
 

 

Report Issued: January 11, 2017 

 

Disclaimer: This report is released to inform interested parties of research and to encourage discussion.  

The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 

 

 

 

 

 

 
 

RESEARCH REPORT SERIES 

(Statistics #2017-01) 

 

 

Detection of Seasonality in the Frequency Domain 

 

Tucker McElroy 

Anindya Roy 

 

 

 

 

 

 

 

 

 

 

Center for Statistical Research & Methodology 

Research and Methodology Directorate 

U.S. Census Bureau 

Washington, D.C. 20233 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 





Detection of Seasonality in the Frequency Domain
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Summary

Seasonal adjustment methods process and publish millions of time series across the world each

month, and judgment of the adequacy relies heavily upon frequency domain diagnostics. In par-

ticular, peaks in the spectral density estimates of seasonally adjusted data are indicative of an

inadequate adjustment. Spectral peaks are currently assessed in the X-12-ARIMA program via

the visual significance approach, but this method lacks a rigorous statistical foundation. This pa-

per provides such a foundation by providing measures of uncertainty for spectral peak measures,

allowing for formal hypothesis testing. To apply the test we develop fixed-bandwidth fraction

asymptotics for taper-based spectral density estimates.

Keywords: Fixed-b asymptotics; Seasonal adjustment; Spectral peaks; Visual significance;

1 Introduction

The detection and estimation of peaks in the spectral density of a stationary time series is a

problem of long-standing interest, and is vital in the field of seasonal adjustment. Quarterly or

monthly economic time series typically exhibit seasonality, most often described via a nonstationary

stochastic process with unit root frequencies corresponding to the known seasonal frequencies (Bell

and Hillmer, 1983). Adequate estimation and removal of seasonality should correspond to the

absence of spectral peaks at these same seasonal frequencies in the adjusted series, and therefore

the detection of spectral peaks is an important diagnostic for the adequacy of a seasonal adjustment

(Findley, 2005). See the discussion in Chapter 3 of Hylleberg (1986). The problem is of widespread

importance, because millions of time series are seasonally adjusted each month at statistical agencies

around the world, many of whom utilize the software program X-12-ARIMA of the U.S. Census

Bureau.

∗Corresponding author: Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill

Road, Washington, D.C. 20233-9100, anindya@umbc.edu
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One approach to the detection of seasonality is to postulate as a null hypothesis the existence of

a sinusoid – corresponding to a deterministic seasonal component – at the frequency of interest, and

test whether spectral density estimates warrant such a hypothesis. The early literature on spectral

peak testing (see Priestley (1981)) focused on this approach, and the stable-F test approach of

Lytras et.al. (2007) does as well. Any stochastic seasonal component, conceived as a nonstationary

process, can include such a stable sinusoidal component without loss of generality – this is analogous

to the fact that a random walk with drift can be decomposed into a linear term (its mean) plus

the purely stochastic mean zero portion. Tests for stable sinusoids focus on the deterministic part

of seasonality, but are not designed to address the stochastic portion. However, it is important to

do so: removal of the deterministic portion alone (say, via regression) does not entail the removal

of the whole stochastic seasonal, and such an approach fails to accomplish the goal of seasonal

adjustment – for most economic series, the seasonality is too evolutive to be adequately captured

by fixed periodic functions.

Therefore, detection of seasonality should not be restricted to consideration of deterministic

seasonality alone, but of the full stochastic nature of seasonality. Early work on assessing the effect

of seasonal adjustment appeared in Nerlove (1964) and Grether and Nerlove (1970). Pierce (1976,

1979) looked at adequacy of seasonal adjustment by looking at the magnitude of the autocorrelations

at seasonal lags of the adjusted series. This approach is generalized to the Qs statistics, adopted

by TRMAO-SEATS (Maravall, 2012) and discussed later in the data analysis section.

Whereas a deterministic sinusoid corresponds to a level shift in the spectral distribution function

– and will appear in a spectral density estimate as a tall slender peak – stochastic seasonality

instead corresponds to a broader peak in the spectral density estimate (e.g., computed using an

Autoregressive Estimator); it will have a broader peak that nonetheless is approaching an infinite

height as sample size increases. It becomes important to consider the width of a spectral peak

in its assessment. Since the procedure of seasonal adjustment, viewed in the frequency domain,

amounts to multiplication of a function with a peak by another function with a trough, whether

or not the peak is transformed into a trough or not depends on the width of these functions (this

point is discussed further in Section 2). For this and other reasons, Soukup and Findley (1999)

considered a measure of the peak that involved the distance between ordinates of the log spectrum

when examined on a grid of frequencies of mesh size π/60.

The actual measure proposed in Soukup and Findley (1999) – which has now become somewhat

of a standard by virtue of its incorporation into the X-12-ARIMA software used at most interna-

tional statistical agencies – is computed by comparing the spectral peak ordinate to both nearest

neighbor ordinates, with respect to the chosen frequency grid; when both ordinate differences exceed

a threshold (selected based upon empirical criteria), the spectral peak is declared to be “visually

significant.” So far no distribution theory has been proposed for this statistic, making it difficult

to rigorously determine Type I and II error. As the null hypothesis in this situation says that a
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peak actually does exist (where the definition of a peak depends upon the threshold), Type I error

corresponds to declaring a seasonal adjustment as adequate when stochastic seasonality actually

remains, whereas Type II error corresponds to falsely identifying spurious residual seasonality –

this can happen because random perturbations in the spectral density can yield the appearance of

a peak, even when the underlying time series has no such periodicity present. This paper proposes

to put the concept of visual significance upon a rigorous statistical footing.

In order to develop a statistical theory for spectral peaks, one first requires a theory for spec-

tral density estimation. Spectral density estimates generally fall into two classes: model-based

(e.g., the Autoregressive spectral estimator, or other estimators derived from a fitted model) and

nonparametric (e.g., based on smoothing the periodogram). We focus on the latter class, based

upon tapering the sample autocovariances with a positive definite taper, such as the Bartlett or

Daniell kernels. Asymptotic theory for such estimates goes back to Parzen (1957), and the liter-

ature adopts the perspective that the taper bandwidth is negligible relative to sample size. More

recent literature, as in Hashimzade and Vogelsang (2008), adopts the perspective of the so-called

fixed-b asymptotics, where the ratio of bandwidth length to sample size is assumed to be a fixed

fraction b ∈ (0, 1). Because the fixed-b asymptotic framework has several advantages – including

a superior approximation of the sampling distribution, further discussed in McElroy and Politis

(2014) – we pursue spectral peak detection with this perspective in mind.

Alternatively, there may be an advantage to assessing residual seasonality through the spectral

distribution function. This function is well-defined for a broader class of time series, just as the

cumulative distribution function is more broadly well-defined than the probability density function.

Also, statistical estimation is somewhat simpler, with conventional central limit theory being appli-

cable (Dahlhaus 1983, 1985). Because the spectral distribution is the anti-derivative of the spectral

density, a peak in the latter corresponds to a steep rise in the former (which is monotonically

increasing). In this article we only analyze peak measures that are based on the spectral density

estimates.

One of the subtleties of this topic is the very definition of peak, which must be considered relative

to neighboring peaks and troughs, relative to the overall scale, and in terms of the steepness of the

peak. Given three values of a function, wherein the middle value exceeds its two close neighbors,

we can describe two right triangles – adjoining one another – whose angles determine the steepness

of the peak. Hence it can be deduced that the spacing of the two neighbors relative to the middle

ordinate is important, and is related to how great the middle value must exceed the neighboring

values to be judged a true peak. Such criterion has been proposed – via the visual significance

concept – but we provide a more thorough mathematical basis for the notion of spectral peak.

This paper begins with some preliminaries in Section 2, where we describe a class of peaked

Autoregressive spectra in order to provide a context for the discussion whether the visual signif-

icance estimand actually conveys the notion of “peakedness” i.e., whether the visual significance
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measure is a reasonable proxy for the concept of spectral peak. We also demonstrate explicitly

how spectral peaks, when filtered by a seasonal adjustment filter of varying signal-to-noise ratio,

may or may not result in adequate seasonal adjustments. We further provide discussion of other

possible notions of spectral peak – through the concept of so-called peak functionals. Finally, to

understand and study the behavior of testing procedures based on peak functionals we introduce

a new class of spectral densities that parameterize the process in terms of relevant features of the

peak.

Section 3 describes our statistical methodology, whereby we consider the tapered spectral density

estimators when the bandwidth length of the taper relative to the sample size is a constant fraction.

Some of the results require extensions of previous literature, such as Hashimzade and Vogelsong

(2008) and McElroy and Politis (2014); we allow the frequencies of interest to depend on sample

size, and can be more general than Fourier frequencies. Then Section 4 treats the application of

these estimators to peak detection through a hypothesis testing framework. Section 5 provides the

size and power results of simulation studies, and Section 6 applies the methods to U.S. Census

Bureau time series, including retail, construction, and manufacturing sectors. Section 7 concludes,

and proofs are in the Appendix.

2 Spectral Peaks and Seasonal Adjustment

Here we discuss the concept of a spectral peak in the context of parametric classes of spectral

densities. The primary objective is to gain insight for a hypothesis testing framework based on

visual significance measure, particularly for formulation of a null hypothesis that accurately reflects

the visual perception of absence of a peak.

2.1 The Seasonal Adjustment Motivation for Peak Detection

An example of a stationary time series {Xt} with a single spectral peak is given by an AR(2) with

φ1 = −2ρcosθ, φ2 = −ρ2(0 < ρ < 1), so {Xt} satisfies

(1− 2ρ cos(θ)B + ρ2B2)Xt = εt, (1)

with {εt} a white noise of variance σ2. The autocorrelations of such series decay as a damped sine

wave whose damping factor is ρ (see Box and Jenkins 1976, p. 60), whence its name persistency.

As ρ→ 1, the maximum value of f(λ), given by arccos[(1 + ρ2)cos(θ/(2ρ))], tends to θ. Thus,

θ effectively governs peak strength for values of ρ considered, 0.9 < ρ < 1.

The spectral density for {Xt} is

f(λ) =
σ2

|1− 2ρ cos(θ)e−iλ + ρ2e−i2λ|2
=

σ2

(1− 2ρ cos(θ + λ) + ρ2) (1− 2ρ cos(θ − λ) + ρ2)
, (2)
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which is maximized at λ0 = arccos[(1 + ρ2) cos(θ)/(2ρ)] (when this quantity exists). Suppose that

θ represents a seasonal frequency, e.g., θ = jπ/6 for 1 ≤ j ≤ 6 are the seasonal frequencies for a

monthly series. In Figures 1, 2, and 3 we display spectral densities in log scale (with σ = 1) for

the seasonal frequencies of π/6, 2π/6, and 3π/6, respectively. The various panels display different

values of ρ, moving from a less pronounced peak with ρ = .9, to a sharp peak where ρ = .99.
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Figure 1: Log spectral densities for AR(2) process with ω = π/6 (black) with seasonal adjusted
log spectra in red (high signal-to-noise ratio), blue (medium signal-to-noise ratio), and green (low
signal-to-noise ratio). Upper left panel corresponds to ρ = .9, upper right panel to ρ = .95, lower
left panel to ρ = .98, and lower right panel to ρ = .99.

