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Abstract

This study examines some diagnostics available in X-13ARIMA-SEATS for detecting a trading-
day effect. The diagnostics of interest are a χ2-test, an F -test, and the spectrum peaks at the
two tested trading-day frequencies (under both the default last 8 years of data as used by the
program and the full data). Sets of seasonal series without trading-day effects are simulated
initially to measure the false detection rate and to estimate the appropriate α = 0.05 critical
value. Sets of seasonal series with trading-day effects are subsequently simulated to assess the
power of those diagnostics.

Disclaimer This report is released to inform interested parties of ongoing research and to encour-
age discussion of work in progress. Any views expressed on statistical, methodological, technical,
or operational issues are those of the authors and not necessarily those of the U.S. Census Bureau.

1 Introduction

Trading-day effects can occur in a series when activity varies depending on the day of the week.
Since months are not uniform in length, aggregating this daily activity to a monthly total may
result in variation that is attributable to the composition of days in a month. For example, retail
series might see slightly higher sales for months that contain more Saturdays and Sundays. Bell
and Hillmer (1983) suggested a regression-type model to account for trading-day and other holiday
effects; combined with an autoregressive integrated moving average (ARIMA) model, the overall
model could handle both time series behavior and calendar variation. X-13ARIMA-SEATS contains
multiple diagnostics that can be used for detecting the presence of a trading-day effect. These range
from the statistically-based χ2- and F -tests on a trading-day regressor to more informal tests of
“visual significance” with respect to various spectrum estimators (see Cleveland and Devlin (1980)
for an early discussion of spectrum analysis for detecting trading-day and other calendar effects).

Soukup and Findley (1999) previously conducted a simulation study to examine the spectrum
diagnostics available in X-12-ARIMA for detecting a trading-day effect. Using a base set of 42 real
(monthly) economic series that had trading-day effects present, they ran these series through X-12-
ARIMA without estimating a trading-day effect. From examining the spectrum estimators of some
of the resulting output series, they reported the detection rate as the percentage of series for which
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X-12-ARIMA found a “visually significant” peak at a particular trading-day frequency. To obtain
simulated series for establishing false detection rates, they took a multiplicative decomposition
of each series into a trend, seasonal, and irregular component; since no trading-day effect was
estimated in the original series, all trading-day variation should be contained within the irregular
component. Replicates of each series were produced by bootstrapping the respective irregular
component. These replicates thus preserved the trend and seasonal aspects of the original series,
but not the observed trading-day pattern. The false detection rate was determined by running these
replicate series through X-12-ARIMA with the same procedure used to establish the detection rate.
The spectrum estimators used in the simulation study of Soukup and Findley (1999) appear to have
been computed using the default last 8 years of data, and the study concluded that the presence of
a “visually significant” peak in either the spectrum estimator of the differenced seasonally adjusted
series or that of the irregular component was the preferred diagnostic for determining a trading-day
effect. A “6-star” peak was determined to satisfy the condition of “visual significance,” and their
study found that this criteria had a false detection rate between 10 and 15 percent.

Lytras et al. (2007) performed a different type of simulation study to assess the diagnostics for
detecting seasonality in X-12-ARIMA. Using some of the methodology described there, Ladiray
(2012) conducted a similar study on detection of trading-day effects. The simulation study of
Ladiray (2012) used a set of 22 nonseasonal and seasonal ARIMA models, with the idea that
each model aligned with a particular spectrum estimator when detecting a trading-day effect using
“visual significance.” This visual test was conducted for both the autoregressive spectrum estimator
that was the default option in X-12-ARIMA and a periodogram estimate. In addition to examining
the test of “visual significance,” the statistically-based diagnostics available in X-12-ARIMA were
also considered. The series simulated were of variable length, and both monthly and quarterly
series were used. The study suggested that the periodogram estimate may be preferable to the
autoregressive spectrum estimator as far as the visual tests were concerned, but that the regARIMA
F -test performed best for detecting a trading-day effect.

The simulation study described in this report is more similar in construction to that of Ladiray
(2012) than to that of Soukup and Findley (1999), but restricts itself to monthly series of length
20 years. The length itself is somewhat arbitrary. The other simulation studies appear to have
examined only the spectrum estimator produced using the default last 96 observations (i.e., the
last 8 years for a monthly series). There is also some difference from Ladiray (2012) in that four
spectrum peak diagnostics associated with the autoregressive spectrum estimator are evaluated,
although there is no tweaking of the width of the band used for determining spectral peaks as there
was in Ladiray (2012).

Like Ladiray (2012), we examine the regARIMA χ2- and F -tests for a fixed trading-day effect as
well as the various spectrum peak diagnostics reported by X-13ARIMA-SEATS (at the two tested
trading-day frequencies using both the X-13ARIMA-SEATS default setting and the full series). We
start by laying out the framework for the simulations, namely the models and parameter sets used.
Using a simulated set of series with no trading-day effect, we study the sizes of the various diagnostic
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tests. Adding trading-day effects to those previously simulated series allows for an examination of
the power of those same diagnostic tests.

