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SUMMARY

This paper addresses the topic of nonnested time series model comparisons. The main result is
a central limit theorem for the likelihood ratio statistic when the models are nonnested and non-
equivalent. The concepts of model equivalence and forecast equivalence, which are important
for determining the parameter subset corresponding to the null hypothesis, are developed. The
method is validated through a simulation study and illustrated on a retail time series.

Some key words: Akaike information criterion; Autoregressive integrated moving average model; Gaussian quadratic
form; Generalized likelihood ratio; Goodness-of-fit.

1. INTRODUCTION

In using time series software it is common to be provided with a number of competing models
that are identified from empirical criteria, or may be members of a default list of contenders.
When several such models have adequate goodness-of-fit diagnostics, practitioners may need to
make a final decision about the best model. Model comparison measures, such as the Akaike
information criterion, can be utilized; if one is examining only two nested models, the likelihood
ratio statistic can be used instead. This paper determines the limit theory for the likelihood ratio
statistic for both nested and nonnested models and introduces the notions of forecast equivalence
and model equivalence.

There is a substantial literature on model goodness-of-fit testing for integrated autoregressive
moving average processes models, as well as on nested model comparisons, but less treatment
of nonnested model comparisons. Li (2004) gives an overview of classical diagnostic tests of
goodness-of-fit, while Paparoditis (2000) and Chen & Deo (2004) discuss frequency-domain tests
of fit. Nested model comparisons are discussed in Taniguchi & Kakizawa (2000), while recent
work on the nonnested case includes McElroy & Findley (2010) and Clark & McCracken (2014).
The nonnested case is important in time series modelling; although model building typically
proceeds by forward addition or backward deletion of lagged variables, competing models may
ultimately be nonnested, and a disciplined approach to model selection requires a distribution
theory for this case. For example, any moving average model is nested within a moving average
model of greater order, whereas a nonnested comparison arises when assessing a moving average
model against an autoregressive model. This latter type of comparison arises frequently when
modelling time series.

Model selection among nested models is commonly achieved via either likelihood ratio sta-
tistics or information criteria; see Findley et al. (1998) for discussion. Both approaches take into
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account the complexity of the models under consideration, in order to protect against overfitting.
The likelihood ratio test is an example of a model comparison statistic and hence can provide
Type I error rate control and p-values, whereas information criteria typically do not. However,
the likelihood ratio test compares two models only, and the classical theory requires the models
to be nested; information criteria, in contrast, can be used to compare several models at once.
When only two models are being compared, a likelihood ratio statistic is preferable to information
criteria, because spurious rejections can then be avoided. When comparing more than two mod-
els, a theory for multiple comparisons is needed, requiring a joint asymptotic result for various
pairs of likelihood ratios. Our main result is that the likelihood ratio statistic for nonnested model
comparisons obeys a central limit theorem under a null hypothesis that both models forecast
equally well asymptotically.

Our limit theory for nonnested likelihood ratio statistics is related to the approach of Vuong
(1989) and Rivers & Vuong (2002), who provide a central limit theory for a broad class of
model comparison statistics. This generalizes to time series the comparison of Cox (1961, 1962).
However, the limiting variance for the nonnested likelihood ratio statistic can be zero, which
happens if and only if the two models are indistinguishable with respect to the true process. We
elaborate on these points in the paper; we refer to the preceding scenario as model equivalence,
and illustrate that this is a much narrower concept than the null hypothesis of equal forecast
capability, or forecast equivalence.

2. NESTING, PSEUDO-TRUE VALUES, AND EQUIVALENCE

The concept of pseudo-true value is discussed in Gourieroux et al. (1984), but we mainly
follow the treatment of Taniguchi & Kakizawa (2000). Consider a sequence X = {X1, . . . , Xn}T

of size n from a stationary time series {Xt} with autocovariance function γh and mean μ̃. We
compare stationary models; if the data are nonstationary, we assume they have already been
correctly differenced to stationarity. The chief context is the fitting of autoregressive moving
average models to X utilizing a Gaussian likelihood. However, one may apply our results to
stationary nonlinear time series models that satisfy certain cumulant conditions.

