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Abstract

A variety of randomized response (RR) procedures for privacy and confidentiality protec-

tion have been proposed, studied and compared in the literature. We describe statistically

relevant attributes of RR mechanisms and use those to duly organize and unify existing

estimation theories for diverse RR methods. Any RR procedure can be characterized by its

transition probability matrix P , as it determines all statistical properties of the procedure.

In RR surveys, P is fixed, but in post-randomization for confidentiality protection, P may

depend on the original data. This affects statistical inferences significantly. We also review

some optimality results in the comparison of RR surveys of a binary variable, based on both

privacy protection and statistical efficiency.
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1. Introduction

Concerns about privacy and confidentiality often yield substantial nonresponse and false re-

sponses, especially in surveys that ask direct questions about sensitive attributes such as crim-

inal history, tax evasion, drug abuse, gambling and abortion. To protect respondents’ privacy

and increase truthful respondent participation, Warner (1965) proposed the first randomized

response (RR) procedure for a binary characteristic. Consider a population where each person

belongs either to a sensitive group A or to its complement Ac, where the true proportion (π) of

the population that belongs to A is unknown and needs to be estimated from survey data. In

Warner’s (1965) method, each respondent is instructed to select one of the two questions Q1:

Do you belong to A? and Q2: Do you belong to Ac? in a prescribed random manner (e.g., by

drawing a card from a shuffled deck or using a spinner) and truthfully answer the question by

“Yes” or “No” without disclosing the question, to protect his/her privacy. The probability (p)

of selecting Q1 is the method’s design parameter and the survey organization needs to choose

its value and devise an experiment to implement it. Basically, Warner’s procedure converts each

true “Yes” (or No) to a false “No” (or Yes) with probability 1− p.

Subsequent to Warner’s (1965) pioneering paper, many other RR methods for both categori-

cal and quantitative variables have been proposed and investigated; see Chaudhuri and Mukerjee

(1988), Chaudhuri (2010), Chaudhuri and Christofides (2013) and other articles in this book for

excellent exposition and references. All RR methods modify the true responses in some stochas-

tic fashion, which necessitates developing theory for (i) making inferences from randomized data

and (ii) assessing how much privacy and confidentiality protection an RR method provides. The

main goal of this article is to discuss these two aspects of RR methods for categorical data in a

general and unified manner. We shall concentrate on important logical elements of RR theory,

leaving aside related mathematical derivations that are readily available in the literature. Also,

we shall not discuss RR procedures for quantitative variables, which mostly employ noise addi-

tion or multiplication (see Fuller, 1993; Evans et al., 1998; Brand, 2002 and Nayak et al., 2011),

as those are patently different from methods for categorical variables.

Privacy and confidentiality are often used synonymously, but incorrectly. Privacy is an
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individual’s right to control access to his information and privacy protection means hiding a

respondent’s true values from everyone, including the interviewer. Thus, Warner’s method was

designed to give privacy protection. Protecting confidentiality means keeping information about

each respondent confidential. Often respondents give their information to survey organizations

trusting that their data will be used by researchers and policy makers only to learn about the

population as a whole and not about any individual or survey unit. Privacy arises at data col-

lection stage whereas confidentiality emerges after the data have been collected. Confidentiality

protection often prevents data agencies from releasing original data as that might enable others

to gain much information about specific units in the survey. So, agencies typically release per-

turbed or masked versions of original data. Randomization of the original values is one technique

for protecting confidentiality. However, we should note that in RR surveys the randomization

mechanism is chosen before data collection and hence it cannot depend on the data, but for

confidentiality protection, the randomization process may be chosen based on the data. This is

a significant difference and it requires us to treat privacy and confidentiality differently. Nayak

et al. (2015) discuss additional differences between privacy and confidentiality protection.

Both data analysis and the protection of privacy or confidentiality depend on the random-

ization process and the sampling mechanism. Thus, we need to organize the theory by different

types of sampling and RR mechanism. We shall consider two types of sampling: multinomial

sampling and general probability sampling from a finite population. While RR methods may

differ in many ways, only certain features are statistically relevant and affect data analysis or

privacy and confidentiality protection. It is important to recognize those features for develop-

ing statistical theory and proper comparison of competing methods. The rest of this article is

organized as follows. In Section 2, we examine RR experiments from a statistical perspective

to discern their essential features and design parameters. This helps us to put different RR

procedures in a common framework and grasp their substantive differences, if any. In Section

3, we discuss statistical estimation when the randomization experiment is specified prior to

data collection. In Section 4, we review some recent results on estimation for invariant post-

randomization, which is a particular type of data dependent randomization technique that is
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useful for confidentiality protection. In Section 5, we discuss privacy protection and certain

optimality results. Section 6 contains some closing remarks.

