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Emerging Applications of Randomized Response

Concepts and Some Related Issues
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Abstract

Randomized response (RR) was introduced as a technique for protecting respondent’s

privacy in survey interviews regarding sensitive characteristics. In recent years, the basic

RR ideas have been used and extended in other contexts. We discuss usage and recent

advances of RR in confidentiality protection and in privacy preserving data mining. We

discuss important differences between RR surveys and RR for confidentiality protection. In

particular, for confidentiality protection, the data may be used to choose randomization

probabilities suitably, but by doing so also makes well known inferences derived for RR

surveys inapplicable. We examine one privacy breach criterion in data mining and propose

a new privacy guarantee and a method for achieving that. We also discuss several new

challenges and open problems for future research.
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1. Introduction

The primary reason for using randomized response (RR) techniques in surveys is to offer some

protection to respondent’s privacy and thereby encourage honest participation, which is espe-

cially important when the survey asks for information about sensitive characteristics such as

drug abuse, tax evasion, unlawful activity and gambling. For a dichotomous population consist-

ing of a sensitive group A and its complement, Ac, Warner [34] introduced the first RR method,

where each respondent is instructed to select one of the two questions Q1: Do you belong to A?

and Q2: Do you belong to Ac? using a prescribed random mechanism (e.g., drawing a card from

a shuffled deck), and then truthfully reply “Yes” or “No” to the selected question. The respon-

dent protects his privacy by not disclosing the question to the interviewer. The probability (p)

of selecting Q1 is a design parameter. The survey organization chooses a value for p and embeds

it in the question selection mechanism. In Warner’s procedure, a true “Yes” (or No) converts to

a false “No” (or Yes) with probability 1− p. Since the publication of the first RR paper [34] by

Warner in 1965, numerous papers offering a wide variety of RR schemes have appeared. While

most papers deal with a binary variable with one value (or category) being sensitive, as in [34],

the literature on RR methods for categorical and quantitative variables is also substantial; see

[6, 7, 8] for reviews of various RR methods and further references.

In this paper, we shall focus only on categorical variables. We do not attempt to cover RR

procedures for quantitative variables, as they are inherently different from those for categorical

variables. Usually, values of quantitative variables are randomized via noise addition or multi-

plication (see [4, 13, 17, 27]). Let X be a categorical variable with categories labeled 1, . . . , k,

and also let πi = P [X = i], i = 1, . . . , k, and π = (π1, . . . , πk)
′. Typically, π is unknown and

we collect data on X in order to make inferences about π and functions of it. To protect re-

spondent’s privacy, RR procedures ask each respondent to perform a given random experiment

and use its outcome, his true category and pre-specified rules to compute an output and report
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it. For simplicity, suppose the output space of the randomization process contains k elements,

labeled 1, . . . , k, without loss of generality. Let Z denote the output variable that is actually

reported by respondents and let pij = P (Z = i|X = j). Then, P = ((pij)) is the transition

probability matrix of the RR procedure and
∑
i pij = 1 for j = 1, . . . , k. We shall focus on RR

procedures for which P is known and nonsingular, as those are most convenient for deriving

statistical inferences. If P is singular, not all components of π can be estimated unbiasedly.

The essence of any RR procedure is its transition probability matrix P = ((pij)). All

properties of an RR procedure, e.g., sampling distribution of all estimators and measures of

privacy protection, depend on the randomization mechanism only through P . Thus, if two RR

procedures have the same transition probability matrix, then they are statistically equivalent

(cf. [24, 25, 29]). Two consequences of this are: (i) a general theory of RR procedures can (and

should) be developed in terms of P and (ii) comparison of RR procedures reduces to comparing

their transition probability matrices. We may also note that any given P can be implemented

by many different random experiments and one may choose one of them based on practical

convenience and simplicity.