Time series models for stationary data are often formulated by specifying a parametric family of
spectral densities fθ , where the parameter θ is to be estimated from the data. We formulate models
in terms of spectra, because this broad framework encompasses nonlinear and long-memory
processes. For any g : [−π , π ] → R let 〈g〉 = (2π)−1 ∫ π

−π
g(λ) dλ and γh(g) = 〈geihλ〉. The

notation �(g) denotes the Toeplitz covariance matrix corresponding to the function g, having
(j, k)th entry γj−k(g). Let

D(θ , g) = 〈log fθ 〉 + 〈g/fθ 〉 (1)

denote the Kullback–Leibler divergence, which measures the discrepancy between a given model
spectral density fθ and a target spectrum g. Likelihood ratio testing is based upon the Whittle
likelihood (Taniguchi & Kakizawa, 2000) D(θ , I ), where for λ ∈ [−π , π ] the mean-centred peri-
odogram is I (λ) = n−1

∣∣∑n
t=1(Xt − μ̃) e−itλ

∣∣2
. Let θ(g) = arg minθ D(θ , g); such minimizers

need not be unique, but we will focus on situations where a unique minimizer exists. Quasilikeli-
hood estimation yields θ(I ) as the minimizer of D(·, I ), and these are called the quasilikelihood
estimators; they are asymptotically efficient for a broad class of processes when the model is
correctly specified.
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Nonnested model comparisons for time series 907

If f̃ denotes the spectral density of the true process, then D(θ , f̃ ) measures the Kullback–Leibler
divergence between the model and the true spectrum. Minimizing this criterion with respect to
θ yields θ( f̃ ), the so-called pseudo-true value. When a model is correctly specified, pseudo-true
values correspond to the true parameters; more generally, they correspond to the probability limits
of the quasilikelihood estimators. When the innovation variance σ 2 is a separate parameter, the
model is said to be separable, and we write fθ (λ) = fϑ(λ) σ 2 for θ = (ϑT, σ 2)

T
consisting of

r + 1 components. The innovation-free spectral density fϑ is obtained from fθ by setting σ 2 = 1.
Henceforth we focus on separable models; the Supplementary Material provides extensions to
the nonseparable case.

In goodness-of-fit testing, we are interested in whether the data belong to a model F =
{( fϑ , σ 2) : ϑ ∈ 	, σ 2 ∈ (0, ∞)}, with 	 an r-dimensional space. The true spectrum of the
process is some unknown f̃ , and we seek to discern whether f̃ ∈ F or not; if f̃ �∈ F then we can
compute the pseudo-true values {ϑ( f̃ ), σ 2( f̃ )}, which have the property that fϑ( f̃ ) σ 2( f̃ ) is as
close as possible to f̃ in the Kullback–Leibler sense. By profiling the Kullback–Leibler divergence
with respect to σ 2 (McElroy & Findley, 2015), we obtain the asymptotic one-step-ahead forecast
mean square error arising from forecasting with the model fθ :

J (ϑ , f̃ ) = 〈 f̃ /fϑ 〉.

The minimizer is ϑ( f̃ ), and the minimal value is σ 2( f̃ ) = 〈 f̃ /f
ϑ( f̃ )

〉.
With model comparisons we wish to know which of two models performs better according

to some criterion such as asymptotic mean square error of one-step-ahead forecasting. Set φ =
(ϕT, σ 2)

T
and let the second model be denoted by G = {( fϕ , σ 2) : ϕ ∈ �, σ 2 ∈ (0, ∞)} with

� some s-dimensional space. While it is possible that f̃ ∈ F ∩ G, the true process may belong
to neither model. The pseudo-true values for both models are denoted by {ϑ( f̃ ), σ 2( f̃ )} and
{ϕ( f̃ ), σ 2( f̃ )}.