Section 2 provides the framework for the simulation study. Section 3 uses series with no trading-
day effect to look at the false detection rate for the diagnostics considered. Section 4 uses the set
of α = 0.05 size-adjusted critical values derived from the results of Section 3 to simulate the
power for these diagnostics. Section 5 re-examines the false detection rate and power for some
other autoregressive spectrum estimators produced by X-13ARIMA-SEATS as a comparison to the
previous results obtained for the spectrum estimator of the regARIMA model residuals. Section 6
summarizes the results.

2 Methodology

For the simulation study, monthly series of length 20 years are generated for 24 different seasonal
ARIMA models. Ladiray (2012) used a set of nonseasonal and seasonal models as reflective of the
cases encountered when testing spectrum peak diagnostics in X-13ARIMA-SEATS: the spectrum
associated with white noise was analogous to the spectra of model residuals and the irregular
component, the spectrum associated with nonseasonal models was analogous to that of seasonally
adjusted series, and the spectrum associated with seasonal models was analogous to that of the
original series. The following models are used in this simulation:

• (0 1 1)12, with θ12 = 0.3, 0.5, and 0.8

• (0 1 0)(0 1 1)12, with θ12 = 0.3, 0.5, and 0.8

• (0 1 1)(0 1 1)12, with θ1 = 0.3, 0.5, and 0.8, and θ12 = 0.3, 0.5, and 0.8

• (1 1 0)(0 1 1)12, with φ1 = 0.3, 0.5, and 0.8, and θ12 = 0.3, 0.5, and 0.8

Since these models all have the general form (p d q)(0 1 1)12, each can be represented as

(1 − φ1B)p(1 −B)d(1 −B12)yt = (1 − θ1B)q(1 − θ12B
12)ξt,

with p, d, and q equal to zero or one as appropriate, and where ξt is some zero-mean white noise
process (for convenience, a normal distribution is typically chosen); this simulation assumes a
normal distribution with mean 0 and variance 1 for ξt. Solving for yt provides a recursive formula
that can be used to simulate series for each model.

For the χ2- and F -tests, the simulated series are modeled in X-13ARIMA-SEATS using the
correctly specified regARIMA model, along with regressors for a constant term and a trading-
day effect; the estimated trading-day effect will be tested at an α = 0.05 significance level. Note
also that X-13ARIMA-SEATS provides a χ2-test for both a trading-day regressor and a combined
trading-day and leap year regressor. The results of the two χ2-tests should not be appreciably
different, but only the one for the trading-day regressor will be considered. This is because the
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F -statistic is a linear transformation of this χ2 statistic (F = χ2

6 ×κ, where κ = 227
219 for the (0 1 1)12

models and 228
220 for the others). The false detection rate of the two statistical tests is approximately

the proportion of simulated series for which the p-value of the corresponding test statistic computed
by X-13ARIMA-SEATS is less than 0.05.

The diagnostics for spectrum peaks use a non-statistical test based on the autoregressive spectral
density estimator. In X-13ARIMA-SEATS the spectrum is plotted at frequencies λk of the form
k/120, 0 ≤ k ≤ 61. The software also computes the spectrum at the trading-day frequencies (0.348
and 0.432) along with the frequencies 1/120 before and after these trading-day frequencies (i.e.,
{0.3396, 0.348, 0.3563} and {0.4236, 0.432, 0.4403}). A peak at a trading-day or seasonal frequency
is declared “visually significant” if it is both greater than the median of plotted values and larger
than its neighbors by at least 6/52 times the range of plotted values (a “star” is equivalent to 1/52
times the range, so a “visually significant” peak is 6 “stars” high). More details can be found in
Section 6.1 of the X-13ARIMA-SEATS reference manual (U.S. Census Bureau (2015)).

The values of the spectrum at the two trading-day frequencies can be extracted from the diag-
nostic summary file (.udg file). For evaluating the spectrum peaks, the simulated series are modeled
in X-13ARIMA-SEATS using the correctly specified regARIMA model and a constant term, but no
trading-day regressor. This is done twice – once using all 20 years for the spectrum and once using
just the last 8 years. The peak strength will be saved as is for any peak that is both greater than
the median and larger than its neighbors, but will be set to 0 otherwise. Under this framework,
the false detection rate is the proportion of simulated series for which the value at either of the two
trading-day frequencies exceeds 6. Soukup and Findley (1999) observed that a threshold of 6 yields
a false detection rate of approximately 0.1 when evaluated at just the 0.348 trading-day frequency.

3 False Detection Rates

A simulation run of 10,000 monthly series for each seasonal ARIMA model was performed. The
spectrum peak diagnostic examined was the spectrum of the model residuals. Table 1 has the
false detection rate for the two statistically-based diagnostics (χ2 and F ), as well as for the peak
diagnostic for the spectrum of the model residuals for each of the seasonal ARIMA models.