Seasonal adjustment typically proceeds by application of a filter Ψ(B) to the input time series

{Xt}, which results in an output series {Yt} such that Yt = Ψ(B)Xt. It is well-known (Priestley,

1981) that if the input time series is stationary and non-deterministic, the spectral density of the

output series is given by |Ψ(e−iλ)|2 (the filter’s squared gain function) times the spectral density

of {Xt}. For purposes of illustration, let us suppose that the input time series has spectrum (2),
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Figure 2: Log spectral densities for AR(2) process with ω = 2π/6 (black) with seasonal adjusted
log spectra in red (high signal-to-noise ratio), blue (medium signal-to-noise ratio), and green (low
signal-to-noise ratio). Upper left panel corresponds to ρ = .9, upper right panel to ρ = .95, lower
left panel to ρ = .98, and lower right panel to ρ = .99.

and that the seasonal adjustment filter has squared gain function given by

G(λ; q) =
(1− 2 cos(θ + λ) + 1) (1− 2 cos(θ − λ) + 1)

q−1 + (1− 2 cos(θ + λ) + 1) (1− 2 cos(θ − λ) + 1)
,

where q is a signal-to-noise ratio (SNR) parameter. This filter is the Wiener-Kolmogorov seasonal

adjustment filter for a process given by white noise plus a latent seasonal of spectrum (2), where

ρ = 1. Such a filter produces a trough at frequencies near θ, and G(θ; q) = 0. Higher values of q

make this trough more slender, and are associated with less smoothing, while lower values of q make

the trough broader. When the seasonality has high variability – relative to ambient noise – then

the signal-to-noise ratio is high, and less smoothing is necessary, the signal (i.e., the seasonality)

already being apparent; conversely, when seasonality has low variability more smoothing is needed

to extract it.

Plotted in Figures 1, 2, and 3 are the product of the squared gain function with f(λ), with
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Figure 3: Log spectral densities for AR(2) process with ω = 3π/6 (black) with seasonal adjusted
log spectra in red (high signal-to-noise ratio), blue (medium signal-to-noise ratio), and green (low
signal-to-noise ratio). Upper left panel corresponds to ρ = .9, upper right panel to ρ = .95, lower
left panel to ρ = .98, and lower right panel to ρ = .99.

q = 100, 10, 1 in green, blue, and red, respectively. When q is high much of the overall peak shaped

is retained, but with a slender trough in the center – producing what some authors refer to as an

“inverted W shape.” Decreasing q has the effect of leveling the peak, and eventually the trough

pattern consumes, as it were, the peak. The effect also depends upon θ and ρ.

The point of these examples is the following. Suppose we seasonally adjust using a value of q that

is too high for the data, resulting in an output spectral density with shape at the seasonal frequencies

given by the green lines, corresponding to high SNR. If we tested for residual seasonality by only

looking for fixed effects, we would likely wrongly conclude the adjustment to be adequate, because

the slender trough indicates that all deterministic seasonality has been annihilated (the numerator

of G(λ; q) corresponds to the squared gain function of a second order differencing polynomial

1 − 2 cos(θ)B + B2 which being a factor of Ψ(B) ensures that Ψ(B) annihilates all function s

of period π/θ). A frequency-domain based test statistic, on the other hand, might be capable
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of identifying the inadequacy. Such a test statistic should be an estimator of a parameter – a

functional of the spectral density – that appropriately conveys the essence of being a peak.

2.2 Measuring Spectral Peaks

The idea of a peak in a graph is surprisingly subtle to capture through mathematical formulas.

McElroy and Holan (2009) set forth a measure based upon measuring the second derivative of the

spectral density, and other measures have been set forth. The approach of Soukup and Findley

(1999) compares the log Autoregressive (AR) spectrum at a frequency of interest θ (in units of

radians), e.g., a seasonal or trading day frequency, to two “nearest neighbors” on the left and right,

some distance δ away. That is, we have three frequencies θ− δ, θ, θ+ δ, and comparisons are given

by log f(θ)− log f(θ − δ) and log f(θ)− log f(θ + δ) for the left and right hand respectively. Note

that no peak is present if one of these differences is non-positive. But even when both differences

are positive, the actual shape of the peak may be so mild as to be indistinguishable from the overall

shape of the spectral graph. Clearly this also depends on the spread between the three frequencies

as well.

The Visual Significance approach of Soukup and Findley (1999) is to first fix a fairly uniform

grid by dividing [0, π] into 61 frequencies. We use the qualifier “fairly,” since the trading day

frequencies can also be considered, and do not fall exactly on the grid points πj/60, although the

seasonal frequencies certainly do. Thus the distance to the nearest neighbors is δ = 1/60 ≈ 1.7%

of the total width. These differences – computed in terms of the log spectrum log f – must both be

above a pre-specified threshold τf , which is taken to be the fixed fraction 6/52 of the whole dynamic

range of the logged spectral estimate, i.e., the difference between the maximum and minimum value

of the log spectrum. The fraction 6/52 was arrived at through empirical considerations. But in our

development, we allow τf to be user-determined, allowing for additional flexibility.

A peak functional that corresponds to the Visual Significance approach of Soukup and Findley

(1999) can be defined via

Θθ,δ[f ] = min{f(θ)− f(θ − δ), f(θ)− f(θ + δ)}. (3)

We will refer to Θθ,δ[log f ] as the VS functional at θ, or simply VS for short. Note that Θθ,δ is

not a linear functional of spectra, due to the minimum in its definition. The criterion of VS states

that a visually significant peak exists at frequency θ if Θθ,δ[log f ] exceeds τ (which is specified by

the practitioner, and may depend on the dynamic range). In the specific settings of Soukup and

Findley (1999), we would consider whether Θjπ/6,π/60[l̂og f ] (for j = 1, 2, ..., 6) exceeds τf , where τf

is taken to be the fraction 6/52 times the dynamic range of the log spectrum. Of course, altering

this τf to other values will naturally change the notion of peak – lowering τf makes our criterion

less demanding.
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We might study Θθ,δ[log f ] for various peak-shaped spectral densities f to get a reasonable

notion of how to set the value of τf . Thus, it seems useful to examine this quantity for f given

by (2), first letting θ equal any of the seasonal frequencies and δ = π/60. Peak strength for the

first and fifth seasonal frequencies is identical for this type of spectrum, and the same holds for the

second and fourth seasonal frequencies. Figure 4 exhibits the log of peak strength, referred to as

log τ , as a function of ρ ∈ [.9, 1).
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Figure 4: Plots of the logarithm of peak strength, as a function of persistence ρ ∈ [.9, 1). Different
curves correspond to the first, second, and third seasonal frequencies.

It is noteworthy that the log of peak strength, in this case, is an almost linear function of

persistence ρ. This is noteworthy, because ρmight be taken as a proxy for the concept of peakedness;

however, a defect of examining the magnitude of the roots of an AR polynomial that has been fitted

to a time series, is that peak location does not exactly correspond to the angular portion of the

roots; recall from (2) that the actual peak occurs at arccos[(1 + ρ2) cos(θ)/(2ρ)]. When considering

higher order AR processes, the log spectrum is the sum of logs of the squared magnitudes of the

factors related to the zeroes of the AR polynomial. Contributions of the individual summands

to the peaks of the AR spectrum are generally not identiable from the peak and hence the AR

roots are not meaningful as measures of peak location and strength. On the other hand, the peak

strength measure (3) is still meaningful when (2) fails to be true. For example, if the spectrum has

shape

f(λ) = σ2 (2− 2 cos(θ − λ)) (2− 2 cos(θ + λ))−d

for d ∈ (0, 1/2), which corresponds to a long memory specification of seasonality (see discussion in

Holan and McElroy (2012)), then peak strength Θθ,δ[log f ] becomes linear in d, i.e., peak strength

is linear in the parameter d, whereas in the AR(2) case the log of peak strength is almost linear in

ρ. It can be observed that for the adjusted series’ peaks in Figures 1, 2, and 3 the peak strength is

actually negative, because of the slender trough at θ. In practice, this is not a concern. We only care

9



to define a sensible range of estimands τf for peak strength, which can utilize the numbers displayed

in Figure 4. In the case of an actual series that has been seasonally adjusted with SNR that is

too high, the spectral estimate will not exhibit a trough unless there is a great deal of resolution

in the grid, because spectral estimates involve smoothing over nearby frequencies. Hence, spectral

estimates in the case of high SNR will tend to just show a peak, whereas when the SNR is too low,

the spectral estimates will exhibit a trough.

2.3 A parametric Class of Spectral Densities

The discussion using the AR(2) spectrum and the long-memory spectrum shows that understanding

what constitutes a peak and formulating a null hypothesis of absence of peak is a non-trivial exercise.

Visual perception of a peak can be subjective and quantifying the peak measure that accurately

reflects broad consensus about a peak can be challenging. The main difficulty is to derive a single

measure that can adequately reflect the degree of peakedness of a function at a given location.

This is because peakedness of a function is intrinsically a feature that needs a multi-dimensional

specification, including

1. descriptions of the height of the function at that location

2. the concept of a width of the peak

3. the height of the baseline from where the peak rises

4. the convexity/concavity of the peak.

Other attributes that may contribute toward a description of the peak include asymmetry of the

peak and rapid changes to slope.

Ideally, to understand the contribution of any single attribute one could observe the change in

the peak resulting from changing the value of that attribute while fixing the remaining attributes.

Such an exercise is not possible in the commonly used spectral classes (e.g., AR(2)) where the at-

tributes are inter-related through the parameterization of the class. As a consequence, for commonly

used models there is no obvious candidate for an appropriate peak functional which combines the

attributes into a single measure that behaves monotonically with respect to any qualitative change

in the peak. However, it’s possible to define a new class of spectral models that parameterizes the

relevant attributes separately, such that a peak functional of the form (3) will accurately quantify

the notion of a peak.

