwidth MSE 0.0020 0.0024 0.0030 0.0046 0.0094 
Ratio 0.9864 0.9133 0.8261 0.7327 0.7031 

Size=25 Cluster-Robust Bandwidth MSE 0.0018 0.0020 0.0024 0.0031 0.0066 
Traditional Bandwidth MSE 0.0018 0.0023 0.0036 0.0058 0.0142 
Ratio 0.9991 0.8653 0.6691 0.5280 0.4664 

Size=200 Cluster-Robust Bandwidth MSE 0.0017 0.0020 0.0023 0.0032 0.0063 
Traditional Bandwidth MSE 0.0017 0.0027 0.0048 0.0096 0.0245 
Ratio 1.0091 0.7426 0.4933 0.3364 0.2563 

1000 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0019 0.0020 0.0021 0.0024 0.0037 

Traditional Bandwidth MSE 0.0019 0.0021 0.0023 0.0030 0.0053 
Ratio 0.9962 0.9615 0.8880 0.7926 0.7024 

Size=25 Cluster-Robust Bandwidth MSE 0.0018 0.0019 0.0020 0.0022 0.0035 
Traditional Bandwidth MSE 0.0018 0.0020 0.0025 0.0035 0.0074 
Ratio 1.0015 0.9559 0.7898 0.6374 0.4731 

Size=200 Cluster-Robust Bandwidth MSE 0.0017 0.0019 0.0020 0.0024 0.0037 
Traditional Bandwidth MSE 0.0017 0.0022 0.0031 0.0054 0.0122 
Ratio 1.0052 0.8804 0.6543 0.4406 0.3068 

Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust 
procedure divided by MSE from traditional procedure. 
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Table B.2: Simulation Results – Constant Average Treatment Effect DGP 

ρ 
0 0.2 0.4 0.6 0.8 

250 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0034 0.0048 0.0072 0.0112 0.0224 

Traditional Bandwidth MSE 0.0041 0.0058 0.0092 0.0146 0.0299 
Ratio 0.8295 0.8231 0.7825 0.7635 0.7503 

Size=25 Cluster-Robust Bandwidth MSE 0.0030 0.0046 0.0072 0.0107 0.0214 
Traditional Bandwidth MSE 0.0036 0.0065 0.0118 0.0204 0.0419 
Ratio 0.8274 0.7056 0.6157 0.5259 0.5091 

Size=200 Cluster-Robust Bandwidth MSE 0.0031 0.0046 0.0071 0.0111 0.0222 
Traditional Bandwidth MSE 0.0035 0.0108 0.0346 0.0620 0.1980 
Ratio 0.8820 0.4280 0.2058 0.1793 0.1122 

500 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0032 0.0038 0.0053 0.0071 0.0127 

Traditional Bandwidth MSE 0.0036 0.0044 0.0065 0.0092 0.0169 
Ratio 0.8963 0.8542 0.8241 0.7780 0.7544 

Size=25 Cluster-Robust Bandwidth MSE 0.0031 0.0039 0.0048 0.0068 0.0128 
Traditional Bandwidth MSE 0.0035 0.0050 0.0074 0.0118 0.0236 
Ratio 0.9012 0.7837 0.6506 0.5730 0.5429 

Size=200 Cluster-Robust Bandwidth MSE 0.0033 0.0041 0.0051 0.0066 0.0129 
Traditional Bandwidth MSE 0.0035 0.0064 0.0118 0.0203 0.0437 
Ratio 0.9287 0.6348 0.4267 0.3280 0.2951 

1000 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0034 0.0036 0.0042 0.0050 0.0083 

Traditional Bandwidth MSE 0.0036 0.0040 0.0049 0.0062 0.0108 
Ratio 0.9434 0.8983 0.8556 0.8026 0.7691 

Size=25 Cluster-Robust Bandwidth MSE 0.0033 0.0036 0.0042 0.0053 0.0080 
Traditional Bandwidth MSE 0.0034 0.0044 0.0058 0.0085 0.0151 
Ratio 0.9476 0.8200 0.7298 0.6170 0.5270 

Size=200 Cluster-Robust Bandwidth MSE 0.0034 0.0036 0.0042 0.0052 0.0079 
Traditional Bandwidth MSE 0.0035 0.0049 0.0072 0.0120 0.0241 
Ratio 0.9563 0.7403 0.5763 0.4306 0.3278 

Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust 
procedure divided by MSE from traditional procedure. 
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Table B.3: Simulation Results – Linear DGP 

ρ 
0 0.2 0.4 0.6 0.8 

250 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0005 0.0013 0.0025 0.0052 0.0113 

Traditional Bandwidth MSE 0.0006 0.0016 0.0032 0.0070 0.0164 
Ratio 0.8819 0.8283 0.7890 0.7410 0.6905 

Size=25 Cluster-Robust Bandwidth MSE 0.0001 0.0009 0.0020 0.0043 0.0120 
Traditional Bandwidth MSE 0.0001 0.0013 0.0036 0.0085 0.0268 
Ratio 0.7369 0.6434 0.5460 0.5048 0.4464 

Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0008 0.0020 0.0044 0.0113 
Traditional Bandwidth MSE 0.0000 0.0023 0.0068 0.0162 33.1257 
Ratio 0.5737 0.3397 0.2965 0.2714 0.0003 

500 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0003 0.0006 0.0012 0.0024 0.0055 

Traditional Bandwidth MSE 0.0003 0.0008 0.0015 0.0032 0.0076 
Ratio 0.8821 0.8333 0.7850 0.7580 0.7169 

Size=25 Cluster-Robust Bandwidth MSE 0.0001 0.0004 0.0010 0.0023 0.0055 
Traditional Bandwidth MSE 0.0001 0.0007 0.0019 0.0045 0.0123 
Ratio 0.7534 0.6076 0.5363 0.5181 0.4487 

Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0004 0.0010 0.0022 0.0052 
Traditional Bandwidth MSE 0.0000 0.0012 0.0032 0.0081 0.0223 
Ratio 0.6053 0.3526 0.3033 0.2653 0.2337 

1000 Clusters 
Size=5 Cluster-Robust Bandwidth MSE 0.0002 0.0003 0.0006 0.0012 0.0028 

Traditional Bandwidth MSE 0.0002 0.0004 0.0008 0.0016 0.0039 
Ratio 0.9102 0.8317 0.7866 0.7428 0.7169 

Size=25 Cluster-Robust Bandwidth MSE 0.0000 0.0002 0.0005 0.0011 0.0028 
Traditional Bandwidth MSE 0.0000 0.0004 0.0010 0.0022 0.0063 
Ratio 0.7783 0.6181 0.5242 0.4893 0.4517 

Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0002 0.0005 0.0011 0.0029 
Traditional Bandwidth MSE 0.0000 0.0006 0.0016 0.0040 0.0111 
Ratio 0.6284 0.3801 0.3229 0.2659 0.2605 

Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust 
procedure divided by MSE from traditional procedure. 
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Figure B.1: Simulation Results – Quadratic DGP
 

