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Abstract  
The U. S. Census Bureau uses cell suppression methodology as the primary disclosure avoidance 

methodology for various economic surveys and the Economic Census. A research group has been 

involved in updating cell suppression processing for the 2017 Economic Census. Previous results show 

that ordering primary cell suppression affects the output of the cell suppression program. This paper 

describes two of the many research projects for improving cell suppression at the Census Bureau. One 

project was to use modelling to predict what happens for a particular primary cell in the cell suppression 

routine. The other project was to estimate empirically the long-term average number and sum of 

secondary suppressions for randomly ordered primary suppressions. 
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1 Introduction 
The United States Census Bureau pledges to respondents that the data it collects will be used for 

statistical purposes only. Further, the Census Bureau pledges not to release data that will identify 

respondents or their attributes. For economic surveys, respondents may be firms or establishments. 

The Census Bureau publishes a great many tables about the economy. Economic respondents’ privacy 

currently is safeguarded through two main methods: suppressing sensitive table cells and noise infusion. 

The Census Bureau currently uses cell suppression for the following economic programs. 

 Annual Capital Expenditures Survey 

 Annual Survey of Manufactures 

 Business R&D and Innovation Survey 

 Economic Census of the United States 

 Manufacturing Energy Consumption Survey 

 

A table cell is considered sensitive if releasing that data would allow estimating a single contributor’s 

value too closely. This situation occurs when there are very few contributors, or when one or two large 

contributors dominate the aggregate statistic. Such cells are called primary suppressions. Secondary 

suppressions are additional cells that must be suppressed so that the primary suppressions cannot be 

estimated from the other cells in the table together with the table margins. Current practice (Federal 

Committee on Statistical Methodology 2005, 61) is to detect sensitivity by using the p-percent rule. 

This paper concentrates on the problem of secondary suppressions. One problem is developing models 

that predict, for each primary suppression, the number and sum of protections for secondary 

suppressions (called, for brevity, the sum of secondary suppressions) from characteristics of the 

underlying data. Another problem is estimating the overall average number and sum of secondary 

suppressions from repeated runs of the research data suppression program. The repeated runs had, as 

one of their inputs, different permutations of the primary suppressions. The modeling was designed to 

produce local estimates for each primary suppression, and the empirical study was designed to supply 

global measures. 

2  Literature Review 
Cox (1975, 380) introduced cell suppression as a disclosure avoidance method suited for demographic 

and economic censuses in which (1) there are “many levels of aggregation” and (2) data are 

“inhomogeneously distributed.” He made three observations about suppression. First, a table with the 

same number of rows and columns and with one complementary cell suppression requires at most 

three additional suppressions (380). Second, if the number of rows and columns are not equal, then the 

number of complementary suppressions equals the number of rows or the number columns, whichever 

is greater (380). Finally, the number of distinct suppression schemes equals the factorial of the number 

of complementary suppressions (380). 
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Cox, Fagan, Greenberg, and Hemmig (1986, 388) considered cell suppression, rounding, and 

perturbation as three techniques with a unifying mathematical structure. They found exact estimation 

of primary suppression cell values can be avoided by placing it in a circuit of suppressed cells (391), and 

that an agency can calculate the range that contains the cell value derived from solving a system of 

linear equations by employing a concept of “capacitated network flow” (391). While perturbation 

requires complementary perturbations as well, complementary suppressions hold an advantage over 

complementary perturbations because one complementary suppression can protect multiple primary 

suppressions (393). 

Massell (2002) and Wang (2013) identified advantages of linear programming (LP) techniques over 

network flow models. Massell (2002) compared different cell suppression methods. There is less 

oversuppression when using LP techniques than when using network flow models. Integer programming 

(IP) techniques offer the optimal solution to the cell suppression problem but may be too slow to 

implement for large tables. Wang (2013) demonstrated how LP overcomes problems that network flow 

models have in handling complex tables. Steel et al. (2013) elaborated further on the processing, 

describing the setup of the LP as involving: 

(1) searching for a pattern to protect the cells according to the p-percent rule 

(2) creating “super cells” to ensure that unions of suppressed cells do not violate the p-percent rule 

(3) modifying the model to accommodate the supercells and obtaining a solution that minimizes the 

cost in suppression  

Wang (2016) demonstrated that in most cases, ordering the primary suppressions based on associations 

and protection levels resulted in somewhat fewer complementary cells suppressed in comparison to 

random orders. 