Let n denote the sample size, Ti and Si denote the sample frequencies of X = i and Z = i,

respectively, T = (T1, . . . , Tk)
′ and S = (S1, . . . , Sk)

′. Then, under (commonly considered)

multinomial sampling, i.e., random sampling from an infinite population or simple random

sampling with replacement (SRSWR), if the population is finite, T ∼ Mult(n, π) and S ∼

Mult(n, λ), where

λ = Pπ. (1.1)

Note that T is unobservable and hence inferences about π need to be derived based on S. If P

is nonsingular and λ̃ is an unbiased estimator of λ, then from (1.1) it follows that π̃ = P−1λ̃ is

an unbiased estimator of π. The MLE (and UMVUE) of λ is λ̂ = S/n and it yields

π̂ = P−1λ̂ = P−1(S/n), (1.2)
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as an unbiased estimator of π with

V ar(π̂) =
(Dπ − ππ′)

n
+

[P−1Dλ(P−1)′ −Dπ]

n
, (1.3)

whereDπ is a diagonal matrix with diagonal elements being π1, . . . , πk andDλ is defined similarly

(see [8], p. 43). The first term on the right side of (1.3) is the sampling variance and the last

term is the additional variance due to randomization. Inferences under general sampling designs

have been discussed in [5, 25, 26, 28].

While privacy and confidentiality are often used synonymously, we should note a particular

difference between the two. Privacy is an individual’s right to control access to his information

and privacy protection refers to hiding a respondent’s true values from everyone, including the

interviewer and the survey organization. Protecting confidentiality means not giving identifiable

information about any survey participant (or unit) to unauthorized people. Often survey par-

ticipants give their information to a survey organization trusting that their data will be used by

researchers and policy makers only to learn about the population as a whole and not about any

individual or survey unit. Privacy arises at data collection stage whereas confidentiality emerges

after the data have been collected. Confidentiality protection necessitates physical security of

the data. However, often the goal of a survey is to publish data, but the data agency may

not release the original data if that would enable others to gain information about any survey

participant. Consequently, agencies release a perturbed version of the original data.

Most RR procedures have been developed for using in interview surveys, with particular

attention to the randomization process, as the randomization apparatus should be easy to carry

for the interviewer and the experiment needs to be easy to understand and perform by respon-

dents. However, recently the basic RR concepts have received considerable attention in on-line

surveys, confidentiality protected data dissemination and other contexts, where the actual ran-

domization is carried out more appropriately by computer programs. The main goal of this

paper is to discuss such applications and some related issues. Specifically, we shall discuss some
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recent advances of RR ideas in confidentiality protection and in privacy preserving data mining

(PPDM).

In Section 2, we discuss some recent results on the post-randomization method (PRAM) for

confidentiality protection. We shall see that PRAM is similar to RR surveys, but it also raises

new issues and questions. While π can be estimated the same way in the two cases, the sampling

distribution of the estimator can be different. This has important implications on estimating

sampling variance of relevant estimators and constructing confidence intervals. In Section 3,

we discuss usage of RR in PPDM, which has become a significant research focus in computer

science community. Privacy protection and inferential goals in PPDM are different from those

in RR surveys. We review one leading definition of privacy breach and a related result and then

propose a simpler and more practical privacy protection goal and characterize all RR procedures

that accomplish that goal. We state certain additional special features of PRAM and PPDM as

well as some open questions in Section 4.

2. Post-randomization for Statistical Disclosure Control

The main goal of statistical agencies is to collect and publish data to inform the public, policy

makers and researchers, but they also need to protect the confidentiality of unit level information

for legal reasons and for upholding public trust. Usually, just removing all direct identifiers,

such as name, address and social security number, is insufficient because it might be possible to

identify a unit in the data set based on easily available values of some variables such as gender,

age and occupation, also called key variables. Disclosure is a difficult topic (cf., [22]) and it

can occur in different forms depending on the disclosure scenario (see [36]). Broadly speaking,

disclosure occurs when the released data enable one to learn much new information about any

survey respondent or unit. The most serious is identity disclosure, which happens when an

intruder correctly identifies the record of a survey unit by matching externally available values
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of some key variables that are included in the survey. For disclosure control, agencies often release

a perturbed or masked version of the original data, causing some loss and possibly distortion of

information. In general, the goal is to perturb the original data in such a way that disclosure

risk is sufficiently low but information loss is small or minimal. However, wide variations in

data structures, confidentiality concerns and inferential goals render a uniform treatment of the

subject infeasible. Various masking methods, such as grouping, cell suppression, data swapping,

multiple imputation and random noise infusion have been developed for practical use; see the

books [11, 36] for reviews and additional references.