The results shown are more or less as expected. The F -test comes closest to achieving the desired
size, although the false detection rates observed would still be considered significantly different for
more than half of the models. Ladiray (2012) found smaller false detection rates for the F -test
than were obtained here (and were lower than the assumed 0.05 significance level). While his
numbers were obtained by averaging results over models with different parameter values and series
of different lengths, those factors would not account for this observed difference. We were unable to
replicate Ladiray’s numbers, as our results suggest there is instead a small upward size bias. The
χ2 performs slightly worse in this respect than the F -test, which is attributable to the fact that the
F -test accounts for estimation of the variance (and the χ2 does not). The “6-star” rule for spectrum
peaks of model residuals has higher false detection rates than either of the statistically-based tests,
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χ2 F Residual Spectrum

Model φ1 θ1 θ12 p = 0.05 p = 0.05 8 years All 20

(0 1 1)12 0.3 0.0624 0.0481 0.1409 0.1395
0.5 0.0647 0.0506 0.1365 0.1414
0.8 0.0656 0.0526 0.1323 0.1492

(0 1 0)(0 1 1)12 0.3 0.0671 0.0519 0.1372 0.1363
0.5 0.0703 0.0554 0.1325 0.1406
0.8 0.0637 0.0513 0.1351 0.1523

(0 1 1)(0 1 1)12 0.3 0.3 0.0690 0.0546 0.1391 0.1396
0.5 0.0744 0.0581 0.1343 0.1395
0.8 0.0749 0.0591 0.1357 0.1536

0.5 0.3 0.0707 0.0561 0.1397 0.1391
0.5 0.0684 0.0550 0.1370 0.1439
0.8 0.0672 0.0538 0.1353 0.1548

0.8 0.3 0.0656 0.0524 0.1400 0.1348
0.5 0.0648 0.0518 0.1404 0.1465
0.8 0.0645 0.0497 0.1363 0.1492

(1 1 0)(0 1 1)12 0.3 0.3 0.0749 0.0597 0.1373 0.1363
0.5 0.0741 0.0594 0.1335 0.1358
0.8 0.0734 0.0592 0.1309 0.1604

0.5 0.3 0.0716 0.0573 0.1344 0.1368
0.5 0.0698 0.0570 0.1398 0.1482
0.8 0.0693 0.0551 0.1327 0.1512

0.8 0.3 0.0679 0.0538 0.1358 0.1444
0.5 0.0623 0.0477 0.1396 0.1492
0.8 0.0593 0.0449 0.1365 0.1516

Table 1: False detection rates for trading-day diagnostics.

and the rates we find are larger than the 0.1 rate observed by Soukup and Findley (1999). This is
likely a by-product of our testing two frequencies. Compared to the false detection rates observed
by Ladiray (2012) for a (0 0 0) model (white noise), however, we find rates that are noticeably
lower. We also observe slightly higher rates associated with the spectrum constructed using the
full data and for the series with a seasonal θ12 of 0.8. Overall, the numbers are reasonably stable,
hovering around the 0.13 to 0.16 range. This stability suggests that one can achieve a desired false
detection rate using the spectrum of the model residuals by changing the threshold rule from 6
stars to some appropriate value.

As a quick check, the simulation is repeated, but with fixed parameter values for the models
rather than estimated values. Under these conditions, the F -test should detect a trading-day effect
5% of the time, with some slight deviation that can be attributable to simulation error. Looking
at each of the 24 models individually, there are 2 for which the F -test has a significance level that
would be significantly different from 0.05, but averaging over the 24 models, the overall significance
level is 0.0493, which is reasonably close to the desired 0.05.

4 Simulated Power

In this study, the reference distribution for the χ2-test is a χ2
6 for all of the models. For the F -test,

the appropriate reference distribution is an F6,220 for all but the (0 1 1)12 and an F6,219 for the
(0 1 1)12 models. Using an α = 0.05 significance level, the resulting critical values are approximately
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Peak Heights (stars)

Model φ1 θ1 θ12 χ2 F 8 years All 20

(0 1 1)12 0.3 13.1551 2.1156 11.6 11.3
0.5 13.3548 2.1477 11.7 11.6
0.8 13.4268 2.1593 11.5 11.6

(0 1 0)(0 1 1)12 0.3 13.4338 2.1601 12.2 11.7
0.5 13.6349 2.1924 11.6 11.5
0.8 13.4225 2.1582 11.8 12.3

(0 1 1)(0 1 1)12 0.3 0.3 13.6154 2.1893 11.9 12.0
0.5 13.6799 2.1996 12.0 11.6
0.8 13.8720 2.2305 11.8 12.1

0.5 0.3 13.6108 2.1885 12.5 11.5
0.5 13.6083 2.1881 12.0 11.5
0.8 13.5230 2.1744 11.9 12.1

0.8 0.3 13.4222 2.1582 12.4 11.8
0.5 13.3755 2.1507 12.3 12.2
0.8 13.2840 2.1360 11.6 12.0

(1 1 0)(0 1 1)12 0.3 0.3 13.8603 2.2286 12.1 11.4
0.5 13.8757 2.2311 11.7 11.3
0.8 13.8628 2.2290 11.7 12.4

0.5 0.3 13.7434 2.2098 12.3 11.7
0.5 13.7247 2.2068 12.3 11.9
0.8 13.6674 2.1976 11.7 12.1

0.8 0.3 13.4843 2.1682 12.0 11.9
0.5 13.1742 2.1183 11.9 11.8
0.8 13.0055 2.0912 12.1 12.3

Table 2: Simulated critical values for a significance level of 0.05.