3 Methodology and Results 
Below we provide the methodology and results for the two parts of our research. The first section 

discusses the modeling study, while the second discusses the empirical study of suppressions for a 

subsector of the 2012 Economic Census. 

3.1 Model Study 
This section is split into two parts. The first discusses the model used for predicting the number of 

complementary suppressions for a given primary suppression. The second part discusses the model for 

predicting the total value contained in complementary suppressions for a given primary suppression. 

3.1.1 Model for Number of Complementary Suppressions for a Primary Suppression - 
Methodology 
It would be useful to know in advance what we can expect to happen for a particular primary (P) in cell 

suppression. A strong positive correlation is thought to exist between the value in the cell and the 

protection requirement, because the requirement is based on the p% rule. However, this is not always 
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the case, because the p% rule has a remainder term. Therefore, a precise prediction can drive better 

processing order. The prediction can also be used in review, which is important because the Census 

Bureau has long pushed the idea of focusing the data review on cases with the greatest impact on the 

final product. The disclosure avoidance process has been excluded for lack of a way to generate review 

cases.  

Several major obstacles to prediction exist. The cell suppression process only directly addresses a small 

percentage of the actual primaries, while the rest are determined to be protected by processing already 

executed. The raw input data may contain duplicates. If P1 and P2 are duplicates, then the pattern 

generated for whichever P is encountered first protects its duplicate. This is because two duplicates 

essentially name the same cell. Order matters, because cells processed towards the end can be 

protected by cells already marked as a complementary suppression with no extra cost. Once a cell is 

marked as a complementary cell it can be used to protect primary cells that occur later. Company 

reports force one to classify vertical complexes together. A vertical complex is a company that spans 

different NAICS1 or geographical levels. We can gain efficiency by selecting Ps that generate Cs that 

protect the entire complex.  

We created a special training data set from a hierarchical 2012 Economic Census table for Sector 72, 

Accommodation and Food Services, where the update process was disabled. This means that Cs were 

not recorded for subsequent problems. We obtained a list of complementary cell suppressions for each 

P as if it were the first P processed. 

We analyzed the Ps that accounted for their context in the tables being processed. We asked the 

following questions: 

 How many tables was the P in? 

 Was it a margin in those tables? 

 Were neighboring cells already suppressed?  

 How far was it from the grand total? 

 What was its protection requirement? 

We propose the following model to predict the suppression pattern for a P: 

(1) 𝒍𝒏(𝑵𝑼𝑴𝑪) = 𝜷𝒐 + 𝜷𝟏𝑷𝑹𝑶𝑻 + 𝜷𝟐𝑷𝑹𝑶𝑻𝟐 + 𝜷𝟑𝑵𝑼𝑴𝑹𝑬𝑳 + 𝜷𝟒𝑪𝑨𝑷𝑺𝑰𝑩𝑨𝑽𝑮 + 𝜷𝟓𝑫𝑬𝑷𝑻𝑯 +

𝜷𝟔𝑵𝑼𝑴𝑪𝑶𝑴𝑷𝟏 + 𝜷𝟕𝑽𝑨𝑳 + 𝜷𝟖𝑵𝑼𝑴𝑻𝑶𝑻 + 𝜺 

Where: 

NUMC – Number of Complementary Suppressions. Each primary suppression (P) requires a number of 

complementary suppressions to protect it. This is the number of complementary suppressions (C) 

required, if that P is done first. 

                                                           
1
 By NAICS we refer to the code assigned to an industry in the North American Industry Classification System. 
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PROT– Protection Requirement. The amount by which the cell fails the sensitivity rule. It represents how 

far from the true value the bounds on the cell need to be. Any estimate of the cell by a competitor can 

fail by as much as p%. 

NUMREL – Number of relations. The number of tables the cell is in, which lines up one-to-one  with the 

instances of relations). 

