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Abstract

The paper provides a method for generating epoch estimates for time series survey data, allowing

for different periods of time (or even point estimates) according to user demand. The method

uses a modified kriging estimator, which suppresses the contribution of sampling error variability

in order to guarantee that custom epoch estimates have an interpolation property. For the

veteran population variable of the American Community Survey, we utilize a simple Brownian

Motion model of the population process and derive the modified kriging estimator for this

case. The tuning parameters of this population model can be calibrated to the data via simple

formulas. We illustrate the application of this method to the generation of point estimates of

veteran population, an important objective for Veterans Affairs.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the author and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Many surveys published by statistical agencies, such as the U.S. Census Bureau (USCB), offer

estimates for small regions, and in order to decrease sampling error variability, methodologists resort

to pooling. Pooling necessarily results in distortions of features – essentially due to smoothing – that

may be of interest to data users, and these entities (persons, businesses, and local governments)

have expressed demand for estimates corresponding to “custom epochs.” Whereas pooling over

time corresponds to an epoch-estimate (sometimes called a “period-estimate”) for a variable of

interest, there is demand for alternative epoch-estimates based on smaller temporal intervals, or

based on temporal intervals situated differently within the calendar year. This paper describes
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a methodology – in a context of limited resources – for generating custom epoch-estimates from

publicly available survey estimates, utilizing a mechanistic superpopulation stochastic process.

This work is motivated by a consulting project with Veterans Affairs (VA), whose use of the

American Community Survey (ACS) data requires custom epoch-estimates that differ in calendar

orientation from the published Multi-Year Estimates (MYEs). (An overview of the ACS can be

found in U.S. Census Bureau (2006) and Torrieri (2007).) There is no current methodology or soft-

ware available to produce such custom epoch-estimates, even though users in government, industry,

and academia have often expressed their desire for such a product. Users wish to know not only

the present value of certain local variables, but how these compare to the recent past, i.e., they

require a knowledge of trends, turning points, and cycles in economic and demographic quantities.

Recent funding changes at USCB have brought about the demise of the 3-year MYE as a data

product; data users in state and local governments have expressed alarm (through conference calls

to the first author) at this situation, and have considered generating their own estimates utilizing

the Research Data Centers – at great cost to their own resources. So long as the USCB continues

publication of 5-year MYEs (the most reliable period estimates), the possibility of generating 3-year

(and 2-year) MYEs from the published 5-year MYEs has some appeal; moreover, 1-year MYEs for

low population counties could also be generated in the same manner. The VA application requires

a point estimate (i.e., an epoch of length zero) of veteran population oriented at September 30.

Each of these applications requires a “change of support,” which refers to scenarios where the

epoch of publication differs from the custom epoch-estimate that the data-user desires. A Bayesian

spatio-temporal model was proposed by Bradley, Wikle, and Holan (2015), whereby basis functions

are specified from given covariates to permit interpolation to different support regions. One might

also consider a longitudinal analysis, if it is believed that population structures are common across

adjacent geographical regions. However, for the interpolation problem studied in this paper none of

these other methods are appropriate or relevant. While the use of covariates, or spatial modeling, or

longitudinal analysis can give more information about the population process, they are not helpful

for understanding finer time scales. In particular, if we need to produce estimates at weekly or

daily epochs, then covariates available on an annual basis are unhelpful.

Moreover, such parametric approaches introduce subjectivity through the modeler’s choices;

these choices will be valid in the best of circumstances, but can be misleading when careful model

checking is prohibitive. Our problem requires a large-scale analysis (tens of thousands of time series)

for which individual scrutiny and analysis is infeasible. In other contexts, where budgets allow a

case-by-case analysis, we would not advocate such an approach, but in a climate of constrained

resources our methodology may be useful to practitioners.