(a) Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 

0
.0

05
.0

1
.0

15
.0

2
M

S
E

0 .2 .4 .6 .8
rho

Aggregated Data Cluster−Robust Bandwidth
Traditional Bandwidth

.0
02

.0
03

.0
04

.0
05

.0
06

M
S

E

0 .2 .4 .6 .8
rho

Aggregated Data Cluster−Robust Bandwidth
Traditional Bandwidth

(c) Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 
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(e) Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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(g) Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the 
cluster-robust procedure. 
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Figure B.2: Simulation Results – Constant Average Treatment Effect DGP 

(a) Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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(c) Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 
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(e) Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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(g) Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the 
cluster-robust procedure. 
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Figure B.3: Simulation Results – Linear DGP
 

(a) Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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(c) Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 
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(e) Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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(g) Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the 
cluster-robust procedure. 
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	See, for example, Hahn, Todd, and Van der Klaauw (2001), Porter (2003), Ludwig and Miller (2007), Imbens and Kalyanaraman (2012), or Calonico, Cattaneo, and Titiunik (2014). For example, researchers could use student-level microdata to examine a policy implemented based on a school-level running variable. 
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	These applications are too numerous to adequately summarize here, but recent examples of studies that use a variety of discrete running variables include birth weight (Almond et al., 2010), days until unemployment cutoﬀs (Schmieder, Von Wachter, and Bender, 2012), prison inmate security scores (Chen and Shapiro, 2007), discrete test scores (Scott-Clayton, 2011), age (Card, Dobkin, and Maestas, 2008), and date of birth (Dobkin and Ferreira, 2010; Elder, 2010). 
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	In particular, the bandwidth selection procedure developed by Imbens and Kalyanaraman (2012) is very widely used by applied researchers. For example, a recent Google Scholar search returns over 600 articles citing Imbens and Kalyanaraman (2012), the majority of which are empirical applications. 
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	As discussed in Lee and Card (2008), non-parametric identiﬁcation in the RD design is infeasible with a discrete running variable, and the clustered standard errors used by researchers are intended to correct for speciﬁcation error in the conditional mean function. Nevertheless, this procedure still contrasts with a bandwidth selection procedure assuming i.i.d. data and our approximation to the data generating process provides a transparent, data-driven bandwidth selection procedure for practitioners in the
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	account for speciﬁcation errors in a speciﬁc class of models that are amenable to parametric 
	RD designs. Our analysis demonstrates that in the context of our model, the intuitive idea of using cluster-robust standard errors holds even when using non-parametric local polynomial estimators. 
	In addition, we propose an optimal bandwidth selection procedure in RD designs with dependence among observations. The procedure extends Imbens and Kalyanaraman (2012) (henceforth, “IK”) by allowing for clustered sampling with unrestricted dependence structure within cluster, and the resulting optimal bandwidth estimator collapses to traditional optimal bandwidth estimators when observations are i.i.d. We provide a simple implementation of the algorithm and perform a small simulation study demonstrating tha
	Finally, we demonstrate the empirical importance and usefulness of the procedure in an application analyzing the impact of Low-Income Housing Tax Credits (LIHTC) on neighborhood characteristics. The data in this application are person level, but the running variable is deﬁned at the census tract level, generating clustering issues. The results show that accounting for this clustering in the data when choosing bandwidths can lead to practically signiﬁcant changes in the interpretation of the empirical result
	The remainder of the paper is structured as follows. Section 2 presents the setup and Section 3 presents our main results. Section 4 then provides a small simulation study. Finally, Section 5 presents the application to the impacts of Low-Income Housing Tax Credits on neighborhood characteristics, and Section 6 concludes. 

	2 Setup 
	2 Setup 
	2.1 General RD Design 
	2.1 General RD Design 
	In the typical sharp RD setting, a researcher wishes to estimate the local causal eﬀect of treatment at a given threshold. The running variable, Xi, determines treatment assignment. Given a known threshold, ¯x, set to zero without loss of generality, a unit receives treatment if Xi ≥ 0 or does not receive treatment if Xi < 0. Let Yi(1) and Yi(0) denote the potential outcomes for unit i given it receives treatment and in the absence of treatment, respectively. Hence, the observed sample is comprised of the 
	Yi = Yi(0):{Xi < 0} + Yi(1):{Xi ≥ 0} (1) 
	Yi = Yi(0):{Xi < 0} + Yi(1):{Xi ≥ 0} (1) 
	where :{·} denotes the indicator function. For convenience, deﬁne 

	µ(x)= J[Yi|Xi = x]. (2) 
	In most cases the population parameter of interest is τ = J[Y (1) − Y (0)|X = x¯] (i.e., the average treatment eﬀect at the threshold). Under continuity and smoothness conditions on both the conditional distribution of Xi and the ﬁrst moments of Y (0) and Y (1) at the cutoﬀ,τ is nonparametrically identiﬁed (Hahn, Todd, and Van der Klaauw, 2001) by: 
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	τ = µ+ − µ− 
	where µ+ = limx→0+ µ(x), and µ− = limx→0− µ(x). (3) 
	In general one might also be interested in the discontinuity of a higher order derivative of the 
	µ(x)
	conditional expectation at the threshold.Let µ(x)= be the ηderivative of the 
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	The parameter of interest in those cases is given by τ = µ− µ.
	(η) 

	+ − The estimation of τin RD designs focuses on the problem of approximating J[Y (1)|X = x] and J[Y (0)|X = x] near the cutoﬀ. Due to its desirable properties when estimating regression functions at the boundary, the most common approach ﬁts separate kernel-weighted local poly
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	nomial regressions in neighborhoods on both sides of the threshold.For a local polynomial of order p, we use the following estimator: 
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	The assumptions used in the derivations and results presented here closely follow IK and are discussed in Appendix 
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	A.1. See, for example, the “regression kink” literature (Card, Lee, and Pei, 2009). See Hahn, Todd, and Van der Klaauw (2001), Porter (2003) or Fan and Gijbels (1992) for discussions of the 
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	properties of local polynomial regressions for boundary problems. 

	2.2 Clustering in RD Designs. 
	2.2 Clustering in RD Designs. 
	Building on this traditional RD setup, we now turn to the setting where clustering exists at the level of the running variable. Consider sampling from a large number of clusters and, for each group g, we observe data on the outcome, running variable and potential covariates for Ng observations.This sampling scheme is assumed to generate observations that are independent across clusters. Then, for a random sample of G groups of ﬁxed size Ng , we observe 
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	Yig = µ(xig )+ ig (4) 
	Where the subscript ig refers to unit i in cluster g. The asymptotic theory developed below assumes that the number of clusters increases while cluster size is held ﬁxed and the bandwidth shrinks (i.e., G →∞, h → 0, and Gh →∞). We analyze inference and the optimal choice of bandwidth in RD designs under clustering, letting V ar(Y |X)= IG ⊗ Ω(x), where its elements, Ωij , are denoted as σij (x), and its limits limx→0+ σij (x)= σand limx→0− σij (x)= σ
	+ 
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	ij ij 
	throughout the paper.
	throughout the paper.
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	3 Main Results 
	3 Main Results 
	3.1 Asymptotic Distribution 
	3.1 Asymptotic Distribution 
	Given this setup, we derive the asymptotic properties of ˆτ and the validity of usual tests. Let 
	(η) 

