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Abstract

The most fundamental seasonal adjustment deficiency is detectable seasonality

after adjustment. Residual seasonality has reduced amplitudes and other properties

which make it necessary to undertake its detection differently from seasonality de-

tection in unadjusted series. We present the results of our investigation of residual

seasonality detection properties of three types of diagnostics, regression, spectrum

and positive seasonal autocorrelation, six diagnostics in all. These are available,

sometimes with modifications, in widely used software, five in TRAMO-SEATS,

X-13ARIMA-SEATS and JDemetra+, one only in JDemetra+. All were applied to

a set of sixteen underadjusted U.S. Census Bureau Monthly Retail Trade Survey se-

ries. The series have evidence of changing seasonality but were deliberately adjusted

only for stable seasonality. Residual seasonality was found in the final 8 years of all

series and all but one irregulars series. Patterns of "weak" and "strong" detections

differ by diagnostic and final span length, sometimes in quite complementary ways.

Keywords Seasonality diagnostics · Residual seasonality

Disclaimer This report is released to inform interested parties of research and

to encourage discussion. The views expressed on statistical issues are those of the
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1. Introduction and Overview

The most fundamental seasonal adjustment deficiency is detectable residual seasonality

in the adjusted series. With direct additive or log-additive X-11 or ARIMA model-based

seasonal adjustments (and approximately with multiplicative X-11 adjustments), Bell

(2011) shows that the seasonal adjustment filters of all widely used seasonal adjustment

software remove stable (fixed) seasonality. As we illustrate, this includes removal of the

stable seasonality defined by each calendar month’s average seasonal effect over the data
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span adjusted. These results apply to the seasonal adjustments of X-13ARIMA-SEATS

(U.S. Census Bureau, 2016), hereafter X-13A-S, TRAMO-SEATS (Gómez and Mar-

avall, 1996) and TSW (Caporello and Maravall, 2004), hereafter T-S, and JDemetra+

(National Bank of Belgium, 2015), hereafter JD+. Consequently, with this software,

except perhaps with series that have very volatile calendar month subseries, residual

seasonality can only occur when seasonality is changing over time, a property of all

residual seasonality.

There are several possible causes of residual seasonality, starting with inadequate

option or model specification. It can also happen that the series has level or calendar

month movements so erratic or substantial over the length of data specified for adjust-

ment that no software options, or no fixed-coeffi cient ARIMA model with an admissible

seasonal decomposition, can produce seasonal adjustment filters that are effective for

the full data span specified for adjustment.

The absence of a stable-seasonal component causes residual seasonality to be gener-

ally weaker and more diffi cult to detect than seasonality in an unadjusted series. This

is why its detection requires a separate study like that presented here. The same basic

diagnostics can be used with little or no modification. But for best residual seasonality

detection, our results show that most diagnostics should be calculated for an appropri-

ate subspan of the adjusted series (or of its irregulars), see the graphs and discussion of

Subsection 3.1.

Apart from the new JD+ periodogram sum OLS F-test diagnostic of De Antonio

and Palate (2014), all seasonal adjustment programs mentioned have the diagnostics we

consider (or slight variants thereof). Some have more.

The frequency domain diagnostics (spectrum, periodogram, periodogram sum) are

described in Section 2, the regression diagnostics in Section 3, and Maravall’s QS positive

seasonal autocorrelation diagnostic in Section 4.

Table 1 lists the diagnostics by type, with an indication of each diagnostic’s season-

ality detection criterion. The degrees of freedom formulas are somewhat complicated

and not fully explained until later. They can be ignored until such details are of inter-

est to the reader. The "visual significance" criterion is defined in Subsection 2.1 and

illustrated in the figures of Subsection 2.4.

For a specified interval of seasonally adjusted or irregular series values of length

n months, with n large enough for diagnostic estimation (n ≥ 96 preferred), the di-
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agnostics are calculated from the stationarized values, obtained by applying differenc-

ing (1−B)d and log transformation as appropriate to the n − d most recent values

of the specified interval. (d = 0 for irregulars.) This yields an interval of values

for diagnostic calculation of length n − d, for the periodogram sum diagnostic length

n − d + h,−12 < h < 12 with n − d + h divisible by 12, as explained in Subsection

2.2.1. The values of d and h are diagnostic-dependent. For seasonally adjusted values,

d is related to the seasonal and nonseasonal differencing orders of the ARIMA model

for the data, see U.S. Census Bureau (2016, Chap. 7.17). For h see Subsection 2.2.

The JD+ periodogram sum diagnostic is equivalent to an Ordinary Least Squares

(OLS) regression F-test diagnostic for the interval of length n− d+ h. It is denoted by

F fs. Table 1 shows two other diagnostics also associated with F statistics. More de-

tails are given after the table and in the sections presenting diagnostics grouped by type.

Table 1. Diagnostics for a Specified SA or Irregulars Interval of Length n

Seasonality Diagnostic Seasonality Criterion

AR(30) spectrum seas. freq. peaks "Visual Significance"

Periodogram seas. freq. peaks "Visual Significance"

Maravall "Tukey" spectrum ratios Rejection of Quasi-Fdf1,df2
(df1, df2 from table-fit functions)

Periodogram sum F-test Rejection of OLS F fsdf1,df2
(df1 = 11− 1evenn−d+h,

df2 = n− d+ h− 12 + 1n−d−h even)

Stable-seasonal regression Rejection of GLS FMdf1,df2
(df1 = 11, df2 = n− d− k)

Positive seas. autocorrelation QS Rejection of Quasi-χ2(2)

The first three diagnostics evaluate seasonal frequency amplitudes relative to neigh-

boring frequency amplitudes using a ratio criterion, empirical or simulation-based.

In the degrees of freedom formulas for the periodogram sum diagnostic, the indicator

1evenn−d+h has the value 1 if n − d + h is even and 0 otherwise. For the stable-seasonal

regression diagnostic, k ≥ 11 is the total number of independent regressors in the

regARIMA model estimated, including any holiday, trading day and outlier regressors

in addition to the eleven seasonal regressors (14).
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Section 4 concerns the QS diagnostic of Maravall (2012) for detecting positive sea-

sonal autocorrelation after appropriate non-seasonal differencing. The qualifier "quasi-"

is used in Table 1 when, as with QS, the null hypothesis distribution indicated is a

simulation-based approximation to the actual distribution.

Section 5 presents the diagnostics’ performance results for a set of sixteen delib-

erately underadjusted historical U.S. Retail Trade Survey1 series. The series start in

January 1992 and end in December 2007, prior to the Great Recession. They have

moving seasonality over this interval but were adjusted only for stable seasonality. The

diagnostics are applied to different-length subspans of the stable-seasonal adjustment

of the full data span of each series as well as to the corresponding subspans of each

adjustment’s irregulars. The subspans we focus on have January starting months and

final month December 2007. Throughout, n denotes the length of the subspan specified

for seasonality detection. For n = 96, with starting date January 1990, results for all

diagnostics from all series are given in Tables 4 and 6. For other starting dates, only

each diagnostic’s weak and strong (see Table 3 of Section 5) detection totals for each n

are given, in Tables 5 and 7, not the individual series results.