Given two models F and G, we say that F is nested in G if for any θ there exists some
φ such that fφ ≡ fθ . In this case we write F ⊂ G. If neither model is nested in the other,
they are said to be nonnested. The model spectral densities evaluated at their pseudo-true val-
ues need not be equal, i.e., f

θ( f̃ )
need not equal f

φ( f̃ )
. The definition of model equivalence is

that f
θ( f̃ )

= f
φ( f̃ )

, which is a strong property. The overlapping property, by definition, holds

if f̃ ∈ F ∩ G, which implies model equivalence. The definition of forecast equivalence is
J {ϑ( f̃ ), f̃ } = J {ϕ(f̃ ), f̃ }. For separable models forecast equivalence is the same as diver-
gence equivalence, which is defined via D{θ( f̃ ), f̃ } = D{φ( f̃ ), f̃ }. Model equivalence implies
forecast equivalence, but examples given in the Supplementary Material show that the converse
is false; the following result gives a sufficient condition for forecast equivalence to imply model
equivalence.

PROPOSITION 1. Suppose that two nested models are separable and their pseudo-true values
exist uniquely. If the models are forecast equivalent, then they are also model equivalent.

The condition of Proposition 1 is hard to verify in some cases, but for all autoregressive models
the pseudo-true values are unique, being given as the solution to the Yule–Walker equations. The
result simplifies the discussion of model comparisons in the nested case, because we can focus
on model equivalence.
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908 T. S. MCELROY

3. METHODOLOGY FOR LIKELIHOOD RATIO STATISTICS

The likelihood ratio statistic can be used to test forecast equivalence in the overlapping case,
assuming the models are separable; the appeal, from a practical standpoint, is that no additional
computation is necessary, once the practitioner has fitted both models and has recorded the values
of their maximized loglikelihoods. Many other tests of forecast equivalence have been considered:
Vuong (1989) developed a general approach to equivalence, which has been followed by other
papers, e.g., West (1996), West & McCracken (1998), McCracken (2000, 2007), and Clark &
McCracken (2001, 2005). Much of this literature considers an out-of-sample evaluation period,
which is distinct from the span of data utilized to fit the model; the likelihood ratio statistic, in
contrast, is an in-sample device, in that the full span of data is utilized to both fit the model and
evaluate one-step-ahead forecast performance. Literature on the in-sample approach includes
Findley (1991), Diebold & Mariano (1995), Rivers & Vuong (2002), McElroy & Holan (2009),
and McElroy & Findley (2010).

As discussed in Taniguchi & Kakizawa (2000), the null hypothesis typically considered for
a likelihood ratio test is that the nested model is correct; because the models are nested by
assumption, this is the same as saying that the true process is overlapped by both models. This is
stronger than simply assuming model equivalence. Suppose that we wish to compare separable
models according to asymptotic mean square error of one-step-ahead forecasting. This is equiv-
alent to comparing the Kullback–Leibler divergences of each model to the true spectrum. It is
natural to test this by substituting empirical estimators for unknown quantities and computing
the differences. This yields the definition

LR = D{θ(I ), I } − D{φ(I ), I }, (2)

with the convention that the divergence of the second model G is subtracted from the divergence
of the first model F . When the models are nested, we always write the second as the nesting model
and the first as the nested model; then LR must be positive, because the forecast performance of
the nesting model will always be superior. When the models are nonnested, no such superiority
is required and LR can be either positive or negative.

Theorem 1 below generalizes likelihood ratio theory for nested models in two main ways:
the result discriminates between the hypotheses of forecast equivalence and model equiva-
lence, and also considers nonnested models. The theory of likelihood ratio statistics discussed
in Taniguchi & Kakizawa (2000) is derived under the Hosoya–Taniguchi conditions (Hosoya
& Taniguchi, 1982), which we employ as well. These conditions require that the process
{Xt} be a causal filter of a higher-order martingale difference, which allows nonlinearity in
the data process. We also require that the fourth-order cumulant function be identically zero,
as otherwise the variances in some of the underlying central limit theory will have altered
expressions.