Proceeding with the simple structure of Bell and Hillmer (1990), which decomposes estimated

time series into the sum of uncorrelated superpopulation and sampling error processes, we propose

a continuous-time aggregated growth process that is corrupted by sampling errors. Although the
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VA application involves an integer-valued variable, the counts are high enough for many regions to

permit a Gaussian model, and we suppose that the superpopulation process is a Brownian Motion

with linear drift. Given that we require a continuous-time process that allows for trend growth

and is compatible with symmetry and low kurtosis, the Brownian Motion assumption is the most

agnostic possible. The sampling errors have a correlation structure directly inherited from an

idealistic view of the sampling procedure. Once the model parameters are calibrated to the input

data, custom epoch-estimates can be computed from kriging formulas.

Although careful inference for parameters is of even greater importance in small samples (such

as MYEs), given the resource constraints a meticulous approach is not possible. Hence we view the

selection of parameters as a calibration to a series’ particular features, and utilize estimates derived

from the Generalized Least Squares method wherein the sampling error variability is ignored. This

removes the impact of sampling error variability on the linear drift parameters, which otherwise

suffer severe distortion. Our custom epoch-estimates are likewise generated from a kriging estimator

that minimizes quadratic loss subject to interpolation constraints; this has the desired effect of

generating interpolations of the data as the customized epochs are varied. Were a higher frequency

time series available, or were a longitudinal analysis (presuming a similar trend structure across

sub-populations or geographical regions) empirically plausible, our efforts would be obviated. Such

not being the case, the paper at hand can be viewed as an effort to satisfy data-users with a

technically defensible methodology given a context of data paucity.

2 Pooling in Surveys

A fuller discussion of pooling and its consequences can be found in Nagaraja and McElroy (2015),

but here we offer a few comments. When the sample size is small, it may be desirable to borrow

information from statistically similar data. Surveys that utilize temporal pooling implicitly utilize

the assumption of stationarity to infer that the flow of time will generate statistically similar data,

ignoring any non-stationary effects such as trend growth or seasonality. For example, in the ACS

this assumption of temporal similarity yielded the MYE, which are epoch-estimates corresponding

to either three or five years (whereas the more timely estimate, based on a single year, is not

considered an MYE, as it involves pooling over only a single year), with the survey responses

collected together into a so-called “rolling sample.”

By pooling survey respondents over time (or space or community), the methodologist can in-

crease sample size; but the utility of this condensation is questionable, because the temporal sta-

tionarity assumption is false. If it were true, why would there be a demand for more timely data,

available at narrower epochs? Indeed, trends and cycles in economic and demographic variables

imply that pooling is potentially misleading – it amounts to smoothing the time series, and hence

induces phase delay and suppression of higher frequencies in the spectral representation (McElroy,
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2009).

To mitigate misinterpretations of epoch-estimates, USCB has labored aggressively to convey the

concept of MYEs as estimating an entire period of activity. For example, a hypothetical 10-year

MYE would really assess aggregate activity over the decade, and has nothing definitive to say about

the final year (let alone, month or day) of that decade. In the same way, 3-year and 5-year MYEs

are estimates of population activity over a 3-year or 5-year stretch of time, and do not correspond

to an estimate of a single month or day of activity. This bears analogy to the concept of a flow

in retail economics, where the measurement corresponds to total sales over the given epoch (say a

month or a quarter), as opposed to a stock time series applicable for inventories. However, actually

making the case that pooled estimates accurately reflect a corresponding pooled estimand in the

population is difficult, given the intricate system for handling non-response in surveys. A casualty

of this mechanism for pursuing non-respondents is a loss of understanding of what quantity we are

finally estimating. See Nagaraja and McElroy (2015) for documentation of these issues.

The following discussion defines a variable over some epoch in a way that extends the definition

of a variable at an instant of time. Let X(t) denote a variable of interest (such as total veteran

population) over some specified region (the country, a county, or a tract) A on a map at time t ∈ R,

measured in annual units. For the jth unit of the finite population, at any time t the unit has a

coordinate sj(t) ∈ R2, and we can measure membership in region A at time t via the indicator

function 1A(sj(t)). (If t falls outside the lifetime of the unit, we can set sj(t) to be (∞, ∞), and

the indicator will be zero.) Tallying up such indicators over all units j in a subpopulation J yields

a count variable

X(t) =
∑
j∈J

1A(sj(t)). (1)

If J is the collection of all U.S. veterans, then (1) provides an abstract formulation of the veteran

population for region A at instant t. If other variables are of interest, then the indicator function

in (1) could be modified, but we will focus on population counts. The quantity X(t) may even be

observable, if units can be continuously tracked (e.g., through a smartphone app or tracking chip).

