
Statistics and Probability Letters 124 (2017) 92–96

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Computation of vector ARMA autocovariances
Tucker McElroy
Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233-9100, United States

a r t i c l e i n f o

Article history:
Received 6 December 2016
Received in revised form 27 December 2016
Accepted 29 December 2016
Available online 6 January 2017

Keywords:
Algorithm
Multivariate time series
Wold decomposition

a b s t r a c t

This note describes an algorithm for computing the autocovariance sequence of a VARMA
process, without requiring the intermediary step of determining the Wold representation.
Although the recursive formula for the autocovariances is well-known, the initialization of
this recursion in standard treatments (such as Brockwell and Davis (1991) or Lütkepohl
(2007)) is slightly nuanced; we provide explicit formulas and algorithms for the initial
autocovariances.

Published by Elsevier B.V.

1. Introduction

Consider a vector time series {Xt} of dimensionm that satisfies an ARMA (p, q) equation

Φ(B)Xt = Θ(B)ϵt ,

where {ϵt} is vector white noise of covarianceΣ , a positive definitem×mmatrix. Here B is the backshift operator, andΦ(z)
andΘ(z) are respectively order p and qmatrix polynomials. For convenience, define {Wt} to be theMA(q) process satisfying
Wt = Θ(B)ϵt . To set notation,

Φ(z) = 1m −

p
j=1

Φjz j Θ(z) = 1m +

q
k=1

Θkzk,

where 1m is the m × m identity matrix. Note that p = 0 and/or q = 0 is allowed. In principle both matrix polynomials
are assumed to satisfy the causality/invertibility restrictions, i.e., all complex zeroes z of the determinant of the matrix
polynomials lie outside the unit circle.

While much time series literature has focused upon the efficient computation of the Gaussian likelihood – say via the
Durbin–Levinson (D–L) or Innovations algorithms – it is also important to be able to speedily compute a model’s autoco-
variances. Numerical optimization of the likelihood typically requires hundreds of function evaluations, and the problem is
compounded with higher dimensional data because the parameter space dimension is typically quite large; higher dimen-
sional parameter manifolds require more search directions in optimization techniques, which in turn require many func-
tion evaluations. Even a seemingly benign trivariate VARMA(1,1) model involves an 18-dimensional parameter manifold.
Of course, VARMA autocovariances are also needed in other applications, such as the computation of projections (forecasts,
backcasts, etc.). This paper provides an explicit algorithm for calculating VARMA autocovariances.

For any two vector processes {Yt} and {Zt}, the cross-covariance function is defined by ΓYZ (h) = Cov(Yt , Z ′

t−h) for integer
h, and if the processes are jointly weakly stationary then Γ ′

YZ (−h) = ΓZY (h). The VARMA autocovariance function is defined
to be ΓXX (h), which we only need compute for h ≥ 0. It is a simple matter to show that ΓXX satisfies Φ(B)ΓXX (h) = ΓWX (h),

E-mail address: tucker.s.mcelroy@census.gov.

http://dx.doi.org/10.1016/j.spl.2016.12.015
0167-7152/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.spl.2016.12.015
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2016.12.015&domain=pdf
mailto:tucker.s.mcelroy@census.gov
http://dx.doi.org/10.1016/j.spl.2016.12.015

T. McElroy / Statistics and Probability Letters 124 (2017) 92–96 93

where B operates on the lag index h. The quantity ΓWX (h) can be expressed in terms of the Wold coefficients (this is the
approach given in Brockwell and Davis, 1991, Chapter 11), whereas Φ(B)ΓXX (h) is a recursion. Once the values ΓXX (h) for
0 ≤ h < p are known, the recursion will provide all subsequent autocovariances.

Brockwell and Davis (1991)mention that the redundancy in the recursive formula, together withΓXX (−h) = Γ ′

XX (h), can
be used to obtain the initial values—this is our approach, described below explicitly. Alternatively, one can embed a VAR(p)
or a VARMA(p, q) as a higher-dimensional VAR process that mathematically takes the form of a VAR(1); then the initial p
values of ΓXX (h) can be extracted from the lag zero autocovariance of the higher-dimensional VAR(1). This is the approach
of Lütkepohl (2007).