We define the Hessian of D(θ , g) as M (θ , g) = ∇∇TD(θ , g), where the gradient is taken
with respect to θ . The generalized Fisher information matrix is defined as H (θ , g) =
〈∇ log fθ ∇T log fθ g2 f −2

θ 〉, and equals the usual Fisher information matrix when g = fθ . Simi-
larly, these matrices are defined for model G, by substituting φ for θ . We assume that the spectral
density is sufficiently smooth, so that these matrices are well-defined. Elementary calculation
yields

M (θ , g) =
〈
∇∇Tfθ

(
1 − g f −1

θ

)
f −1
θ

〉
+

〈
∇fθ∇Tfθ

(
2 g f −1

θ − 1
)

f −2
θ

〉
,
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Nonnested model comparisons for time series 909

so M (θ , fθ ) = H (θ , fθ ), though in general this is false for choices of g other than g = fθ . A third
type of matrix is also needed to describe the nonnested case:

K(θ , φ, g) =
[
〈∇ log fθ ∇T log fθ g2 f −1

θ f −1
φ 〉 〈∇ log fθ ∇T log fφ g2 f −1

θ f −1
φ 〉

〈∇ log fφ ∇T log fθ g2 f −1
θ f −1

φ 〉 〈∇ log fφ ∇T log fφ g2 f −1
θ f −1

φ 〉

]
.

The upper left and lower right submatrices of K(θ , φ, g) are just the generalized Fisher information
matrices for each model when they are equivalent.

THEOREM 1. Suppose that the process {Xt} has finite fourth moments, that conditions (HT1)–
(HT6) of Taniguchi & Kakizawa (2000) hold, and that the fourth-order cumulants are zero. Also
suppose that the pseudo-true values φ(f̃ ) and θ(f̃ ) exist uniquely in the interior of their respective
parameter spaces, and that M {φ(f̃ )} and M {θ(f̃ )} are invertible.

(i) Assume that the models are nested and forecast equivalent. Let the nesting model be G, so
that the likelihood ratio statistic is always nonnegative. Then for Z a zero-mean normal random
vector with identity covariance matrix Is and likelihood ratio statistic given by (2), n LR converges
in distribution as n → ∞ to ZT Q Z, where

Q = H {φ(f̃ ), f̃ }1/2
(

M {φ(f̃ ), f̃ }−1 −
[

M {θ(f̃ ), f̃ }−1 0
0 0

])
H {φ(f̃ ), f̃ }1/2.

In the case of overlapping models,

Q = Is − H {φ(f̃ ), f̃ }1/2
[

H {θ(f̃ ), f̃ }−1 0
0 0

]
H {φ(f̃ ), f̃ }1/2,

and the limiting distribution is χ2
s−r.

(ii) Assume that the models are nonnested and forecast equivalent. If they are not model
equivalent, then n1/2 LR converges in distribution to a zero-mean random variable with variance

V = 2 〈(f −1
θ( f̃ )

− f −1
φ( f̃ )

)
2
f̃ 2〉, which is consistently estimated by V̂ = 〈(f −1

θ(I ) − f −1
φ(I ))

2
I 2〉. Other-

wise, if model equivalence holds, then n LR converges in distribution as n → ∞ to ZT Q Z, where
Z is a zero-mean normal random vector with identity covariance matrix Ir+s and

Q = K{θ(f̃ ), φ(f̃ ), f̃ }1/2
[ −M {θ(f̃ ), f̃ }−1 0

0 M {φ(f̃ ), f̃ }−1

]
K{θ(f̃ ), φ(f̃ ), f̃ }1/2. (3)

Remark 1. The overlapping case of (i) can be found in Taniguchi & Kakizawa (2000), while
(ii), assuming the models are not equivalent, can be found in McElroy & Findley (2010). The
other cases of Theorem 1 are new. The case where nonnested models are forecast equivalent
but not model equivalent can arise in practice, and is therefore pertinent; see the Supplementary
Material for examples. Likewise, the case where nested models are model equivalent but not
overlapping is important but has not been considered previously.