2. Vital Attributes of Randomization Experiments

In this section, we examine randomization experiments for categorical variables to bring out

their statistically essential features. Let X be a categorical variable with categories labeled

c1, . . . , ck, and let πi = P (X = ci), i = 1, . . . , k, and Π = (π1, . . . , πk)
′. Also, when we randomize

several categorical variables, X will represent their cross-classification and Π will represent all

joint probabilities. Typically, Π is unknown and we wish to make inferences about Π and

functions of it. The main purpose of RR surveys is to collect useful information while protecting

respondent’s privacy. Fundamentally, all RR methods ask each respondent to perform a given

random experiment and use its outcome, the respondent’s true category and pre-specified rules

to compute an output and report it. Let Z denote the output variable. Evidently, the input

space (or domain) of the random transformation from X to Z is {c1, . . . , ck}. Consider an RR

process with a finite output space (or range), containing m elements, labeled d1, . . . , dm. Then,

the randomization process produces different outputs, for given input, with specific probabilities.

Thus, let pij = P (Z = di|X = cj), i = 1, . . . ,m, j = 1, . . . , k. To define m uniquely, we should

require each di(i = 1, . . . ,m) to occur with positive probability, i.e., pij > 0 for some j. Then,

the transition probability matrix of order (m × k) of the RR procedure is P = ((pij)) and∑
i pij = 1 for j = 1, . . . , k.

Any randomization process is characterized by its output space and the transition probability

matrix P (just as a random variable is fully described by its probability distribution). So, all

effects of an RR procedure on the distribution of Z and privacy protection are determined only

through its P . One important (and under-appreciated) implication of this is that for statistical

investigations we should consider only P , leaving aside ancillary features of the experiment, e.g.,

whether it uses a deck of cards or a spinner. However, as Leysieffer and Warner (1976), Fligner

et al. (1977), Nayak (1994) and others have noted, some papers have improperly compared

different methods using other features that are not really comparable across those experiments.
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For example, holding the probability of asking Q1 the same in Warner’s and Simmons’ (see

below) methods do not make them comparable in terms of privacy protection.

Next, all RR procedures can be divided into two groups depending on whether P is fully

known or not. For an example, we consider a widely known variation of Warner’s procedure,

called Simmons’ unrelated question method (Greenberg et al., 1969), which uses an unrelated

nonsensitive question Q3: Do you belong to B? in place of Q2. For the transformation in

Warner’s and Simmons’ methods, the domain is {A,Ac} and the range is {Y es,No}. However,

in Warner’s method, the transition probabilities are known, but in Simmons’ method they are

known only if P (B), the probability of answering “yes” to Q3, is known. If P is unknown,

generally multiple samples from different settings (and correspondingly specialized theory) are

needed for estimating Π. In contrast, for known P , one can estimate Π from one sample and

fairly easily. For protecting privacy and confidentiality, we do not see a need for using an RR

method with unknown P . Thus, we shall only consider RR procedures with known P .

Let λi = P (Z = di), i = 1, . . . ,m, and λ = (λ1, . . . , λm)′. Then, under multinomial sampling,

i.e., random sampling from an infinite population or simple random sampling with replacement

if the population is finite, λi =
∑k
j=1 pijπj . In matrix notation, we have

λ = PΠ. (2.1)

We can use RR data to make inferences about λ, which in turn can be used to make inferences

about Π, using (2.1). In particular, if m = k and P is nonsingular, an estimator λ̂ of λ yields

the estimator

Π̂ = P−1λ̂. (2.2)

of Π. However, if m 6= k, generally (2.1) will yield no solution or multiple solutions for Π,

causing difficulties in estimating Π from RR data. For k = 2, Nayak and Adeshiyan (2009)

showed that for any RR procedure with m > 3, there exists one RR procedure with m = 2 that

is better in terms of privacy protection and statistical efficiency. Thus, in the following we shall

only consider RR procedures for which k = m and P is a known nonsingular matrix.