CAPSIB_AVG – Average Capacity of Siblings. For each relation we have the sum of suppressed value 

(excluding the reference P). Siblings is a misnomer;  it could also have parent or child. Capsib_avg is the 

average over all the relations the cell is in. 

DEPTH – Depth. The number of steps away from the grand total. 

NUMCOMP1 – Number of times the company one report appears in other cells (id1 and value). Could be 

as company one or this could be expanded to where the report appears as company 2. This is to account 

for vertical structure.  

VAL – Value. The value of the protected cell. 

NUMTOT – Number of times cell appears as a total. 

We use Poisson regression modelling to predict the number of complementary suppressions each 

primary suppression induces. Since the number of complementary suppressions is non-negative, 

discrete count data, we expect the data to exhibit a Poisson distribution.  

3.1.2 Model for Number of Complementary Suppressions for a Primary Suppression - 
Evaluation and Results 
We ran the regression using the SAS® GENMOD procedure. 

The scale parameter, which relates the mean to the variance, equals one. Poisson modelling assumes 

the first two moments equal. To test this assumption, we used the following diagnostic in the SAS® 

GENMOD procedure: 

Table 3.1.1 Deviance and Pearson Residuals for Number of Complementary Suppressions for a Primary 
Suppressions, σ2 = μ. 

Criterion DF Value Value/DF 

Deviance 5463 11984.1585 2.1937 

Scaled Deviance 5463 11984.1585 2.1937 

Pearson Chi-Square 5463 15066.5373 2.7579 

Scaled Pearson X2 5463 15066.5373 2.7579 

 

The Deviance is computed using the following formula:  

(2) 𝐷(�̂�𝑠, �̂�, �̂�) = ∑ 2{𝑙𝑖(�̂�𝑛
𝑖 𝑠𝑖

, �̂�) − 𝑙𝑖(�̂�𝑖, �̂�))} . 
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That is, the Deviance equals the sum of two times the difference between the log likelihood of the 

saturated model and the fitted model. The ϕ represents a scale parameter that relates the variance to 

the mean. 

The Deviance statistic is the sum of the squared deviance residuals. Both the Pearson Chi-square and the 

Deviance are significantly greater than unity, meaning the variance is greater the mean, i.e., data is 

overdispersed. The model requires rescaling based on either indicator. We choose the Deviance statistic 

because of the availability of an R2 computation for the model in the literature. 

 

We introduce the following relationship between mean and variance in the model: 

 

(3) 𝑣𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝜙𝜇𝑖  

where 𝜙 equals the scale parameter. We run the Poisson regression with the following results. 

Table 3.1.2 Parameters for Poisson Regression on Number of Complementary Suppressions for a 
Primary Suppression, σ2 = 1.851504μ 

Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept -0.8638 0.1820 22.52 <.0001 

prot 0.0001 0.0000 231.13 <.0001 

prot2 -0.0000 0.0000 137.29 <.0001 

numrel 0.7309 0.0833 76.90 <.0001 

lnCapsib -0.1670 0.0097 294.35 <.0001 

depth -0.2000 0.0132 228.49 <.0001 

numcomp1  0.0772 0.0030 659.28 <.0001 

lnVal 0.2804 0.0115 594.21 <.0001 

Numtot -0.5792 0.0934 38.48 <.0001 

Scale 1.3607 0.0000 - - 

 

The estimate for scale equals the square root of the scale parameter (√𝜙 = 1.3607). Hence we have 
the following empirical mean-variance relationship. 

(4) 𝑣𝑎𝑟(𝑦𝑖|𝑥) = 1.851504𝜇𝑖. 

Table 3.1.3 Deviance and Pearson Residuals for Number of Complementary Suppressions for a Primary 
Supression, σ2 = 1.851504μ 

Criterion DF Value Value/DF 

Deviance 5462 10112.9439 1.8515 

Scaled Deviance 5462 5462.0000 1.0000 

Pearson Chi-Square 5462 11273.6239 2.0640 

Scaled Pearson X2 5462 6088.8831 1.1148 

 

The total deviance of the model is 11984.1585. To compute the R2 value, Cameron and Windmeijer 

(1996, 214) propose the following: 
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(5) 𝑅2 = 1 − 𝐷(�̂�𝑠, �̂�, �̂�)/ 𝐷(�̂�𝑠𝑖, �̂�0, �̂�). 