In the nonnested case, V = 0 if and only if model equivalence holds. Thus V̂ could be used
as a separate test statistic for model equivalence. While V̂ converges in probability to V when
only forecast equivalence holds, the statistic is bounded in probability of order n−1 when model
equivalence is true as well, and the limiting distribution is fairly complicated. In this case, n V̂
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910 T. S. MCELROY

converges in distribution to a Gaussian quadratic form, so that n1/2 LR V̂ −1/2 has a nondegenerate
limit whether or not model equivalence holds.

COROLLARY 1. Under the same general assumptions as in Theorem 1, if the models are
nonnested and forecast equivalent, then n1/2 LR V̂ −1/2 converges in distribution, where the limit
is either a standard normal random variable or ZTQZ (2 ZTQ2Z)

−1/2
, depending on whether

the models are not equivalent or equivalent respectively, where Z is a zero-mean normal random
vector with identity covariance matrix Ir+s and Q is defined in (3).

The Gaussian quadratic forms ZTQZ and ZTQ2Z have distributions characterized by the eigen-
values of Q, and χ2 or γ distributions can result when certain conditions on the trace of powers
of Q hold, as described in Tziritas (1987). In practice such conditions are difficult to verify, and
one might instead use subsampling techniques (Politis et al., 1999) to approximate the sampling
distribution; this would be somewhat expensive, because the models would have to be refitted on
each subspan of data.

In most applications, nested models will be compared under the overlapping assumption, so
that the classic χ2 distribution can be used. However, it is a fallacy to conclude that the models
are not model equivalent when the χ2 test rejects; we only know that the overlapping condition
is rejected, whereas the models may still be equivalent. In order to reject the weaker hypothesis
of model equivalence, more evidence is needed and the critical values of ZTQZ with Q given in
the first part of Theorem 1 are required. Thus, the likelihood ratio test for nested models with χ2

critical values is useful for testing model goodness-of-fit with respect to the particular alternative
given by the nesting model, but is not informative as a model comparison test statistic unless we
have some prior reason to believe that model equivalence is impossible.

In the special case that the innovation variance is the final parameter we have θ = (ϑT, σ 2)
T
,

and the optimizer for the innovation variance is σ 2(g) = 〈 f −1
ϑ(g)g〉. Then the divergence becomes

D{θ(g), g} = log σ 2(g) + 〈 f −1
ϑ(g)g〉/σ 2(g) = log〈 f −1

ϑ(g)g〉 + 1,

and the likelihood ratio statistic is just the difference in the logarithms of the innovation variance
estimators from the two models. In the nonnested case, the variance estimate is computed via

V̂ =
〈(

f −1
θ(I ) − f −1

φ(I )

)2
I 2

〉
= RT �( f −2

θ(I )) R − 2RT �( f −1
θ(I )f

−1
φ(I )) R + RT �( f −2

φ(I )) R.

Here R is the vector of sample autocovariances RT = [γ̂1−n, . . . , γ̂0, . . . , γ̂n−1], where γ̂ (h) =
〈Ieih·〉, and the Toeplitz matrices � have dimension 2n − 1. We only need to compute inverse
Fourier transforms for f −2

θ(I ), f −1
θ(I ) f −1

φ(I ), and f −2
φ(I ).