A reader with some exposure to spectrum diagnostics and to regression estimation of

seasonality could start from the expository examples in Subsections 2.4 and 3.1. Then,

after examining Subsection 4.1 about why positive first-seasonal-lag autocorrelation

is especially problematic in seasonally adjusted series (appropriately differenced) and

irregulars, the diagnostics’detection results for the sixteen series could be examined,

consulting earlier subsections for more details as needed.

2. The Spectral Density and Related Diagnostics

Because seasonality induces quasi-repetitive year to year movements in a time series,

frequency domain diagnostics are natural for stationary series, including stationarized

series resulting from differencings and log transformation as appropriate. These di-

agnostics express time series properties in units of cycles per year. Estimators of

the spectral density, which does this for the autocovariance properties of stationary

1This is a sample survey subject to both sampling and nonsampling error. A description of the

survey methods is available at https://www.census.gov/retail/mrts/how_surveys_are_collected.html.
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series, are traditional choices. For a stationary series xt with mean µ = Ext, set

γk = E (xt − µ) (xt−k − µ) , k = 0,±1,±2, . . . .

The spectral density function g (λ), abbreviated sd, is defined for −1/2 ≤ λ ≤ 1/2 by

g (λ) = γ0 +

∞∑
k=1

γk

(
ei2πkλ + e−i2πkλ

)
= γ0 + 2

∞∑
k=1

γk cos 2πkλ. (1)

A spectral density is an even function, g (−λ) = g (λ) for all λ. Consequently, for

graphs, peak heights, and the other features of interest for our study, we can can restrict

attention to 0 ≤ λ ≤ 1/2. Each autocovariance γk, k = 0,±1,±2, . . . can be recovered

from the spectral density via

γk =

∫ 1/2

−1/2
ei2πkλg (λ) dλ = 2

∫ 1/2

0
cos 2πkλ g (λ) dλ, (2)

see Brockwell and Davis (1991, 120). We assume µ = 0. An uncorrelated stationary

series with mean zero is called white noise. It follows from (1) and (2) that, among

stationary zero-mean series, only white noise has a constant spectral density, g (λ) = γ0,

the variance.

With a monthly series, λ = 1/12 cycles/month is the fundamental seasonal frequency,

corresponding to one cycle every 12 months. The remaining seasonal frequencies,

λj = j/12, 2 ≤ j ≤ 6, often called harmonics, are the frequencies with an integral

number cycles in 12 months.

For an ARMA process φ (B) (xt) = θ (B) at with var(at) = σ2a,

g (λ) = σ2a

∣∣θ (ei2πλ)∣∣2
|φ (ei2πλ)|2

, 0 ≤ λ ≤ 1/2, (3)

see2 Brockwell and Davis (1991, 123). Thus, for a monthly SAR(1) process,

xt = Φxt−12 + at, |Φ| < 1, (4)

g (λ) = σ2a

∣∣∣1− Φei2π12λ
∣∣∣−2 =

(
1 + Φ2 − 2 cos 2π12λ

)−2
.

2For the reader having little familiarity with complex numbers, we note that the magnitude |z| of
a complex number z = x + iy is |z| =

√
x2 + y2 and, for any real λ, ei2πλ = cos 2πλ + i sin 2πλ.

See Wikipedia Contributors (2012) for more background. Thus
∣∣θ (ei2πλ)∣∣2 = ∣∣∣1−∑r

j=1 θje
i2πjλ

∣∣∣2 is
reexpressible without complex numbers as

(
1−

∑r
j=1 θj cos 2πjλ

)2
+
(∑r

j=1 θj sin 2πjλ
)2
.
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The SAR(1) has variance γ0 = Ex2t = σ2a
(
1− Φ2

)−2 and nonzero autocorrelations only
at seasonal lags,

ρ12j = Φj , j ≥ 1; ρl = 0, l 6= 12j. (5)

2.1. The Autoregressive Spectrum Diagnostic

For monthly data, following Akaike and Ishiguro (1980), in X-13A-S an AR(p) spectral

density estimate is used to detect both trading day effects and seasonal effects, the

frequencies for the latter being the seasonal frequencies, λk = k/12, k cycles per year,

for 1 ≤ k ≤ 6. In order to obtain adequate resolution of all frequencies of interest, an

AR(p) model φ (B)xt = at with p = 30 is estimated for the stationarized data xt from

the interval being investigated. The Yule-Walker estimation method is used to obtain

an estimated AR polynomial φ̂ (B) = 1 −
∑p

j=1 φ̂jB
j with the required property that

φ̂ (z) 6= 0 for |z| ≤ 1, see §8.1 of Brockwell and Davis (1991). With σ̂2a denoting the

associated estimate of σ2a, from (3), the sd estimate is

ĝ (λ) =
σ̂2a∣∣∣φ̂ (ei2πλ)

∣∣∣2 . (6)

The properties of an sd estimate ĝ (λ) are more usefully expressed after a log trans-

form, most commonly the decibel transform 10 log10 ĝ (λ). Transformation of (6) to

decibel units yields the first of the spectrum diagnostics we consider,

arspec (λ) = 10 log10 ĝ (λ) , 0 ≤ λ ≤ 1/2. (7)

The seasonal peak significance criterion for arspec described next is used for (7) by

X-13A-S, T-S, and JD+.

2.1.1. The Visual Significance Criterion

For series with prominent seasonal features, the sd estimates we consider, calculated

after appropriate differencing, usually show local maxima at one or more seasonal fre-

quencies. There are no well established tests for the statistical significance of such

seasonal peaks. Instead, empirically validated criteria are used, such as the one now

presented.
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For arspec the criterion was motivated by the AR spectrum printer plots produced

by BAYSEA (Akaike and Ishiguro, 1980). It uses the following definitions of a seasonal

peak. At λk = k/12 = 10k/120, 1 ≤ k ≤ 5, a seasonal peak is a value arspec (λk) larger

than the neighboring values arspec (λk ± 1/120). At λ6 = 1/2,

arspec (λ6) > arspec (λ6 − 1/120) is required. For k 6= 6, a seasonal peak value

arspec (λk) is said to be visually significant, denoted v.s., if it is larger than

arspec (λk ± 1/120) by at least 6/52 of the range,

max
0≤j≤60

arspec (j/120)− min
0≤j≤60

arspec (j/120) ,

and also larger than the median of arspec (0) , arspec (1/120) , . . . , arspec (60/120). (Six

arspec values at trading day frequencies, which do not have the form j/120, replace the

arspec (j/120) values in the range and median calculations for v.s. trading day effects.)

In the arspec graphs of Figures 2, 4, and 5, the scale bars at the right show the peak

height required for v.s.