	 ∞  ∞
	νj =uK(u)du and πj =uK(u)du be deterministic functions of the kernel function 
	j 
	j 
	2

	00 
	chosen by the researcher. Additionally, deﬁne Γ and Δ as (p +1)× (p+1) matrices with element (i, j) given by νi+j−2 and πi+j−2, respectively. Assumptions for the results presented below include the standard smoothness conditions of the conditional expectation and variance of Y around the cutoﬀ found in the RD literature and other regularity conditions, and are described in Appendix A.1. Proofs are collected in Appendix A.2. 
	Lemma 3.1. Suppose assumptions 1-5 hold and Gh →∞. 
	This reﬂects the standard clustered data setup as discussed in Wooldridge (2010). An alternative question is whether asymptotic approximations with Ng →∞ and G →∞ following Hansen (2007) can provide additional insight. This is beyond the scope of this paper. 
	9
	10

	1. (B) If h → 0, then 
	⎞
	⎛ 
	eΓ
	η
	−1 

	⎜⎜⎜⎜⎝ 
	νp+1 
	. 
	. 
	. 
	⎟⎟⎟⎟⎠ 
	+ op
	p+1−η 
	h

	(p+1) (p+1)
	E[ˆτ|X]=τ
	(η)
	(η) 

	+ η! 
	(p+1+η)
	− (−1)

	p+1−η
	(h
	)

	µ
	µ
	µ

	−
	+
	(p + 1)! 
	ν2p+1 
	2. (V) If h → 0, then 
	ŁNŁNŁNŁN
	Ł
	g 
	g 
	g 
	g

	σ
	σ
	+ 
	σ
	− 

	is is
	i=1 s=1
	V ar[ˆτ − τ|X]= η!
	(η) 
	(η)
	2 

	i=1 
	i=1 
	s=1 

	eΓΔΓ
	η
	−1
	−1 

	eη 
	{1+ op(1)}
	{1+ op(1)}
	+ 

	GNhf(0)
	2
	2η+1

	g 
	GNhf(0)
	2
	2η+1

	g 
	3. (D) If Gh→ 0, then 
	2p+3 

	(η) 
	(η)
	− τ

	τˆ
	 
	+ 
	→d N(0, 1) 
	V ar[ˆτ− τ|X] 
	(η) 
	(η)

	Hence, the traditional standardized t-statistic and the conventional conﬁdence intervals are asymptotically valid. Note that this asymptotic variance formula relates closely with the typical cluster-robust standard error formulas and suggests that these estimators can be used in RD studies utilizing a non-parametric local polynomial estimator with clustering at the running 
	variable level.
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	In a more general setting, one could face a situation where clusters contain observations with diﬀerent values of the running variable. In that case, the covariance terms in the asymptotic variance would vanish under the current normalization, and the clustering issue would disappear This result is similar to the situation described by Bhattacharya (2005) in the context of multi-stage sampling. Intuitively, as the number of clusters increases and the bandwidth shrinks around the threshold, the proportion of
	asymptotically.
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	This is the cluster analogue of the point made by Imbens and Lemieux (2008) that usual parametric 
	11

	heteroskedasticity-robust standard errors can be used in traditional RD designs with i.i.d. data. Calculations demonstrating this result are available from the authors upon request. This is not an issue in the current setup because we focus our discussion on the case where clusters are deﬁned 
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	at the level of the running variable, X and clustering does not vanish asymptotically. 

	3.2 Optimal Bandwidth Selection 
	3.2 Optimal Bandwidth Selection 
	3.2.1 Infeasible Optimal Bandwidth Choice 
	3.2.1 Infeasible Optimal Bandwidth Choice 
	This section derives the optimal bandwidth choice for RD designs with clustered sampling. As pointed out by IK, the local nature of RD designs makes it desirable to deﬁne our error criteria in terms of the quality of the local approximation to the conditional expectations at the cutoﬀ. We obtain an optimal bandwidth hthat minimizes MSE(h): 
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	This lemma extends the results in IK to the case in which data is clustered. Comparing Equation (6) to the infeasible bandwidth choice in IK, the numerator includes additional variance terms that allow for dependence of observations within cluster. Additionally, if the errors are indeed i.i.d., this bandwidth collapses to the IK optimal bandwidth. 
	For further insight, consider the case for a linear local estimator (p = 1) in the standard RD design (η = 0) with a constant group-level shock, cg, and Ω takes the familiar “random eﬀects” structure: 
	⎞
	⎛ 
	Ωg = 
	⎜⎜⎜⎜⎜⎜⎜⎝ 
	σ+ σσ··· σ
	2 
	2 
	2 
	2 

	cuc c 
	σσ+ σ··· σ
	2 
	2 
	2 
	2 

	ccu c 
	. . . 
	. . . 
	. . . 
	. . . 
	. . . 
	. . . 

	σ2 c 
	σ2 c 
	σ2 c 
	· · · 
	σ2 c + σ2 u 


	⎟⎟⎟⎟⎟⎟⎟⎠ 
	Under this setup, Equation (6) can be written as follows: 
	⎤
	⎡
	1 5 
	1 5 

	1 
	1 

	(σ+ Ngσ)+(σσ
	2 
	2 
	2 
	2 

	u,+ c,+u,− gc,−
	+ N
	)

	5
	C2,0
	C2,0

	⎢⎣ 
	⎢⎣ 
	⎥⎦

	−1/5 
	N

	(7)
	hopt 
	= 
	2
	2
	4C1,0 (2) (2)

	f(0) µ− µ
	+ − 
	This rewrite makes clear that the key components driving diﬀerences in the cluster-robust and traditional procedures are cluster size and within-cluster dependence. As cluster size or within-cluster dependence increase, the current procedure produces bandwidths that diﬀer from a bandwidth selection algorithm that assumes i.i.d. data. Intuitively, if there is strong within-cluster dependence each observation provides relatively less information to the researcher than if the observations were independent. Thi

	3.2.2 Feasible Optimal Bandwidth Choice 
	3.2.2 Feasible Optimal Bandwidth Choice 
	A natural feasible bandwidth selector based on the optimal bandwidth described in Lemma 3.2 replaces all unknown parameters by estimates obtained from the data:
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	The denominator in Equation (8) could be close to zero in ﬁnite samples due to the lack of curvature in the regression using the polynomial of order (p + 1) ﬁtted to the data. Even if 
	Throughout this section we use as example the case of the local linear estimator (p = 1). The extension for general p is straightforward and follows from Equation (6). 
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	the true value of the bias term is not zero, the precision with which we estimate the second 
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	derivatives µand µis likely to be low. Hence, following IK and Calonico, Cattaneo, and 
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	Titiunik (2014) we introduce a regularization term that accounts for this lack of precision in the 
	(2) (2)
	estimation of βand β:
	+ − 
	+ − 
	(2) (2)

	3 · V (β)+ V (β)
	ˆ
	ˆ

	+ − 
	(2) (2)
	ˆˆ
	IK propose an approximation for the variance of βand βbased on the speciﬁc case of homoskedasticity and a uniform kernel, which would be incompatible with the clustered sam
	+ 
	− 