A final point is that the objective function commonly used is not the Whittle likelihood D(θ , I )
of (1), but rather −2 times the log Gaussian likelihood, typically stripped of normalizing constants.
This objective function is written

L(θ ; X ) = X T �( fθ )
−1 X + log |�( fθ )|. (4)

As discussed in Taniguchi & Kakizawa (2000), L(θ , X )/n ≈ D(θ , I ), and parameter estimators
from either (1) and (4) behave similarly in large Gaussian samples according to results of Dahlhaus
& Wefelmeyer (1996). In empirical work, the assumptions of the theory should be checked by
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−2 −1 0 1 2

−1·0

−0·5

0·0

0·5

1·0

τ1

τ2

Fig. 1. The invertibility region for the order-two moving average process is within the solid lines, with dashed lines
demarcating real roots (below) from complex roots (above). The forecast equivalence set is denoted by dotted lines.

The origin is the model equivalence set.

applying normality and stationarity tests to the model residuals; if using the Gaussian likelihood
(4) it is important to check that the data is Gaussian, while for nonlinear time series the Whittle
likelihood can be used.

4. SIMULATION STUDY

We consider fitting an order-one autoregressive model and a gap order-two autoregressive
model, which means that the first autoregressive coefficient is constrained to be zero. The pseudo-
true values are ϑ(f̃ ) = ρ1 for the first model and ϕ(f̃ ) = ρ2 for the second model, where ρ1 and ρ2
are the lag-one and lag-two autocorrelations of the true process. These two models are nonnested,
and the smallest model nesting both of them is the unconstrained order-two autoregressive model.
The asymptotic mean square one-step-ahead forecast error for these models is

J {ϑ(f̃ ), f̃ } = γ0
(
1 − ρ2

1

) J {ϕ(f̃ ), f̃ } = γ0
(
1 − ρ2

2

)
,

with γ0 the variance of the process. Forecast equivalence holds if and only if ρ2
1 = ρ2

2 , whereas
model equivalence holds if and only if ρ1 = 0 = ρ2.

To study size and power, let the true process be an order-two moving average with moving
average polynomial 1+ τ1B + τ2B2, and unit innovation variance. This polynomial has real roots
if τ 2

1 � 4τ2 and the roots have magnitude greater than one, implying that the process is invertible,

so long as |τ1| − 1 � τ2 � {(1 + 2τ 2
1 )

1/2 − 1}/2. This region is depicted in Fig. 1. In terms of
the moving average parameters, forecast equivalence means that τ1 = ±τ2/(1 + τ2), whereas
model equivalence means that τ1 = τ2 = 0.

To assess size, we simulated 1000 replications of a Gaussian moving average process from
the forecast equivalence set of sample sizes n = 50 through n = 300, fitting both models and
normalizing via V̂ , as described in Corollary 1. We took a range of τ2 values, from 0 down
to (−3 + 51/2)/2, and τ1 = τ2/(1 + τ2). We then measured the proportion of rejections of
the null hypothesis, utilizing a two-sided test and normal quantiles at the 5% and 10% levels.
This procedure is not asymptotically correct on the model equivalence set, and in Table 1 we see
deterioration in size for processes that are forecast equivalent and close to being model equivalent.
The results agree with the theory, as size improves with increasing n, and also improves as the
distance from the origin is increased.
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912 T. S. MCELROY

Table 1. Finite-sample size (%) of likelihood ratio tests, at nominal 5% (left cell) and
10% (right cell)

Sample size
τ2 50 100 150 200 250 300

−0·032 0·0 0·6 0·2 0·6 0·1 0·3 0·0 0·4 0·0 0·5 0·0 0·3
−0·082 0·6 2·0 0·3 1·6 0·1 1·3 0·3 1·8 0·1 2·4 0·6 3·6
−0·132 1·0 2·6 1·2 4·0 1·6 4·2 1·5 5·6 1·8 6·3 2·8 7·4
−0·182 1·4 3·5 2·8 6·0 2·0 7·1 3·0 8·5 3·3 8·9 4·1 8·4
−0·232 2·6 6·8 4·5 8·6 3·5 9·7 5·0 9·3 4·4 9·8 4·9 9·6
−0·282 4·0 9·3 4·4 9·2 4·1 9·1 4·5 10·3 4·8 10·8 5·4 9·9
−0·332 5·6 11·5 4·2 9·1 4·6 9·4 4·4 9·5 4·8 9·6 5·5 10·8
−0·382 5·6 10·4 4·3 11·0 5·3 11·1 4·4 9·8 4·4 8·8 4·7 10·0