X(t) represents the population count for the regional pool A. We can consider pooling over

time as well, but the mathematical formulation is not straightforward. Given an epoch of (t− δ, t]
of length δ, do we mean to count a unit if sj(u) ∈ A for all u ∈ (t− δ, t]? What if there was a short

excursion from the region (for vacation or business travel)? By taking the coordinate to be place

of residence rather than existential location we can eliminate the issue of travel, but for persons of

a nomadic mentality the question remains of how to count their inclusion in an epoch. We wish to

define an epoch tally X(t−δ,t] that is coherent with the instantaneous tally, in the sense that

lim
δ→0

X(t−δ,t] = X(t) (2)
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for any t. To assess the proportion of time spent in a region, we calculate

δ−1
∫ t

t−δ
1A(sj(u)) du.

Thus, if unit j spends the entire epoch in region A, then they contribute full weight, but otherwise

are counted as a fraction of a person according to their occupancy time. Note that this has a

consistency property, in that summing over all regions A forming a partition of the country yields

the value one: the unit j spends all their time in epoch (t − δ, t] fully among the various regions.

As a consequence, the epoch count for region A is∑
j∈J

δ−1
∫ t

t−δ
1A(sj(u)) du = δ−1

∫ t

t−δ
X(u) du.

This is a pool over both the region A and the epoch (t−δ, t]. (Bradley, Wikle, and Holan (2015) have

a similar formulation for the aggregated population process.) Then this epoch quantity, denoted

X(t−δ,t], satisfies (2).

This framework constitutes our formulation of the estimands. The estimators are constructed

from a sampling mechanism, which is statistically independent of the superpopulation stochastic

process {X(t)}. However, the epoch estimands given above suggest a method of sampling that

differs from the ACS methodology; the ACS instead samples residences from the Master Address

File.

3 Population versus Sample

This section reviews and discusses the two sources of random variation – the superpopulation

process and the sampling mechanism.

3.1 Background Framework

In describing two sources of uncertainty – the superpopulation and the sample – we follow the

approach delineated in Bell and Hillmer (1990). We utilize lower case letters for realizations of

random variables on a particular ω in the probability space. For example, the sampling mechanism

(which governs the selection of sampling units from the population) is denoted S, with s = S(ω) the

particular set of unit indices used in our implementation. Suppressing the time index for now, X

denotes the epoch estimand – a random variable with realization x = X(ω) in our particular reality.

In general, this estimand is some function of a characteristic y of the entire realized population.

That is, for each member of the population a measurement is taken, and the whole random vector

of such is denoted Y , with realization y = Y (ω). In terms of these measurements, the estimand

is written X = f(Y ) for some statistic f , and x = f(y). If we restrict to a sub-population (a

sub-vector of y) for the estimand, we will still write f(y) by a small abuse of notation.
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We therefore have the following quantities of interest:

• X̂S = f(Yk : k ∈ S) is the sample-based estimator, which is random with respect to sampling

mechanism and population. The corresponding sampling error is ES = X̂S −X.

• x̂S = f(yk : k ∈ S) is the sample-based estimate, which is random with respect to sampling

mechanism, and is expressed in terms of a realized population. The corresponding sampling

error is eS = x̂S − x.

• X̂s = f(Yk : k ∈ s) is the sampled estimator, which is random with respect to population, and

is expressed in terms of a realized sample. The corresponding sampling error is Es = X̂s−X.

• x̂s = f(yk : k ∈ s) is the sampled estimate, which is not random, being a realization of both

population and sample. The corresponding sampling error is es = x̂s − x.

It is generally assumed that sampling mechanism S and superpopulation Y are independent.