Next, note that in general, the labels d1, . . . , dm for possible outputs of an RR procedure

are arbitrary. In particular, any permutation of the labels does not alter the procedure or its
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properties, but changes the transition probability matrix. This implies that two RR procedures

with transition probability matrices P1 and P2 are statistically equivalent if P1 can be obtained

by permuting the rows of P2. Obviously, P1 and P2 can be equivalent only if they have common

dimensions, i.e., the ranges of the two procedures contain the same number of elements. As an

example, two Warner’s methods, where Q1 is asked with probabilities p and (1−p), respectively,

are equivalent, as one can be obtained from the other by interchanging the two responses “Yes”

and “No”. For k = m = 2, i.e., when the original and perturbed variables are binary, Nayak

(1994) imposed p11 > p12 and p22 > p21 to characterize each RR procedure uniquely by its

transition probabilities. It will be interesting to develop similar constraints to specify P uniquely

for general k and m. However, in the following, we shall only consider RR procedures with

output space {c1, . . . , ck}. This is helpful in two ways. First, fixing the range to {c1, . . . , ck}

makes all transition probability matrices directly comparable. In particular, P1 and P2 would

be equivalent if and only if P1 = P2. Second, for data users, released data are easier (and less

confusing) to understand when they are reported using the categories of original variables.

As we noted in Section 1, in the context of confidentiality protection, P can be chosen based

on the original data. Whether P depends on the data or not is an important consideration in

RR theory, because if P depends on the data, then it is a random matrix and this should be

properly accounted for in statistical inferences. We shall elaborate this further in Section 4.

Logically, to design an RR survey, we should first choose a transition probability matrix P ,

considering both privacy protection and statistical efficiency, and then devise an experiment to

implement it. First, any P can be implemented using k experiments, where the jth experiment

is used only by respondents with X = cj and it outputs c1, . . . , ck with probabilities p1j , . . . , pkj .

This can be accomplished, for example, by using k decks of cards, one for each category of

X. This is similar to Kuk’s (1990) RR procedure. In this approach, each respondent needs to

select and use a randomization mechanism (e.g., one of k decks of cards), unobserved by the

interviewer, based on his true category of X. Nonetheless, respondents may be suspicious of

such methods as a respondent’s experiment selection reveals his true category of X.

Next, we discuss another view of RR procedures, following Nayak (1994), and show that it is
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also possible to devise a common experiment, independent of true X category, for implementing

any given P . Randomized response is often considered as a random transformation of the true

response. Mathematically, a transformation is a function and a random transformation can be

viewed as probabilistically selecting one function from a set of functions and then applying it to

the true response to generate a randomized response. For k = 2, there are four possible functions

from {c1, c2} to {c1, c2}, given by g1 : c1 → c1, c2 → c2 (i.e., g(c1) = c1 and g(c2) = c2); g2 :

c1 → c2, c2 → c1; g3 : c1 → c1, c2 → c1; g4 : c1 → c2, c2 → c2 and any RR procedure essentially

uses g1, . . . , g4 with some probabilities α1, . . . , α4. Two procedures can be differentiated by their

values of α1, . . . , α4. Note that g1 and g2 correspond to using Q1 and Q2, and g3 and g4 represent

forced A and forced Ac responses (labeling A and Ac by c1 and c2). Thus, for example, Warner’s

method uses only g1 and g2 with probabilities p and (1− p), and the triangular method of Tan

et al. (2009) used only g1 and g3 (with given probabilities). As Quatember (2009) noted, many

existing methods use different combinations of Q1, Q2, Q3 and forced A and forced Ac responses.

However, using Q3 is equivalent to using g3 and g4 with probabilities P (B) and 1 − P (B),

respectively.

More generally, forX with k categories, there are kk functions from {c1, . . . , ck} to {c1, . . . , ck},

which we shall denote by g1, . . . , gkk . Let α = (α1, . . . , αkk) be a probability distribution on the

set of these functions. An RR procedure may be viewed as selecting one function according

to α and applying it to the true response. Here, the randomization process is the same for all

respondents. For given α, the transition probabilities are:

pij = P (Z = ci|X = cj) =
kk∑
l=1

αlP (Z = ci|X = cj , gl), i, j = 1, . . . , k, (2.3)

where P (Z = ci|X = cj , gl) is the conditional probability of Z = ci given that X = cj and

gl is selected by the randomization process. Since each gl is a (deterministic) function, this

conditional probability is either 0 or 1. Specifically, P (Z = ci|X = cj , gl) = 1 if gl(cj) = ci;

otherwise P (Z = ci|X = cj , gl) = 0. Obviously, any α induces a unique transition probability

matrix P . Conversely, given any transition probability matrix P , we can find α to satisfy (2.3).