The features that we want to study are the locations of the peaks (which in the present context

will be the seasonal frequencies), the height at each peak location (which will be the values of the

spectral density at the peak locations) as well as the widths of the peaks (an interval around the

peak frequency within which all the peak dynamics are concentrated), the base height from where
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Figure 5: Triangular spectral density with peak at ω = π/6.

the peak rises (the height of the spectral density at the end of the interval of frequencies depicting

the width around a peak) and the curvature during the rise (whether mound-like or cusp-like). In

addition we want the base heights and the curvatures to be different on either side of each peak to

allow for asymmetry. A prototypical triangular shaped (hence the notation Tr) single peak function

would be

Tr(λ|θ, h, δL, δR, hL, hR, αL, αR) =



hL, 0 ≤ λ ≤ θ − δL,

hL + (h− hL)
(
λ−θ+δL

δL

)αL
, θ − δL < λ ≤ θ,

hR + (h− hR)
(
θ+δR−λ

δR

)αR
, θ < λ ≤ θ + δR,

hR, θ + δR < λ ≤ π.

(4)

The frequency θ will be the location of the peak and the height at the peak will be h. The parameters

δL and δR control the width of the peak to the left and right, respectively. Similarly hL and hR

are the base heights and αL and αR are the curvatures to the left and the right, respectively. A

Triangular spectral density with a peak at the first seasonal frequency θ = π/6 is shown in Figure 5.

The associated parameters are h = 10, hl = 3, hR = 2, δL = π/12, δR = π/6, αL = .8, αR = 2.

Suppose we want to construct a spectral density with peaks at J target locations (e.g. seasonal

frequencies) 0 < θ1 < · · · < θJ < π. For simplicity we are choosing the target frequencies in the

open interval (0, π). However, the function can be extended to include 0 and π. A spectral density

with peaks at the target locations is then defined by

f(λ) =

J∑
j=1

Tr(λ|θj , hj , δLj , δRj , hLj , hRj , αLj , αRj). (5)
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The heights and the base heights associated with the peaks in (5), due to superposition of sev-

eral functions, are no longer the individual heights and base heights of the individual triangular

components. However, in the case when the peak locations are well separated, i.e., θj + δRj <

θj+1− δL,j−1, j = 1, . . . , (J − 1), one could specify the heights and the base heights and obtain the

parameters h, hL and hR from a set of constraints. If b1, . . . , bJ+1 are the desired base heights in

the (J + 1) gaps between the peaks, and p1, . . . , pJ are the desired heights at the peaks, then the

parameters (hj , hLj , hRj), j = 1, . . . , J, can be obtained by setting hj = pj for j = 1, . . . , (J − 1),

and by solving

J∑
k=j

hLk +

j−1∑
k=1

hRk = bj , j = 1, . . . , (J + 1),

hj +
J∑
k=2

hLk +

j−1∑
k=1

hRk, = pj , j = 1, . . . , J. (6)

Thus, given J , i.e, the number of single peak Triangular components, the spectral density (5) will

be parameterized by θ = (θ1, . . . , θJ)′, p = (p1, . . . , pJ)′, b = (b1, . . . , bJ+1)′, δL = (δL1, . . . , δLJ)′,

δR = (δR1, . . . , δRJ)′, αL = (αL1, . . . , αLJ)′, αR = (αR1, . . . , αRJ)′, where the associated h, hL and

hR parameters are solved using (6). When it is needed in the context, we will denote the spectral

density (5) as f(λ|J, θ, b, δL, δR, αL, αR).

The class of functions (5) is quite flexible in terms of capturing the behavior of a peak. Fig-

ure 6(a) shows an approximation to the AR(2) spectrum in (1) (with parameters θ = π/6 and

ρ = 0.9) in terms of a Triangular spectrum. The two vertical lines show the frequency band

π/6±π/12 which provides a wide enough neighborhood between two consecutive seasonal frequen-

cies. The Triangular spectrum seems to adequately approximate the peak feature of the AR(2)

spectrum. Similarly, Figure 6(b) provides approximation to an SAR(1) spectrum (with parameter

φ = 0.9) using a Triangular spectral density with six peaks at the six seasonal frequencies. Again

the degree of approximation is more than adequate for describing all relevant features of the spectral

peaks of the SAR(1) spectrum using those from the Triangular spectral approximation.

The main purpose for introducing the new class of spectral densities is to study the contribution

of individual characteristics such as peak height, peak width, and convexity towards the presence

of seasonality. A peak at a seasonal frequency is a manifestation of periodic components of the

associated frequency in the autocorrelation function of the time series. Ideally we would like to

catalog the relationship between periodicity in the autocorrelation function and different shapes

of a spectral function with a peak at a given location. Thus, it is imperative that we obtain

an explicit expression for the autocorrelation function of the Triangular spectrum, which in turn

can be used to study how presence of seasonality in the autocorrelation is affected by changes in

any particular peak characteristics. The following result gives the autocorrelation function of the

Triangular spectrum.
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(a) AR(2) (b) SAR(1)

Figure 6: Triangular spectral density with peak at θ = π/6.

Proposition 1. Suppose f(λ) given in (5) is the spectral density of a stationary process {Xt}.
Then the autocorrelation function of the process at lag k is given by

γ(k) =
J∑
j=1

γTr(k|θj , hj , hLj , hRj , δLj , δRj , αLj , αRj)

and

γTr = π−1{θ(hL − hR)sinc(θk) + πhR1k=0 +

δL(h− hL)

2(αL + 1)

[
ei(θ−δL)k

1F1(αL + 1, αL + 2, iδLk) + e−i(θ−δL)k
1F1(αL + 1, αL + 2,−iδLk)

]
+

δR(h− hR)

2(αR + 1)

[
e−i(θ+δR)k

1F1(αR + 1, αR + 2, iδRk) + ei(θ+δR)k
1F1(αR + 1, αR + 2,−iδRk)

]
},

where γTr = γTr(k|θ, h, hL, hR, δL, δR, αL, αR), 1A is the indicator of the set A, the parameters

h, hL and hR are solved from p and b using (6), 1F1(·, ·, ·) is the confluent hypergeometric function

defined in Gradshteyn and Ryzhik (1994, 9.210) and for x = 0 is it understood sinc(x) = sin(x)
x = 1.

We use the proposed class as data generating process (in addition to AR(2) processes with

single peak) in the simulation section to study the effect of different features of spectral peaks on

the peak testing methodology proposed in the next section.
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3 Peak Detection

Our main goal is to develop a hypothesis testing framework for the peak detection problem. To do so

we must clearly describe the null and the alternative hypotheses in terms of parameters/functionals

of the spectral density. Intuitively, if there is a peak functional P [f ] which captures the peak

strength, absence of a peak would be quantified by the event that P [f ] fails to exceed some thresh-

old. Because we are particularly interested in evaluating the VS framework within the paradigm

of statistical significance, we closely adhere to the concepts and notions developed by Soukup and

Findley (1999). Thus, we choose the peak functional as the VS functional, i.e., P [f ] = Θθ,δ[log f ]

(we define the VS functional in the log scale, which is more suitable for developing pivotal quanti-

ties).

Choosing an appropriate threshold is a critical component of the testing framework. It is

intuitively appealing to let the threshold depend on the underlying spectral density, thereby making

assessment of peak strength on a relative scale rather than using an absolute value. Henceforth we

denote the threshold by τf to denote the dependence on f . In Soukup and Findley (1999) where the

VS was introduced as a diagnostic, the sample version of the threshold was chosen to be 6/52 of the

estimated dynamic range of the spectral density. In the numerical analysis section we investigate

different choices for the threshold.

The statistical peak testing problem as posed in the VS framework is not straight-forward. The

main complication stems from the very definition of a peak, which makes it hard to clearly define

the null set. The null hypothesis must include all cases which the user would generally classify as a

non-peak. This includes spectral features that resemble half-peaks, where on one side of the target

frequency the measure fails to qualify as peaked, even though on the other side the measure may

indicate a strongly peaked feature. A pictorial illustration of such a case is given in Figure 7.

For convenience, we denote the right and the left-side peak measures included in the VS func-

tional as ΘL
θ,δ[log f ] = log f(θ) − log f(θ − δ) and ΘR

θ,δ[log f ] = log f(θ) − log f(θ + δ). Thus,

Θθ,δ[log f ] = min{ΘL
θ,δ[log f ],ΘR

θ,δ[log f ]}. Recognizing that an insignificant peak is one where at

least one side is not significantly peaked, we obtain the following null and alternative hypotheses:

H0
θ : ΘL

θ,δ[log f ] ≤ τf OR ΘR
θ,δ[log f ] ≤ τf vs Ha

θ : ΘL
θ,δ[log f ] > τf AND ΘR

θ,δ[log f ] > τf . (7)

Intuitively, a critical region for such a test (with Type I error approximately equal to α) should

look like

Cα = {f̂ : min{ΘL
θ,δ[log f̂ ],ΘR

θ,δ[log f̂ ]} > cα + τf}, (8)

where f̂ is some spectral estimator based on a time series sample of length n. Also, cα is a constant

chosen based on the joint distribution of ΘL
θ,δ[log f̂ ] and ΘR

θ,δ[log f̂ ], so that the size of the test (up

to large sample approximation) is

sup
f : Θθ,δ [log f ]≤τf

P (Cα) ' α,
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Figure 7: A spectral density where the right side VS at the seasonal frequency is high but the left
side VS is low, and thus the dynamics around seasonal frequency π/6 will be classified as nonpeak.

where ' stands for “asymptotically equal to”. Because P (Cα) is increasing in Θθ,δ[log f ], the

supremum is achieved for f such that Θθ,δ[log f ] = τf . The test that rejects the hypothesis of no

peak based on a rejection region of the form (8) will be called the VSnew test as opposed to the

existing Visual Significance approach that uses the VS funnctional as a diagnostic tool. Below we

consider conditions for which sup
f : Θθ,δ [log f ]=τf

P (Cα) ' α. If the threshold τf is not known, a suitable

sample estimate τ̂f could be substituted. To further develop the hypothesis testing framework we

need to describe the following:

1. What is the spectral estimator f̂?

2. What is the relevant distribution theory for Θθ,δ[log f̂ ] that would provide appropriate pivotal

quantities, which can then be inverted to obtain the α-critical region Cα?

3. How should one choose τf (or τ̂f )?

We define the spectral estimator f̂ in the next section, and develop the relevant distribution the-

ory. We also discuss the choice of τf and τ̂f in the numerical analysis section. Before we move

forward it is important to look at the structure of the peak testing problem in more detail. Typi-

cally, the distribution theory of the spectral estimator f̂ would yield asymptotic pivotal quantities

(XL, XR) ≡ (ΘL
θ,δ[log f̂ ] − ΘL

θ,δ[log f ],ΘR
θ,δ[log f̂ ] − ΘR

θ,δ[log f ]). For the peak testing problem, the

marginal distributions of XL and XR are the same.