12.6 for the χ2-test and roughly 2.14 for the F -test. However, for power calculations, we find the
size-adjusted critical value by determining the 95th percentile of the observed test statistics from
the above simulations. Table 2 gives the size-adjusted critical values for each of the diagnostics
described in the previous section. We can see that the ranges are actually fairly small for all of
the diagnostics, as all of the critical values are between 13 and 13.9 for the χ2-test, between 2.09
and 2.23 for the F -test, and between 11.3 and 12.5 for the peak diagnostic applied to the residual
spectra (the residual spectrum constructed using all 20 years of data tends to have slightly smaller
critical values than the one constructed using just the last 8 years). Note that the size-adjusted χ2

critical value for each model in our simulation exceeds the actual α = 0.05 critical value for a χ2
6

distribution, and the same is true in all but a few cases with respect to the size-adjusted F critical
value. As mentioned previously, the F -statistic can be obtained directly from the χ2 statistic (and
vice versa); as a result, the power calculations for both diagnostics should be identical when size-
adjusted critical values are used. Because of this, since the F -test comes closer to achieving the
nominal size, the power results will be reported for the F -test, but not for the χ2-test.

With the simulated series from the previous section, we can construct series with fixed trading-
day effects. Following the notation of Ladiray (2012), if a simulated series is labeled as ARIMAt and
the trading-day effect as TDt, then a series with a trading-day effect is just Xt = ARIMAt + δTDt,
where δ represents a scale factor for the magnitude of the trading-day effect. We use 3 different
trading-day patterns that have mean 0 and variance 1; these are plotted in Figure 1 and were
chosen to approximate the three different trading-day patterns described by Ladiray (2012). The
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TD Component 1 TD Component 2 TD Component 3

−2

−1

0

1

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Figure 1: Trading-day components used for simulation.

Mon Tue Wed Thu Fri Sat Sun

TD Component 1 0.25 0.85 0.75 0.30 0.70 −1.50 −1.35
TD Component 2 −1.10 −0.50 1.80 −1.00 0.50 0.20 0.10
TD Component 3 −0.50 0.05 0.40 0.20 0.65 1.15 −1.95

Table 3: The daily effects associated with the three trading-day patterns.

exact numbers used for the approximation are provided in Table 3.
In constructing the various series Xt for this simulation, δ values of 0.1, 0.3, and 0.5 are used.

Each series is then modeled in X-13ARIMA-SEATS using the correctly specified ARIMA model
with the parameters estimated. As before, a trading-day regressor will be included for the F -test,
but will be excluded for spectrum peaks. The power of each diagnostic is estimated by finding
the proportion of series that exceed the corresponding size-adjusted critical values. We display
simulated power results for δ = 0.1 (Table 4) and δ = 0.3 (Table 5), averaging the simulated power
observed over the three trading-day components. The power results for δ = 0.5 will be omitted due
to the fact that the power is very close to 1 in all but a few cases.

From the two tables, it is apparent that the peak diagnostic for the spectrum of the model
residuals has lower power than the F -test does. This is in line with what was seen in Ladiray
(2012). However, we observed that the F -test has higher power (averaging over the three trading-
day patterns) for δ = 0.1 and δ = 0.3 than was found by Ladiray (2012). The two studies do not
use identical sets of models, so the averages are not necessarily comparable, but the difference is
noticeable nevertheless. It is also unsurprising that the disparity in power between the spectrum
peaks diagnostic and the statistical test is greatest when the trading-day effect is weak. Ladiray
(2012) does not appear to observe a noticeable difference in power between series of varying lengths
for the visual tests, which might suggest that the spectrum estimator used the same length (perhaps
the default last 8 years of data) regardless of series length. The results obtained here indicate that
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Residual Spectrum

Model φ1 θ1 θ12 F 8 years All 20

(0 1 1)12 0.3 0.3876 0.0953 0.1202
0.5 0.3656 0.0935 0.1249
0.8 0.3148 0.0847 0.1158

(0 1 0)(0 1 1)12 0.3 0.8126 0.1777 0.2896
0.5 0.7813 0.1906 0.3128
0.8 0.7296 0.1659 0.2654

(0 1 1)(0 1 1)12 0.3 0.3 0.6741 0.1457 0.2106
0.5 0.6542 0.1433 0.2299
0.8 0.5789 0.1315 0.2072