Note that there are k(k−1) equations in (2.3), in view of the fact that
∑
i pij = 1 for j = 1, . . . , k,

and (kk−1) unknowns (in α). Thus, the number of unknowns is much larger than the number of
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equations, and for given P , (2.3) will have multiple solutions. We can use any of those solutions

to implement P by an experiment that is common to all respondents.

3. Statistical Estimation for Fixed P

Most authors have considered estimating Π under multinomial sampling when P is known and

fixed. Let n denote the sample size, Ti and Si denote the sample frequencies ofX = ci and Z = ci,

respectively, T = (T1, . . . , Tk)
′ and S = (S1, . . . , Sk)

′. Then, T ∼ Mult(n,Π), S ∼ Mult(n, λ)

and λ̂ = S/n is the MLE (and UMVUE) of λ, which in turn yields

Π̂ = P−1λ̂ = P−1(S/n), (3.1)

as an unbiased estimator of Π with

V ar(Π̂) =
1

n
(DΠ −ΠΠ′) +

1

n
[P−1Dλ(P−1)′ −DΠ], (3.2)

whereDΠ is a diagonal matrix with diagonal elements being π1, . . . , πk andDλ is defined similarly

(see Chaudhuri and Mukerjee, 1988, p. 43). The first term on the right side of (3.2) is the

sampling variance and the last term is the additional variance due to randomization. Most

authors estimate (3.2) by replacing Π by Π̂ and give interval estimates only for large n when Π̂

is approximately normally distributed. However for small and moderate n, both Π̂ and interval

estimates can take values outside the interval [0, 1]. Frey and Perez (2012) nicely discuss this

aspect for binary X and present a novel method for constructing exact confidence intervals.

While research on RR methods started long ago and in survey context, inferences under

general sampling designs have been discussed only recently, initiated by Padmawar and Vijayan

(2000). Their basic ideas have been used and further developed by Chaudhuri (2001, 2004),

Nayak and Adeshiyan (2009) and others. In the following, we summarize some results from

Adeshiyan (2011). Consider a finite population of N units, labeled i = 1, . . . , N , and suppose a

sample s, which is a subset of {1, . . . , N}, is selected using a non-informative sampling design

p(s). As before, the survey variable X is categorical with k categories and we observe only a

randomized version (Z) of it, where the transition probability matrix P is known, fixed and

nonsingular.
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For unit i (i = 1, . . . , N), we introduce two k-dimensional indicator vectors Ii and Ji. Specif-

ically, if the true category of unit i is cj , then the jth component of Ii is 1 and all other

components are 0. We define Ji similarly, to record the (randomized) response category of unit

i, if it is sampled. Thus, the data can be represented as {(i, Ji); i ∈ s}. In this setup, consider

estimating τ =
∑N
i=1 Ii, which is equivalent to estimating Π = (

∑N
i=1 Ii)/N . If the true cate-

gories, i.e., Ii, i ∈ s were observed, Π can be estimated unbiasedly using the Horvitz-Thompson

estimator. More generally, suppose τ̂ =
∑
i∈swsiIi is a homogeneous linear (design) unbiased

estimator of τ based on original data, i.e.,

∑
s

(
∑
i∈s

wsiIi)p(s) =
N∑
i=1

Ii for all I1, . . . , IN .

Then, from the fact E(Ji|Ii) = Ii, where the expectation is with respect to the RR process, it

follows that τ̂∗ =
∑
i∈swsi

(
P−1Ji

)
is a design unbiased estimator of τ based on RR survey data.

Thus, any unbiased estimator for an open survey can be easily modified to obtain an unbiased

estimator when RR is used.