Proposition 2. Let XL and XR be the aysmptotic pivots constructed from the left and right peak

functionals. Let cα be the upper α-percentile of the asymptotic distribution of XL (or XR). Then

the critical region (8) is an asymptotically size α test for the hypothesis (7).
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Proof. We will show that P (Cα) . α for all f with Θθ,δ[log f ] = τf , and exhibit an f that attains this

bound as well. Consider a value of the peak functionals on the boundary of the null hypothesis, i.e.,

consider f such that Θθ,δ[log f ] = τf . Without loss of generality let τf = ΘL
θ,δ[log f ] ≤ ΘR

θ,δ[log f ].

Then

P (min{ΘL
θ,δ[log f̂ ],ΘR

θ,δ[log f̂ ]} > cα + τf ) = P (min{XL, XR + ΘR
θ,δ[log f ]−ΘL

θ,δ[log f ]} > cα)

≤ P (XL > cα) ' α.

Thus, P (Cα : Θθ,δ[log f ] = τf ) . α. Now consider the sequence of random variables Xµ =

min{XL, XR+µ−τf} which converges almost surely and hence weakly to XL as µ→∞. Therefore,

with µ = ΘR
θ,δ[log f ],

P (min{ΘL
θ,δ[log f̂ ],ΘR

θ,δ[log f̂ ]} > cα + τf ) = P (min{XL, XR + ΘR
θ,δ[log f ]− τf} > cα)

→ P (XL > cα) ' α,

as ΘR
θ,δ[log f ]→∞. Thus, sup

f : Θθ,δ [log f ]≤τf
P (Cα) ' α as well.

Remark 1. Proposition 2 shows that in order to bound Type I error, the marginal pivot distribution

should be used; this notion is further explored via simulation in Section 5.4.

The hypothesis about the peak functional defined as the minimum of two quantities can be

rewritten in terms of the bivariate measure involving the left and the right side functionals sepa-

rately. Then the hypothesis testing framework for testing (7) is analogous to one sided tests for

linear inequality constraints; see Sasabuchi (1980), Berger (1989), and Liu and Berger (1995). As

observed in Sasabuchi (1980) and Berger (1989), more powerful tests can be devised using the

bivariate quantity than those defined simply using the minimum of the two random variables. This

will be particularly true when the asymptotic distribution of the pivot is normal, e.g. in the case of

AR-spectral estimator. However, since the main focus of this article is to evaluate the VS functional

within a hypothesis testing paradigm, we will not elaborate on bivariate tests any further.

4 Statistical Estimation of Spectra

We consider tapered acf estimators defined as linear weighted combination of the first M sample

autocovariances, with the weights determined by a specified taper. The quantity M will be referred

to as the bandwidth length. Depending on how fast the bandwidth length grows relative to sample

size, asympotically speaking, three different convergences are obtained. These are the cases of fixed

bandwidth length, small bandwidth fraction, and fixed bandwidth fraction respectively. Following

recent work on fixed bandwidth fraction asymptotics that established possibly superior finite sam-

ple performance as compared to the other bandwidth regimes in a variety of time series testing
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problems, we concentrate on this case for the rest of the paper. Note that the spectral theory

here is developed for stationary series, and hence presumes transformations and/or differencing has

tamed any native non-stationarity.

4.1 Tapered Acf Spectrum Estimator

For background on the motivation and analysis of the tapered acf estimator of the spectrum, see

McElroy and Politis (2014). Let 〈g〉 = (2π)−1 ∫ π
−π g(ω)dω. Then the true autocovariance at lag k

is γ̃k = 〈f̃ ck〉, where ck(θ) = cos(θk). Supposing we have a sample X1, X2, · · · , Xn, let us denote

the periodogram via

f̂(θ) = n−1

∣∣∣∣∣
n∑
t=1

Xte
−iθt

∣∣∣∣∣
2

,

from which it follows that the sample acf is γ̃k = 〈f̂ ck〉. The periodogram is too ragged to consis-

tently estimate f̃ , and is therefore smoothed out by tapering. A taper is an even function Λ that

places more weight towards low lag sample acfs. The tapered acf estimator is defined as

f̂Λ,M (θ) =
∑
h

Λ(h/M)γ̂hch(θ).

HereM is the bandwidth length, chosen by the practitioner. Often the taper is compactly supported

on [−1, 1], so that no lags greater than M are considered in the estimator. As a basic example,

consider the truncation taper Λ = 1[−1,1], which weights all sample acf equally but only uses the

first M of them. If we set M = n, we recover the periodogram:

f̂ = f̂1[−1,1],n.

Another popular choice is the Bartlett taper ΛBART (x) = (1−|x|)1[−1,1](x); such a taper guarantees

that the spectral estimate is non-negative, which is a desirable property when it is necessary to

compute the logarithm of spectra.

4.2 Fixed Bandwidth Fraction Tapered Acf Estimator

The fixed bandwidth fraction paradigm considers that M/n → b ∈ (0, 1], a fixed fraction. This

b is call the bandwidth fraction. For developing the fixed bandwidth fraction theory some data

assumptions are needed. We present two main results below: first, the joint limiting behavior of the

data’s sine and cosine transforms as a functional limit theorem; second, the joint limiting behavior

of the tapered acf spectral estimates. Excluding the long memory cases of McElroy and Politis

(2014) for simplicity, we focus on three possible data assumptions:

• Process P1. {Xt} is a linear process: Xt =
∑

j ψjεt−j with {ψj} square summable and {εt}
iid with finite variance.
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• Process P2.. Xt = g(Zt) for each t, where g is a function in L2(R, e−x2/2) of Hermite rank τ ,

and {Zt} is a Gaussian process.

• Process P3. {Xt} is a strictly stationary process whose kth order cumulants exist and are

summable over its k indices, for all k ≥ 1.

Assumption P1 is standard fare, whereas P2 allows us to consider some non-linear processes.

Assumption P3 allows for non-Gaussian processes, but with short-range dependence. These are

viewed as unverifiable conditions that instead indicate the range of processes for which we can

expect validity.

We are interested in establishing joint Discrete Fourier Transform (DFT) results over a sequence

of frequencies near a finite set of target frequencies. Let the target frequencies be {θ0
1, . . . , θ

0
J}. Let

{θ1n, . . . , θJn} be a sequence of frequencies over which we will evaluate the large sample properties

of the DFTs. For any typical frequency in the sequence and the corresponding target, we use the

notation [θjn, θ
0
j ] to denote the leading n−1 term in the frequency as

θjn = θ0
j + n−1[θjn, θ

0
j ] + o(n−1).

Thus, the θ0
j are fixed target frequencies being approached at a certain rate over the sequence

of frequencies θjn. For notational convenience we will drop the sample size dependence from the

frequencies and simply denote them as (θ1, . . . , θJ). The real and the imaginary parts of the DFT

at a frequency θj are the cosine and the sine transforms at that frequency and they are defined as

Scn(θj) =
n∑
t=1

Xt cos(θjt),

Ssn(θj) =
n∑
t=1

Xt sin(θjt). (9)

The distribution theory used in the proposed testing procedure for the peak functional will depend

on the asymptotic distribution of the sine and cosine transforms at relevant frequencies. When θ0
j is

equal to zero or π, the asymptotic results are a bit different from the other cases where θ0
j ∈ (0, π).

We first give an expression for the limiting covariances

Vcc(θj , θk) := cov(Scn(θj), S
c
n(θk)) (10)

Vcs(θj , θk) := cov(Scn(θj), S
s
n(θk)) (11)

Vss(θj , θk) := cov(Ssn(θj), S
s
n(θk)) (12)

for a typical pair of frequencies (θj , θk). Also, for pairs of frequencies along with corresponding

target frequencies, define the sets

A = {(θj , θk) ∈ [0, π]× [0, π] : θ0
j + θ0

k = 0, 2π (modulo 2π)}

B = {(θj , θk) ∈ [0, π]× [0, π] : θ0
j − θ0

k = 0, 2π (modulo 2π)}. (13)
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Proposition 3. Let (Scn(θj), S
s
n(θk) be the cosine and sine transformations (9) for frequencies θj

and θk, respectively, and let Vcc(θj , θk), Vcs(θj , θk) and Vss(θj , θk) denote the covariances as defined

in (12). Then

Vcc(θj , θk) = nV cc(θj , θk) + o(n),

Vcs(θj , θk) = nV cs(θj , θk) + o(n),

Vss(θj , θk) = nV ss(θj , θk) + o(n),

where

V cc(θj , θk) =
1

2

(
f(θ0

j ) + f(θ0
k)

2

) (
sin([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A +

sin([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
1B

)

−(g(θ0
j ) + g(θ0

k))

(
1− cos([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A

)

−(g(θ0
j )− g(θ0

k))

(
1− cos([θj − θk, θ0

j − θ0
k])

[θj − θk, θ0
j − θ0

k]
1B

)
,

V cs(θj , θk) =
1

2

(
f(θ0

j ) + f(θ0
k)

2

) (
1− cos([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A −

1− cos([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
1B

)

+(g(θ0
j ) + g(θ0

k))

(
sin([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A

)

−(g(θ0
j )− g(θ0

k))

(
sin([θj − θk, θ0

j − θ0
k])

[θj − θk, θ0
j − θ0

k]
1B

)
,

V ss(θj , θk) =
1

2

(
f(θ0

j ) + f(θ0
k)

2

) (
sin([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A −

sin([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
1B

)

+(g(θ0
j ) + g(θ0

k))

(
1− cos([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A

)

−(g(θ0
j )− g(θ0

k))

(
1− cos([θj − θk, θ0

j − θ0
k])

[θj − θk, θ0
j − θ0

k]
1B

)
,

g(θj) =
∑∞

h=1 γh sin(θjh) and the sets A and B are defined in (13).

Proposition 3 allows us to write a joint functional limit theorem for the sine and cosine trans-

formations at the frequencies {θ1, . . . , θJ}. Theorem 1 gives the asymptotic distribution of the sine

and cosine transforms at the given sequence of frequencies. Define stochastic processes from the

sine and cosine transforms via Ss[rn] and Sc[rn] as a function of r ∈ (0, 1), and write ξs[·n] and ξc[·n]

for the linearly interpolated versions. Our results below do not consider mean-centering, because

in applications the time series have already been regression-adjusted and differenced to remove

nonstationarity, so that typically the mean is zero. Extensions of the theorems below to a non-zero

mean are possible, as outlined in McElroy and Politis (2014), but there is no impact except at
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frequency zero anyways, and we have no interest in peak detection at frequency zero for purposes

of assessing seasonal adjustment. For this reason, we restrict the target frequencies to (0, π).