Also, we assume there is no non-response, which would enter another source of random error to the

entire framework. Referring to Särndal, Swensson, and Wretman (1992), a few common properties

and concepts are the following:

1. Model Unbiased: E[ES |S = s] = 0 for all s.

2. Model MSE: we have MSE[X̂S |S = s] = E[E2
S |S = s] for each s.

3. Large Sample Normality: if the sample size is large, we can justify a central limit theory

approximation to the error of the sampled estimator: ES |S = s ∼ N (0,MSE[X̂S |S = s]).

4. Design Unbiased: E[X̂S |Y = y] = x, or (because Y and S are independent) E[x̂S ] = x.

5. Design MSE: we have MSE[X̂S |Y = y].

The first property states that sampling does not distort the estimand’s expectation. The second

item can sometimes be computed, or estimated. The third property can be verified by construction

of the sample. The fourth property may or may not be true, but sample designs are sometimes

constructed to ensure that the estimator is design unbiased. Because X̂S = X + ES , this fourth

property implies that

E[ES |Y = y] = E[X̂S −X|Y = y] = x− x = 0, (3)

or E[eS ] = 0. When the survey is design unbiased, the design MSE can be written

E[E2
S |Y = y] = E[e2S ],
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because Y and S are independent. The design MSE is often referred to as the sampling error

variance, and is estimable from the survey. The following result was proved by Bell and Hillmer

(1990) in the context of time series survey data. (We provide a simple proof.) Crucially, it provides a

justification for the common assumption that superpopulation and sampling error are independent.

Proposition 1 If a survey is design unbiased, then X is uncorrelated with ES.

Proof of Proposition 1. It follows from the property of nested expectations that

E[ES ] = E[E[ES |Y ]] = 0

if the survey is design unbiased, using (3). Therefore Cov[X,ES ] = E[X ES ], which equals

E[E[X ES |Y ]] = E[X E[ES |Y ]] = 0

again by (3), also using the fact that X = f(Y ). 2

By the same conditional expectation arguments used in the proof of Proposition 1, the variance

of ES equals the design MSE, if the sample is design unbiased:

Var[ES ] = E[E2
S ] = E[e2S ].

Then extending the third property above, we may assume that

ES ∼ N (0,E[e2S ]) (4)

when the sample is large, and the design is unbiased. We will write Var[ES ] for the sampling error

variance E[e2S ]. Furthermore, if

X ∼ N (E[X],Var[X]) (5)

for some mean and variance, then Proposition 1 indicates that X and ES are independent so long

as they are jointly normal. Finally, we obtain

X̂S ∼ N (E[X],Var[X] + Var[ES ]). (6)

In summary, by taking the survey to be design unbiased and the sample size large, we can justify

assumptions (4) and (5), where X and ES are independent and sum up to X̂S given by (6).

3.2 Estimand Redundancy and Interpolation

A superpopulation model involves specifying the mean and variance in (5). When X represents a

vector of epoch-estimands, the integral form means there are possible redundancies in the vector,

which will yield a singular covariance matrix. We now use the notation X to denote this random
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vector of n epoch-estimands, each component of which takes the form X(t−δ,t]. for various t and δ.

Possibly, some of these components can be expressed as a linear combination of other components,

indicating that the vector

X = J X (7)

for some reduced rank matrix J and some X .

Example 1 Suppose the estimands of interest are three consecutive 1-year epochs, and a 3-year

epoch covering the same time span:

X =


X(t−3,t]

X(t−3,t−2]

X(t−2,t−1]

X(t−1,t]

 =


1/3 1/3 1/3

1 0 0

0 1 0

0 0 1



X(t−3,t−2]

X(t−2,t−1]

X(t−1,t]

 .

The matrix J here has rank 3, and the estimand has redundancy. If we eliminate one of the

components of X, the corresponding row of J will be deleted, resulting in a full rank matrix.

Example 2 When the ACS was first published, the MYEs came in three species: 5-year, 3-year,

and 1-year. Let X consist of all 1-year epoch estimands needed to describe all of the MYEs, such

that X = J X . Then if we order the MYEs in X such that the 5-year MYEs occur first, followed

by 3-year and 1-year MYEs, the matrix J has the following structure:

J =



1/5 1/5 1/5 1/5 1/5 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 1/5 1/5 1/5 1/5 1/5

1/3 1/3 1/3 0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 0 1/3 1/3 1/3

1 0 0 0 0 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 0 0 0 0 1



.