	(2) (2)
	pling analysis implemented in this paper. We propose to set V(β) and V(β) equal to the 
	ˆ
	ˆ
	ˆ
	ˆ

	++ 
	(2) (2)
	“clustered variances” for βand βin the local quadratic regression using a pilot bandwidth 
	ˆ
	ˆ

	+ − 
	+ − 
	(2) (2) (2) (2)

	and the implementation of the optimal bandwidth selector uses ˆµ,ˆµ, V(β) and V(β)
	ˆ
	ˆ
	ˆ
	ˆ

	+ − ++ 
	from an initial local quadratic regression around the cutoﬀ using a pilot bandwidth. Therefore, the optimal bandwidth can be implemented by 
	⎡
	⎡
	⎤

	1 
	1 

	NgNg NgNg 
	5
	σˆis+ 
	σˆis+ 
	σˆis−

	1 
	1 

	i=1 s=1 
	+ i=1 
	+ i=1 
	s=1 

	5
	C
	2 

	⎢⎣ 
	ˆ
	fx
	(0)NNg 
	(0)NNg 
	ˆ

	fx
	⎥⎦
	(0)NNg
	ˆ
	hopt 
	= 
	= 
	(9)

	2
	2
	4C1 (2) (2)

	µˆ− µˆ
	+ˆr+ +ˆr−
	−
	+ 
	(2) (2)
	Where ˆr+ =3 V(β)andˆr− =3 V(β).
	ˆ
	ˆ
	ˆ
	ˆ

	+ − 
	In summary, the proposed implementation of the plug-in estimator given in Equation (9) follows these steps: 
	1. Choose a pilot bandwidth using the Silverman Rule, 
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	h1 =2.576 · Sxfor a triangular kernel, where Sx is the sample variance of the running variable. 
	2. Let Nh,+ and Nh,− be the number of observations within a bandwidth h above and below the threshold, respectively. Estimate f(0): 
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	6. Plug the estimated quantities into Equation (9), obtaining the estimated optimal bandwidth. 



	4 Simulations 
	4 Simulations 
	To illustrate the practical importance of adequately accounting for clustering when performing For clarity, the setup follows a random eﬀects structure: 
	RD designs, we present a simulation study based on two data generating processes (DGPs).
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	Yig = m(x)+ cg + uig 
	Here, m(x) is mean function, cg is group-level shock with variance σ, and uig is idiosyncratic 
	2

	c 
	error term with variance σ. Simulations are run for various values of within cluster dependence, 
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	u.σ2. 
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	ρ ≡ . Throughout this section estimation is performed using a local linear estimator, the 
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	preferred method in most applications. In the ﬁrst design, let m(x) take the following form, 
	which mimics the data in Lee (2008): 
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	0.52 + 0.84x − 3.00x+7.99x− 9.01x+3.56xifx ≥ 0 
	0.52 + 0.84x − 3.00x+7.99x− 9.01x+3.56xifx ≥ 0 
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	Both u and c are normally distributed, the variance of u is set to 0.1295and the variance of c 17
	2 

	is adjusted to obtain the desired value of ρ. 
	We present results that utilize both our cluster-robust bandwidth and the traditional IK bandwidth that assumes i.i.d. data. Additionally, we perform simulations with data aggregated to the running variable level using the traditional bandwidth choice. This ad hoc approach is 
	We follow IK in choosing this bandwidth to be optimal for minimizing MSE.. Results from three additional simulations are available in Appendix B.. This DGP is identical to that found in IK and Calonico, Cattaneo, and Titiunik (2014), with the addition of. 
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	data dependence as described above. 
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	0.52 + 0.84x − 3.00x+7.99x− 9.01x+3.56xifx ≥ 0 
	By aggregating the data 
	sometimes used by researchers facing clustering issues in RD designs.
	18 

	to the running variable level, the researcher collapses the dependence structure and sidesteps the cluster issues, but ignores within-cluster variation in the data. 
	Based on the results presented in Section 3, we expect accounting for clustering to become more important as cluster size or within-cluster dependence increases. In addition, note that our procedure requires the estimation of a more complex variance formula that includes oﬀ-diagonal terms in the variance-covariance matrix. Therefore, our cluster-robust procedure may perform worse in practice when there is no within-cluster dependence when compared to a procedure that truthfully assumes i.i.d. data. 
	The simulation results in Table 1 align with these predictions. As expected, higher levels of within-cluster dependence, ρ, lead to situations where the cluster-robust procedure dominates procedures using traditional bandwidth selection algorithms in terms of empirical MSE. Moreover, as the size of clusters increases the current procedure far outperforms traditional bandwidth choices using the microdata. For small cluster sizes, our procedure performs similarly to IK in the case where ρ = 0 and the data i
	Figure 1 presents these results graphically. Each panel plots the empirical MSE of each procedure for diﬀerent values of ρ, where panels are separated by cluster size and number of clusters. Note ﬁrst that the procedure using aggregated data overlaps almost entirely with the cluster-robust procedure, as both procedures perform very similarly for this DGP. These plots also make clear that there is a divergence between the cluster-robust procedure and the traditional procedure as ρ increases. In particular, t
	One concern with the cluster-robust procedure proposed is that it often yields larger band
	widths. Given the well known trade-oﬀ between bias and variance that is inherent in RD 
	designs,it is useful to consider a situation where local linear estimators will struggle with 
	19 

	As pointed out in Section 3.2.1, the traditional approach might misrepresent the bias-variance trade-oﬀ embedded. 
	18
	See, for example, Ahn and Vigdor (2014).. 
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	in the MSE by imposing no within-cluster dependence on the data. 
	bias due to extreme curvature of the conditional mean function near the cutoﬀ. Therefore, in the second design we use a DGP studied in Calonico, Cattaneo, and Titiunik (2014) where the mean function is altered so that typical estimators will be heavily biased: 
	⎧ ⎨ 5
	0.48 + 1.27x − 0.5 · 7.18x+0.7 · 20.21x+1.1 · 21.54x+1.5 · 7.33xif x< 0 m2(x)= 
	2 
	3 
	4 

	⎩ 5

	0.52 + 0.84x − 0.1 · 3.00x− 0.3 · 7.99x− 0.1 · 9.01x+3.56xifx ≥ 0 
	0.52 + 0.84x − 0.1 · 3.00x− 0.3 · 7.99x− 0.1 · 9.01x+3.56xifx ≥ 0 
	2 
	3 
	4 

	This provides a natural setting to check whether our new procedure is able to accommodate conditional mean functions with extreme local curvature around the cutoﬀ. 
	Table 2 and Figure 2 present the results of this simulation. Here, we can see that the cluster-robust procedure in general performs as well or better than traditional bandwidth selection procedure. In addition, unlike the ﬁrst DGP, the cluster-robust procedure consistently outperforms the ad hoc procedure using the aggregated data set. Therefore, this case provides one example of a situation where the cluster-robust procedure produces improvements in MSE relative to a procedure that aggregates the data to 