This criterion was first used by Soukup and Findley (1999) to detect peaks at fre-

quencies indicative of trading day effects. A v.s. criterion for λ6 = 1/2 has not been

determined; see Subsection 7.1. (With X-13A-S, other multipliers of 1/52 can be spec-

ified, e.g. a 12* v.s. detection criterion.) The v.s. criterion is numerical and does not

require graphs. But spectrum graphs can be informative, see Subsection 2.4, and are

produced by the programs. For monthly data, the X-13A-S default is to calculate arspec

from the last 96 values under investigation when this many values are available, and

similarly for pdg of (12) when it is specified. Results for the last 120 and 144 months

are also shown for our empirical study series. It will be seen that arspec is competitive

with the other spectrum diagnostics considered, whereas pdg is not.

2.1.2. AR Spectrum Detection Background

Autoregressive spectrum estimation has a tradition of use in electrical engineering and

geophysics as an exploratory diagnostic for detecting the presence of periodic compo-

nents, see Marple (1987). For statistical perspectives, see Berk (1974), Priestley (1981,

600-611), and Newton and Pagano (1983). With a monthly time series, an additive

stable-seasonal component St of xt is conceived as being perfectly repetitive with av-

erage zero over any 12 month period. Equivalently St = −St−1 − · · · − St−11, an au-
toregressive relation with no white noise. As our empirical study will show, even when
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seasonal movements are not perfectly repetitive, a strong tendency for same calendar

month values to move in the same direction from one year to the next, a loose kind

of positive seasonal correlation, can lead to small values of
∣∣∣φ̂ (ei2πλ)∣∣∣2 in (6) at one or

more seasonal frequencies and therefore to large values of arspec (λ) at these λ.

2.2. Sample Spectral Density and Periodogram Based Diagnostics

The sample spectral density g̃ (λ) of x1, . . . , xN (e.g., N = n− d) is defined by

g̃ (λ) = c0 + 2

N−1∑
k=1

ck cos 2πkλ, 0 ≤ λ ≤ 1/2, (8)

where

ck = N−1
N−k∑
t=1

(xt − x̄) (xt+k − x̄) , 0 ≤ k ≤ N − 1, (9)

with x̄ = N−1
∑N

t=1 xt. A related alternative with a long history has the form

IN (λ) =
1

N

∣∣∣∣∣
N∑
t=1

xte
−i2πtλ

∣∣∣∣∣
2

, 0 ≤ λ ≤ 1/2. (10)

For integer j, frequencies λj = j/N in −1/2 ≤ λ ≤ 1/2 (in −N/2 ≤ j ≤ N/2 when N is

even) are called Fourier frequencies. The values IN (λj) define the classical periodogram.

Proposition 10.1.2 of Brockwell and Davis (1991) shows that

IN (λj) =

{
ĝ (λj) , j 6= 0

Nx̄2 , j = 0
. (11)

The function IN (λ) ,−1/2 ≤ λ ≤ 1/2 of (10) can be called the all frequency peri-

odogram. Transformed to decibel units, it defines the X-13A-S periodogram diagnostic

provided in response to user requests,

pdg (λ) = 10 log10 IN (λ) , 0 ≤ λ ≤ 1/2. (12)

pdg is evaluated at the same frequencies as arspec, again using the v.s. criterion. Only

under assumptions too restrictive for our application are well-documented hypothesis

test statistics for detecting frequencies of individual periodic components in correlated

series xt available for this pdg, see Priestley (1981).
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2.2.1. The Periodogram Sum Diagnostic

Special properties of the classical periodogram are used to obtain the periodogram sum

OLS F-test diagnostic of De Antonio and Palate (2014), which we denote by F fs. Results

for F fs are shown in Section 5 along with results for the other spectrum diagnostics.

F fs is available only in JD+. It is based on the sum of the values at the six seasonal

frequencies of the classical periodogram of an interval of (1−B)d , d ≥ 0 differenced

data values, log transformed if needed. The most recent value is the same as that of

the interval of length n− d used for the other spectrum diagnostics, but −12 < h < 12

is chosen so that n − d + h is divisible by 12, in order to have seasonal frequencies be

Fourier frequencies, which is seldom true of n−d, i.e. for h = 0. Thus the interval tested

by F fs is usually an extension or contraction of the interval being tested by the other

frequency diagnostics. If enough preceding time series values are available to calculate

the required differenced data, the smallest 0 < h < 12 providing an extended interval

whose length n − d + h is divisible by 12 is used. Otherwise, not all of the available

differenced data are used. The subinterval of length n − d + h, −12 < h < 0, with

smallest magnitude h providing divisibility of n − d + h by 12, is used. Because F fs

is determined by OLS instead of GLS estimation, no ARMA model is needed for the

values of this interval.

The degrees of freedom formulas for F fs are shown in Table 1. We use F fsα to indicate

the test at level 0 < α < 1. J. Palate (Personal communication, April 5, 2016) provided

the F fsα technical information and results of Section 5. Formal documentation will

be available later from https://github.com/jdemetra/jdemetra-core/wiki/Seasonality-

tests.

2.3. Consistent Spectrum Estimators and the M-T Diagnostic

Neither In (λ) nor g̃ (λ) converges statistically to g (λ) as n→∞: they are not consistent
estimators of g (λ). Section 7.1 references interesting properties of the ratio g̃ (λ) / g (λ)

that reveal this. The estimator g̃ (λ) can be modified to have a limiting distribution for

hypothesis tests. A standard modification applies a weighting function w (k/M) to the

ck in (8), one that gives zero weight to lags k > m, with m = m (n) → ∞ chosen so

that m (n) /n1/2 → 0 as n → ∞. The Blackman-Tukey Hanning estimator applied in
the spectrum diagnostic of Maravall (2012) uses w (v) = 0.5 + 0.5 cosπv for 0 ≤ v ≤ 1
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and w (v) = 0 for v > 1 resulting in

h (λ) = c0 + 2

m∑
k=1

w (k/m) ck cos 2πkλ. (13)

Under Gaussian ARMA and more general assumptions, for each λ,(
n1/2/m (n)

)
[h (λ)− g (λ)] has a mean zero Gaussian limiting distribution with variance

2g (λ)2
∫ 1
0 w

2 (ν) dν = 0.75g (λ)2 for 0 < λ < 1/2, doubling in value at λ = 0, 1/2, see

Theorem 9.4.1 of Anderson (1971).

With λj = j/m, Maravall’s Tukey spectrum diagnostic focuses on the statistical

significance of

H (λj) =
2h (λj)

h (λj−1) + h (λj+1)
, 1 ≤ j ≤ m− 1

and

H(1/2) = h (λm) /h(λm−1), j = m,

for values of m determined by the interval length n. For a monthly series of length

80 ≤ n ≤ 119, m = 79. For n ≥ 120, m = 112. The choice m = 79 is also identified in

Maravall (2012) as "the lowest frequency that permits the isolation of trading day peaks

from seasonal peaks." We call the resulting estimator the M-T spectrum diagnostic,

abbreviated M-T.