For regions with more than 60,000 people all three types of MYE were originally available, although

now the 3-year MYE has been discontinued due to budget constraints. If the population is less than

20,000, only 5-year MYEs are published and only the upper block of rows in J would be available.

The existence of redundancy makes Var[X] non-invertible, which interferes with calibration

and kriging. By employing a generalized inverse we can still proceed, but at the cost of losing the
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interpolation property of kriging estimators (discussed below). The interpolation property is stated

as follows: given data X̂S we wish to construct estimators of

Z = X(t−δ,t] (8)

for arbitrary epochs (t − δ, t], such that when an epoch is a component of the corresponding X

our estimator equals the same component of X̂S . Stated mathematically, if Ẑ is our custom-epoch

estimator of Z and the epoch is chosen such that it equals the jth component of the population

estimand vector X (i.e., Z = u′j X where uj is the jth unit vector), then the interpolation property

requires that

Ẑ = u′j X̂S . (9)

One method for generating interpolations is kriging (Zimmerman and Stein, 2010), which utilizes a

Gaussian conditional expectation calculation to obtain Ẑ. However, the presence of sampling error

and estimand redundancies each interfere with the interpolation property (9).

Note that redundancies only pertain to the unobserved estimands, and not to the data vector

itself. Therefore, eliminating redundancies by discarding some data may be undesirable; moreover,

the formula for the kriging estimator actually depends on which redundancies are eliminated. For

this reason, it is preferable to retain all the available data, unless it is absolutely vital for an

application to possess the interpolation property.

In the case that redundancies are allowed to remain, the matrix Var[X] is non-invertible, and

it is necessary to obtain its generalized inverse for kriging applications. We can obtain the Q-R

decomposition (Golub and Van Loan, 1996) of the rank r matrix J in the decomposition (7):

J = Q

[
U

0

]
Π,

where Q is orthogonal, U is upper triangular, and Π is a permutation matrix. Assuming that

Var[X ] is invertible, we obtain the following expressions involving the generalized inverse:

Var[X] = Q

[
U Π Var[X ] Π′ U ′ 0

0 0

]
Q′

Var[X]− = Q

[
(U Π Var[X ] Π′ U ′)−1 0

0 0

]
Q′.

Some calculations involving these matrices are used below, and the following properties are useful

(Ir denotes the r-dimensional identity matrix):

Var[X]Var[X]− = Q

[
Ir 0

0 0

]
Q′ (10)

Var[X]Var[X]−J = J. (11)
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Furthermore, the determinant of Var[X] is re-defined to apply unto the upper left block, so that

det Var[X] = detU Π Var[X ] Π′ U ′. (12)

3.3 The Interpolating Kriging Estimator

In this section we seek an estimator of Z, defined via (8), which is distributed N (EZ,Var[Z]). The

available data is X̂S , which is jointly normal with the estimand; set γ′ = Cov[Z,X]. For normal

variables, the minimum MSE estimators are linear, so we consider estimators of the form

Ẑ = a+ w′ X̂S .

This will be unbiased so long as a = EZ − w′ E[X]. Imposing this property gives

Ẑ = EZ + w′ (X̂S − E[X]),

and direct minimization of E[(Ẑ − Z)
2
] yields the solution w = (Var[X] + Var[ES ])−1 γ; however,

we wish to impose the interpolation constraints as well, and this unconstrained solution will violate

the interpolation property. To proceed, set Z = [X ′, Z]
′
, which is normal with mean b = [E[X]′,EZ]

′

and covariance matrix satisfying [In, 0] Var[Z] = Γ′, where Γ = Cov[Z,X]. The minimal MSE

unbiased estimator of Z is

Ẑ = b+ Γ (Var[X] + Var[ES ])−1 (X̂S − E[X]).

This same solution is obtained by minimizing the quadratic function

.5 y′H y − y′GX̂S (13)

with respect to y, and setting Ẑ = b+ ŷ − Eŷ, where ŷ is the minimizer and

H =
(

Var[Z]− Γ (Var[X] + Var[ES ])−1 Γ′
)−1

G′ = Var[ES ]−1 [In, 0].