0.5 0.3 0.5779 0.1157 0.1826
0.5 0.5580 0.1251 0.1913
0.8 0.4993 0.1130 0.1681

0.8 0.3 0.4425 0.0989 0.1382
0.5 0.4338 0.0982 0.1392
0.8 0.3800 0.0964 0.1332

(1 1 0)(0 1 1)12 0.3 0.3 0.8996 0.2370 0.4075
0.5 0.8781 0.2541 0.4283
0.8 0.8302 0.2174 0.3659

0.5 0.3 0.9437 0.2699 0.4664
0.5 0.9278 0.2845 0.4848
0.8 0.8894 0.2633 0.4410

0.8 0.3 0.9842 0.3569 0.5517
0.5 0.9761 0.3680 0.5891
0.8 0.9566 0.3229 0.5351

Table 4: Average power of trading-day diagnostics when δ is 0.1.

Residual Spectrum

Model φ1 θ1 θ12 F 8 years All 20

(0 1 1)12 0.3 0.9967 0.3623 0.5957
0.5 0.9910 0.3676 0.6052
0.8 0.9755 0.3319 0.5691

(0 1 0)(0 1 1)12 0.3 1.0000 0.5526 0.8280
0.5 1.0000 0.5959 0.8417
0.8 1.0000 0.5435 0.8087

(0 1 1)(0 1 1)12 0.3 0.3 1.0000 0.5399 0.7750
0.5 1.0000 0.5449 0.7903
0.8 0.9996 0.5044 0.7611

0.5 0.3 0.9999 0.4686 0.7328
0.5 0.9998 0.4948 0.7484
0.8 0.9985 0.4446 0.7119

0.8 0.3 0.9994 0.3963 0.6476
0.5 0.9970 0.4051 0.6537
0.8 0.9897 0.3816 0.6282

(1 1 0)(0 1 1)12 0.3 0.3 1.0000 0.6836 0.9046
0.5 1.0000 0.7032 0.9118
0.8 1.0000 0.6484 0.8856

0.5 0.3 1.0000 0.7164 0.9261
0.5 1.0000 0.7221 0.9343
0.8 1.0000 0.6990 0.9210

0.8 0.3 1.0000 0.7490 0.9525
0.5 1.0000 0.7529 0.9599
0.8 1.0000 0.7198 0.9477

Table 5: Average power of trading-day diagnostics when δ is 0.3.
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the power is notably higher when the spectrum is estimated using the full series as opposed to just
the last 8 years.

It can also be seen from the Tables 4 and 5 that the simulated power varies across ARIMA
models: the diagnostics perform better for detecting a trading-day effect with a (1 1 0)(0 1 1)12

seasonal ARIMA model than they do for the other models considered here, with the worst perfor-
mance for the (0 1 1)12 models. The size of the model parameters also influences the power of the
various diagnostics. The power generally seems to decrease when seasonal moving average param-
eter θ12 is increased from 0.5 to 0.8. In addition, there appears to be a decrease in power as the
nonseasonal moving average parameter θ1 increases for the (0 1 1)(0 1 1)12 model and, conversely,
an increase in the power is observed as the nonseasonal autoregressive parameter φ1 increases for
the (1 1 0)(0 1 1)12 models. The power scales fairly well as the magnitude of the trading-day effect
(as represented by δ) increases. With a δ of 0.5, even the worst-performing diagnostic shown in
the tables above – the spectrum peaks diagnostic using just the last 8 years of data for a (0 1 1)12

model – would correctly detect a trading-day effect more than half of the time.

5 Residual Spectrum versus Others

The spectrum peak diagnostic we initially considered was of the regARIMAmodel residuals when no
trading-day regressor was included in the model. X-13ARIMA-SEATS also estimates the spectrum
for three other series: the differenced original series, the seasonally adjusted series, and the irregular
series. In the interest of comparing the peak diagnostic for the various spectrum estimators, we
conduct a second simulation run for these other spectrum peak diagnostics. To provide a consistent
base, these other three spectrum diagnostics will also be considered using a regARIMA model with
no trading-day regressor. In order to obtain the spectra of the seasonally adjusted series and
irregular series, a default seasonal adjustment is performed using the x11 spec. Table 6 provides
the false detection rates using the “6-star” rule for each of these three diagnostics.

The first feature that stands out is that the peak diagnostic applied to the spectrum of the
differenced original is highly unlikely to produce a spurious detection. This result is understandable,
as the two trading-day frequencies that are tested in X-13ARIMA-SEATS happen to lie close to
seasonal frequencies. For the three sets of spectrum peak diagnostics shown in the table, it is also
apparent that the false detection rates using the spectrum from the full data are almost universally
lower than those using the spectrum from just the last 8 years of data; this was not necessarily
the case with the residual spectrum. As was noted with the residual spectrum, it appears that
the model has an effect on the detection properties of the diagnostics, as the false detection rates
appear to be lower for the (1 1 0)(0 1 1)12 models compared to the others.