The numerator in the second right-hand-side term is the total deviance, the denominator the deviance 

for the intercept-only model. The intercept-only deviance is available from the GENMOD procedure’s 

type1 option.  

Table 3.1.4 Total Deviance, Intercept-only and with Predictors Successively Added, σ2 = 1.851504μ 

Parameter Deviance 

Intercept 28791.5281 

prot 19507.3058 

prot2 16890.2923 

numrel 14955.4817 

lnCapsib 14674.6060 

depth 13530.3180 

numcomp1  11307.8149 

lnVal 10190.4357 

Numtot 10112.9439 

 

The final model is: 

(6) 𝒍𝒏(𝑵𝑼𝑴𝑪) =

−. 𝟖𝟔𝟑𝟖 + 𝟎. 𝟎𝟎𝟎𝟏𝑷𝑹𝑶𝑻 + 𝟎. 𝟎𝟎𝟎𝑷𝑹𝑶𝑻𝟐 + 𝟎. 𝟕𝟑𝟎𝟗𝑵𝑼𝑴𝑹𝑬𝑳 −

𝟎. 𝟏𝟔𝟕𝒍𝒏(𝑪𝑨𝑷𝑺𝑰𝑩𝑨𝑽𝑮) − 𝟎. 𝟐𝑫𝑬𝑷𝑻𝑯 + 𝟎. 𝟎𝟕𝟕𝟐𝑵𝑼𝑴𝑪𝑶𝑴𝑷𝟏 +

𝟎. 𝟐𝟖𝟎𝟒𝒍𝒏(𝑽𝑨𝑳) − 𝟎. 𝟓𝟕𝟗𝟐𝑵𝑼𝑴𝑻𝑶𝑻 + 𝜺 

All coefficients were statistically significant at the  = 0.001 level. 

(7) 𝑅2 = 1 −
10112.9439

28791.5281
= 0.649 

The model explains that 64.9 percent of the variance in the number of complementary cells is 

suppressed. A Pseudo-R2, computed by the squared correlation between the fitted and actual values for 

numC, is: 

(8) 𝑅2 = (𝑐𝑜𝑟𝑟(�̂�, 𝑦))
2

= 0.8422 = 0.709. 

3.1.3 Model for Sum of Complementary Suppressions for a Primary Suppression - 
Methodology 
Also of interest is predicting the total number suppressed in complementary suppressions generated by 

primary suppressions. Compared to the number of complementary suppressions, the amount 

suppressed has proven more difficult to predict, due to the skewed nature of the data. The data is 

displayed in the following density plot. 
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Figure 3.1.1 Total Value (Sum) of Complementary Suppressions for a Primary Suppression 

 

A closer inspection, made by logging the value of complementary suppression, reveals a bimodal 

distribution.  

Figure 3.1.2 Logged Sum of Complementary Suppressions for a Primary Suppression 
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To obtain the best fit for a predictive equation, we experimented with several transformations of the 

data (log, squared, and square root) and with a quantile regression, and we determined that an OLS with 

the square root of the dependent variable delivered the best fit. This approach is also supported by the 

literature. Vellemann and Hoaglin (1981) suggest lower powers for right-skewed data and higher powers 

for left-skewed data. Baker (1930) lists three ways to transform a bimodal distribution into a unimodal 

one, among which is, 

(9) 𝑢 = 𝑥𝑛, 

where n represents the number number of modes. In our case, this translates to:  

(10) 𝑢 = 𝑥2, 

with u as the dependent variable and x representing predictors. To fit the regression we take the root of 

both sides to yield: 

(11) √𝑢 = 𝑥. 