In T-S and X-13A-S, the hypothesis of no significant seasonal peaks is tested at the

.01 level using an approximating Fdf1,df2 distribution with df1 and df2 values for sample

sizes 80 ≤ n ≤ 300 from functions fit to the sample means and variances of H (λj) from

white noise simulations, see Maravall (2012). Empirical study series results for the M-T

diagnostic are included in the tables of Section 5.

2.4. A First Example of Residual Seasonality Detection

Detections by arspec and pdg are the most easily visualized: We consider two

X-13A-S seasonal adjustments of the 16 year span January 1992—December 2007 of Sales

of U.S. Warehouse Clubs and Superstores. The first has residual seasonality. The sec-

ond, a default automatic adjustment, does not. (All seasonal adjustments considered in

this article differ from published Census Bureau seasonal adjustments.) The first adjusts

only for stable seasonality, estimated via the X-11 specification seasonalma=stable. Its

last 8 years are shown in Figure 1 along with the unadjusted series values. Its arspec
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for these 8 years, displayed in Figure 2, has v.s. peaks at the seasonal frequencies 1/12,

2/12 and 5/12 cycles per month. Its pdg has only a 2/12 v.s. peak, see Figure 3.

The automatic adjustment of the 16 year span estimates moving seasonality: The

moving seasonality ratio filter selection procedure (see Dagum (1980) or Ladiray and

Quenneville (2001)), which is specified in X-13A-S by x11{seasonalma=msr}, chose the

3× 5 seasonal filter. For the last 8 years of this adjustment, neither arspec nor pdg has

a v.s. peak. We only show arspec, see Figure 5. With Figure 4 as a reference, the

residual seasonality of the adjusted series in Figure 1 is visible as substantial downward

movements around every December or January.

Figure 1: The graph shows the last eight years of the original series overlaid with the

last eight years of the the stable-factor seasonal adjustment of the 16 year data span

that starts in January 1992. Both arspec and pdg detect residual seasonality in the last

eight years of the adjusted series, see Figures 2 and 3.
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Figure 2: The scale bar at the far right shows the decibel amplitude required for a peak

to be v.s. The S above the peaks at the first, second and fifth seasonal frequencies

indicates visual significance. Because there are multiple v.s. seasonal peaks, this is

classified as a strong arspec detection of residual seasonality in the seasonal adjustment

span shown in Figure 1, see Table 3. (The vertical lines at .348 and .432 identify the

locations of trading day frequencies.)
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Figure 3: pdg detects residual seasonality in the final 8 years of the seasonal adjustment

in Figure 1 but with one only v.s. peak, one of the three of arspec’s in Figure 2.
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Figure 4: Automatic filter choice of a 3x5 seasonal filter results in a smooth seasonally

adjusted series with no arspec or pdg indications of residual seasonality, as Figure 5

shows for arspec.
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Figure 5: Automatic X-11 filter choice results in the seasonally adjusted series whose

last eight years are shown in Figure 4. For these years neither arpec nor pdg (not shown)

has a v.s. peak.

3. The RegARIMA GLS F-Statistic for Stable Seasonality

For determining if a regARIMA modeled seasonal time series has statistically signifi-

cant stable seasonality, the stable-seasonal FM statistic was developed in Lytras et al.

(2007) to take advantage of the Generalized Least Squares (GLS) regression coeffi cient

estimates provided by X-12-ARIMA and its successors. FM can be calculated for any

regARIMA model whose regression component includes the stable-seasonal regressors

defined in (14) below and whose ARIMA differencing polynomial does not have the

seasonal sum factor 1 +B +B2 + · · ·+B11. (Otherwise the differencing operation that

precedes parameter estimation would zero these regressors.) For example, the ARIMA

model cannot have 1−B12 = (1−B)(1 +B +B2 + · · ·+B11).
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For j = 1, . . . , 11, the stable-seasonal regressors of X-13A-S, T-S and JD+ are

Mj,t =


1 in month j

−1 in December

0 otherwise

. (14)

The stable-seasonal regression function Σ11j=1βjMj,t has the alternate constrained form

Σ11j=1βjMj,t = Σ12j=1αjmj,t (15)

in the monthly indicator variables (mj,t = 1 in month j and mj,t = 0 otherwise) with

coeffi cients

αj =

{
βj , 1 ≤ j ≤ 11

−Σ11j=1βj j = 12
(16)

obeying the constraint Σ12j=1αj = 0. Because for each j, the regressor mj,t sums to

one over any 12-month interval, (14) shows that the period 12 regression functions

Σ11j=1βjMj,t sum to zero over such an interval and over any interval whose length is a

multiple of 12. Most often, the coeffi cients are estimated from log transformed data,

and exp(Σ12j=1α̂jmj,t) = Π12j=1 exp (α̂jmj,t) shows that the j-th month’s estimated stable

effect is exp (α̂j), with α̂j the estimate of αj .

Let χ̂2 = β̂
′
[
var

(
β̂
)−1]

β̂ denote the software’s chi-square statistic for any specified

regression model with k coeffi cients β = (β1, . . . , βk)
′ whose estimate β̂ has been jointly

obtained with the ARMA coeffi cients, e.g. by iterative GLS estimation given an ARIMA

(p,d,q)(P,0,Q)12 model for the regression disturbances as in Otto, Bell and Burman

(1987). See also Galbraith and Zinde-Walsh (1992). For our exposition, the first 11

coeffi cients of β are the coeffi cients of the Mj,t, with j > 11 reserved for any other

appropriate regressors for the empirical series.

Lytras et al . (2007) provide simulation evidence that

FM =
χ̂2

11
× n− d− k

n− d ,

approximately follows an FM11,n−d−k distribution when there is no stable-seasonal com-

ponent and the model’s other regression and ARIMA specifications can describe the

mean function and autocovariances of the data. (For seasonal periods s 6= 12, e.g. s = 4

with quarterly data, s− 1 replaces 11 in the FM formula.) Lytras et al. (2007) test at
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the .05 level. Other F-tests, e.g. for M-T, use the .01 level. We use FMα to indicate the

test at level 0 < α < 1 and similarly for F-tests of other diagnostics.

As mentioned in the Introduction, Bell (2011) shows that residual seasonality in a

seasonally adjusted series can only occur when the seasonality in the original series is

changing over time and that, regardless of the strength of the moving seasonality, for the

full span of the seasonally adjusted series, the FM statistic’s null hypothesis of no stable

seasonality will be correct (approximately with an X-11 multiplicative adjustment).

However, we will show empirically that FM can be used to detect residual seasonality

if it is calculated from a suffi ciently reduced subspan of the adjusted series. Often the

last eight years of a somewhat longer series suffi ces. The following subsection provides

an informal explanation.

3.1. What do Stable-Seasonal Regression Coeffi cients Estimate?

When the seasonal regression function Σ12j=1αjmj,t is estimated from log-transformed

data as in our empirical study, the text below (16) described how the exp(α̂j) define sta-

ble seasonal factors. With the series from Subsection 2.4, we first show graphically that

each exp(α̂j) can approximate the "mean" (sample average) value of the j-th calendar

month’s estimated time varying seasonal factors, both those of the X-11 multiplicative

adjustment and those of the SEATS log-additive adjustment of this series.