Adeshiyan (2011) showed that the variance of τ̂∗ can be expressed as

V (τ̂∗) = Ep[
∑
i∈s

w2
si

{
P−1DPIi(P

′)−1
}
−DIi ] + Vp(τ̂),

where Ep denotes expectation with respect to the sampling design,

Vp(τ̂) =
N∑
i=1

biDIi +
N∑

i,j=1i 6=j
bijIiI

′
j ,

bi =
∑
s3iw

2
sip(s) − 1 and bij =

∑
s3i,j wsiwsjp(s) − 1. An unbiased estimator of V (τ̂∗) is also

presented in Adeshiyan (2011).

4. Estimation Under Invariant Post-randomization

Statistical agencies often release only a perturbed or masked version of original data to protect

the confidentiality of respondent level information. Doyle et al. (2001) and Willenborg and De

Waal (2001) described a variety of methods, such as grouping, top coding, swapping, multiple

imputation and noise addition, for creating perturbed data. Warner (1971) indicated that RR
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techniques may be used for confidentiality protection. Gouweleeuw et al. (1998) developed the

idea as the Post-randomization Method (PRAM) for perturbing categorical data. As before,

consider a categorical variable X, which may also represent the cross-classification of several

variables. Just as in RR surveys, PRAM converts the true categories to randomized responses

(categories) using a known transition probability matrix P , also called the PRAM matrix. The

randomization process is applied to each observation in the data set, independently of all other

records. Also, this process is carried out by the survey organization rather than the respondents.

For further discussion of PRAM and additional references, we refer the reader to Gouweleeuw

et al. (1998), Van den Hout and Van der Heijden (2002), Van den Hout and Elamir (2006),

Cruyff et al. (2008), Shlomo and Skinner (2010), Nayak and Adeshiyan (2015) and Nayak et al.

(2015).

For fixed P , PRAM is mathematically equivalent to RR surveys and hence all inferential

methods developed for RR surveys are applicable to data perturbed by PRAM. However, data

agencies rarely release the values of the parameters used in their perturbation procedures, such

as P for PRAM. Thus, data users usually would not know the PRAM matrix P and hence

would not be able to use the results for known P , as in the preceding section. In response

to this obstacle, statistical agencies try to use data perturbation procedures for which standard

inferential methods for original data remain valid, at least approximately, for masked data. This

motivated Gouweleeuw et al. (1998) to define a PRAM to be an invariant PRAM if P satisfies

PT = T or equivalently P Π̂0 = Π̂0, (4.1)

where Π̂0 = T/n. Since E[S|T ] = PT , under multinomial sampling, (4.1) implies that Π̂∗ = S/n,

the relative frequency vector based on perturbed data, is an unbiased estimator of Π. Also, Π̂∗

is always a probability vector and it can be calculated without using P or its inverse.

To apply invariant PRAM, we need to select and use one P satisfying (4.1). We should note

that generally (4.1) has many solutions for P and the solution space of (4.1) is a non-empty

convex set, which also contains the identity matrix. Gouweleeuw et al. (1998) and Nayak and

Adeshiyan (2015) give some methods for solving (4.1). One important point to note is that

solutions of (4.1) depend on original data through T . Thus, in invariant PRAM, P is a random
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matrix. Consequently, mathematical results for fixed P may not hold for invariant PRAM. In

the following we summarize some properties of Π̂∗, from Nayak and Adeshiyan (2015).

Let P = [P1 : . . . : Pk], i.e., denote the ith column of P by Pi, and rewrite (4.1) as

k∑
i=1

TiPi = T. (4.2)

Let Fij denote the number of units whose category changed from ci to cj due to PRAM, and

let Fi = (Fi1, . . . , Fik)
′. Then, S =

∑k
i Fi, and given T and P , F1, . . . , Fk are independently

distributed with Fi ∼Mult(Ti, Pi), i = 1, . . . , k. Now,

E(Π̂∗|T, P ) =
1

n

k∑
i=1

E[Fi|T, P ] =
1

n

k∑
i=1

TiPi =
T

n
, (4.3)

by (4.2). From (4.3), it follows easily that under multinomial sampling E(Π̂∗) = Π, i.e., Π̂∗ is

an unbiased estimator of Π. It can also be seen that

V (Π̂∗|T, P ) =
1

n2

k∑
i=1

Ti[DPi − PiP ′i ] =
1

n
[DΠ̂0

−
k∑
i=1

(
Ti
n

)PiP
′
i ], (4.4)

and

V (Π̂∗) = V [E(Π̂∗|T, P )] + E[V (Π̂∗|T, P )]