This assertion follows from Lemma 1 below, because

H−1G =
(

Γ− Γ (Var[X] + Var[ES ])−1 Var[X]
)

Var[ES ]−1 = Γ (Var[X] + Var[ES ])−1,

using [In, 0] Γ = Var[X]. The next result is easily proved using the method of Lagrangian multipli-

ers.

Lemma 1 The unconstrained solution to the problem of minimizing the quadratic function (13) is

given by ŷ = H−1GX̂S, if H is invertible. If there are constraints of the form R′ y = q, then the
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constrained solution is

ỹ = M ŷ +m

M = I −H−1R [R′H−1R]
−1
R′

m = H−1R [R′H−1R]
−1
q,

where I is an identity matrix of dimension equal to the length of y.

Now we define the interpolating Kriging estimator be the unbiased minimizer of (13) subject to

the constraints that [In, 0] Z̃ = X̂S , because this exactly corresponds to imposition of the interpo-

lation property. As this corresponds to R′ = [In, 0] and q = X̂S in the notation of Lemma 1, we

obtain the solution

Z̃ = b+ ỹ − Eỹ = b+ Γ Var[X]−1 (X̂S − E[X]),

using R′H−1R = Var[ES ] (Var[X] + Var[ES ])−1 Var[X], M = I −Γ Var[X]−1 [In, 0], M Γ = 0, and

m = Γ Var[X]−1 X̂S . Taking the first component of Z, we obtain the simple expression

Ẑ = EZ + γ′Var[X]−1 (X̂S − E[X]). (14)

The MSE of this estimator is

MSE[Ẑ] = Var[Z]− γ′Var[X]−1 γ + γ′Var[X]−1 Var[ES ] Var[X]−1 γ, (15)

and the extra variability due to the interpolation constraint is

γ′Var[X]−1 Var[ES ] (Var[X] + Var[ES ])−1 Var[ES ]Var[X]−1 γ.

This non-negative quantity is zero if Z is uncorrelated with X, or if there is no sampling error

variability; otherwise, it is positive, and is the efficiency loss due to imposing the interpolation

property.

4 Superpopulation and Sampling Error Models

We now discuss a particular model for population and sampling error, which may be appropriate

for variables that exhibit linear trending behavior from year to year. Consider a population process

{X(t)} for t ∈ [0,∞) modeled as a Brownian Motion with drift of increment with variance σ2, such

that its initial value X(0) = 0. (A variant of this model allows for X(0) to be a mean-zero Gaussian

random variable, whose variance is to be estimated; this adds an additional tuning parameter to

the model, and in applications gave no appreciable benefit.) The drift is linear:

E[X(t)] = µ0 + µ1 t.
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The de-meaned version of the process is denoted with a tilde, so that X̃(t) = X(t)−EX(t), which

is expressible as the sum of X̃(0) with a mean-zero Brownian Motion. Then the epoch-estimand is

written

Z = X(t−δ,t] = µ0 + µ1(t− δ/2) + δ−1
∫ t

t−δ
X̃(s) ds.

From this formulation we can now express E[X] and Var[X] in terms of θ = [µ0, µ1, σ
2]
′
, the

parameters of the population process. Each component of X has the form X[t−δ,t] for some t and

δ, and so the mean is simply µ0 + µ1(t− δ/2); the covariances can be computed from the following

Lemma, which provides the covariance formulas for flow-cumulated Brownian Motion. (The proof

is by direct calculation, and is omitted.)

Lemma 2 If X̃ is a mean-zero Brownian Motion of increment variance σ2, and 0 ≤ a1 < a2 and

0 ≤ b1 < b2, then Cov(
∫ a2
a1
X̃(s) ds,

∫ b2
b1
X̃(s) ds) is given by σ2 multiplied by

a22(3b2 − a2)/6− a21(b2 − b1)/2− b21(3a2 − b1)/6 if a1 < b1 < a2 < b2

a22(3b2 − a2)/6− b21(a2 − a1)/2− a21(3b2 − a1)/6 if b1 < a1 < a2 < b2

(a22 − a21)(b2 − b1)/2 if a1 < a2 < b1 < b2

(b22 − b21)(a2 − a1)/2 if b1 < b2 < a1 < a2

b22(3a2 − b2)/6− a21(b2 − b1)/2− b21(3a2 − b1)/6 if a1 < b1 < b2 < a2

b22(3a2 − b2)/6− b21(a2 − a1)/2− a21(3b2 − a1)/6 if b1 < a1 < b2 < a2.