Theorem 1. Let {Xt} be a mean zero covariance stationary time series such that E[|Xt|2+δ] <∞
for some δ > 0, and assume that E[|Ssn(θ)|2+δ] and E[|Scn(θ)|2+δ] are O(n1+δ/2) uniformly in θ.

Suppose that condition P1, P2, or P3 hold. Then for the sequence of frequencies {θ1, . . . , θJ} with

target frequencies all in (0, π), as n→∞

1√
n



ξcbrnc(θ1)

ξsbrnc(θ1)
...

ξcbrnc(θJ)

ξsbrnc(θJ)


=⇒ V 1/2



Bc
1(r)

Bs
1(r)
...

Bc
J(r)

Bs
J(r)


:=



Ac1(r)

As1(r)
...

AcJ(r)

AsJ(r)


,

where each process Bc
j and Bs

j for 1 ≤ j ≤ J is an independent Brownian motion. The covariance

matrix of the vector A(r) process for any fixed r is V , with the covariance of Axj (r) and Ayk(r) given

by V xy(θj , θk) in Proposition 3 for x, y denoting either c or s.

Using the functional limit theorem in Theorem 1, it is possible to write down the joint dis-

tribution of the tapered acf spectral estimator f̂Λ,M at finitely many frequencies, under a fixed

bandwidth fraction assumption. For the next result, we allow Λ to be flat-top (i.e., there is a

c ∈ [0, 1) such that Λ(x) is constant for |x| ≤ c) and is piecewise twice continuously differentiable.

Theorem 2. Let {Xt} be a mean zero covariance stationary time series such that E[|Xt|2+δ] <∞
for some δ > 0, and assume that E[|Ssn(ω)|2+δ] and E[|Scn(ω)|2+δ] are O(n1+δ/2) uniformly in ω.

Suppose that condition P1, P2, or P3 hold. Then for the sequence of frequencies {θ1, . . . , θJ}, as

n→∞ (
f̂b(θ1)

f(θ1)
, . . . ,

f̂b(θJ)

f(θJ)

)
=⇒ (Sθ1(b), . . . , SθJ (b)).

The limiting random vector Sθj (b) is defined as

Sθj (b) =
−1

b2

∫ ∫
cb<|r−s|<b

Λ̈(
r − s
b

)(Acθj (r)A
c
θj

(s) +Asθj (r)A
s
θj

(s)drdr

+
2

b
Λ̇−(1)

∫ 1−b

0
(Acθj (r)A

c
θj

(r + b) +Asθj (r)A
s
θj

(r + b))dr

−2

b
Λ̇+(c)

∫ 1−bc

0
(Acθj (r)A

c
θj

(r + bc) +Asθj (r)A
s
θj

(r + bc))dr

+
2

b

∫ 1−bc

1−b
Λ̇(

1− r
b

)(Acθj (r)A
c
θj

(1) +Asθj (r)A
s
θj

(1))dr

+Λ(0)
(
Acθj (1)Acθj (1) +Asθj (1)Asθj (1)

)
,
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where the processes Acθj and Asθj are as defined in Theorem 1, Λ̇(x), Λ̈(x), Λ̇−(x) and Λ̇+(x) are

the first, second, left and right derivatives of Λ at x, respectively. In the case that there is a jump

discontinuity in Λ at c, we must replace the third summand in the limit distribution by

2(Λ+(c)− Λ−(c)) (Acθj (1− bc)A
c
θj)

(1) + (Asθj (1− bc)A
s
θj)

(1)).

Allowing for jump discontinuities at c means the results cover the truncation taper, which is

important for application of the theory to other forms of estimators such as fixed model order

AR estimators (an estimator not discussed here, but could be thought of as a special case of the

tapered acf estimator using a representation of the AR estimator by Berk (1974)). For the specific

application of peak testing, the finitely many frequencies θ1, . . . , θJ involved in the construction of

any local measure (by local we mean that only features in the neighborhood of the target seasonal

frequency are considered for the determination of a peak) of peak strength, e.g.(3), will have the

property θj = θ0 + [θj , θ
0]. Thus, for any two frequencies θj , θk, the associated variance covariance

expressions for the sine and cosine transforms reduce to

Vcc(θj , θj) = Vss(θj , θj) =
1

2
f(θ0),

Vsc(θj , θj) = 0,

Vcc(θj , θk) = Vss(θj , θj) =
1

2
f(θ0)

sin([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
,

Vsc(θk, θj) = −Vcs(θk, θj) =
1

2
f(θ0)

1− cos([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
,

Vcc(θk, θk) = Vcc(θk, θk) =
1

2
f(θ0),

Vsc(θk, θk) = 0,

5 Numerical Studies

In this section we investigate the statistical properties of the method. We first discuss the choice

of τf in the test (8) (referred to as VSnew hereafter), via examination of the AR(2) process (1);

second, we explore the size and power of the VSnew method through simulation studies, and secondly

evaluate the method on Census Bureau time series.

5.1 Choice of τf

For Soukup and Findley (1999), τf was chosen as τf = τ · Rlog f where Rlog f is the range of the

log spectrum (necessarily assumed to be bounded) and τ is a fixed constant equal to 6/52. Thus,

Soukup and Findley (1999) considered a peak functional estimate not visually significant if the

peak functional was less than 6/52 of the range of the estimated log-spectrum. Their choice of τ

was guided by the available resolution in the plotting device (i.e., the star plot). Here we want to
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Figure 8: Seasonal lag (12) correlation versus the VS value τ for the AR(2) model

relate the choice of the null hypothesis value of τf to the absence of seasonality in the time series.

While there is no consensus in the seasonal adjustment literature about a canonical quantification

of seasonality, it seems reasonable to expect that the presence of a large dominant autocorrelation

at the seasonal lag is sufficient for a time series to have seasonal behavior – see the discussion in Fase

et al. (1973) and Hylleberg (1986). Let ρ(k) denote the autocorrelation function (acf) associated

with the spectrum. We define the peak in the acf at the seasonal lag L to be dominant if

RULE 1: ρ(L) ≥ THR and ρ(L) ≥ ρ(k) for 0.5L ≤ k ≤ 1.5L,

where THR is some user specified threshold. The rule, simply put, means that there is a strong

positive correlation at the seasonal lag, and in addition the seasonal lag correlation is bigger than

any other autocorrelation at the neighboring lags.

For the AR(2) process (1) with a single peak at θ = π/6, the value of τ = Θθ,δ[log f ]/Rlog f is a

monotone function of φ2 = −ρ2, where θ = π/6 and δ = π/60. Similarly, ρ(L) is also a monotone

function of φ2. Figure 5.1 shows the value of τ as a function of ρ(12), since the seasonal lag of

interest is 12 for a monthly series with peak at θ = π/6.

For lower THR values (less than 0.2) the lag 12 autocorrelation is not dominant among the

neighboring correlations ranging from lag 6 to lag 18. For the AR(2) process, a value of τ bigger

than 0.1 satisfies RULE 1 with THR ≈ 0.6. A value of τ = 0.067 would correspond to THR

equal to 0.5 for the AR(2) process. The value 0.1 is close to the value 6/52 used by Soukup and

Findley (1999). Of course, the behavior of ρ(k) for |k − L| < L/2 is not solely determined by

the VS functional. As illustrated by our numerical results for other classes of spectral densities,
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the attributes of the autocorrelation sequence around the seasonal lag are determined by several

features of the spectral density at the seasonal peak, of which the VS functional seems to be one

of the main features to consider. Based on the values obtained from the AR(2) process, we chose

τ = 0.1 for the remainder of the simulation experiment. A point to note is that the choice of τ

is still a subjective issue, and the simulation results are presented only to demonstrate that the

proposed test works for any given value of τ .

5.2 Choice of estimator of range of log-spectrum

As mentioned earlier, to develop the testing theory we assume that the true log-spectral density is

bounded in absolute value (as assumption that is implicit in the definition of the VS functional). To

use the proposed VSnew test we need to consistently estimate the range of the log-spectral density.

To do that we use a higher order AR model to estimate the spectral density and compute the range

of the log-spectral density based on the model estimate. The reason for choosing a parametric

model is to reduce variability in the estimate. One could use nonparametric tapered estimators,

but in our investigation we found that AR based estimator provided more stable range estimates,

thereby reducing the variability in the rejection rate incurred from using a sample estimate of the

range in the rejection rule. Of course, under a p→∞ paradigm, the AR(p) estimator will provide

consistent estimate of the range (Tiao and Tsay, 1983). For implementation of the test we found

that an AR(14) adequately captures the range of the log-spectral density for a wide range of models

investigated.

5.3 AR(2) peak

Throughout the simulation study we concentrate on monthly series, and hence use lag 12 as the

primary seasonal lag and θ = π/6 as the dominant seasonal frequency. The AR(2) parameterization

(1) provides a spectral density with a single peak at the first seasonal frequency (π/6) for monthly

data. If the peak in the spectrum of a seasonally adjusted series is well-depicted by an AR(2)

spectral peak, then we could evaluate the power of the VSnew test in detecting such spectral peaks

using the AR(2) data generating process (DGP). For numerical investigation we generate series

of length n = 120 corresponding to 10 year series, and also for n = 600 corresponding to 50 year

series. The smaller sample size is similar to what is used in the X-12 ARIMA software (i.e., the final

8 years of data) in the context of visual significance, and the longer sample is used to investigate

the convergence to asymptotic values. For 10 year series, the VSnew test failed to produce any

reasonable power when δ = π/60 was used in the VS definition. For δ = π/60, the VS functional

estimate unreliable since it is based on only two frequencies that falls within the δ width. In order

to reduce variability, we also investigated wider δ equal to π/15.

Table 1 provides the power for the VSnew test for different values of the VS based on the
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Bartlett spectral estimator. The true VS was fixed to be in a grid {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and

the parameter ρ of the AR(2) parameterization (1) was computed based on the VS value (in this

case the VS is a monotone function of ρ and a simple grid search provided the associated ρ value for

each VS value). The VS values equal to 0, 0.05, and 0.1 are in the null region, i.e. VS ≤ τ = 0.1.

The AR(2) spectrum is fairly symmetric, providing similar values of ΘL
θ,δ[log f ] and ΘR

θ,δ[log f ], and

thus the size of the VSnew test is expected to be conservative. We only report power values for

b ∈ [0.3, 0.8] because for values of b smaller than 0.3, the finite sample estimator over-smooths, and

the VSnew test becomes more conservative. In contrast, for b ≥ 0.9 there is increased variability in

the estimator resulting in variability in the observed power.