Warner [35] had mentioned potential usage of RR techniques for statistical disclosure control,

but it has received significant attention only since Gouweleeuw et al. [19] developed the idea as

the Post-randomization Method (PRAM) for perturbing data on categorical variables to protect

confidentiality while releasing microdata. As before, consider a categorical variable X with

possible values 1, . . . , k. Just as in RR, to apply PRAM to X, one first selects a transition

probability matrix P = ((pij)), also called the PRAM matrix, and then randomly changes any

original category X = j to Z = i with probability pij (i, j = 1, . . . , k). The randomization step

is performed for each record in the data set, independently of all other records.

We should note that PRAM can be applied to more than one categorical variable, indepen-

dently or jointly, but conceptually, any PRAM can be regarded as being applied to the compound

variable created by cross-classifying all variables. This perspective is both convenient and ap-

propriate for logical discussions of PRAM. We refer to [10, 31, 32, 33] for further discussion of

PRAM and additional references.

Although RR surveys and PRAM contain some common ideas and mathematical properties,

PRAM is critically different in several ways. First, in PRAM, the survey organization random-

izes the data and that can be done conveniently and accurately using a computer program (and

random number generators). This also makes respondents’ perceptions about a randomization
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experiment irrelevant. Objective properties of the experiment, captured by the transition prob-

abilities, determine both the degree of protection and information loss. In contrast, RR in a

survey should use a randomization experiment that respondents perceive as protective. In prac-

tice, a respondent’s perception may depend not only on the transition probabilities but also on

some ancillary features of the experiment. Second, in surveys, RR is used to randomize values

of only sensitive variables. By contrast, for confidentiality protection PRAM can be applied to

both sensitive and key variables, to protect against identity disclosure. Another important dif-

ference is that in RR surveys the transition probability matrix P is chosen before data collection

and hence it cannot depend on the data, but in PRAM, P may depend on the data and hence

be random. In particular, P is data dependent in invariant PRAM, to be discussed shortly.

This causes certain differences in the variance inflation due to the two procedures, as we discuss

below.

Gouweleeuw et al. [19] defined a PRAM to be an invariant PRAM if P satisfies the condition

PT = T or equivalently Pπ̂0 = π̂0, (2.1)

where π̂0 = T/n. Under invariant PRAM and multinomial sampling, it follows that S/n is also

an unbiased estimator of π, which one can calculate without knowing P . This is important

because data agencies rarely release P or (more generally) much details about how they have

perturbed the original data for confidentiality protection. Also, S/n is always a probability

vector, but π̂ in (1.2) may not be so. The solution space of (2.1) is a non-empty convex set,

which also includes the identity matrix. Different methods for solving (2.1) and hence obtaining

invariant PRAM matrices have been discussed in [19, 26]. One important point to keep in mind

is that if invariant PRAM is applied to several variables independently, it may not be possible

to estimate the joint probabilities without knowing the PRAM matrix. So, for invariant PRAM

we need to think in terms of the cross classification of all variables.

For deriving statistical inferences, first note that if P depends on the original data, the
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distribution of S is not multinomial and the results of Section 1, developed for RR surveys

assuming P is fixed, need not hold. In the following, we review certain results from [26]. Let

P = [P1 : . . . : Pk] and rewrite (2.1) as

k∑
i=1

TiPi = T. (2.2)

Let Fij denote the number of units whose category changed from i to j due to randomization, and

let Fi = (Fi1, . . . , Fik)
′. Then, S =

∑k
i Fi, and moreover, given T and P , {Fi} are independently

distributed with Fi ∼Mult(Ti, Pi), i = 1, . . . , k. This representation yields certain properties of

π̂∗ = S/n as an estimator of π.

From the preceding discussion it follows that

E(π̂∗|T, P ) =
1

n

k∑
i=1

E[Fi|T, P ] =
1

n

k∑
i=1

TiPi = π̂0, (2.3)

and hence E(π̂∗) = E(π̂0) = π. Thus, π̂∗ is an unbiased estimator of π. Standard derivations

also yield that

V (π̂∗|T, P ) =
1

n2

k∑
i=1

Ti[DPi − PiP ′i ] =
1

n
[Dπ̂0 −

k∑
i=1

(
Ti
n

)PiP
′
i ], (2.4)

and

V (π̂∗) = V [E(π̂∗|T, P )] + E[V (π̂∗|T, P )]

= V (π̂0) +
1

n
[Dπ − E{

k∑
i=1

(
Ti
n

)PiP
′
i}]. (2.5)