We propose fitting the following OLS model: 

(12) √𝑨𝑴𝑻𝑪 = 𝜷𝒐 + 𝜷𝟏𝑷𝑹𝑶𝑻 + 𝜷𝟐𝑷𝑹𝑶𝑻𝟐 + 𝜷𝟑𝑵𝑼𝑴𝑹𝑬𝑳 + 𝜷𝟒𝒍𝒏(𝑪𝑨𝑷𝑺𝑰𝑩𝑨𝑽𝑮) +

𝜷𝟓𝑫𝑬𝑷𝑻𝑯 + 𝜷𝟔𝑵𝑼𝑴𝑪𝑶𝑴𝑷𝟏 + 𝜷𝟕𝒍𝒏(𝑽𝑨𝑳) + 𝜷𝟖𝑵𝑼𝑴𝑻𝑶𝑻 + 𝜺 

AMTC – Amount in Complementary Suppressions. The total value of all the complementary 
suppressions induced by the primary suppression. 

3.1.4 Model for Sum of Complementary Suppressions for a Primary Suppression - 
Evaluation and Results 
The model yields the following parameter estimates: 

Table 3.1.5 Paremeters for OLS for Sum of Complementary Suppressions 

Parameter 
Parameter 
Estimate Standard Error t-value Pr > |t| 

Intercept -243.69160 32.53854 -7.49 <.0001 

prot 0.03708 0.00215 17.21 <.0001 

prot2 -2.3774E-7 4.490626E-8 -5.27 <.0001 

numrel 96.43897 15.38463 6.27 <.0001 

lnCapsib -9.19193 1.26705 -7.25 <.0001 

depth 7.72007 1.87857 4.11 <.0001 

numcomp1  14.84923 0.74601 19.90 <.0001 

lnVal 6.57230 1.46232 4.49 <.0001 

Numtot -32.52415 16.30120 -2.00 <.0461 

 
and the related fit statistics: 
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Table 3.1.6 Fit Statistics for OLS for Sum of Complementary Suppressions 

Statistic Value 

Root MSE 153.85311 

Dependent Mean 86.36742 

R-Squared 0.3676 

Adj R-Squared 0.3666 

 

Hence we arrive at the following model: 

(13) √𝒂𝒎𝒕𝑪 =

−𝟐𝟒𝟑. 𝟔𝟗𝟏𝟔+. 𝟎𝟑𝟕𝟎𝟖𝑷𝑹𝑶𝑻 − 𝟐. 𝟑𝟕𝟕 × 𝟏𝟎−𝟕𝑷𝑹𝑶𝑻𝟐 + 𝟗𝟔. 𝟒𝟑𝟖𝟗𝟕𝑵𝑼𝑴𝑹𝑬𝑳 −

𝟗. 𝟏𝟗𝟏𝟗𝟑𝒍𝒏(𝑪𝑨𝑷𝑺𝑰𝑩𝑨𝑽𝑮) + 𝟕. 𝟕𝟐𝟎𝟎𝟕𝑫𝑬𝑷𝑻𝑯 + 𝟏𝟒. 𝟖𝟒𝟗𝟐𝟑𝑵𝑼𝑴𝑪𝑶𝑴𝑷𝟏 +

𝟔. 𝟓𝟕𝟐𝟑𝒍𝒏(𝑽𝑨𝑳) − 𝟑𝟐. 𝟓𝟐𝟒𝟏𝟓𝑵𝑼𝑴𝑻𝑶𝑻 + 𝜺 

All variables were statistically significant (p<0.0001 except for NUMTOT, where p<0.05). The positive 
coefficient (7.72007) on DEPTH is consistent with findings such as Wang (2016), who showed that depth 
matters. 

 

3.2 Empirical Study 

3.2.1 Methodology for Empirical Study 
The current production program for cell suppression uses sequential estimation of complementary 

suppressions given a list of primary suppressions. The order of primary suppressions (primaries) sent to 

the program affects the number and order of complementary suppressions selected. 

The Cell Suppression group at the Census Bureau suggested running a series of cell suppressions on a 

“small” portion of the 2012 Economic Census data and calculating the average number and sum of 

secondary suppressions. We used the additive Chernoff bound (Dwork et al, 2013, page 29) to 

determine the number of data suppression runs to estimate these averages, and later to determine the 

probability that each empirical average was within a neighborhood of the population average. 