The VSnew test is more conservative for smaller sample sizes; for δ = π/15 the size of the test

is about 2% for n = 120 whereas the size increases to about 3.3% (Table 2) for n = 600. Note

that the difference of the size from the nominal α = 0.05 is not as stark as one would expect if

the left and right peak functionals where asymptotically independently distributed (which would

result in a size of approximately α2 = 0.0025). Table 3 provides the power of the small-b test for

δ = π/60, thus using the same width for the VS as described in the Visual Significance approach of

Soukup and Findley (1999). For n = 600 the test shows reasonable power against alternative VS

values considered, with the test showing nearly 100% power for an alternative value of VS = 0.5.

For n = 600 and δ = π/60 there are about 10 Fourier frequencies that fall in either side of the

target frequency within the δ range and hence provide reasonably stable local estimates. Thus, the

performance of the VSnew test is sensitive to the relationship between the width δ and the sample

size n.

Also, the investigation using an AR(2) process limits the shape and other features of the true

spectral density, and hence it may not reveal sensitivity of the proposed method to the different

aspects of a spectral peak. To address this issue we consider a new class of parametric mod-

els where the parameters are specifically chosen to depict individual features of spectral peaks,

thereby allowing us to investigate the influence of each feature on the performance of the VSnew

test separately.

5.4 Parametric Spectral Peaks

In this section we evaluate the performance of the VSnew test when the time series is generated

based on the parametric model defined in Section 2.3. For simulation we first chose symmetric peaks

where the width, the ratio of the peak height to the base height and the convexity were identical

for the left and the right parts of the Triangular peaks. We chose the width of the Triangular peak

to be π/12 making it wider than the width δ used in the definition of VS. This choice would ensure

that VS is not simply based upon the ratio of the peak height and the base height which we chose

to be 100. The convexity parameter was obtained by fixing the width, the ratio and the VS value.
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.002 0.004 0.005 0.006 0.006 0.007

0.050 0.002 0.004 0.004 0.005 0.007 0.007

0.100 0.008 0.009 0.011 0.013 0.015 0.016

0.150 0.034 0.042 0.050 0.053 0.055 0.058

0.200 0.059 0.078 0.092 0.097 0.098 0.101

0.300 0.328 0.367 0.391 0.397 0.390 0.380

0.400 0.716 0.742 0.764 0.761 0.752 0.744

0.500 0.926 0.933 0.938 0.939 0.935 0.931

Table 1: Power of proposed test based on small-b asymptotics for the AR(2) model for different
values of the true visual significance measure. The values in bold correspond to type I error values
since the associated VS values are all in the null region (≤ 0.1). The sample size is n = 120 and
the width δ used in the VS measure is π/15.

As before, the VSnew test was very conservative for the smaller sample size (n = 120) when

the VS width was δ = π/60, and the case is not reported here. Tables 4-6 show the power of

the VSnew test for the Triangular spectral model for different values of the bandwidth parameter b

(again using Bartlett spectral estimator). The power of the proposed test is sensitive to the shape

of the peak. Since the height of the peak and the base and the width of the peak are fixed, the

VS value is a function of the convexity parameter with the higher VS values associated with more

cusp-like peaks which has higher values for the convexity parameter. Thus, we can enhance the

visual significance of the peak and hence the power of the VSnew test by altering the convexity

while holding all other features fixed.

For the Triangular model, it is possible to look at the performance of the test when the peak

is asymmetric and investigate the Type I error rate for null values where one side of the VS has a

high value while the other side is within the null region. Without loss of generality, we let the left

side VS value to be equal to the null boundary value of τ = 0.1 and vary the right side VS value

between 0.1 and 0.9. As expected (cf. Proposition 2), the Type I error rate approaches the nominal

error rate α, equal to 5% for the current investigation, when the right VS value approaches 1 (or

equivalently the right peak functional approaches infinity); see Table 7.

In contrast, if the upper α percentile of the distribution of the minimum of the left and right

asymptotic pivots was used in the definition of the critical region, the type I error rates will be

inflated for the asymmetric null case while giving nearly nominal rates for the symmetric null.

Table 8 shows the type I error rates for a rejection rule that used the percentile of the distribution

of the minimum of the pivots rather than the percentile of the distribution of the individual pivots.

Thus the approach using the percentile of the distribution of the minimum of left and right pivots
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.013 0.013 0.014 0.016 0.015 0.016

0.050 0.010 0.012 0.013 0.013 0.011 0.013

0.100 0.032 0.031 0.031 0.033 0.030 0.032

0.150 0.114 0.107 0.099 0.095 0.086 0.085

0.200 0.314 0.273 0.246 0.226 0.196 0.185

0.300 0.851 0.786 0.733 0.690 0.636 0.612

0.400 0.995 0.989 0.982 0.974 0.960 0.947

0.500 1.000 1.000 1.000 0.999 0.999 0.999

Table 2: Power of proposed test based on small-b asymptotics for the AR(2) model for different
values of the true visual significance measure. The values in bold correspond to type I error values
since the associated VS values are all in the null region (≤ 0.1). The sample size is n = 600 and
the width δ used in the VS measure is π/15.

would fail to control the Type I error rate at the nominal level α when asymmetric peaks are

present. This underscores the importance of utilizing the (marginal) distribution of individual

pivots, as established in Proposition 2.

5.5 Comparison with the existing Visual Significance approach

The existing Visual Significance appraoch uses a rule that declares the presence of a spectral peak

if the VS functional value exceeds the 6/52 fraction of the observed dynamic range. A comparison

of this rule – which we henceforth refer to as the “VS rule” – in the proposed testing framework

would amount to a rejection rule (8) where the percentile cα is set to zero. This would lead to

inflated Type I error. Table 9 shows the Type I error rate and power for the VS rule under the

AR(2) process. Similarly inflated Type I error rates are observed under the Triangular model as

well, but for brevity we report on the AR(2). To make the results comparable with the proposed

testing method, we have used the fraction 0.1 as the threshold for the VS rule, but the Type I error

rate at 6/52 is very inflated as well.

6 Data Analysis

The application of VS in X-12-ARIMA pertains to the original data, to the RegARIMA model

residuals, the SA series, and the estimated irregular. However, the raw data is typically nonsta-

tionary, so that tapered spectral estimators are not appropriate. For this reason, we focus only on

stationary data.

More precisely, the tools of this paper properly apply to stationary data, and cannot be applied
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.008 0.009 0.011 0.012 0.014 0.013

0.050 0.001 0.003 0.003 0.004 0.004 0.005

0.100 0.009 0.015 0.018 0.018 0.019 0.019

0.150 0.044 0.049 0.053 0.056 0.060 0.054

0.200 0.128 0.156 0.160 0.158 0.165 0.149

0.300 0.597 0.647 0.648 0.631 0.625 0.588

0.400 0.918 0.932 0.927 0.918 0.916 0.897

0.500 0.988 0.989 0.989 0.987 0.986 0.983

Table 3: Power of the VSnew test based on small-b asymptotics for the AR(2) model for different
values of the true visual significance measure. The values in bold correspond to type I error values
since the associated VS values are all in the null region (≤ 0.1). The sample size is n = 600 and
the width δ used in the VS measure is π/60.

to nonstationary data without a huge distortion to the asymptotic distribution theory. Whereas

raw data will have trend and seasonal nonstationarities typically present, seasonal adjustments

can be assumed to have only milder forms of seasonality present; trend-differencing the SA results

in data that can be often supposed to be stationary. Our methods can then be applied to trend

difference SA data, or to model residuals, or the estimated irregular.

Since the critical values of our procedure are based on a stationary null hypothesis, its applica-

tion to raw data may merely result in very high rejection rate. Because the distributional properties

for the nonstationary case are unknown, we do not make this application. Both the model resid-

uals and irregular are stationary, and residual spectral peaks indicate potential problems with the

adjustment.

6.1 Empirical analysis of series from multiple sectors

For data analysis, we consider monthly series from four different sectors: manufacturing (86 series),

retail (6 series), wholesale (18 series) and residential construction (16 series). Each series begins in

April 1995, and is 10 years long. We processed each series in X-12-ARIMA and noted the visually

significant peaks detected by the VS diagnostics for the seasonally adjusted, irregular and residual

series corresponding to each original series. In order to reduce the impact of human decisions

on the adjustments, automatic modeling and outlier detection was used by X-12-ARIMA, along

with trading day identification. We applied the VSnew test with the Bartlett spectral estimator

to differenced seasonal adjustments, model residuals, and irregulars, reporting the p-values in each

case and utilizing a null τ value of 0.1. This test was based upon the full data span of 20 years;

but the default VS procedure only uses the final 8 years of data.
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.005 0.005 0.006 0.006 0.006 0.007

0.050 0.006 0.006 0.007 0.007 0.008 0.009

0.100 0.016 0.016 0.016 0.017 0.016 0.018

0.150 0.032 0.034 0.035 0.034 0.032 0.034

0.200 0.044 0.048 0.051 0.049 0.046 0.048

0.300 0.101 0.106 0.109 0.105 0.102 0.099

0.400 0.194 0.211 0.211 0.205 0.198 0.195

0.500 0.305 0.331 0.324 0.315 0.309 0.303

Table 4: Power of the VSnew test based on small-b asymptotics for the single peak Triangular model
for different values of the true visual significance measure. The values in bold correspond to type
I error values since the associated VS values are all in the null region (≤ 0.1). The sample size is
n = 120 and the width δ used in the VS measure is π/15.

In terms of results, the majority of adjustments were adequate when the X-12-ARIMA VS

criterion is used. There were 5 series (of 126) whose residuals contained a visually significant

peak according to X-12-ARIMA. These series were “Other electronic component manufacturing”

and “Communication equipment manufacturing” from the manufacturing sector, “Home under

construction” for the northeast and south regions in the residential construction sector and the

“Clothing store” series in the retails sales sector. Our proposed test found no significant peak in

any of the series.

6.2 Diagnosis of residual seasonality after inadequate adjustment

We also used 16 retail series with suspected seasonal behavior and intentionally performed inade-

quate seasonal adjustment to check if the test could detect residual seasonality after the adjustment.