In (2.5), V (π̂0) = [Dπ − ππ′]/n and the last term is variance inflation due to invariant post-

randomization, which is markedly different from the last term of (1.3). As (2.1) has many

solutions, the expectation in (2.5) also depends on the distribution of P given T, i.e., on the

method that the agency used to choose and apply a solution of (2.1). The data agency knows

T and P and hence can assess variance inflation by calculating (2.4). Note that (2.4) can be

interpreted as a conditional variance-covariance matrix of π̂∗ and also as an unbiased estimator
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(based on the original data) of the variance inflation term in (2.5). In contrast, if P is not

released, a data user shall not be able to estimate V (π̂∗) or the variance inflation due to post-

randomization.

The true nature and expression of V (π̂∗) under invariant PRAM and the difficulty of es-

timating it from released data had remained unnoticed until the recent work of Nayak and

Adeshiyan [26]. This also reveals that invariant PRAM is of limited help, in the sense that if P

is not released, a user can still obtain an unbiased estimate of π, using π̂∗, but not its sampling

variance. Thus, a user shall not be able to properly construct confidence intervals or test hy-

potheses concerning π. However, the following result in [26] can be used to derive conservative

large sample confidence intervals and tests.

Theorem 2.1. An upper bound of V (π̂∗) is

Vmax(π̂∗) = (2− 1

n
)[
Dπ − ππ′

n
] (2.6)

in the sense that [Vmax(π̂∗)−V (π̂∗)] is non-negative definite for any invariant PRAM. Moreover,

this upper bound is tight, i.e., there exists an invariant PRAM for which V (π̂∗) = Vmax(π̂∗).

We should remember that the preceding results and discussions of this section are valid for

multinomial sampling. Invariant PRAM is defined differently for a general probability sampling.

In general, an invariant PRAM matrix P is defined as a solution of

Pπ̂w = π̂w, (2.7)

where π̂w is a linear unbiased estimator of π based on the original data and pertinent survey

weights; see [19]. Essentially, this replaces T in (2.1) by a weighted count vector. The main idea

is that if we apply PRAM with P satisfying (2.7), then π̂w calculated based on the perturbed

data would also be an unbiased estimator of π. Nayak and Adeshiyan [26] derived the variance-

covariance matrix of this estimator, which also is difficult to estimate from released data.

9



3. Randomized Response in Privacy Preserving Data Mining

Privacy and confidentiality have become major issues in e-commerce. Explosive advances in stor-

age, computing and networking and expansion of the Internet have produced large databases

containing vast amount of personal and transactional records. Businesses and government agen-

cies have been devoting significant resources to build large databases, using on-line surveys and

capturing transactional records, and mining them to develop commercial and policy decisions.

Concurrently, consumers’ concern that their private information may reach undesired people

have been growing. The field of privacy preserving data mining (PPDM) has developed, largely

due to contributions from computer scientists, to address relevant privacy and confidentiality

concerns. We refer the reader to [1, 9, 16, 18] for review of various privacy concerns, many

relevant concepts and methods and further references.

Many papers in PPDM literature do not distinguish between privacy and confidentiality.

However, in e-commerce context, privacy and confidentiality are sometimes referred to as B2C

(business-to-customer) and B2B (business-to-business) privacy, respectively (cf. [3]). Customers

are reluctant to give their information to businesses due to B2C privacy concerns. Businesses

need to take appropriate measures to protect B2B privacy, i.e., protect data confidentiality, when

they publish their databases or share them with other parties. A challenging task in PPDM is to

create a perturbed or masked version of the original data from which valid statistical inferences

can be derived but not much respondent specific information can be extracted.

Several papers, e.g., [2, 3, 12, 14, 15, 21, 30], have discussed using RR techniques and ideas in

PPDM, especially in association rule mining and building classification trees from transactional

data. Suitable choice of randomization probabilities and applications of RR to other types of

data have also been discussed. For example, [20] use RR in participatory sensing applications,

with wireless sensor network architecture. In the following we examine one concept of privacy

breach, introduced by Evfimievski et al. [14] and further discussed in [3, 15] and others.
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The PPDM context considered in [14] is similar to that of RR surveys considered in Section

1. In PPDM terminology, clients give randomized versions of their values of survey variables to

a server. For categorical variables, we may again think in terms of randomizing one variable (X)

that is obtained by cross classifying all categorical variables. We shall use our earlier notations,

e.g., denote the randomized output variable by Z, the categories of both X and Z by 1, . . . , k,

and P (Z = i|X = j) by pij for i, j = 1, . . . , k. Here, an implicit assumption is that X and

Z have the same number of categories. This allows P = ((pij)) to be nonsingular, which is

convenient for unbiased estimation of π. Since category labels are arbitrary, there is no loss of

generality in labeling categories of X and Z the same way.