In other literature, Barone (1987) discusses simulation based on calculating autocovariances from a state space embed-
ding. Mittnik (1990, 1993) gives an explicit formula for the initial lags of the autocovariance function, in terms of the AR
and MA coefficients, and explores the use of the D–L algorithm to improve computational efficiency. Our own derivation is
mathematically equivalent to Mittnik’s approach – which avoids having to determine the Wold representation – but with
the individual algorithmic steps broken out.

Our objective is to provide an explicit algorithm that is easily encoded. It is surprisingly difficult to find VARMA autoco-
variance software on the Internet, written in the R language. Although in principle the above methods (of Lütkepohl, Brock-
well and Davis, or Mittnik) can be implemented, it is perhaps not so easy for all but the greatest experts; we here provide
an implementation in R, which scientists may find useful to have readily available. In Section 2 we derive the mathematical
formulas, followed by some illustrations in Section 3. The R code is supplemental (see Appendix A).

A caution in utilizing the algorithm, is that the AR and MA matrix polynomials are presumed to be stable and invertible,
respectively, and the algorithm makes no assurance that such is the case. Passing an unstable AR matrix polynomial to the
likelihood will generate an explosive autocovariance sequence; this is a concern during maximum likelihood estimation,
wherein proposed values of the AR and MA coefficients may generate unstable matrix polynomials.

2. Derivation of the algorithm

Suppose the processes are mean zero. Multiplying the following equation

Xt −

p
j=1

ΦjXt−j = Wt

on the right by X ′

t−h and taking expectations yields

ΓXX (h) =

p
j=1

ΦjΓXX (h − j) + ΓWX (h). (1)

We will apply the vec operator. For short, let vec(A) = A♯ for any matrix A. Recall that vec(AB) = [1m ⊗ A]B♯. Thus

Γ
♯

XX (h) −

p
j=1

[1m ⊗ Φj] Γ
♯

XX (h − j) = Γ
♯

WX (h),

which holds for all integers h. Consider these equations for −p ≤ h ≤ p (p = 0 is allowed), and write in block matrix form:


−1m ⊗ Φp · · · 1m ⊗ 1m 0 · · ·

0 −1m ⊗ Φp · · · 1m ⊗ 1m · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · −1m ⊗ Φp · · · 1m ⊗ 1m




Γ
♯

XX (−p)
...

Γ
♯

XX (0)
...

Γ
♯

XX (p)

 =

Γ
♯

WX (0)
...

Γ
♯

WX (p)

 .

Let this large matrix be denoted by A. It is a (p + 1) × (2p + 1) block matrix of m2
× m2 block matrices. We wish to solve

for the vector of ΓXX values, and there is a redundancy to be exploited. Let K denote the commutator matrix such that
Γ

♯

XX (−h) = KΓ
♯

XX (h). This matrix K is described in Lütkepohl (2007), and has the property that K [A ⊗ B] = [B ⊗ A]K . As a
result, the block matrix product on the left hand side above becomes


−(1m ⊗ Φp)K · · · −(1m ⊗ Φ1)K 1m ⊗ 1m 0 · · ·

0 −(1m ⊗ Φp)K · · · −1m ⊗ Φ1 1m ⊗ 1m · · ·

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · · · · −1m ⊗ Φp · · · 1m ⊗ 1m




Γ
♯

XX (p)
...

Γ
♯

XX (0)
...

Γ
♯

XX (p)

 .

94 T. McElroy / Statistics and Probability Letters 124 (2017) 92–96

The key difference from the previous equation is that every block matrix in any of the first p block columns of A is now
right-multiplied byK , whereas the latter p+1block columns ofA are left untouched. Also, the redundancy in the vector ofΓXX
values is apparent. Thismatrix, whichwe callA, can nowbe ‘‘folded’’ over to generate A, as follows: A is block (p+1)×(p+1),
with jth block column for 2 ≤ j ≤ p + 1 given by the sum of the p + jth block column ofA summed with the (p + 2 − j)th
block column ofA. Once the folding is done, the matrix system simplifies and the redundancy in ΓXX disappears, and we
obtainΓ

♯

XX (0)
...

Γ
♯

XX (p)

 = A−1

Γ
♯

WX (0)
...

Γ
♯

WX (p)

 (2)

so long as this matrix is invertible. This equation holds under the same conditions as the solubility of the high-dimensional
VAR(1) representation of a VAR(p) process, as discussed in Lütkepohl (2007); thus, invertibility of A is equivalent to stability
of the matrix polynomial Φ(z).