= V (Π̂0) +
1

n
[DΠ − E{

k∑
i=1

(
Ti
n

)PiP
′
i}]. (4.5)

Notice the difference between the last terms of (3.2) and (4.5), the variance inflations due

to PRAM with fixed P and invariant PRAM. The last expectation in (4.5) also involves the

conditional distribution of P given T , which is determined by the data agency’s algorithm (or

method) for choosing a solution of (4.1) for P . Typically, data users would not know P or

the agency’s full process for selecting P and hence would not be able to evaluate or estimate

V (Π̂∗). These observations show that under invariant PRAM, data users will be able to calculate

an unbiased estimate of Π (using Π̂∗), but not its sampling variance (and hence reliability).

However, as Nayak and Adeshiyan (2015) describe, the data agency can calculate (4.4) and also

estimates of (4.5). They also proved that

Vmax(Π̂∗) = (2− 1

n
)[
DΠ −ΠΠ′

n
] (4.6)
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is a tight upper bound of V (Π̂∗), in the sense that [Vmax(Π̂∗) − V (Π̂∗)] is nonnegative definite

for all invariant PRAM and there exists an invariant PRAM for which V (Π̂∗) = Vmax(Π̂∗).

An obvious lower bound for V (Π̂∗) is V (Π̂0) = [DΠ−ΠΠ]/n. These upper and lower bounds

can be estimated by replacing Π with Π̂∗. Estimating linear combinations of Π is a common

problem. A natural (and unbiased) estimator of a′Π is a′Π̂∗. The upper and lower bounds

of V (Π̂∗) immediately yields bounds for V (a′Π̂∗) = a′[V (Π̂∗)]a. We conclude this section by

mentioning that Nayak and Adeshiyan (2015) also present some results on estimation under

invariant PRAM and general probability sampling.

5. Assessing Privacy and Confidentiality Protection

The main reason for randomizing true responses, although it reduces data quality, is privacy

and confidentiality protection. Thus, we must assess how well a method protects privacy or

confidentiality. However, this is a very difficult task, because privacy and confidentiality are

complex, multifaceted concepts. Disclosure of private or confidential information can occur in

many different ways and forms (see Willenborg and De Waal, 2001), and it is difficult to develop

criteria for measuring privacy and confidentiality protection (or lack of it) that are both credible

and widely applicable. Lambert (1993) discusses several intrinsic challenges in measuring risk

and consequences of disclosure. While many researchers have investigated this topic, precise

and substantive results have been obtained only for some specific situations.

In RR survey context, most work on measuring and comparing privacy protection has focused

on binary survey variables with one category being stigmatizing, as Warner (1965) considered.

For reviewing the results, it will be convenient to use Warner’s (1965) terminology (but not

limited to his experiment). Suppose X is a binary variable with two categories A and Ac,

with π = P (A), and only A is sensitive or stigmatizing. Suppose the randomized response

also has two categories, denoted Y and Ȳ (for “Yes” and “No”, but they can also mean other

responses). Here, a transition probability matrix P is of order 2× 2 and has two free elements,

as each column adds to 1. Thus, each procedure can be characterized by the two probabilities

embedded in it, viz., γ = P (Y |A) (i.e., the probability that a respondent answers ‘Yes’ given
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that his/her true category is A) and δ = P (Y |Ac). The pair (γ, δ) defines the design of an RR

procedure. However, considering the effects of interchanging Y and Ȳ (as discussed in Section

2), it is seen that two procedures with designs (γ, δ) and (δ, γ) are equivalent. Following Nayak

(1994), the design space can be specified appropriately as D = {(γ, δ) : 0 ≤ δ < γ ≤ 1}, where

we associate Y with A and Ȳ with Ac (which seems natural).

Many authors, including Leysieffer and Warner (1976), Lanke (1976) and Fligner et al.

(1977), Nayak (1994) and Guerriero and Sandri (2007), have discussed measuring privacy pro-

tection in the preceding context. Generally, all measures involve the two posterior probabilities

P (A|Y ) =
γπ

γπ + δ(1− π)
and P (A|Ȳ ) =

(1− γ)π

(1− γ)π + (1− δ)(1− π)
(5.1)

and suggest that protection increases as these two probabilities decrease. It can be seen that the

estimator π̂ of π based on (3.1) has variance V (π̂) = [θ(1−θ)]/[n(γ−δ)2], where θ = δ+(γ−δ)π.