Similar to RR survey contexts, here also the concern is about how much an intruder having

access to the server can learn about a client’s true value of X from his reported value of Z.

However, a significant difference is that X need not have any sensitive categories. It may be

just that the clients want to hide their true values from the server. In RR survey context, a

respondent wishes the interviewer’s (or an intruder’s) posterior probability that the respondent

belongs to the sensitive group to be small, but in PPDM, a client wants an intruder’s opinion

or knowledge about the client’s true category not to change much from learning the client’s

reported value of Z. Formally, an intruder’s opinion or information should be expressed in

terms of probabilities. This means that an intruder’s posterior probabilities relating to a client’s

true value of X should be close to his prior probabilities.

Let αi denote an intruder’s prior probability that X = i and ~α = (α1, . . . , αk). Thus, an

intruder is characterized by the vector ~α of his prior probabilities. Obviously, ~α will be different

for different intruders. Then, for a given transition probability matrix P , the intruder’s posterior

probability that X = i given that Z = j is

P (X = i|Z = j) =
αipji∑k
i=1 αipji

. (3.1)

Considering general queries or properties about a client’s true value, i.e., general events con-
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cerning X, Evfimievski et al. [14] introduced the following:

Definition 3.1. Let Q be a non-null subset of {1, . . . , k} and 0 < ρ1 < ρ2 < 1 be two given

numbers. Then, a randomization operator with transition probability matrix P permits an upward

ρ1-to-ρ2 privacy breach with respect to Q and a prior distribution ~α if for some 1 ≤ j ≤ k with

P (Z = j) > 0,

P (X ∈ Q) =
∑
i∈Q

αi < ρ1 and P (X ∈ Q|Z = j) =
∑
i∈Q

P (X = i|Z = j) > ρ2. (3.2)

The randomization operator is said to allow a downward ρ2-to-ρ1 breach if

P (X ∈ Q) =
∑
i∈Q

αi > ρ2 and P (X ∈ Q|Z = j) =
∑
i∈Q

P (X = i|Z = j) < ρ1 (3.3)

for some 1 ≤ j ≤ k with P (Z = j) > 0.

Actually, [14] used ≤ and ≥ in place of the strict inequalities in (3.2) and (3.3). We made

these minor changes for stating some new findings (see Theorem 3.2) conveniently. A reported

value Z = j is said to cause an upward ρ1-to-ρ2 privacy breach when (3.2) holds. Note that

an upward ρ1-to-ρ2 privacy breach with respect to Q is equivalent to a downward (1 − ρ1)-to-

(1 − ρ2) privacy breach with respect to Qc. For privacy protection, we may wish to select and

use a randomization operator that does not allow any upward ρ1-to-ρ2 or downward ρ2-to-ρ1

privacy breach with respect to any Q and any ~α. In other words, we want to guarantee that no

intruder’s opinion (represented by ~α) with respect to any property (Q) of a client will change

up or downward substantially, as specified by ρ1 and ρ2. This is a fairly stringent goal, but it is

attainable, as [14] proved using the following concept.

Definition 3.2. A transition probability matrix P is said to be at most γ-amplifying, for γ ≥ 1,

if

pij
pil
≤ γ, or

P (Z = i|X = j)

P (Z = i|X = l)
≤ γ for all i, j, l = 1, . . . , k. (3.4)
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Theorem 3.1. [14] A sufficient condition for a randomization operator with transition proba-

bility matrix P to guarantee no upward ρ1-to-ρ2 privacy breach with respect to any Q and any

~α is that P is at most γ-amplifying for some

γ ≤ ρ2(1− ρ1)
ρ1(1− ρ2)

. (3.5)

Furthermore, this condition also ensures no downward ρ2-to-ρ1 privacy breach.