	5 Application: LIHTC and Neighborhood Characteristics 
	5 Application: LIHTC and Neighborhood Characteristics 
	We now demonstrate the usefulness of these new methods using an empirical application that examines the eﬀect of low-income housing subsidies on housing development and neighborhood characteristics. In particular, we focus the eﬀects of the LIHTC, a program that has provided funding for roughly one third of all new units in multifamily housing built in the U.S. over the We exploit a discontinuity in program eligibility rules designating whether a particular census tract becomes a Qualiﬁed Census Tract (QCT
	past thirty years (Khadduri, Climaco, and Burnett, 2012).
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	whose income falls below 60 percent of Area Median Gross Income (AMGI).
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	n and McGavock (2015) for overviews of the LIHTC program. The QCT designation methodology has changed since the period studied in the current analysis, but this does 
	20
	See Hollar and Usowski (2007) or Freedma
	21

	not inﬂuence the results presented here. 
	becomes eligible to receive QCT status. Therefore, the percent of households below 60 percent 
	AMGI forms our running variable and the cutoﬀ is 50 percent. By comparing only individuals that lived in tracts with a similar percentage of households below 60 percent of AMGI, we exploit random variation in QCT designation near the cutoﬀ to identify the impact of the tax credits on housing development and neighborhood outcomes. 
	We perform this application using restricted access individual-level data from Census 2000 We restrict to census tracts in metropolitan areas, and exclude Alaska Table 3 displays descriptive statistics for this data set. The number of LIHTC units and projects variables refer to the number of these units in the census tract. Clearly, QCT tracts contain much more disadvantaged populations than non-QCT tracts, a fact that is obvious due to the construction of the QCT status. In addition, note that QCT tracts h
	long form microdata.
	22 
	and Hawaii.
	23 

	Table 4 displays results of three estimation procedures applied to the data. All estimates represent the results of local linear regressions using a triangular kernel, with standard errors The ﬁrst column presents the results of our bandwidth selection procedure applied to the microdata. Next, the second column presents results using the traditional IK bandwidth selection algorithm that does not account for clustering at the tract level. Finally, the last column presents results from applying this same pro
	that are robust to clustering at the tract level.
	24 

	The results show that accounting for potential dependence in outcomes within a census tract can substantially change the benchmark minimum-MSE bandwidth. As argued in Sections 3.2.1 and 4, the cluster-robust optimal bandwidth should be similar to the usual IK bandwidth in the absence of data dependence. The sizable diﬀerences between the bandwidth values obtained suggests that the usual algorithms potentially misrepresent the MSE bias/variance trade-oﬀ by failing to capture the dependence in the data. 
	In terms of the point estimates, the results show little evidence of a discontinuity in neigh
	Since QCT classiﬁcation and eligibility to extra tax credits was based on 1990 census tracts, location in 2000 
	22

	is converted to tract location in 1990 using U.S. Census Bureau tract relationship ﬁles available at . 
	https://www

	census.gov/geo/maps-data/data/relationship.html. These restrictions are similar to previous work by Baum-Snow and Marion (2009). Note that both procedures using the microdata perform inference with the same “cluster-robust” standard error 
	23
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	formulas. Tract-level regressions utilize heteroskedasticity-robust standard errors. 
	borhood However, there is clear evidence of jumps 
	characteristics at the QCT threshold.
	25 

	in the implementation of new LIHTC units and projects at the boundary, indicating that the QCT policy is indeed producing increases in LIHTC construction. This is one area where the cluster-robust procedure leads to diﬀerent empirical results than the traditional IK bandwidth selection. In particular, the IK procedure on the microdata produces a small and statistically insigniﬁcant estimate of the eﬀect of QCT status on the number of LIHTC projects in the tract, whereas both the aggregated data and the curr
	Turning to standard error estimates, we see that applying the cluster-robust bandwidth choice procedure to the microdata produces estimates that are more precise than those obtained using a traditional bandwidth selection algorithm. This result is unsurprising, as accounting for the clustering will typically lead to larger bandwidth choices. When comparing the cluster-robust and aggregated data procedures, there is no clear relationship between the magnitude of the standard error estimates. Again, this rein

	6 Conclusion 
	6 Conclusion 
	Even though many recent RD analyses perform inference using cluster-robust standard error estimates, the justiﬁcation for these methods is typically ad hoc. Moreover, current bandwidth selection procedures do not account for potential dependence among observations, creating a conﬂict in the assumptions between the bandwidth selection algorithm and inference procedures in RD studies. 
	In this study, we derive the asymptotic properties of local polynomial estimators in RD designs with data clustered at the running variable level and demonstrate a procedure which extends the popular minimum-MSE bandwidth selection algorithm by Imbens and Kalyanaraman (2012) to these situations. This procedure can be applied in a number of common applications, such as those with treatment being assigned at a higher level than the unit of observation or dis
	This analysis diﬀers from Baum-Snow and Marion (2009) in that it considers levels of neighborhood character
	25