Comparing the numbers observed in the table to those obtained previously for the residual
spectrum (see Table 1), it can also be observed that the peak diagnostics for the spectra of the
irregular and seasonally adjusted series yield false detection rates that are less stable than those
for the residual spectrum, which were found to fall consistently in the 0.13 to 0.16 range. Although
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Last 8 Years All 20 Years

Model φ1 θ1 θ12 Original Irregular SeasAdj Original Irregular SeasAdj

(0 1 1)12 0.3 0.0000 0.1576 0.1080 0.0000 0.1172 0.0544
0.5 0.0004 0.1292 0.0856 0.0000 0.0852 0.0280
0.8 0.0016 0.1288 0.0792 0.0000 0.0692 0.0264

(0 1 0)(0 1 1)12 0.3 0.0000 0.1088 0.1108 0.0000 0.0504 0.0292
0.5 0.0008 0.1016 0.1192 0.0000 0.0452 0.0416
0.8 0.0024 0.1176 0.1384 0.0016 0.0516 0.0656

(0 1 1)(0 1 1)12 0.3 0.3 0.0000 0.1012 0.1176 0.0000 0.0636 0.0524
0.5 0.0000 0.1232 0.1556 0.0000 0.0620 0.0684
0.8 0.0028 0.1156 0.1384 0.0012 0.0476 0.0632

0.5 0.3 0.0004 0.1216 0.1416 0.0000 0.0628 0.0632
0.5 0.0000 0.1220 0.1452 0.0000 0.0728 0.0876
0.8 0.0028 0.1020 0.1224 0.0004 0.0512 0.0560

0.8 0.3 0.0000 0.1280 0.1200 0.0000 0.0872 0.0812
0.5 0.0004 0.1300 0.1216 0.0000 0.0716 0.0624
0.8 0.0036 0.1180 0.0988 0.0000 0.0588 0.0460

(1 1 0)(0 1 1)12 0.3 0.3 0.0004 0.1076 0.0896 0.0000 0.0524 0.0212
0.5 0.0000 0.0868 0.0816 0.0000 0.0380 0.0200
0.8 0.0028 0.1096 0.1080 0.0004 0.0580 0.0508

0.5 0.3 0.0000 0.1056 0.0696 0.0000 0.0564 0.0196
0.5 0.0000 0.0948 0.0732 0.0000 0.0432 0.0148
0.8 0.0016 0.0960 0.0756 0.0004 0.0472 0.0288

0.8 0.3 0.0000 0.1000 0.0372 0.0000 0.0688 0.0040
0.5 0.0004 0.0904 0.0384 0.0000 0.0428 0.0036
0.8 0.0016 0.0976 0.0528 0.0000 0.0428 0.0096

Table 6: False detection rates for other spectrum peak trading-day diagnostics.

they are fairly close, the false detection rates for the spectrum peak diagnostic applied to the
seasonally adjusted series are slightly lower than those for the spectrum peak diagnostic applied
to the irregular series. Soukup and Findley (1999) observed that the spectra of the irregular and
seasonally adjusted series, evaluated at the 0.348 trading-day frequency, have false detection rates
close to that of the residual spectrum, but this does not appear to be the case in our numbers;
this could be a result of our choice to evaluate at both trading-day frequencies. In addition, the
false detection rates we obtain here are notably lower than those observed by Ladiray (2012). For
example, comparing the spectrum of the irregular series to that of a white noise model, or comparing
the spectrum of the seasonally adjusted series to those of nonseasonal models, the (averaged) false
detection rates in Ladiray (2012) are higher than what we observed.

Table 7 displays the corresponding size-adjusted (for α = 0.05) critical values for the three
spectrum peak diagnostics here. While it had been previously observed that the spectrum of the
differenced original was highly unlikely to produce a false detection, this spectrum may not be
particularly informative, as any positive value for the peak diagnostic would be treated as evidence
for a trading-day effect. The spectra for the irregular and seasonally adjusted series may prove more
useful, but there is more variation in the critical values for these when compared to the critical
values of the model residuals. Whereas the size-adjusted critical values for the spectrum peaks of
model residuals all fell in a range between 11.3 (from the 20-year spectrum) and 12.5 (from the
8-year spectrum), the choice of model and span for the spectrum has a more noticeable effect on
the magnitude of the critical value for the peak diagnostic in the spectra of both the irregular
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Last 8 Years All 20 Years

Model φ1 θ1 θ12 Original Irregular SeasAdj Original Irregular SeasAdj

(0 1 1)12 0.3 0.0 11.7 8.5 0.0 10.1 6.2
0.5 0.0 10.2 7.8 0.0 7.8 5.0
0.8 0.0 10.3 7.4 0.0 7.4 4.4

(0 1 0)(0 1 1)12 0.3 0.0 9.9 10.6 0.0 6.0 4.4
0.5 0.0 9.3 10.7 0.0 5.7 5.3
0.8 0.0 10.2 12.5 0.0 6.1 7.6

(0 1 1)(0 1 1)12 0.3 0.3 0.0 9.2 11.2 0.0 6.7 6.1
0.5 0.0 10.4 12.9 0.0 6.9 7.5
0.8 0.0 9.7 12.2 0.0 5.8 6.8