−2
−1

0
1

2 −1·0
−0·5

0·0 0·5 1·0

0·0

0·2

0·4

0·6

0·8

1·0

Power

τ1 τ2

(a)

n = 50

−2
−1

0
1

2 −1·0
−0·5

0·0 0·5 1·0

0·0

0·2

0·4

0·6

0·8

1·0

Power

τ1 τ2

(b)

n = 100

Fig. 2. Power surfaces for the likelihood ratio test statistic, comparing an order-one autoregressive model and a gap
order-two autoregressive model over the space of invertible order-two moving average processes. Type I error rate

is 5%, with sample sizes n = 50 and n = 100.

To investigate power we simulated the same moving average process over the entire invertibility
region, incrementing the moving average parameters in steps of 0·05, and measured the incidence
of rejections using normal quantiles at the 5% and 10% levels. This mimics how the procedure
would be used in practice. Figure 2 displays the power surfaces for sample sizes n = 50 and
n = 100 and α = 5%. The bird-like shape indicates higher power at the three corners/cusps
of the invertibility region in Fig. 1. Again, on the model equivalence set this procedure is not
consistent, and we may expect power to deteriorate in a neighbourhood of the origin. Along the
forecast equivalence set the percent of rejections is quite low, as we expect, and this also holds
for the model equivalence set, i.e., the origin. Results based upon simulations for higher sample
sizes and α = 10% were qualitatively similar to those in Fig. 2.

5. ANALYSIS OF ELECTRICITY SERIES

We study the series of Electronics and Appliance Stores over the pre-Recession span 1992–
2007, which is published by the U.S. Census Bureau from the Monthly Retail Sales Survey. The
series required a log transformation, and all types of fixed effects, such as outliers, Easter and
trading day, were removed before further analysis. We selected a seasonal autoregressive moving
average model, for which normality and stationarity of the model residuals was not rejected.
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Nonnested model comparisons for time series 913

However, the Ljung–Box statistics indicate some potential residual correlation, as discussed in
McElroy & Monsell (2014). In that paper a gap model was proposed, whereby the differenced
series is modelled with an order-13 moving average, where all coefficients but the last one are
constrained to be zero. Letting {Xt} correspond to seasonal and nonseasonal differencing of the
data process, the scaled likelihood (4) is −1189·51 for the first model

(1 − 0·37B + 0·14B2)Xt = (1 − 0·46B)(1 − 0·24B12)εt ,

where the log innovation variance is −7·65. On the other hand, the more parsimonious order-13
moving average model has scaled likelihood −1188·94, with a significant 13th moving average
parameter of 0·26 and log innovation variance −7·65. The model results were also adequate.
McElroy & Monsell (2014) indicate that this model is superior to the identified seasonal autore-
gressive moving average via analysis of each model’s residuals, but here we directly compare
their likelihoods, which are extremely similar.

Now we can determine the exact conditions of model equivalence by equating the two spec-
tral densities and solving. Using the uniqueness of spectral factorization, we find that the two
autoregressive parameters of the first model must be zero if model equivalence is to hold, and
deduce that the models are not equivalent unless they are both white noise. If we constrain the
13th moving average coefficient of the second model to be in the interval (0, 1), then we ensure
that the second model cannot be a white noise, implying that the models must not be equivalent.
Hence we can safely use the standard normal critical values. The normalized likelihood ratio
statistic is n1/2 LR V̂ −1/2 = −0·017, which is an insignificant result. Although the first model is
favoured, it is not significantly superior.
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