The 16 series where “Retail and food services sales, total” (44000), “Electronics and appliance

stores” (44300), “Computer and software stores” (44312), “Building materials and garden equip-

ment and supplies dealers” (44400), “Grocery stores” (44510), “Clothing and clothing accessory

stores” (44800), “Men’s clothing stores” (44811), “Women’s clothing stores” (44812), “Shoe stores”

(44820), “Sporting goods, hobby, book, and music stores” (45100), “General merchandise stores”

(45200), “Department stores -excluding leased departments” (45210), “Warehouse clubs and super-

stores” (45291), “Nonstore retailers” (45400), “Electronic shopping and mail-order houses” (45410)

and “Food services and drinking places” (72200). The start and end dates for each series were

January 1992 and December 2007, respectively. Thus the length of each series was n = 192. The

series are suspected to have changing seasonality (based on the fact that X-12-ARIMA chose short

filters for each of the series) and hence each calendar month’s average seasonality for the last 10
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.001 0.002 0.001 0.002 0.001 0.002

0.050 0.005 0.006 0.007 0.008 0.008 0.008

0.100 0.013 0.015 0.017 0.016 0.014 0.016

0.150 0.037 0.034 0.034 0.034 0.033 0.034

0.200 0.080 0.074 0.069 0.071 0.062 0.062

0.300 0.285 0.234 0.201 0.192 0.170 0.161

0.400 0.564 0.476 0.412 0.376 0.331 0.312

0.500 0.802 0.723 0.657 0.612 0.549 0.522

Table 5: Power of the VSnew test based on small-b asymptotics for the single peak Triangular model
for different values of the true visual significance measure. The values in bold correspond to type
I error values since the associated VS values are all in the null region (≤ 0.1). The sample size is
n = 600 and the width δ used in the VS measure is π/15.

years differs from that for the 16 year average. Thus, we expect to see residual seasonality in last 10

years of data for most of the series after each series has been adjusted for seasonality using 16 year

monthly averages, i.e., after replacing each value by its difference from the mean for that month

over 16 years. Figure 9 shows the means of first differences of logarithmic data by calendar months

for the 16 series where the means are computed based on the last 10 years of data. The plots are

all on the same scale. The plots show a varying degree of month to month changes in the mean

plots, substantiating the claim of residual seasonality for most of the series.

We applied the VSnew test along with the exisiting VS diagnostic procedure in X-12-ARIMA to

the last 10 years of data for each of the series. The VS procedure from X-12-ARIMA was applied

to the spectrum estimated both using an AR(30) model as well as via the raw periodogram. To

compare with other seasonality tests, we consider the Qs statistics of (X-13-ARIMA 2015; Maravall

2012) and the stable F-test (Lytras, Feldpausch, and Bell (2007)). The Qs test is a variant of the

Box-Ljung-Pierce test applied to seasonal lag autocorrelations. The precise definition of the Qs

statistics can be found in the X-13-ARIMA Reference Manual (X-13-ARIMA 2015; pp-198). The

spectral diagnostic tests based on the AR(30) spectrum and periodogram as well as the VSnew test

are applied to each of the five seasonal frequencies individually. The tests for individual seasonal

frequencies were not adjusted for multiple testing. The Qs statistics and the stable F-tests are

aggregate tests over multiple seasonal frequencies.

Table 6.2 reports the peak detection results for all the tests for the 16 series considered. The

columns arspec s-pk and pdg s-pk correspond to the X-12-ARIMA VS diagnostics computed based

on the AR(30) approximation of the spectrum and the raw periodogram, respectively. The column

FM corresponds to the F-test of Lytras, Feldpausch, and Bell (2007) and the column Qs corresponds
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Figure 9: Plots of twelve monthly means, computed over 10 years (red dots) and 16 years (horizontal
lines), for 16 retail series.
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Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.000 0.001 0.001 0.002 0.002 0.004 0.004

0.050 0.002 0.004 0.005 0.007 0.008 0.007

0.100 0.006 0.009 0.010 0.009 0.010 0.010

0.150 0.015 0.018 0.020 0.021 0.024 0.020

0.200 0.050 0.055 0.057 0.060 0.055 0.050

0.300 0.112 0.121 0.113 0.110 0.113 0.102

0.400 0.270 0.268 0.249 0.234 0.232 0.209

0.500 0.453 0.442 0.419 0.396 0.387 0.349

Table 6: Power of the VSnew test based on small-b asymptotics for the single peak Triangular model
for different values of the true visual significance measure. The values in bold correspond to type
I error values since the associated VS values are all in the null region (≤ 0.1). The sample size is
n = 600 and the width δ used in the VS measure is π/60.

Bandwidth fraction b

Right VS .3 .4 .5 .6 .7 .8

0.100 0.011 0.014 0.014 0.015 0.018 0.017

0.300 0.019 0.022 0.024 0.024 0.026 0.022

0.500 0.029 0.036 0.037 0.035 0.039 0.035

0.700 0.038 0.047 0.050 0.050 0.053 0.048

0.900 0.037 0.044 0.047 0.050 0.054 0.052

Table 7: Size of the VSnew test based on small-b asymptotics for the asymmetric single peak
Triangular model for different values of the true right visual significance measure. The left VS
value is fixed at τ = 0.1. The sample size is n = 600 and the width δ used in the VS measure is
π/60.

to the test in TRAMO-SEATS. For the aggregates tests (FM and Qs) a single p-value is reported

for each series. A value of 0.05 indicates that the test was significant at nominal level 0.05 but not

at 0.01, while a value of 0.01 indicates that the test was significant at nominal level 0.01. For the

spectrum diagnostics and the proposed VSnew test the columns list the seasonal frequencies with

significant seasonality.

Except for the VS criterion based on the raw periodogram, the diagnostics/tests detect season-

ality in most of the series. The total number of series where some seasonality was detected is given

at the bottom row. Overall the tests have comparable performance. The VS criterion based on

AR spectral estimate detects more peaks than the rest of the tests. The VSnew test usually detects

a subset of VS peaks as statistically significant peaks with a few discrepancies. The VSnew test

was insignificant for three series: “Grocery stores”,“Men’s clothing stores” and “Food services and

drinking places”. A closer look reveals the reason why the VSnew test failed to detect seasonality.
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Bandwidth fraction b

Right VS .3 .4 .5 .6 .7 .8

0.100 0.053 0.055 0.058 0.055 0.056 0.057

0.300 0.090 0.087 0.090 0.081 0.085 0.084

0.500 0.124 0.119 0.123 0.110 0.112 0.114

0.700 0.143 0.147 0.148 0.133 0.133 0.136

0.900 0.142 0.147 0.151 0.139 0.140 0.141

Table 8: Size of the test based on percentiles of the distribution of minimum of small-b asymptotic
pivots for the asymmetric single peak Triangular model for different values of the true right visual
significance measure. The left VS value is fixed at τ = 0.1. The sample size is n = 600 and the
width δ used in the VS measure is π/60.

Bandwidth fraction b

VS .3 .4 .5 .6 .7 .8

0.100 0.234 0.268 0.287 0.295 0.302 0.310

0.150 0.463 0.500 0.516 0.515 0.513 0.511

0.200 0.705 0.721 0.726 0.722 0.712 0.701

0.300 0.959 0.962 0.961 0.958 0.956 0.952

0.400 0.996 0.996 0.996 0.995 0.995 0.996

0.500 1.000 1.000 1.000 1.000 1.000 1.000

Table 9: Size of test based on the VS rule of rejecting absence of peak hypothesis if the VS functional
exceeds τ = 0.1 fraction of the observed dynamic range of log-spectral density. The true VS value
is fixed at τ = 0.1. The sample size is n = 600 and the width δ used in the VS measure is π/60.

For the “Grocery stores” series and the “Food services and drinking places” the monthly mean

plot in Figure 9 shows that the magnitude of month to month movement in the last 10 years of

the adjusted series are minimal, indicating a low degree of moving seasonality in these series. The

“Men’s clothing stores” series was not a good candidate for seasonal adjustment in the first place,

based on the autocorrelation plot and the spectral density estimate. Thus, overall the proposed

test has very reasonable performance in detecting residual seasonality.

7 Conclusion

Because seasonal adjustment is an enormous activity for statistical offices, the determination of

adjustment inadequacy is extremely important. A host of criteria have been proposed over the

decades (summarized in Hylleberg (1986)), and recent work has focused on placing seasonal ad-

justment diagnostics on a rigorous statistical footing. Following the work of McElroy and Holan

(2009), this paper examines the assessment of spectral peaks and incorporates a quantification of
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Series arspec s-pk pdg s-pk VSnew FM QS

44000 1,2,3 1,3 2,4 .01 .01

44300 2,4 – 2,4 .05 .01

44312 3 – 4 – .01

44400 2,5 – 2 – .05

44510 1 – – – –

44800 1,3 – 1 .01 .01

44811 2 – – – –

44812 1,3 – 1,2 .05 .01

44820 4 2 1 – .01

45100 – – 2 – .01

45200 1,2,3 1,2 1,2 – .01

45210 2 1 1 .05 .01

45291 1,2,5 2 1,2,5 – .01

45400 1,2 1 2 .01 .01

45410 1,2 1 1,2 .01 .01

72200 1 1 – – –

Totals 15 8 13 8 13

Table 10: Diagnostic indications of residual seasonality in the last 10 Years of the stable-seasonal
adjustment, for 16 retail series delineated in the first column. The second column pertains to
the AR(30) VS method of X-12-ARIMA, whereas the third column utilizes the periodogram VS
method. The fourth column corresponds to VSnew, the methodology of this paper. The fifth column
corresponds to the stable F-test, and the sixth column is the Qs procedure.

Type I error into the decision rule. This advance is achieved by determining the distribution of

tapered-spectral estimators and the associated peak functionals, based upon the visual significance

criterion of Soukup and Findley (1999).

In order to formulate meaningful peak criteria, our research has explored different parametriza-

tions of spectral peaks, and proposed threshold values for peak functionals to properly capture

spectral salients at seasonal frequencies. Given our own choices of peak functionals – largely mo-

tivated by the prior literature – we have tabulated the empirical size and power for Bartlett-taper

spectral estimators, used a fixed bandwidth fraction asymptotic theory for critical values. A chief

finding was that ten years of monthly data requires a fairly broad peak functional in order to obtain

the correct size; moreover, for the narrower functional corresponding to the peak functional used

in the X-12-ARIMA software, at least twenty years of monthly data is recommended to obtain the

correct proportion of Type I errors. Currently the software uses only eight years of data.

Given that most seasonal adjustments arising from the X-12-ARIMA software are adequate,

and that moreover incorporating statistical uncertainty into the peak measures makes it harder to

33



detect a peak, we expect in practice that the frequency of incidences of inadequate adjustment will

be reduced with the new method. Essentially, the current visual significance procedure has a Type

I error rate of zero, and generates false detections of residual seasonality. This expectation has been

borne out by our data analysis on four sectors of Census Bureau series. The newer methodology

adds greater statistical rigor to the visual significance method, and decreases the incidence of Type

I errors.