For the 16 year span January 1992-December 2007, Figure 6 shows each calendar

month’s changing multiplicative X-11 seasonal factors and their means. The factors

result from the automatically chosen 3 × 5 seasonal filter. Figure 7 shows that each

mean is close to (i) the month’s X-11 stable-seasonal adjustment factor, (ii) the month’s

exp(α̂j) from the stable-seasonal GLS regression estimate α̂j with an automatically

chosen ARIMA model, and (iii) the average of the month’s SEATS model-based seasonal

factor estimates from this model. See Subsection 7.2 for a formal treatment of calendar

month means and their fundamental properties.

Figure 7 indicates that the stable-factor adjustment of the 16 year span will shift

the calendar month factors shown in Figure 6 in an order-preserving way to have means

close to 1.0. The log transformation used prior to regression estimation transforms

factors and calendar month means above 1.0 to positive numbers, those below 1.0 to

negative numbers. The interpretation of the eα̂j derived from Figure 7 also suggests

that the statistically significant α̂j will have the signs of these transformed quantities.
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One can test this interpretation by applying it to the last halves of the calendar

month graphs in Figure 6, i.e. to the last eight years of X-11 seasonal factors produced

with use of the 3 × 5 filter. The interpretation of the coeffi cient estimates given above

suggests that calendar months whose seasonal factor estimates change most in these

final 8 years should have the most significant estimates α̂j from this span, positive if

the change is an increase, negative if a decrease. From Table 2, the reader can decide

how well the t-statistics of the α̂j conform to these expectations.

Table 2. t-Statistics of the α̂j of the 8-year span (|tj | > 2 in bold)
j 1 2 3 4 5 6 7 8 9 10 11 12

tj 1.77 4.78 3.24 0.97 0.6 0.46 1.56 1.24 -1.11 -2.04 -4.39 -7.01

The full seasonally adjusted series has no stable seasonality, so with longer subspans,

the mean of each calendar month’s seasonal factors along with each exp(α̂j) will move

closer to 1.0, and the number of α̂j that are significantly different from zero will become

negligible, see the 12-year span results in Table 5 below.

A reader interested in a formal mathematical analysis with such conclusions can

consult Subsections 7.2 and 7.3 of the Appendix.
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Figure 6: Multiplicative seasonal factors by calendar month for Sales of Warehouse

Clubs and Superstores, January 1992—December 2007. The horizontal lines show the

means. The factors are those from default X-11 seasonal filter selection.
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Figure 7: This graph reveals that the exponentiated GLS stable seasonal coeffi cient

estimates exp(α̂j) are, effectively, estimates of their month’s average seasonality. They

are very close to the calendar month sample means of both the log-additive SEATS

seasonal factors and the multiplicative X-11 stable seasonal factors of Figure 6.

4. Maravall’s QS Statistic for Positive Seasonal Autocorrelation

The QS statistic of Maravall (2012) for detecting positive seasonal autocorrelation is a

function of the first and possibly also the second seasonal-lag sample autocorrelation of

the stationary transform of the data being investigated. The stationarized values xt are

obtained by applying (1−B)d to the data or their logs with appropriate 0 ≤ d ≤ 2. For

xt from the original series or from seasonally adjusted data, d = 2 if the ARIMA model

of the unadjusted series has both a seasonal and a nonseasonal differencing. Otherwise,

initially d = 1, but the program changes this to d = 2 if a check indicates that this is

preferable. For irregulars d = 0.

With ck, k ≥ 0 as in (9) and rk = ck/c0, and with s denoting the seasonal period,

s = 12 here, the focus is on the signs of the sample seasonal autocorrelations, rl, l = s, 2s.
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Following Maravall (2012), let nz denote the length of the undifferenced data span and

set n = nz − d. Define

Rl =

{
rl, if rl > 0

0, if rl ≤ 0
.

When Rs = 0, set QS = 0. Otherwise set

QS = n(n+ 2)

{
R2s
n− s +

R22s
n− 2s

}
.

As an approximation motivated by simulations described in Maravall (2012), the

statistic QS is taken as having a χ2 (2) distribution under the hypothesis ρl ≤ 0, l = 1, 2.

Testing is done at the .01 level of χ2 (2), so the test is denoted by QS.01.

Remark. There is always positive probability, perhaps small, that QS = 0, i.e.

that a sample autocorrelation estimate will be negative. Hence QS does not have a

continuous density function such as a chi-square. Thus the specified .01 level cannot be

taken literally. Self and Liang (1987) illustrate the kinds of distributions that can arise

in this situation. The important fact is that QS.01 performs well in our empirical study.

4.1. Background for QS with Residual Seasonality

A detection of ρ12 > 0, positive seasonal lag autocorrelation, either in the stationarized

monthly seasonally adjusted series or in the irregulars, is a strong indication of residual

seasonality. It is strong because r12 < 0, suggesting ρ12 < 0, is what is expected

after seasonal adjustment. The negative r12 phenomenon for stationarized seasonally

adjusted values is the focus of the article McElroy (2012) and its references. The seasonal

adjustments of all but one of the 88 series of the article’s empirical study have r12 < 0,

with statistical significance for 46 at the .05 level (two-sided null hypothesis, see p. 41

of McElroy (2012) for an example indicating the test’s calculations). Similarly 86 of the

88 irregular components have r12 < 0, with statistical significance for 59. (For the tests,

the estimated model coeffi cients were assumed to be correct.)

An intuitive explanation, given a formal foundation in Findley, Lytras and Maravall

(2016), hereafter Findley et al. (2016), is that removal of estimated seasonal factors,

which generally evolve smoothly from year to year within each calendar month as in

Figure 6 above, results in nonsmooth consecutive movements in each calendar month’s

stationarized seasonal adjustment and also in its irregulars, leading to r12 < 0 in both
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cases. (Consecutive same calendar month values are 12 months apart on the time scale

of the observed series.) The referenced formal foundation links ρ12 > 0, positive autocor-

relation between consecutive values, with smoothness and ρ12 < 0 with nonsmoothness.

Here we summarize results obtained from the theoretical case of series whose models

are completely known and whose unobserved components are estimated from bi-infinite

data. We reexpress the basic results, calculated for the semiannual case s = 2 of the

seasonal random walk in Table 1 of Findley et al. (2016), in terms of the monthly

case s = 12. First, for the stationarized unobserved seasonal adjustment component

(1−B)d SAt and its estimated seasonally adjusted series (1−B)d ŜAt, we have

0 ≥ ρ(1−B)
dSA

12 > ρ
(1−B)dŜA
12 . (17)

In the terminology of Findley et al. (2016), (17) establishes that each calendar month

series of the stationarized seasonal adjustment (1−B)d ŜAt is more nonsmooth than

the corresponding unobserved calendar month series of (1−B)d SAt.

Similarly, for the irregular component ut and its estimate ût, we have

0 = ρu12 > ρû12. (18)

Thus ρû12 is negative, so each calendar month series of ût is more nonsmooth than the

corresponding calendar month series of the unobserved white noise ut.