	istics in 2000 instead of changes in characteristics from 1990 to 2000. Therefore, the two analyses are not directly 
	comparable. 
	crete running variables. Simulation results indicate that in some practically important settings 
	failing to account for dependence among observations leads to non-trivial increases in MSE due to bandwidth choices that are too small. We also present a simple application that demonstrates the practical importance of the cluster-robust optimal bandwidth choice algorithm by analyzing the impact of LIHTCs on neighborhood characteristics. 
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	Table 1: Simulation Results – DGP 1. 
	ρ 
	0 0.2 0.4 0.6 0.8 
	250 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0022 0.0030 0.0040 0.0068 0.0138 Traditional Bandwidth MSE 0.0021 0.0030 0.0045 0.0082 0.0189 Ratio 1.0088 0.9763 0.8757 0.8288 0.7311 Size=25 Cluster-Robust Bandwidth MSE 0.0016 0.0025 0.0038 0.0061 0.0134 Traditional Bandwidth MSE 0.0013 0.0025 0.0051 0.0097 0.0255 Ratio 1.1872 0.9854 0.7461 0.6242 0.5242 Size=200 Cluster-Robust Bandwidth MSE 0.0009 0.0024 0.0037 0.0063 0.0138 Traditional Bandwidth MSE 0.0002 0.0029 0.0087 0.1255 0.0637 Ratio 3.5405 0.806
	500 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0018 0.0022 0.0030 0.0040 0.0074 Traditional Bandwidth MSE 0.0018 0.0021 0.0031 0.0046 0.0095 Ratio 1.0206 1.0327 0.9518 0.8777 0.7826 Size=25 Cluster-Robust Bandwidth MSE 0.0011 0.0020 0.0026 0.0035 0.0075 Traditional Bandwidth MSE 0.0008 0.0016 0.0028 0.0051 0.0134 Ratio 1.3538 1.2289 0.9080 0.6834 0.5567 Size=200 Cluster-Robust Bandwidth MSE 0.0004 0.0019 0.0026 0.0037 0.0073 Traditional Bandwidth MSE 0.0001 0.0017 0.0039 0.0085 0.0233 Ratio 3.5180 1.166
	1000 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0014 0.0018 0.0022 0.0027 0.0046 Traditional Bandwidth MSE 0.0014 0.0016 0.0021 0.0028 0.0055 Ratio 1.0445 1.1304 1.0598 0.9699 0.8295 Size=25 Cluster-Robust Bandwidth MSE 0.0005 0.0016 0.0021 0.0028 0.0042 Traditional Bandwidth MSE 0.0004 0.0010 0.0018 0.0030 0.0069 Ratio 1.4220 1.5429 1.1647 0.9290 0.6134 Size=200 Cluster-Robust Bandwidth MSE 0.0001 0.0015 0.0020 0.0027 0.0043 Traditional Bandwidth MSE 0.0000 0.0009 0.0021 0.0046 0.0112 Ratio 2.9571 1.59
	Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust procedure divided by MSE from traditional procedure. 
	Table 2: Simulation Results – DGP 2. 
	ρ 
	0 0.2 0.4 0.6 0.8 
	250 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0030 0.0050 0.0077 0.0125 0.0269 Traditional Bandwidth MSE 0.0019 0.0038 0.0064 0.0108 0.0244 Ratio 1.5324 1.3337 1.2047 1.1578 1.1034 Size=25 Cluster-Robust Bandwidth MSE 0.0009 0.0029 0.0056 0.0106 0.0257 Traditional Bandwidth MSE 0.0005 0.0028 0.0063 0.0122 0.0296 Ratio 1.7908 1.0489 0.8915 0.8682 0.8692 Size=200 Cluster-Robust Bandwidth MSE 0.0002 0.0022 0.0053 0.0111 0.0240 Traditional Bandwidth MSE 0.0001 0.0038 0.0111 0.0250 0.0702 Ratio 2.3749 0.579
	500 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0013 0.0022 0.0036 0.0064 0.0135 Traditional Bandwidth MSE 0.0010 0.0019 0.0033 0.0060 0.0128 Ratio 1.2848 1.1674 1.0963 1.0582 1.0577 Size=25 Cluster-Robust Bandwidth MSE 0.0004 0.0014 0.0028 0.0053 0.0134 Traditional Bandwidth MSE 0.0002 0.0015 0.0034 0.0065 0.0158 Ratio 1.4689 0.9332 0.8504 0.8134 0.8464 Size=200 Cluster-Robust Bandwidth MSE 0.0001 0.0011 0.0026 0.0054 0.0122 Traditional Bandwidth MSE 0.0000 0.0020 0.0052 0.0102 0.0262 Ratio 1.9594 0.576
	1000 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0006 0.0011 0.0018 0.0031 0.0072 Traditional Bandwidth MSE 0.0005 0.0010 0.0018 0.0031 0.0071 Ratio 1.1352 1.0615 1.0135 1.0096 1.0150 Size=25 Cluster-Robust Bandwidth MSE 0.0002 0.0007 0.0015 0.0027 0.0064 Traditional Bandwidth MSE 0.0001 0.0008 0.0019 0.0037 0.0085 Ratio 1.2308 0.8559 0.7856 0.7411 0.7574 Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0006 0.0013 0.0028 0.0067 Traditional Bandwidth MSE 0.0000 0.0011 0.0025 0.0056 0.0132 Ratio 1.6494 0.58
	Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust procedure divided by MSE from traditional procedure. 
	Table 3: Descriptive Statistics. 
	QCT 
	QCT 
	QCT 
	Non-QCT 

	Homeownership 
	Homeownership 
	0.3316 
	0.6984 

	TR
	(0.4708) 
	(0.4590) 

	Fraction Non-White 
	Fraction Non-White 
	0.7565 
	0.2778 

	TR
	(0.4292) 
	(0.4479) 

	High School Diploma or Higher 
	High School Diploma or Higher 
	0.5744 
	0.8367 

	TR
	(0.4944) 
	(0.3696) 

	Bachelors Degree or Higher 
	Bachelors Degree or Higher 
	0.1110 
	0.2819 

	TR
	(0.3142) 
	(0.4499) 

	Employment Population Ratio 
	Employment Population Ratio 
	0.4808 
	0.6363 

	TR
	(0.4996) 
	(0.4811) 

	Number of LIHTC Projects 
	Number of LIHTC Projects 
	0.2714 
	0.1096 

	TR
	(0.7147) 
	(0.5675) 

	Number of LIHTC Units 
	Number of LIHTC Units 
	16.8094 
	8.8745 

	TR
	(55.7813) 
	(43.7748) 

	Running Variable 
	Running Variable 
	0.1155 
	-0.2514 

	TR
	(0.0913) 
	(0.1097) 

	N 
	N 
	3,063,042 
	27,879,680 

	N Clusters 
	N Clusters 
	6,778 
	37,938 


	Source: Microdata from the long form of the 2000 decennial census. Cells contains sample means. Standard deviations are in parentheses. 
	Table 4: Local Linear Estimates of the Eﬀect of QCT Status. 
	Dependent Variable Homeownership 
	Dependent Variable Homeownership 
	Dependent Variable Homeownership 
	Cluster-Robust Bandwidth -0.0054 [0.0085] w=0.246 
	Traditional Bandwidth -0.0098 [0.0145] w=0.074 
	Tract-Level -0.0044 [0.0063] w=0.240 

	Fraction Non-White 
	Fraction Non-White 
	0.0054 [0.0168] w=0.114 
	-0.0080 [0.0374] w=0.023 
	0.0051 [0.0149] w=0.109 

	High School Diploma or Higher 
	High School Diploma or Higher 
	-0.0075 [0.0074] w=0.142 
	-0.0001 [0.0112] w=0.061 
	-0.0102** [0.0049] w=0.197 

	Bachelors Degree or Higher 
	Bachelors Degree or Higher 
	0.0055 [0.0040] w=0.231 
	0.0040 [0.0055] w=0.121 
	0.0021 [0.0047] w=0.203 

	Employment Rate 
	Employment Rate 
	0.0046 [0.0032] w=0.289 
	0.0065 [0.0052] w=0.088 
	-0.0024 [0.0039] w=0.151 

	Number of LIHTC Units 
	Number of LIHTC Units 
	7.279*** [2.074] w=0.224 
	10.945** [5.285] w=0.029 
	4.949*** [1.370] w=0.281 

	Number of LIHTC Projects 
	Number of LIHTC Projects 
	0.0731*** [0.0237] w=0.342 
	0.0297 [0.0578] w=0.058 
	0.0753*** [0.0183] w=0.258 

	N N Clusters 
	N N Clusters 
	30,330,540 44,716 
	30,330,540 44,716 
	45,294 45,294 


	Source: Microdata and tract-level data from the long form of the 2000 decennial census. Standard errors in brackets are adjusted for clustering at the tract level. “w” refers to bandwidth, where tract-level regressions use the standard IK bandwidth. All estimates are from local linear regressions using a triangular kernel. ** indicates signiﬁcance at the .05 level, *** indicates signiﬁcance at the .01 level. 
	Figure 1: Simulation Results – Data Generating Process 1. 
	(a) 
	(a) 
	(a) 
	Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 

	(c) 
	(c) 
	Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 

	(e) 
	(e) 
	Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 

	(g) 
	(g) 
	Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 


	Figure
	Figure
	Figure
	Figure
	Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the cluster-robust procedure. 
	Figure 2: Simulation Results – Data Generating Process 2 (High Bias). 
	(a) 
	(a) 
	(a) 
	Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 

	(c) 
	(c) 
	Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 

	(e) 
	(e) 
	Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 

	(g) 
	(g) 
	Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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	Figure
	Figure
	Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the cluster-robust procedure. 