Definition 3.2 tells how to verify whether a given P is at most γ-amplifying or not for given

γ. While a given P can be at most γ-amplifying for many values of γ, (3.5) really refers to the

minimum of all such values. We believe it is helpful to define this quantity explicitly.

Definition 3.3. We define the parity of a transition probability matrix P as

η(P ) = max
{pij
pil
, i, j, l = 1, . . . , k

}
, (3.6)

where we use 0/0 = 1 and a/0 =∞ for all a > 0.

Clearly, η(P ) ≥ 1 and it is finite if and only if all elements of P are positive. Also, P

is at most γ-amplifying if and only if γ ≥ η(P ). The condition in (3.5) can be restated as

η(P ) ≤ ρ2(1−ρ1)
ρ1(1−ρ2) . Then, for given ρ1 and ρ2, no privacy breaches can be guaranteed by using a

P with η(P ) = [ρ2(1− ρ1)]/[ρ1(1− ρ2)]. The papers [3, 14] give methods for constructing such

P matrices. In particular, a P matrix with parity η is obtained by taking pii = η/[η+k−1], i =

1, . . . , k, and pij = 1/[η + k − 1] for all i 6= j. Obviously, a P matrix chosen to guarantee no

privacy breach for specific ρ1 and ρ2 may not work for other pairs of values. We may note

that Leysieffer and Warner [23] also used the ratios {pijpil } for comparing RR surveys. Generally,

as these ratios get closer to 1, privacy protection increases, as seen also in Theorem 3.1, but

accuracy of statistical inferences decreases.

How to choose ρ1 and ρ2 in practical applications of Theorem 3.1 is not clear and the question

deserves further investigation. For a simpler notion of privacy breach, we shall consider ratios
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of posterior to prior probabilities, which are natural indicators of an intruder’s information gain

about a respondent from the data. Our basic idea is that a privacy breach occurs if the ratio

P (X ∈ Q|Z = j)/P (X ∈ Q) is too large or too small. Formally, we introduce the following:

Definition 3.4. We say that a transition probability matrix P admits a β-factor privacy breach,

for β ≥ 1, with respect to a subset Q of {1, . . . , k} and a prior distribution ~α if for some 1 ≤ j ≤ k

with P (Z = j) > 0, either

P (X ∈ Q|Z = j)

P (X ∈ Q)
> β or

P (X ∈ Q|Z = j)

P (X ∈ Q)
<

1

β
. (3.7)

We shall say that P guarantees β-factor privacy if it does not allow any breach, with respect

to any Q and any ~α, as per the preceding criterion. One advantage of Definition 3.4 is that it

requires us to specify the value of only one quantity (viz. β). In the following, we establish a

connection between the parity of P and its β-factor privacy guarantee. Suppose P has a finite

parity η > 1 and ~α is a prior distribution with αi > 0, i = 1, . . . , k. Then,

1

η
≤ pij
pil
≤ η for all i, j, l = 1, . . . , k. (3.8)

Using (3.1) and the left inequality in (3.8) we obtain, for all i, j = 1, . . . , k,

P (X = i|Z = j)

P (X = i)
=

[
αi +

∑
l 6=i

αl
(pjl
pji

)]−1
(3.9)

≤
[
αi +

1

η

∑
l 6=i

αl
]−1

=
[
αi +

1

η
(1− αi)

]−1
=

η

1 + (η − 1)αi
≤ η, (3.10)

as η ≥ 1. Thus, P (X = i|Z = j) ≤ ηαi for all i, j = 1, . . . , k, which implies that for any subset

Q of {1, . . . , k},
∑
i∈Q P (X = i|Z = j) ≤ η

∑
i∈Q αi, or

P (X ∈ Q|Z = j)

P (X ∈ Q)
≤ η. (3.11)
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As we show next, the inequality in (3.10) is tight in the sense that (3.9) can be made

arbitrarily close to η with suitable choice of i, j and ~α. Suppose η(P ) = η > 1. Then, there

exists i, j and l such that pjl/pji = 1/η. For notational simplicity, suppose p12/p11 = 1/η. Take

α2 = a and αi = (1− a)/(k − 1) for i 6= 2, where 0 < a < 1. For this ~α, we get

P (X = 1|Z = 1)

P (X = 1)
=
[1− a
k − 1

+ a
1

η
+

1− a
k − 1

k∑
l=3

( p1l
p11

)]−1
. (3.12)

Clearly, the right side of (3.12) converges to η as a→ 1.