We have also verified the properties (17) and (18) for airline model components and

their estimates for the representative airline model coeffi cient pairs shown in Tables 7

and 8 of Findley et al. (2016).

Such results make clear why empirical findings of r(1−B)
dŜA

12 < 0 and rû12 < 0 are

expected after an appropriate seasonal adjustment, which in turn makes clear why

ρ12 > 0 detections strongly indicate residual residual seasonality.

5. Empirical Residual Seasonality Detections

We turn to results for sixteen U.S. Census Bureau Monthly Retail Trade Survey series.

All are series for which a seasonal model indicative of moving seasonality was selected

for the 16 year data span January 1992—December 2007 by X-13A-S’s implementation

of a recent version of the automatic ARIMA model selection procedure of T-S (a re-

finement of the procedure of Gómez and Maravall (2001)). Also for half of the series,
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the automatic X-11 filter selection option selected the very short 3 × 3 seasonal filter

for this span, a filter that tends to produce rapidly changing seasonal factors, instead

of the alternative longer 3 × 5 filter, whose seasonal factors tend to change less. The

seasonal adjustment is performed on the series adjusted for regression modeled trading

day, holiday, and outlier effects, i.e., the X-11 B 1 series, which we call the unadjusted

series.

The series titles listed below are preceded by their NAICS codes (with trailing zeroes

added) and followed by an indication if the 3× 3 filter was selected.

44000 Retail and food services sales, total

44300 Electronics and appliance stores (3× 3)

44312 Computer and software stores

44400 Building materials and garden equipment and supplies dealers

44510 Grocery stores

44800 Clothing and clothing accessory stores (3× 3)

44811 Men’s clothing stores

44812 Women’s clothing stores (3× 3)

44820 Shoe stores (3× 3)

45100 Sporting goods, hobby, book, and music stores.

45200 General merchandise stores (3× 3)

45210 Department stores - excluding leased departments (3× 3)

45291 Warehouse clubs and superstores

45400 Nonstore retailers (3× 3)

45410 Electronic shopping and mail-order houses (3× 3)

72200 Food services and drinking places

Among series whose codes have the same initial digits, the one with the smallest code

is the most aggregate and the rest are subaggregates (also called components) thereof.

For example, all series with codes in the range 44300 through 44820 are subaggregates

of 44000. Also 44312 is a subaggregate of 44300.

As was mentioned earlier, the X-11 stable-factor adjustment of each series left resid-

ual seasonality that was detected in the final eight year span by at least one diagnostic,

arspec always, and usually by others too. By contrast, when the seasonal adjustment
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for each full 16 year January 2002-December 2007 series is obtained with the automatic

X-11 seasonal filter selection option, there are no significant seasonal peaks or significant

FM.01 or F
fs
.01values for the the last 8 year span, and no significant QS.01 values for the

adjustment of the full January 16 year 1992 to December 2007 span. (QS.01 detections

tend to increase with the span length, as will be seen.)

For the final 8 year subspans, detection results for each diagnostic and each adjusted

series and its associated irregular component are provided below in Tables 4 and 6

respectively, noting which are strong detections as defined in Table 3. In the 8 year

span results for spectrum diagnostics, especially arspec, it will be seen in Tables 4

and 6 that when an aggregate with several subaggregates has two or more significant

peaks, then usually one of the subaggregates has a significant peak in common with the

aggregate.

For longer subspans, only each diagnostic’s detection totals from the sixteen series

are provided, in Tables 5 and 7, with separate totals for strong detections.

5.1. Detections from the Stable-Seasonal Adjustments

Table 3 defines strong detections for each diagnostic. The rest are weak detections.

Tables 4-5 show seasonally adjusted series results. Table 6-7 show the corresponding

irregulars results. The diagnostics are calculated after X-11 extreme value adjustment;

see Dagum (1980) or Ladiray and Quenneville (2001). In the Totals row of these ta-

bles, the entries in parentheses are for strong detections. With spectral detections,

each significant seasonal peak’s number is shown. For M-T, Maravall (2012) describes

simulation-based approximate F-statistic criteria of T-S, also implemented in the other

software, for what are called weak and strong peaks for all six seasonal frequencies.

Strong M-T peaks are indicated by * in Tables 4 and 6. Maravall’s detection criteria

are always as demanding as those in Table 3 and in several cases more demanding.
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Table 3. Criteria for a Strong Detection
Diagnostic Strong Detection

arspec 2 v.s. peaks

pdg 2 v.s. peaks

M-T One F.01 peak (*) or two F.05 peaks

F fs .01 significance

Stable-seas. GLS FM .01 significance

QS .01 significance

For the case in which each diagnostic is calculated from the last 8 years of the

seasonally adjusted series, Table 4 identifies weak and strong detections. The weak

detection total for each diagnostic is shown in the final row before its number of strong

detections, which is shown in parentheses. Regarding strong detections, pdg performs

substantially worse than other diagnostics, with only 2 compared to 8 or more for the

others.
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Table 4. Detections (Strong Detections) of Residual Seasonality
in the Last 8 Years of Stable-Seasonal Adjustments

( - indicates no detection)
Italic codes identify series at most one strong detection.

Series arspec pdg M-T F fs.05 (F
fs
.01) FM.05 (F

M
.01) (QS.01)

44000 (1,2,4) 2 2 (.01) (.01) -

44300 (2,4) - 2 (.01) (.01) (.01)

44312 3 - (3*) .05 .05 (.01)

44400 2 1 2 .05 (.01) (.01)

44510 (1,4) 1 - - - -

44800 (1,2,3,4) - - (.01) (.01) -

44811 (1,2) 2 (1*,2*) .05 - -

44812 (1,3) - - (.01) (.01) -

44820 4 2 (1,2) (.01) .05 (.01)

45100 4 4 - (.01) (.01) (.01)

45200 (1,2) - (2*) (.01) (.01) -

45210 2 - (1,4) .05 (.01) (.01)

45291 (1,2,5) 2 (1,2*) (.01) (.01) (.01)

45400 2 (1,2) (2,3) (.01) (.01) (.01)

45410 (1,2) (1,2) (1,2*) (.01) (.01) (.01)

72200 1 1 1 - .05 -

Totals 16 (9) 10 (2) 12 (8) 14 (10) 14 (11) (9)

Seasonality in the adjusted series is detected by at least two diagnostics for all sixteen

series. Fourteen have two or more strong detections. For the final 8 years, the regression

diagnostics have the most strong detections (as happens again for the irregulars, with

even more detections, as Table 6 shows). The weakest results are those for 44510

(Grocery Stores), which only has spectrum detections, and 72200 (Food Services and

Drinking Places). These series also have the weakest detection results from irregulars

series, see Table 6. From their definitions, one would expect at most modest evolution

over time in their seasonal patterns.