	A Assumptions and Proofs 
	A Assumptions and Proofs 
	A.1 Assumptions 
	A.1 Assumptions 
	We use the following standard assumptions in the RD literature. For some κ0 > 0, the following holds in the neighborhood (−κ0,κ0) around the threshold ¯x = 0. 
	1. 
	1. 
	1. 
	We have G independent and identically distributed clusters, with data (Yg,Xg ) , where Yg and Xg are 1 × Ng vectors for g =1, ..., G and for any given cluster Xg =(xg,xg, ..., xg). 

	2.. 
	2.. 
	m(x)= E[Y |X] is at least p + 2 times continuously diﬀerentiable. 

	3. 
	3. 
	The density of the forcing variable. X, denoted f(X), is continuous and bounded away from zero. 

	4. 
	4. 
	The conditional variance Ω(x)= V ar(Y |X)= IG ⊗ Ω(x) is bounded and right and left continuous at ¯x. The right and left limit at the threshold exist and are positive deﬁnite. 

	5. 
	5. 
	The kernel K(·) is non-negative, bounded, diﬀers from zero on a compact interval [0,κ], and is continuous on (0,κ) for some κ> 0. 



	A.2 Proofs 
	A.2 Proofs 
	GNg j G Ng j
	1 
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	Lemma A.1. Deﬁne Fj = Kh(Zig )Z= Ng Kh(Zig)Z= 
	Gg=1 i=1 ig Gg=1 Ng i=1 ig. G Ng j.
	1 
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	Ngwhere Ajg =. If Ng is equal for all G clusters, then 
	Gg=1 jgNg i=1 higig
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	G
	Fj = Ajg . Under Assumptions 1-5, (i) for non-negative integer j
	Gg=1 
	Fj = Nghf(0)νj + op(h)= Ngh(F + op(1))
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	j 
	j 
	∗ 

	j 
	with νj deﬁned in the main text and F≡ f(0)νj and (ii) if j ≥ 1, Fj = op(h). 
	j 
	∗ 
	j−1

	Proof. Focusing at Ajg for each cluster g =1, ..., G: 
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	By noting that Ajg are independent across clusters. 
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	2 
	Ng G
	2 

	g=1 g=1 
	Then, 
	Fj = E[Fj ]+ Op(V ar(Fj )) 
	1/2

	= Nghf(0)vj + O(h)+ op(h) 
	j 
	j+1
	j 

	= Ngh(f(0)vj + op(1)) 
	j 

	As discussed in the main text, we focus our attentions to the case in which cluster deter
	mination is based on the value of the running variable or, conversely, the running variable is 
	deﬁned at the group level, so Xig = Xg. With this in mind we can show the following result. 
	−1 GNg Ng 2 t+j
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	Lemma A.2. Deﬁne Qtj (zg )zσis (zg). Then,
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	If Ng is the same for all clusters and Ωg =Ω for all g, 
	⎡⎤ 
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	⎡⎤ 
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	With the results from the two lemmas above we can analyze the asymptotic distribution presented in 3.1 as well as the approximation to MSE(h) in Lemma 3.2 and the subsequent 
	With the results from the two lemmas above we can analyze the asymptotic distribution presented in 3.1 as well as the approximation to MSE(h) in Lemma 3.2 and the subsequent 
	optimal bandwidth formula. 

	Proof. Proof of Lemma 3.1 For analyzing the asymptotic approximation to the bias term, note that yig = µ(xig)+ ig . Let R = ιX ··· Xwith typical row given by rp(x)= 
	p 

	p
	1 x ··· xand ebe a vector of zeros except for the (η + 1)entry equal to one, e.g., e0 = 10 ··· 0 . Then, 
	η 
	th 

	µˆ= η!e(R WR)R WY = η!e(R WR)RW [µ(X) + ] (10)
	(η) 
	η
	−1
	η
	−1

	+ 
	= η!e(R WR)R Wµ(X)+ η!e(R WR)RW (11) 
	η
	−1
	η
	−1

	We separate the analysis of the asymptotic properties of the estimator in three parts, the bias due to the potential local misspeciﬁcation in the neighborhood of the cutoﬀ, the estimator’s variance, and its distribution which will be inherited from the second term in the equation above. 
	Bias 
	Let E(ˆµ(0)|X)= e(R WR)R WM, where M is deﬁned below. Taking a Taylor expansion of m(·) around 0: 
	0
	−1

	11
	2 p+1 
	µ(xig)= µ(0) + µ(0)xig + · µ(0)x+ ··· + · µ(0)x+ Tig
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	Where |Tig|≤ supx|µ(x)x|.
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	ig 
	Let M =(µ(x11),µ(x21), ..., m(x12),µ(x22), ..., µ(xNG)) . Then 
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	⎜⎜⎜⎜⎜⎜⎜⎝ 
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	. 
	(p)
	p! 
	µ(0) 

	⎟⎟⎟⎟⎟⎟⎟⎠ 
	+ S + T 
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	Where Sig = µ(0)x.
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	(p+1)! ig 
	Then, Bias(ˆµ)= η!e(R WR)R WM − µ(0) = η!e(R WR)RW (S + T ) Note that, 
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	Using the deﬁnition and results on Lemma A.1: 
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	Recalling that F ≡ Ngf(0)νj and that op(1) = op(1):
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	⎛⎞
	⎛⎞
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	⎜⎜⎜⎜⎜⎜⎜⎝ 
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	.

	. 

	. 

	−p
	h

	00 ··· νp + op (1) νp+1 + op (1) ··· ν2p + op (1) 
	⎞
	⎛ 
	⎛ 
	⎜⎜⎜⎜⎜⎜⎜⎝ 
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	Each term of the matrix in the middle above will be a a combination of products of the terms νj plus an op(1) term. 
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	Where γij is a deterministic function of ν known and computable for a given kernel and polynomial order. Examining | R WT |:
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	Combining the results above, we obtain 
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	And similarly to the estimates obtained below the threshold E[ˆµ− µ|X].
	−− 
	Asymptotic Variance 
	For the variance component, note that the conditional variance can be written as follows: V (ˆµ(0)|X)= η!e(R WR)RW ΣWR(R WR)eη Deﬁning Σ as the block diagonal matrix with blocks given by Ωg , the variance-covariance matrix for the error term in cluster g, for g =1, ··· ,G the middle term is given by: 
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	Where σtj is the term in the i − th line and j − th column in Ωg. 
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	⎟⎟⎟⎟⎟⎟⎟⎠ 
	G(R WR)RW ΣWR(R WR)= 
	−1
	−1 