Using the second inequality of (3.8) in (3.9), we get

P (X = i|Z = j)

P (X = i)
≥

[
αi + η

∑
l 6=i

αl
]−1

=
[
αi + η(1− αi)

]−1
=

[
η − (η − 1)αi

]−1
≥ 1

η
, (3.13)

as η > 1. As before, it can be seen that the inequality in (3.13) is tight. Comparing these results

with Definition 3.4, we have the following:

Theorem 3.2. A randomization operator with transition probability matrix P guarantees β-

factor privacy with respect to all Q and all ~α if and only if

η(P ) ≤ β. (3.14)

Thus, we can provide β-factor privacy by constructing and implementing a P matrix with

parity β. Theorem 3.2 is well suited for practical applications as it requires us to specify just

the value of β. In practice, this value can be determined from a survey of respondents and

collecting data on their desired threshold for posterior to prior probability ratio. In practice,

eliciting desired values of β would be simple than eliciting values of (ρ1, ρ2). We should also

note that definitions 3.1 and 3.4 are closely connected and Theorem 3.2 implies, for example,

that P guarantees no upward ρ1-to-ρ2 privacy breach for all ρ1 and ρ2 (and with respect to any

Q and any ~α) as long as ρ2/ρ1 ≥ η(P ).
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4. Discussion and Remarks

Fifty years have passed since the publication of the first RR paper [34], due to Warner. Astound-

ing technological innovations during this period have changed the world, including statistical

practice and applications, substantively and significantly. The fact that the basic ideas and

mathematical results in RR that Warner introduced are being used and further developed for

addressing contemporary problems signify the value of his contribution. In this paper, we have

discussed adaptations of RR techniques in confidentiality protection and privacy preserving data

mining. We have noted some new features of these emerging applications and some related re-

sults and issues. However, there are many additional questions that deserve further research, a

few of which we mention in the following.

For protecting the confidentiality of a data set, an agency should look at the data set,

its features and disclosure issues to choose an appropriate perturbation procedure. Thus, for

PRAM, it makes good sense to choose P based on the original data. But, in that case, inferences

derived for RR surveys, where P is known and fixed, do not apply. As we have seen, for invariant

PRAM, it is difficult to calculate standard errors of estimators and hence confidence intervals.

This prompts two immediate questions for further investigation. How can we estimate standard

errors of estimators from post-randomized data? Are there suitable choices of P for which valid

estimates of π along with their standard errors can be calculated from perturbed data? These

questions should be investigated not only for multinomial sampling but also for complex survey

designs.

Confidentiality protection is more complex and different from privacy protection in the con-

text of [34]. Disclosure protection goals are difficult to articulate and ascertain and only modest

work has been done on effects of the PRAM matrix P on disclosure risk and hence on how to

choose P . Much of the work has focused on identity disclosure risk and we refer to [31] for a

recent discussion and relevant references. Note that identity disclosure is not an issue in RR
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surveys, where the interviewer knows the identity of the respondent and the concern is only

about predictive disclosure. Much new research, both theoretical and empirical, on appropriate

choices of P for achieving confidentiality protection goals is needed for making PRAM a common

data perturbation tool.

Privacy preserving data mining is an important and very active area that offers significant

research opportunities to statisticians. As one might expect, there are special data structures

and privacy concerns in PPDM that do not arise in RR surveys. One common purpose of data

mining is to extract association rules from transactional data. Typically, we have a set of M

items and choices (or purchases) of n clients. Essentially, each client selects a subset of the M

items, called an itemset. Note that itemsets of different clients may contain different number of

items. The data for each client can be recorded as a vector of M binary variables, one for each

item, with 1 indicating that a client included the item in his itemset and 0 otherwise. The cross

classification of these variables yields one categorical variable with 2M categories. Here, RR can

be used to perturb each client’s itemset for privacy protection. However, in many applications,

M is moderately large and 2M is very large, and it is not possible to use (1.2) for estimating π,

as it requires inverting a matrix of order 2M (see [30]). Obviously, here we need to use P with

special structures to overcome computational obstacles. There are many other special issues

associated with other data mining goals, such as finding classification rules, deserving further

research.
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