For arspec, with the exception of 44312, at least one of any subaggregate’s v.s.

peaks is also a v.s. peak of the largest aggregate. Also, with the exception of 44820, a
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seasonal peak that is significant for arspec is significant for one or more other spectrum

diagnostics, for either the seasonally adjusted series or the irregulars, often both. With

M-T, 44000, 45200 and 45400 have a peak in common with a subaggregate. Also, for

ten series, at least one of the frequencies with a significant M-T peak also has a v.s.

arspec peak. It is an attractive feature of spectrum diagnostics that they can reinforce

indications of residual season in multiple ways.

Table 5 summarizes residual seasonality detection totals for the final 8, 10 and 12

year spans and also the full 16 year data span. Regarding strong detections, only QS

consistently detects the same or more with each increase of interval length, having

more than other diagnostics already with the 10 year spans. Counting weak detections,

arspec has the most detections at all lengths. The diagnostics pdg and FM perform

substantially worse with each increase in span length. For FM this is the result predicted

in Subsection 3.1 whose argument also applies to F fs.

Table 5. All Spans Detection (Strong Detection) Summaries for the
Stable-Seasonal Adjusted Series

span arspec pdg M-T F fs.05 (F
fs
.01) FM.05 (F

M
.01) QS.01

8yr 16 (9) 10 (2) 12 (8) 14 (10) 14 (11) (9)

10yr 15 (9) 9 (0) 12 (7) 8 (3) 10 (7) (10)

12yr 13 (4) 7 (0) 2 (0) 1 (0) 0 (0) (10)

16yr 14 (9) 0 (0) 0 (0) 0 (0) 0 (0) (12)

Both Tables 4 and 5 show that pdg (with the v.s. criterion) is inferior to arspec

and that pdg makes no contribution to the number of series in each span with a strong

detection. The same holds for the strong irregular series detections, see Tables 6 and 7

below.

QS.01 is revealed as an important diagnostic for detecting residual seasonality. Pos-

itive seasonal correlation after appropriate differencing usually indicates a deficient sea-

sonal adjustment, see Section 4.

5.2. Detections from the Associated Irregulars

Tables 6 and 7 are the analogues for the irregulars of Tables 4 and 5. Numbers in bold
emphasize the few cases (resp. totals) in which the irregulars detections are more in
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number or strong more often than the detections from the seasonal adjustment. This

happens often enough to show that both the seasonal adjustment and the irregulars

should be examined for residual seasonality.

Table 6. Detections (Strong Detections) of Residual Seasonality
in the Last 8 Years of the Irregulars

( - indicates no detections)
Italic codes identify series without multiple strong detections
Series arspec pdg M-T F fs.05 (F

fs
.01) FM.05 (F

M
.01) (QS.01)

44000 (2,4) (1,2) (2*) (.01) (.01) -

44300 (2,4) - 6 (.01) (.01) (.01)

44312 (1,3) - 3 .05 - (.01)

44400 (1,2) 1 - .05 (.01) -

44510 - - - - - -

44800 (1,2,3,4) - 2 (.01) (.01) (.01)

44811 2 2 (1,2*) (.01) (.01) (.01)

44812 (1,3) 1 - (.01) (.01) (.01)

44820 - 2 2 (.01) (.01) -

45100 (1,4) 4 2 (.01) (.01) (.01)

45200 2 - (2*) (.01) (.01) -

45210 2 - (1,2,4) (.01) .05 (.01)

45291 (2,5) 2 (2*) (.01) (.01) (.01)

45400 2 2 (2,3*) (.01) (.01) (.01)

45410 (1,2) (1,2) (2*,3) (.01) (.01) (.01)

72200 1 1 - - (.01) -

Totals 14 (9) 10 (2) 12 (7) 14 (12) 14 (13) (10)

Regarding seasonality detections in the last 8 years of the extreme value adjusted

irregulars (X-11 output table E 3), Table 6 shows that, as in Table 4, series 44510 and

72200 have fewer than two strong detections. In Table 6 as in Table 4, for arspec, with

few exceptions, at least one of any subaggregate’s v.s. peaks is also a v.s. peak of the

largest aggregate. In Table 6, for nine series, at least one of the frequencies with a

significant M-T peak also has a v.s. arspec peak.
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The results for increasing span lengths in Table 7 parallel those of Table 5, whose

discussion applies also to Table 7. The least successful diagnostic is again pdg.

Table 7. Summary of Detections in E 3 Irregulars (Strong Detections)
span arspec pdg M-T F fs.05 (F

fs
.01) FM.05 (F

M
.01) QS.01

8yr 14 (9) 10 (2) 12 (7) 14 (12) 14 (13) (12)

10yr 14 (6) 5 (0) 4 (1) 12 (10) 6 (4) (12)

12yr 13 (3) 5 (0) 2 (1) 1 (1) 0 (0) (14)

16yr 12 (5) 1 (1) 0 (0) 0 (0) 0 (0) (14)

6. Concluding Remarks

Because of its consistently inferior performance, we recommend against use of pdg. The

diagnostics found to be effective in our empirical study, when properly applied, are im-

plemented, sometimes with minor modifications, in easily available seasonal adjustment

programs. Our empirical study and background results should help users of such soft-

ware to make reliable diagnoses regarding residual seasonality. This document could

also be of general interest regarding the nature of residual seasonality.

Institutions that publish seasonal adjustments have differing practices regarding

whether the full span for which the adjustment is calculated is published or only a final

subspan. In any case, because more recent data are usually of greater interest, seasonal

adjustment quality control should include application to a perhaps unpublished subspan

(or its irregulars) of a seasonality diagnostic expected to be sensitive to seasonality in

such a span according to results like those of our analyses.

Our finding that most diagnostics must be applied to a subspan of the seasonally

adjusted series for best residual seasonality detection raises doubts about the heralded

model-based seasonal adjustment quality control procedure of checking for idempotency,

see for example Nardelli (2008). For this procedure, the software is rerun in an auto-

matic mode on the full seasonally adjusted series. If a model decomposition without a

seasonal component is produced, and therefore no seasonal adjustment of the seasonally

adjusted series is done, there is idempotency, meaning no change to the initial seasonal

adjustment. This would be an important property if it meant that there is no residual

seasonality. But it does not establish that residual seasonality cannot be found in a
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subspan. Further, in the rare situations when idempotency fails, there is no research

showing that automatic seasonal adjustment of the seasonally adjusted series is likely

to produce a series with no residual seasonality.

We have only considered monthly series. Lytras (2015) provides results on the per-

formance of quarterly versions of the diagnostics for detecting residual seasonality in

quarterly series, simulated and real, including the FM.05 and QS.05 and arspec diagnos-

tics and X-13A-S diagnostics inherited from its predecessors. Most diagnostics perform

poorly because of the small numbers of observations. QS.05 is the most credible diag-

nostic, usually with the full series.

Finally, it is very useful that seasonal adjustment software can be run is such a way

that it immediately provides the output of seasonality diagnostics for the adjusted series.

But this will not account for post-adjustment modifications made prior to publication.