	⎞
	⎛
	−1 
	⎜⎜⎜⎜⎜⎜⎜⎝ 
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	⎜⎜⎜⎜⎜⎜⎜⎝ 
	π0 + op (1) π1 + op (1) ··· πp + op (1) 
	π1 + op (1) π2 + op (1) ··· πp+1 + op (1) 
	. 
	. 
	.. 
	. 
	. 
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	Note that each term in matrix A will be a combination of products of the terms νj and πj plus an op(1) term, hence 
	Ng Ng
	1 σts (0)
	[aij + op(1)] 

	t=1 s=1
	G(R WR)RW ΣWR(R WR)= 
	−1
	−1 

	ij i+j−2 2
	h
	N

	hf(0) 
	hf(0) 
	g 

	Where aij is a deterministic function of ν and π known and computable for a given kernel and polynomial order. 
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	B Supplemental Simulations 
	B Supplemental Simulations 
	In addition, we consider two additional data generating processes derived from those studied in IK.The cluster dependence setup is the same as before, but here we consider alternative conditional mean functions proposed in IK: 
	26 

	m3(x)= 
	m4(x)= 
	⎧⎨ ⎩⎧⎨⎩ 
	2
	3xif x< 0 
	2
	4xifx ≥ 0 
	0.42 + 0.84x − 3.00x+7.99x− 9.01x+3.56xif x< 0 
	0.42 + 0.84x − 3.00x+7.99x− 9.01x+3.56xif x< 0 
	2 
	3 
	4 
	5 

	0.52 + 0.84x − 3.00x+7.99x− 9.01x+3.56xif x ≥ 0 
	2 
	3 
	4 
	5 

	DGP 3 is of interest as the quadratic data generating process implies that the regularization term will be more important. In addition, DGP 4 shows a case similar to that in the ﬁrst simulation, but with a constant average treatment eﬀect. 
	Tables B.1-B.2 and Figures B.1-B.2 present results from the quadratic and constant average treatment eﬀect data generating processes, respectively. All graphs show that the new procedure often performs better than the traditional IK bandwidth, particularly in settings where cluster size or ρ are large. 
	Last, Table B.3 and Figure B.3 presents simulation results from a linear DGP where the local linear model is correctly speciﬁed: 
	m5(x)= 
	⎧⎨ ⎩ 
	0.48 + 1.27x if x< 0 
	0.48 + 1.27x if x< 0 


	0.52 + 0.84xif x ≥ 0 
	0.52 + 0.84xif x ≥ 0 
	These results show that the cluster-robust procedure performs well in this setting as well. 
	These simulations are simulation designs 2 and 3 in IK. 
	26






	rdcluster_08202015_final
	Structure Bookmarks
	Clustered Sampling 
	B Supplemental Simulations 
	0.52 + 0.84xif x ≥ 0 
	Table B.1: Simulation Results – Quadratic DGP 
	ρ 
	0 0.2 0.4 0.6 0.8 
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	1000 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0034 0.0036 0.0042 0.0050 0.0083 Traditional Bandwidth MSE 0.0036 0.0040 0.0049 0.0062 0.0108 Ratio 0.9434 0.8983 0.8556 0.8026 0.7691 Size=25 Cluster-Robust Bandwidth MSE 0.0033 0.0036 0.0042 0.0053 0.0080 Traditional Bandwidth MSE 0.0034 0.0044 0.0058 0.0085 0.0151 Ratio 0.9476 0.8200 0.7298 0.6170 0.5270 Size=200 Cluster-Robust Bandwidth MSE 0.0034 0.0036 0.0042 0.0052 0.0079 Traditional Bandwidth MSE 0.0035 0.0049 0.0072 0.0120 0.0241 Ratio 0.9563 0.74
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	ρ 
	0 0.2 0.4 0.6 0.8 
	250 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0005 0.0013 0.0025 0.0052 0.0113 Traditional Bandwidth MSE 0.0006 0.0016 0.0032 0.0070 0.0164 Ratio 0.8819 0.8283 0.7890 0.7410 0.6905 Size=25 Cluster-Robust Bandwidth MSE 0.0001 0.0009 0.0020 0.0043 0.0120 Traditional Bandwidth MSE 0.0001 0.0013 0.0036 0.0085 0.0268 Ratio 0.7369 0.6434 0.5460 0.5048 0.4464 Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0008 0.0020 0.0044 0.0113 Traditional Bandwidth MSE 0.0000 0.0023 0.0068 0.0162 33.1257 Ratio 0.5737 0.33
	500 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0003 0.0006 0.0012 0.0024 0.0055 Traditional Bandwidth MSE 0.0003 0.0008 0.0015 0.0032 0.0076 Ratio 0.8821 0.8333 0.7850 0.7580 0.7169 Size=25 Cluster-Robust Bandwidth MSE 0.0001 0.0004 0.0010 0.0023 0.0055 Traditional Bandwidth MSE 0.0001 0.0007 0.0019 0.0045 0.0123 Ratio 0.7534 0.6076 0.5363 0.5181 0.4487 Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0004 0.0010 0.0022 0.0052 Traditional Bandwidth MSE 0.0000 0.0012 0.0032 0.0081 0.0223 Ratio 0.6053 0.352
	1000 Clusters Size=5 Cluster-Robust Bandwidth MSE 0.0002 0.0003 0.0006 0.0012 0.0028 Traditional Bandwidth MSE 0.0002 0.0004 0.0008 0.0016 0.0039 Ratio 0.9102 0.8317 0.7866 0.7428 0.7169 Size=25 Cluster-Robust Bandwidth MSE 0.0000 0.0002 0.0005 0.0011 0.0028 Traditional Bandwidth MSE 0.0000 0.0004 0.0010 0.0022 0.0063 Ratio 0.7783 0.6181 0.5242 0.4893 0.4517 Size=200 Cluster-Robust Bandwidth MSE 0.0000 0.0002 0.0005 0.0011 0.0029 Traditional Bandwidth MSE 0.0000 0.0006 0.0016 0.0040 0.0111 Ratio 0.6284 0.38
	Numbers in cells refer to MSE from a particular procedure. Ratio refers to MSE from cluster-robust procedure divided by MSE from traditional procedure. 
	Figure B.1: Simulation Results – Quadratic DGP. 
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	Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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	Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 

	(e) 
	(e) 
	Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 
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	(g) 
	Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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	Figure
	Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the cluster-robust procedure. 
	Figure B.2: Simulation Results – Constant Average Treatment Eﬀect DGP 
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	(a) 
	Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 
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	Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 

	(e) 
	(e) 
	Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 

	(g) 
	(g) 
	Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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	Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the cluster-robust procedure. 
	Figure B.3: Simulation Results – Linear DGP. 
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	(a) 
	Size = 5, Number of Clusters = 250 (b) Size = 5, Number of Clusters = 1000 

	(c) 
	(c) 
	Size = 10, Number of Clusters = 250 (d) Size = 10, Number of Clusters = 1000 

	(e) 
	(e) 
	Size = 25, Number of Clusters = 250 (f) Size = 25, Number of Clusters = 1000 

	(g) 
	(g) 
	Size = 50, Number of Clusters = 250 (h) Size = 50, Number of Clusters = 1000 
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	Figure
	Note: Results are not plotted if the MSE in the traditional bandwidth procedure is more than 25 times the cluster-robust procedure. 