The next step is to compute the cross-covariances ΓWX . Take the equation

X ′

t−h =

p
j=1

X ′

t−h−jΦ
′

j + W ′

t−h

and multiply it on the left byWt , and take expectations to obtain

ΓWX (h) =

p
j=1

ΓWX (h + j)Φ ′

j + ΓWW (h).

This relates the cross-covariance function to the autocovariance function of the moving average portion, which is easy to
calculate. Applying the vec operator yields

Γ
♯

WX (h) =

p
j=1

[Φj ⊗ 1m] Γ
♯

WX (h + j) + Γ
♯

WW (h).

Utilizing the causal representation of the time series, it is clear that ΓWX (h) = 0 for h > q. So we consider this equation for
0 ≤ h ≤ q, which in matrix form is

1m ⊗ 1m −(Φ1 ⊗ 1m) · · · −(Φp ⊗ 1m)
0 1m ⊗ 1m · · · −(Φp−1 ⊗ 1m)
...

...
...

...
0 · · · 0 1m ⊗ 1m


Γ

♯

WX (0)
...

Γ
♯

WX (q)

 =

Γ
♯

WW (0)
...

Γ
♯

WW (q)

 .

Denote this matrix by B, which is a (q + 1) × (q + 1) dimensional block matrix, with blocks of sizem2
× m2. ThusΓ

♯

WX (0)
...

Γ
♯

WX (q)

 = B−1

Γ
♯

WW (0)
...

Γ
♯

WW (q)

 . (3)

Finally, for a vector moving average we have
|h|≤q

ΓWW (h)Bh
= Θ(B)ΣΘ ′(B−1), (4)

so that matrix polynomial multiplication yields the ΓWW (h) sequence for 0 ≤ h ≤ q. The algorithm then consists of the
following steps:

1. Compute ΓWW (h) for 0 ≤ h ≤ q via (4).
2. Compute ΓWX (h) in vectorized form for 0 ≤ h ≤ q via (3).
3. If p < q, truncate the ΓWX (h) vector so that it only goes up to lag p. But if p > q, pad it out with zeroes (if p = q, do

nothing to it).
4. Compute ΓXX (h) in vectorized form for 0 ≤ h ≤ p via (2).
5. Undo the vec operators on ΓXX and ΓWX , and compute ΓXX (h) for h > p recursively via (1). When h > q, the cross-

covariance term makes no contribution.

T. McElroy / Statistics and Probability Letters 124 (2017) 92–96 95

3. Illustrations

Consider the special case of a VAR(1), where the autocovariance formulas are known (see Lütkepohl, 2007). We verify
that our algorithm reduces to this special case. Here p = 1 and q = 0, so that

A =


−1m ⊗ Φ1 1m ⊗ 1m 0
0 −1m ⊗ Φ1 1m ⊗ 1m


.

Also

A =


1m ⊗ 1m −(1m ⊗ Φ1)K
−(1m ⊗ Φ1) 1m ⊗ 1m


=


K 0
0 1m ⊗ 1m

 
1m ⊗ 1m −(Φ1 ⊗ 1m)
−(1 ⊗ Φ1) 1m ⊗ 1m


,

and thus the inverse of A can be written as the matrix product

A−1
=


1m ⊗ 1m Φ1 ⊗ 1m
1m ⊗ Φ1 1m ⊗ 1m


12 ⊗ (1m ⊗ 1m − Φ1 ⊗ Φ1)

−1

K−1 0
0 1m ⊗ 1m


.

Finally, we obtain from (2) – and utilizing (3) and (4) with q = 0 –
Γ

♯

XX (0)
Γ

♯

XX (1)


= A−1


Σ♯(0)
0


=


(1m ⊗ 1m − Φ1 ⊗ Φ1)

−1 K−1 Σ♯(0)
(1m ⊗ Φ1) (1m ⊗ 1m − Φ1 ⊗ Φ1)

−1 K−1 Σ♯(0)


.

Using the symmetry of Σ , yields ΓXX (1) = Φ1 ΓXX (0) and Γ
♯

XX (0) = (1m ⊗ 1m − Φ1 ⊗ Φ1)
−1 Σ♯, as desired.

Next, we consider three numerical examples treated in Lütkepohl (2007), corresponding to a VAR(1), a VAR(2), and a
VARMA(2,1).