We make no claim that our proposed peak functionals are in any way optimal, but we have

attempted to link them to other notions of seasonality, such as high autocorrelation at seasonal

lags. Future research could focus on the specific problem of designing superior peak functionals; if

based upon spectral density estimates, the theory of this paper might be applicable. Here we’ve

constrained our investigation to functionals resembling visual significance, in order to allow more

direct comparisons with current practice, and develop the theory in a context familiar to many

seasonal adjusters. The key takeaway is a caution about apophenia (i.e., the discovery of apparent

patterns in chaotic data) in the context of spectral plots: it is easy for the human eye to find peaks

that are possibly not sufficiently salient to warrant concern about adjustment adequacy, or – even

worse – are actually statistical anomalies due to the estimation process; the latter fallacy is what

we seek to ameliorate through the techniques of this paper.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

Appendix

A.1 Proofs

We now proceed to the proofs of the main theorems, but state two lemmas without proof – the first

is proved by application of summation by parts, and the second consists of known trigonometric

identities (Gradshteyn and Rhyzik (1994); 1.342). Then we proceed to the proofs of the fixed

bandwidth fraction results.

Lemma 1. Let {γt}nt=1, {at}nt=1, {bt}nt=1 be three sequences of scalars. Then

n∑
t,s=1

γt−satbs = γ0

n∑
t=1

atbt +
n−1∑
h=1

γh

n−h∑
t=1

[atbt+h + btat+h].
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Lemma 2. For 0 ≤ θ ≤ 2π,

n∑
t=1

cos(θt) = cos((n+ 1)θ/2)
sin(nθ/2)

sin(θ/2)
(A.1)

n∑
t=1

sin(θt) = sin((n+ 1)θ/2)
sin(nθ/2)

sin(θ/2)
. (A.2)

Moreover, suppose that θ = θ0 + n−1 [θ, θ0] for some fixed θ0. Then

n−1
n∑
t=1

cos(θt) = 1{θ0=0 or 2π} sin([θ, θ0])/[θ, θ0] +O(n−1), (A.3)

n−1
n∑
t=1

sin(θt) = 1{θ0=0 or 2π}(1− cos([θ, θ0]))/[θ, θ0] +O(n−1). (A.4)

Proof of Proposition 3. By Lemma 1,

2Vcc(θj , θk) = γ0

n∑
t=1

(cos([θj + θk]t) + cos([θj − θk]t))

+
n−1∑
h=1

γh cos(θjh)
n−h∑
t=1

(cos([θj + θk]t) + cos([θj − θk]t))

+
n−1∑
h=1

γh cos(θkh)
n−h∑
t=1

(cos([θj + θk]t) + cos([θj − θk]t))

−
n−1∑
h=1

γh sin(θjh)

n−h∑
t=1

(sin([θj + θk]t) + sin([θj − θk]t))

−
n−1∑
h=1

γh sin(θkh)

n−h∑
t=1

(sin([θj + θk]t)− sin([θj − θk]t)) .

2Vcs(θj , θk) = γ0

n∑
t=1

(sin([θj + θk]t)− sin([θj − θk]t))

+

n−1∑
h=1

γh cos(θjh)

n−h∑
t=1

(sin([θj + θk]t)− sin([θj − θk]t))

+

n−1∑
h=1

γh cos(θkh)

n−h∑
t=1

(sin([θj + θk]t)− sin([θj − θk]t))

+

n−1∑
h=1

γh sin(θjh)

n−h∑
t=1

(cos([θj + θk]t)− cos([θj − θk]t))

+

n−1∑
h=1

γh sin(θkh)

n−h∑
t=1

(cos([θj + θk]t) + cos([θj − θk]t)) .
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2Vss(θj , θk) = γ0

n∑
t=1

(cos([θj − θk]t)− cos([θj + θk]t))

+

n−1∑
h=1

γh cos(θjh)

n−h∑
t=1

(cos([θj − θk]t)− cos([θj + θk]t))

+
n−1∑
h=1

γh cos(θkh)
n−h∑
t=1

(cos([θj − θk]t)− cos([θj + θk]t))

−
n−1∑
h=1

γh sin(θjh)
n−h∑
t=1

(sin([θj − θk]t)− sin([θj + θk]t))

+
n−1∑
h=1

γh sin(θkh)
n−h∑
t=1

(sin([θj − θk]t) + sin([θj + θk]t)) .

Without loss of generality we derive the limit for the expression 2Vcc(θj , θk). The other limits will

follow analogously. Note that, by Lemma 2,

2n−1Vcs(θj , θk) =
1

2

∞∑
h=−∞

γh(cos(θjh) + cos(θkh))1{|h|<n}×

[ch,n
(sin(ch,n [θj + θk, θ

0
j + θ0

k])

ch,n [θj + θk, θ
0
j + θ0

k]
1A +

sin(ch,n [θj − θk, θ0
j − θ0

k])

ch,n [θj − θk, θ0
j − θ0

k]
1B
)

+O(n−1)]

+
n−1∑
h=1

γh sin(θjh)
n−h∑
t=1

(cos([θj + θk]t)− cos([θj − θk]t))

+

n−1∑
h=1

γh sin(θkh)

n−h∑
t=1

(cos([θj + θk]t) + cos([θj − θk]t))

:= T1n + T2n + T3n,

where ch,n = 1− |h|n , and theO(n−1) term is uniformly bounded in h and n. Because
∑∞

h=−∞ |γ(h)| <
∞, applying the dominated convergence theorem, we have

lim
n→∞

T1n =
1

2
[
f(θ0

j ) + f(θ0
k)

2
]

(
sin([θj + θk, θ

0
j + θ0

k])

[θj + θk, θ
0
j + θ0

k]
1A +

sin([θj − θk, θ0
j − θ0

k])

[θj − θk, θ0
j − θ0

k]
1B

)
.

The limits of T2n and T3n can be obtained in similar manner by rearranging the terms in T2n and

T3n analogous to T1n and applying the DCT.

Proof of Theorem 1: The strategy of proof follows that of Theorem 1 of McElroy and Politis (2014).

First, ξ[·n] and S[·n] are equivalent processes, for any of the frequencies and for either the sine or

cosine transform, in the sense that any linear combination over any set of times of their difference

tends to zero in probability (see the proof of Theorem 3 in McElroy and Politis (2013)). So we
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can work with the non-linearly interpolated DFTs to show the convergence of finite-dimensional

distributions; however, tightness follows from Problem 4.11 of Karatzas and Shreve (1991), since the

linearly interpolated processes are in the space of continuous functions – the uniform integrability

conditions on the DFTs then yield tightness. For the finite-dimensional distributions, consider the

joint convergence of 2J components over times r1, · · · , rm. Consider

G =
m∑
`=1

α`

J∑
j=1

(
ηcjS

c
[r`n](θj) + ηsjS

s
[r`n](θj)

)
for arbitrary real numbers α` and ηcj , η

s
j . We wish to extend the definitions of Vcc, Vcs, and Vss

by denoting the sample size as superscripts of the two sine/cosine transform arguments to the

covariance. That is, write V t,s
xy where x, y is either c or s as desired, and t, s denote the number of

summands in the x, y transforms respectively. Supposing that t < s for the moment, we have the

general identity

V t,s
xy =

1

2

(
V t,t
xy + V s,s

x,y − V s−t,s−t
xy

)
, (A.5)

which is proved by writing out the double summations involved in the covariance. Now (A.5)

expresses the covariances we need in terms of the more standard types studied in Proposition 3.

So G has mean zero and variance

m∑
`,p=1

α`αp

J∑
j,k=1

(ηcjη
c
kV

[r`n],[rp]n
cc (θj , θk) + ηcjη

s
kV

[r`n],[rp]n
cs (θj , θk)

+ ηsjη
c
kV

[r`n],[rp]n
sc (θj , θk) + ηsjη

s
kV

[r`n],[rp]n
ss (θj , θk)),

and we can apply (A.5) to the individual summands. Supposing that r` < rp for the moment, we

have

V
[r`n],[rpn]
xy =

1

2

(
V [r`n],[r`n]
xy + V

[rpn],[rpn]
x,y − V [rpn]−[r`n],s−[[rpn]`n]

xy

)
= o(n) +

1

2

(
r`nV xy + rpnV xy − (rp − r`)nV xy

)
= o(n) + r`nV xy.

This uses Proposition 3. So applying this to the variance of G, we obtain up to o(n) terms

n

m∑
`,p=1

α`αp(r` ∧ rp)
J∑

j,k=1

(ηcjη
c
kV cc(θj , θk) + ηcjη

s
kV cs(θj , θk) + ηsjη

c
kV sc(θj , θk) + ηsjη

s
kV ss).

Recalling the definition of the vector A(r) process from the theorem’s statement, and with η

composed of the various ηcj , η
s
j , and using the properties of Brownian Motion, the above expression

is seen to be equal to (up to terms o(n)) n times the variance of
∑m

`=1 α`η
′A(r`), which verifies

the convergence of variances. If P1 holds, the asymptotic normality of the standardized partial

sums follows from Theorem 5.2.3 of Taniguchi and Kakizawa (2000), given the above convergence
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of variances. Under P2 utilize Theorem 5.2.2 of Taniguchi and Kakizawa (2000) for short memory,

using the convergence of variances. Under P3 the conditions on higher order cumulants can be

utilized to show that higher order cumulants of the DFT will grow less rapidly then the normalizing

rate, and hence are asymptotically negligible. This completes the proof.

Proof of Theorem 2: This follows immediately from Theorem 1 once we utilize the equivalency

between the linearly interpolated sine and cosine transforms and the original DFTs, along the

lines of the proof of Theorem 2 of McEroy and Politis (2014). In detail, the tapered acf spectral

estimatorr at a frequency θj can be written in terms of the sine and cosine transformation processes

at that frequency as

nf̂b(θj) = 2Scn(θj)

∫ 1

0
Scbrnc(θj)∂nΛb(1− r)dr + Λb(0)Scn(θj)

2

−
∫ 1

0

∫ 1

0
Scbrnc(θj)∂

2
nΛb(r − s)Scbrnc(θj)drds

+2Ssn(θj)

∫ 1

0
Ssbrnc(θj)∂nΛb(1− r)dr + Λb(0)Ssn(θj)

2

−
∫ 1

0

∫ 1

0
Scbrnc(θj)∂

2
nΛb(r − s)Scbrnc(θj)drds (A.6)

where

∂nΛb(r) = n
[
Λb(
brnc+ 1

n
)− Λb(

brnc
n

)
]
,

∂2
nΛb(r) = n2

[
Λb(
brnc+ 1

n
)− 2Λb(

brnc
n

) + Λb(
brnc − 1

n
)
]
.

Then we apply the functional limit theorem, carefully attending to any jump discontinuities in

the taper, as discussed in the expanded version (technical report online) of McElroy and Politis

(2014).
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