For example, central banks and statistical offi ces sometimes apply formal or informal

benchmarking methods that modify seasonally adjusted series in order to force them

to satisfy accounting constraints, e.g., forcing directly seasonally adjusted components

of an aggregate series to sum to the direct seasonal adjustment of the aggregate, see

Quenneville and Fortier (2012) and den Butter and Fase (1991). Such modified seasonal

adjustments need to also be tested for residual seasonality.
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7. Appendix

7.1. Inconsistency and Other Properties of g̃ (λ)

The sample spectral density g̃ (λ) of (8) does not converge to g (λ) as n→∞ because it

employs sample autocovariances (9) that average too few values of (xt − x̄) (xt+k − x̄)

to estimate enough γ
k
adequately, e.g. cn−1 = n−1 (x1 − x̄) (xn − x̄) estimates γn−1

from one term. A revealing convergence result is

V ar

(
g̃ (λ)

g (λ)

)
=
V ar (g̃ (λ))

g2 (λ)
→
{

1, 0 < λ < 1/2

2, λ = 0, 1/2
, (19)
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see §10.3 of Brockwell and Davis (1991). This shows how g̃ (λ) /g (λ) fails to converge

to 1. (V ar (1) = 0.) It also shows that V ar (g̃ (λ)) is frequency-dependent, changing

when g (λ) does. Most importantly, it shows that the ratio has the same asymptotic

variance for all interior frequencies 0 < λ < 1/2 but double this variance at the endpoint

frequencies λ = 0, 1/2. As (11) suggests, when µ = 0 the same results hold for pdg (λ).

The key result motivating log transformed diagnostics, described precisely after for-

mula (13), is somewhat analogous. It shows that taking logs stabilizes the asymptotic

error variance, making it constant over all interior frequencies, doubling at endpoint

frequencies. This justifies using the same v.s. criterion at all seasonal frequencies other

than λ = 1/2 for pdg and the M-T diagnostic, and also for arspec (apply the proof of

Corollary 5.6.3 of Brillinger (1975) to the results of Theorem 6 of Berk (1974)).

Remark. Simulation and empirical experiments could help to decide if a 12* or other

criterion for v.s. arspec peaks at λ = 1/2 would be effective. Maravall (2012) outlines

simulations for the alternative v.s. criterion of T-S but the incomplete discussion does

not suggest a simple criterion.

7.2. The Calendar-Month-Average Stable Seasonal Component

Suppose m ≥ 1 years of detrended or stationarized monthly data x1, . . . , x12m are con-

sidered with x1 from January. For 1 ≤ j ≤ 12 and 1 ≤ k ≤ m, the j-th calendar month’s
datum in the k-th year of data is xj+12(k−1). The 12 calendar month subseries of ,

xj+12(k−1), 1 ≤ k ≤ m, 1 ≤ j ≤ 12 (20)

have sample means,

xj (m) = m−1Σm
k=1xj+12(k−1), 1 ≤ j ≤ 12, (21)

which provide a decomposition of the sample mean of the data,

x (12m) = (12m)−1 Σ12ml=1 xl = (1/12) Σ12j=1xj (m) .

The centered calendar month means

sj (m) = xj (m)− x (12m) , 1 ≤ j ≤ 12 (22)

satisfy Σ12j=1sj (m) = 0. Hence a stable seasonal component for the data is given by

sj+12(k−1) = sj (m) , 1 ≤ k ≤ m, 1 ≤ j ≤ 12. (23)
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It will be convenient to focus on zero-mean SAR(1) data (4). Then the 12 calendar-

month subseries of length m years, xj+12(k−1), 1 ≤ k ≤ m, 1 ≤ j ≤ 12, have AR(1)

models with coeffi cient Φ, innovation variance σ2a, and variance σ
2
a

(
1− Φ2

)−1. From
(5), they are mutually uncorrelated, so the same is true of their calendar-month sample

means xj (m), whose variance is the same for all j, Exj (m)2 = Ex1 (m)2. We will use

these properties to obtain formal results yielding observed properties of FM.01.

7.3. Insights from SAR(1) Series

A noted property of FM.01 in Tables 5 and 7 is that its stable seasonality indications

are greatest with the shortest subspan, substantially diminishing as the span length in-

creases. The informal results of Subsection 3.1 regarding the stable seasonal component

defined by average monthly seasonality suggested explanations. For SAR(1) series (4),

we show formally in Subsection 7.3.1 that the standard deviations
√
Esj (m)2 of (22)

and (23), which depend on m and on the seasonal-lag autocorrelation Φ, are relatively

large for small m (provided Φ is not too small), but tend to zero at the rate m−1/2 as

m→∞.
Table 8’s detection rates for FM.01 from 5000 simulation for each Φ and n = 12m

display the anticipated FM.01 detection changes: decreased detections as m increases or

Φ decreases.
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Table 8. Rates of Strong FM.01 Detections
for Φ = 0.2, 0.4 with Increasing n

Φ n = 12m FM.01

.4 96 .376

.4 144 .204

.4 288 .076

.2 96 .363

.2 144 .197

.2 288 .070

7.3.1. Analysis of the SAR(1) Stable-Seasonal Component

From Section 7.2, x̄ (12m) = (1/12) Σ12j=1xj (m) is an uncorrelated-component decom-

position of x (12m) in which each component has the same variance Ex1 (m)2 /144.

Therefore (using ⇐⇒ for "equivalent formula") its variance and standard deviation

satisfy

144Ex (12m)2 = 12Ex1 (m)2 ⇐⇒
√
Ex1 (m)2 =

√
12

√
Ex (12m)2 . (24)

For (22), we have 12sj (m) = 12xj (m) − 12x (12m) = 11xj (m) − x (12m) /12 =

11xj (m)−Σ12l=1,l 6=jxl (m), a decomposition into mutually uncorrelated calendar month

components. For 1 ≤ j ≤ 12, uncorrelatedness and (24) yield

Esj (m)2 = Es1 (m)2 =
11

12
Ex1 (m)2 ⇐⇒

√
Esj (m)2 =

√
11

√
Ex (12m)2. (25)

Thus, when
√
Ex (12m)2 is non-negligible, the magnitudes

√
sj (m)2 of the stable-

seasonal component (23) can be expected to be more so. The analysis of Subsection 3.1

suggests that FM.01 will indicate statistically significant stable seasonality, which Table 8

confirms. However, for increasing m, Theorem 8.3.1 of Anderson (1971) shows that

limm→∞
√

12m
√
E {x (12m)}2 =

√
g (0) = σa (1− Φ)−1. Thus for the stable-seasonal

components, one has
√
E {sj (m)}2 → 0 at a rate proportional to (12m)−1/2.

Concerning dependence on Φ, for fixed m, it can be calculated for any zero-mean

stationary series xt with autocovariances γj that

144mEx (12m)2 = γ0 + 2

{
Σm−1
j=1

(
1− j

m

)
γj

}
.
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For fixed m, since
∣∣γj∣∣ ≤ γ0, the right hand expression tends to zero if γ0 → 0, which

means Φ→ 0 in the SAR(1) case, so the same is true of
√
Ex (12m)2 and

√
E {s1 (m)}2.
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