0.5 0.3 0.0 10.1 12.3 0.0 6.9 6.8
0.5 0.0 10.2 12.4 0.0 7.6 8.7
0.8 0.0 9.6 10.8 0.0 6.0 6.3

0.8 0.3 0.0 10.5 10.4 0.0 8.1 7.7
0.5 0.0 10.8 10.0 0.0 7.2 6.9
0.8 0.0 10.2 8.8 0.0 6.6 5.7

(1 1 0)(0 1 1)12 0.3 0.3 0.0 9.8 8.7 0.0 6.2 3.4
0.5 0.0 8.6 7.8 0.0 4.8 3.0
0.8 0.0 9.6 10.5 0.0 6.3 6.0

0.5 0.3 0.0 8.9 7.0 0.0 6.6 3.4
0.5 0.0 9.3 7.7 0.0 5.4 2.6
0.8 0.0 9.0 8.2 0.0 5.6 4.1

0.8 0.3 0.0 9.4 5.3 0.0 7.0 2.7
0.5 0.0 9.0 5.3 0.0 5.4 2.2
0.8 0.0 9.3 6.1 0.0 5.5 2.6

Table 7: Simulated spectrum peak critical values for a significance level of 0.05.

and seasonally adjusted series. It would appear, then, that the peak diagnostic for the residual
spectrum should be favored over the other three spectrum peak diagnostics in X-13ARIMA-SEATS
when it comes to detecting the presence of a trading-day effect.

A final check is to compare the power of the various spectrum peak diagnostics. Table 8
displays the power, averaged over both trading-day components and values of δ, for the various
spectra estimated using the last 8 years of data. Table 9 provides the analogue for those same
spectra estimated using all 20 years of data. Note that the power results for δ = 0.5 are included
in the averaging performed for both tables, hence the numbers obtained for the peak diagnostic of
the residual spectrum will differ from the average of the corresponding numbers from Tables 4 and
5.

Previously, it was observed that the spectrum peak diagnostic for the differenced original rarely
produced a false detection. In the simulations conducted, the spectrum peak diagnostic for the
differenced original only exceeds a power of 0.5 in one case, which occurs when the model parameters
for a (1 1 0)(0 1 1)12 model are φ1 = 0.8 and θ12 = 0.8. These problems indicate that the peak
diagnostic for the spectrum of the differenced original series should be avoided as a diagnostic for
detecting trading-day effects.

For the other three spectrum peak diagnostics, the power is generally 0.1 to 0.2 higher when
the spectrum is estimated using the full series as opposed to just the last 8 years. The spectrum
of the irregular series and that of the seasonally adjusted series appear to yield similar results for
power, although neither fares as well as the spectrum for the model residuals; the advantage of the
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Model φ1 θ1 θ12 Original Irregular SeasAdj Residual

(0 1 1)12 0.3 0.0267 0.2882 0.2910 0.3385
0.5 0.0533 0.3124 0.2964 0.3377
0.8 0.2117 0.2825 0.2859 0.3120

(0 1 0)(0 1 1)12 0.3 0.0820 0.4096 0.4220 0.4539
0.5 0.1510 0.4345 0.4340 0.4914
0.8 0.3713 0.3813 0.3558 0.4592

(0 1 1)(0 1 1)12 0.3 0.3 0.0589 0.4140 0.3878 0.4669
0.5 0.1117 0.3840 0.3339 0.4656
0.8 0.3137 0.3726 0.3157 0.4379

0.5 0.3 0.0553 0.3749 0.3116 0.4110
0.5 0.0905 0.3706 0.3013 0.4288
0.8 0.2828 0.3564 0.3189 0.3932

0.8 0.3 0.0373 0.3349 0.2921 0.3572
0.5 0.0692 0.3144 0.2885 0.3647
0.8 0.2317 0.3036 0.2928 0.3510

(1 1 0)(0 1 1)12 0.3 0.3 0.1141 0.4165 0.4548 0.5813
0.5 0.1842 0.4612 0.5000 0.5954
0.8 0.4283 0.4260 0.4380 0.5550

0.5 0.3 0.1292 0.4403 0.4730 0.6096
0.5 0.2174 0.4336 0.4676 0.6157
0.8 0.4652 0.4671 0.4972 0.5996

0.8 0.3 0.1643 0.4350 0.4684 0.6518
0.5 0.2597 0.4604 0.4929 0.6555
0.8 0.5021 0.4790 0.5127 0.6247

Table 8: Average power for all spectrum peak diagnostics, using just the last 8 years.

residual spectrum varies depending on the model. Previously, it had been observed that power for
the residual spectrum had a tendency to decrease for large θ12 – this feature occurs less consistently
for the spectra of the irregular and seasonally adjusted series. Lastly, it is worth noting that the
magnitude of the nonseasonal parameters for the underlying series (θ1 for the (0 1 1)(0 1 1)12 models
and φ1 for the (1 1 0)(0 1 1)12 models) also seem to affect the power of the peak diagnostics: the
average power tends to be higher for smaller θ1 or for larger φ1. Overall, though, the comparisons
suggest that the peak diagnostic for the spectrum of model residuals is the superior option among
these four spectrum peak diagnostics in X-13ARIMA-SEATS.