Theorem (Additive Chernoff Bound [Dwork et al, 2013, page 29]). Let X1, ... ,Xm be independent random 

variables bounded such that 0 ≤ 𝑋𝑖 ≤  1 for each i. Let 𝑆 =  
∑ 𝑋𝑖

𝑚
𝑖=1

𝑚
 denote their mean and 𝜇 = 𝐸[𝑆] be 

their expected mean. Then: 

𝑃𝑟[𝑆 > 𝜇 + 𝜀]  ≤ 𝑒−2𝑚𝜀2
 

𝑃𝑟[𝑆 < 𝜇 − 𝜀]  ≤ 𝑒−2𝑚𝜀2
 

 

To apply this theorem to the number of complementary suppressions, let Xi be the ratio of the number 

of complementary suppressions found to the number of cells. For the sum of complementary 

suppressions, let Xi be the ratio of the sum of complementary suppressions to the sum of all cell values. 
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Table 3.2.1 provides the value of 𝜀 to be 90-percent certain that an average is within 𝜀 of the population 

average given number of random runs m.  

Table 3.2.1 Additive Chernoff Bounds for 90 Percent p 

p 𝒎 
𝜺 = √

−𝒍𝒏(𝒑)

𝟐𝒎
 

0.90 20 0.0513 

0.90 30 0.0419 

0.90 40 0.0363 

0.90 50 0.0325 

 

Given time and resource constraints, we decided to do only 50 random runs of the cell suppression 

program. From table 3.2.1 we would be 90-percent confident that our estimates would be within 3.25 

percent of the population averages. We needed seven files were to conduct each experiment: the 

parameter file, the input file, the file of primaries, three relationship files, and a dummy file. Each 

experiment was expected to take around six hours. 

We conducted both random and non-random runs. The orders for the non-random runs were based on 

protection or depth by protection. To explore further the sensitivity of results to ordering, we ran 

additional runs for permutations of the top three cells for three of the non-random runs. 

3.2.2 Findings from Empirical Study 
We used annual payroll data for the Plastics and Rubber Manufacturing, subsector 326 (NAICS codes 

starting with the digits 326), from the 2012 Economic Census. 

Due to time constraints, the experiment stopped at 50 random runs. Solving for 𝜀 given m (50) and p 

(0.90), one is 90-percent confident that each average is within 3.25 percent of the associated population 

average. 

The empirical average number of complementary suppressions for the 50 cell suppression runs was 

14155.44, with a standard deviation of 1.05. The empirical average sum of complementary suppressions 

for the 50-run cell suppression experiment was 266,687,403.70, with a standard deviation of 45,965.58. 

The run times were between 5 and 6.3 hours. Figures 3.2.1 and 3.2.2 present the running average count 

and sum of complementary suppressions, respectively, for the 50 random runs. 
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Figure 3.2.1 

 

Figure 3.2.2 

 

Table 3.2.2 presents the number and sum of unduplicated complementary suppressions for the non-

random runs of subsector 326, as well as the mean, maximum, and minimum statistics for the 50 

random runs. The rows for the non-random runs are for a single run each. The maximum number and 

sum of complementary suppressions on the random runs were achieved on different runs, as were the 

minimum number and sum of complementary suppressions.  
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Table 3.2.2 Number and Sum of Unduplicated Complementary Suppressions for Non-
Random Runs, Average Number and Sum for Random Runs 

Sort Order 
Number of 

Unduplicated Cs 
Sum of 

Unduplicated Cs 

Non-Random Runs   

Increasing protection 13938 260489750 

Increasing depth, Decreasing protection 14010 268638135 

Increasing protection, Decreasing depth 14031 264328786 

Decreasing protection, Increasing depth 14122 264693203 

Decreasing depth, Increasing protection 14197 262967776 

Decreasing protection 14589 274997405 

Random Runs   

Mean 14155.44 266687403.70 

Maximum 14295 273536471 

Minimum 14030 262498160 

 
Figures 3.2.3 and 3.2.4 present the number and sum of complementary suppressions (Cs), respectively, 

for non-random runs. Within a given ordering, the runs are ordered by permutations of the top three 

cells. The figures also present the maximum and minimum number and sum of Cs of the 50 random 

runs. It appears from Figures 3.2.3 and 3.2.4 that reordering the top three cells affects the number and 

sum of Cs.  

Figure 3.2.3 
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Figure 3.3.4  
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