Noting that we desire P (A|Y ), P (A|Ȳ ) and V (π̂) to be small and all three quantities depend on

unknown π, Nayak (1994) presented the following.

Definition 5.1. An RR design D1 = (γ1, δ1) is said to be better than another design D2 =

(γ2, δ2), or D1 dominates D2, if PD1(A|Y ) ≤ PD2(A|Y ), PD1(A|Ȳ ) ≤ PD2(A|Ȳ ) and VD1(π̂) ≤

VD1(π̂) for all 0 ≤ π ≤ 1, with at least one strict inequality holding for some π.

An RR design D is said to inadmissible if it is dominated by some other design D∗. Other-

wise, D is said to be admissible.

Theorem 5.1. An RR procedure with design (γ, δ) is admissible if and only if γ = 1.

Nayak (1994) discussed some important implications of this result. It shows that any admis-

sible procedure must require all respondents in A to respond Y . In particular, any procedure

that uses Q2 or Q3 or ‘forced no’ cannot be admissible. In terms of the functions g1, g2, g3, g4 in

Section 2, an admissible procedure can use only g1 and g3. We can also see easily that of the 15

RR procedures in Table 1 of Quatember (2009), only one is admissible.

Now suppose X is binary and only A is stigmatizing, but the RR variable Z has m categories,

d1, . . . , dm (e.g., Leysieffer and Warner, 1976; Kuk, 1990; Christofides, 2003). Consider ψ =

max{P (A|Z = d1), . . . , P (A|Z = dm)} as a (summary) measure for respondent’s risk (of being
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classified in A). With this, Nayak and Adeshiyan (2009) proved that for any RR procedure R

with m ≥ 3 response categories, there exists an RR procedureR∗ with 2 response categories such

that R∗ is at least as good as R in terms of both privacy protection and statistical efficiency.

If both A and Ac are sensitive or stigmatizing, measuring and controlling privacy protection

requires a different approach. Intuitively, for any response, say Y , we would like both P (A|Y )

and P (Ac|Y ) to be small, but that is not sensible as P (A|Y ) + P (Ac|Y ) = 1. However, some

papers, e.g., Quatember (2009) and Chaudhuri (2010), have discussed the topic. Similar issues

arise in post-randomization for confidentiality protection, where true variables commonly have

multiple categories of which many may be sensitive. Also, confidentiality protection goals can

be quite different. Some methods for evaluating the efficacy of PRAM in disclosure control and

ideas on how to choose the PRAM matrix have appeared in Gouweleeuw et al. (1998), Van

den Hout and Elamir (2006), Shlomo and De Waal (2008) and Shlomo and Skinner (2010).

We believe that additional theoretical and empirical research will help to develop PRAM as a

valuable disclosure control method.

6. Discussion

Many RR techniques for privacy and confidentiality protection have appeared in the literature.

We discussed some basic elements of RR mechanisms and stressed that for proper understanding,

unification and fair comparison, RR procedures should be characterized and examined through

their transition probability matrices. The main factors that affect inferential methods are the

dimensions and rank of the transition probability matrix P , and whether P is (i) fully known or

not and (ii) fixed or selected based on the data. However, RR procedures with known, square and

nonsingular P are most convenient for statistical estimation and they should also be adequate

for protecting respondents’ privacy and confidentiality.

A common assumption in mathematical theory of RR methods is that survey participants

respond truthfully, which is unrealistic. Also, respondents’ perception of privacy protection may

depend on secondary features, such as familiarity and complexity, of the RR experiment. Thus,

respondents’ participation and truthfulness may be different in two procedures with a common
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P . In practice, one should assess respondents’ willingness and concerns by conducting pilot

studies, and utilize the findings in selecting an appropriate RR procedure. For devising an RR

experiment, after choosing P , it may be helpful to think in terms of selecting a mathematical

function probabilistically and then applying it to the respondent’s true category, as discussed in

Section 2. This approach offers much flexibility, as any P can be executed by many probability

distributions on the set of all functions and one may use secondary criteria to choose one of

those; see Nayak (1994) for some specific proposals and related results for a binary variable.
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