Example 1. We consider the 3-dimensional VAR(1) process given as Example 2.1.14 of Lütkepohl (2007). Here

Φ1 =

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3


Σ =

2.25 0 0
0 1 0.5
0 0.5 0.74


,

and the autocovariance function at lags 0 through 3 is given by

ΓXX (0) =

3.00000000 0.1608833 0.01892744
0.16088328 1.1723174 0.67368324
0.01892744 0.6736832 0.95355460



ΓXX (1) =

1.50000000 0.08044164 0.009463722
0.32176656 0.33542504 0.355327448
0.03785489 0.43656845 0.420803028



ΓXX (2) =

0.75000000 0.04022082 0.004731861
0.19353312 0.17255720 0.162720026
0.07570978 0.19805554 0.197306398



ΓXX (3) =

0.37500000 0.02011041 0.002365931
0.11706625 0.08069447 0.075937108
0.06141956 0.09392810 0.091735925


.

These can be compared to the values given in Lütkepohl (2007, page 28).

Example 2. Next, consider the 2-dimensional VAR(2) process given as Example 2.1.15 of Lütkepohl (2007). Here

Φ1 =


0.5 0.1
0.4 0.5


Φ2 =


0 0
0.25 0


Σ =


0.09 0
0 0.04


,

and the autocovariance function at lags 0 through 3 is given by

ΓXX (0) =


0.13123055 0.06609815
0.06609815 0.18130995


ΓXX (1) =


0.07222509 0.05118007
0.10359757 0.14299363


ΓXX (2) =


0.0464723 0.0398894
0.1134965 0.1084934


ΓXX (3) =


0.03458580 0.03079404
0.09339342 0.08299746


.

These can be compared to the values given in Lütkepohl (2007, page 29).

96 T. McElroy / Statistics and Probability Letters 124 (2017) 92–96

Example 3. Next, consider the 2-dimensional VARMA(2,1) process given as Exercise 11.3 of Lütkepohl (2007). The innova-
tion covariance matrix is not specified, so we take it to be the same as the previous example. Thus

Φ1 =


0.5 0.1
0.4 0.5


Φ2 =


0 0
0.25 0


Θ1 =


0.6 0.2
0 0.3


Σ =


0.09 0
0 0.04


,

and the autocovariance function at lags 0 through 3 is given by

ΓXX (0) =


0.270201 0.1908310
0.190831 0.3967657


ΓXX (1) =


0.2081836 0.1430920
0.2555418 0.3506007


ΓXX (2) =


0.1296460 0.1066061
0.2785946 0.2802449


ΓXX (3) =


0.09268245 0.08132754
0.24320158 0.21853790


.

The algorithm here is quite similar to that proposed by Lütkepohl (2007), which obtains initial autocovariances by in-
verting a matrix of dimension (p+ q)m. The matrices A and B are not much smaller, and hence in practice we have observed
very similar computation times for both algorithms. One minor difference is that the algorithm of Lütkepohl requires the
stability of the MA matrix polynomials for the computation of the initial autocovariances, whereas in our algorithm the
moving average need not be stable.

Disclaimer This report is released to inform interested parties of research and to encourage discussion. The views expressed
on statistical issues are those of the authors and not necessarily those of the U.S. Census Bureau.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.spl.2016.12.015.

References

Barone, P., 1987. A method for generating independent realizations of a multivariate normal stationary and invertible ARMA(p, q) process. J. Time Series
Anal. 8, 125–130.

Brockwell, P., Davis, R., 1991. Time Series: Theory and Methods. Springer, New York.
Lütkepohl, H., 2007. New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Mittnik, S., 1990. Computation of the theoretical autocovariance matrices of multivariate autoregressive moving average time series. J. R. Stat. Soc. Ser. B

Stat. Methodol. 52, 151–155.
Mittnik, S., 1993. Computing theoretical autocovariances of multivariate autoregressive moving average models by using a block Levinson method. J. R.

Stat. Soc. Ser. B Stat. Methodol. 55, 435–440.

http://dx.doi.org/10.1016/j.spl.2016.12.015
http://refhub.elsevier.com/S0167-7152(17)30001-9/sbref1
http://refhub.elsevier.com/S0167-7152(17)30001-9/sbref2
http://refhub.elsevier.com/S0167-7152(17)30001-9/sbref3
http://refhub.elsevier.com/S0167-7152(17)30001-9/sbref4
http://refhub.elsevier.com/S0167-7152(17)30001-9/sbref5

	Computation of vector ARMA autocovariances
	Introduction
	Derivation of the algorithm
	Illustrations
	Supplementary data
	References