6 Conclusions

Our simulation study examines some of the diagnostic tests available in X-13ARIMA-SEATS for
detecting a trading-day effect. The diagnostics considered were regARIMA χ2- and F -tests, as
well as the spectrum peak diagnostics applied to four of the spectrum estimators produced by
X-13ARIMA-SEATS. As was the case in Ladiray (2012), our results indicate that the model-based
F -test works best in that it comes closest to achieving the nominal size and has the highest power.
Unlike Ladiray (2012), however, our results place the size of the F -test slightly above the α = 0.05
level used in this study and not below. Given that the χ2-tests in X-13ARIMA-SEATS do not
improve upon the F -test in either false detection rate or power, they may be redundant.

The four spectrum peak diagnostics examined in this study were the model residuals, the differ-
enced original series, the seasonally adjusted series, and the irregular component. The procedure
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Model φ1 θ1 θ12 Original Irregular SeasAdj Residual

(0 1 1)12 0.3 0.0175 0.4524 0.4644 0.5120
0.5 0.0394 0.4722 0.4684 0.5174
0.8 0.1976 0.4405 0.4479 0.4958

(0 1 0)(0 1 1)12 0.3 0.0809 0.5916 0.5910 0.6912
0.5 0.1483 0.6143 0.6111 0.7057
0.8 0.3819 0.5848 0.5767 0.6732

(0 1 1)(0 1 1)12 0.3 0.3 0.0561 0.5622 0.5629 0.6400
0.5 0.1030 0.5788 0.5729 0.6541
0.8 0.3201 0.5579 0.5527 0.6321

0.5 0.3 0.0423 0.5554 0.5569 0.6080
0.5 0.0844 0.5463 0.5341 0.6179
0.8 0.2837 0.5333 0.5368 0.5917

0.8 0.3 0.0255 0.5049 0.4971 0.5460
0.5 0.0564 0.5102 0.5009 0.5484
0.8 0.2189 0.4800 0.4789 0.5340

(1 1 0)(0 1 1)12 0.3 0.3 0.1163 0.6033 0.6138 0.7678
0.5 0.1942 0.6272 0.6320 0.7768
0.8 0.4364 0.6163 0.6222 0.7449

0.5 0.3 0.1436 0.6009 0.6016 0.7958
0.5 0.2300 0.6284 0.6406 0.8046
0.8 0.4759 0.6460 0.6510 0.7848

0.8 0.3 0.1856 0.6208 0.6167 0.8336
0.5 0.2882 0.6472 0.6432 0.8487
0.8 0.5155 0.6664 0.6748 0.8261

Table 9: Average power for all spectrum peak diagnostics, using all 20 years.

used by Soukup and Findley (1999) to check for a trading-day effect was to see whether a “visually
significant” peak was present in either the spectrum of the seasonally adjusted output series or the
spectrum of the irregular component. This study considered each spectrum individually, and the
spectrum of the model residuals appeared to perform the best as a stand-alone diagnostic. Of the
four spectrum diagnostics, it had more consistent size values across models, whereas the irregular
and seasonally adjusted spectra were more erratic. The diagnostic for the differenced original series
was by far the worst of the four spectrum peak diagnostics. As was the case for Ladiray (2012),
compared to the F -test, the spectrum peak diagnostics with the usual visual significance criterion
have higher false detection rates, and with the criterion adjusted to produce a 0.05 false detection
rate, they have considerably lower power.

By default, X-13ARIMA-SEATS uses only the last 96 observations to estimate the spectrum.
For a quarterly series (not considered in this study), this amounts to 24 years worth of data, while
it covers 8 years for a monthly series. This simulation study observes that the spectrum peak
diagnostics for the model residuals are reasonably stable across the span used in estimating the
spectrum, but that the power is noticeably higher when using a longer time span. For a fixed effect,
this is not surprising. If the trading-day pattern for a series were to change over time in such a way
that the shorter time span is not reflective of the rest of the series, this may not necessarily be the
case.

A few alterations to the framework of the simulation study were not examined, but shall be
briefly mentioned here. A normal distribution was enforced for the white noise process ξt in
generating the simulated series. It might be useful to verify that the results observed in this
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study are still valid in the event that a non-normal error distribution is encountered. Lytras et al.
(2007) considered the effect of an incorrect model specification for detecting seasonality – a similar
approach (or one in which X-13ARIMA-SEATS is allowed to choose the model) here might allow
us to assess the impact on detecting a trading-day effect. Our simulation study adhered to monthly
series of 20 years in length and spectrum spans of either 8 years or 20 years (full data). Although
Ladiray (2012) did consider series of varying lengths, the observation was that the length of the
series did not make a substantive difference in the overall results.
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