For concreteness, we henceforth focus upon the case of Example 2, which supposes the existence

of X of length T such that X = J X for known J , which is n× T dimensional. Letting ιT denote

a T -vector of ones and τT = [1, 2, · · · , T ]′,

E[X] = µ0 J ιT + µ1 J [τT − ιT /2]. (16)

We shall use the shorthand W 0 = J ιT and W 1 = J [τT − ιT /2]. For the covariance matrix, we can

apply Lemma 2 with δ = 1 and t ≥ 1 to obtain

Cov(X(t−1,t], X(t+h−1,t+h]) = σ2 (t− 1/2)

for h > 0, while the variance of X(t−1,t] is σ2 (t − 2/3). We can put this result in a matrix form,

by letting Ω denote a T × T matrix with ones on all the lower triangular portion, with its inverse

matrix denoted by ∆ = Ω−1 – this ∆ corresponds to the action of first differencing. Then

Var[X ] = σ2A (17)

A = ΩΩ′ − 1

6
IT −

1

2
ιT ι
′
T , (18)
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with IT denoting the T -dimensional identity matrix. The matrix A does not depend on parameters,

and is easily calculated. Furthermore, define

B = J AJ ′

so that Var[X] = σ2B. Thus, given θ we can use (16), (17), and (18) to compute the mean and

variance of X, utilizing the Q-R decomposition of J .

Remark 1 Our discussion allows for missing values in the time series of MYEs – note that the

structure of x̂s is quite flexible. When working with ACS data that combines published estimates

with the trial period of the MYES, there are potential gaps in the time series (see discussion in

McElroy (2009)), which can be handled as a missing at random problem, wherein the matrix J is

modified accordingly.

A model is also required for the sampling error variances. We assume that the sampling errors

are aggregates of a continuous time Gaussian white noise process {ε(t)} for t ∈ [0,∞), whose

autocovariance function is given by the Dirac delta function times a scaling parameter (its value

will be irrelevant). Hence (suppressing the sampling mechanism in the notation) we define

E(t−δ,t] =
√

Var[E(t−δ,t]] δ
−1/2

∫ t

t−δ
ε(s) ds,

where the variance Var[E(t−δ,t]] will be supplied from the survey estimates. It follows that the

correlation between sampling errors is

CorrS(E(t−δ,t], E(`−η,`]) =
min{δ,max{0, (t− `+ η)}}√

δη
,

for some epoch lengths δ and η, and t ≤ `. The covariance is

CovS(E(t−δ,t], E(`−η,`]) =
√

Var[E(t−δ,t]]
√

Var[E(`−η,`]] CorrS(E(t−δ,t], E(`−η,`])

In this way we can easily construct the matrix Var[ES ]. Note that, because the sampling errors for

different periods are all a linear function of the same underlying process, there can be redundancies

yielding a variance matrix of reduced rank. However, we do not require the matrix’ inversion.

We require estimators of θ. For the regression parameters, we propose Generalized Least Squares

(GLS). Setting X = [W 0W 1] and µ′ = [µ0, µ1], we obtain the GLS estimator

µ̂ = C−1X′B− X̂S (19)

with C = X′B−X. To obtain an estimator of σ2, observe that with R = X̂S −Xµ ∼ N (0, σ2B +

Var[ES ]), it follows that

X̂S −X µ̂ = BGR,

13



where G = B− − B−XC−1X′B−. We can construct the GLS estimator of σ2 based on these

residuals, and once we correct for the bias we obtain:

σ̂2 = (n− 2)−1 (X̂S −X µ̂)
′
B− (X̂S −X µ̂)− (n− 2)−1 tr{GVar[ES ]}. (20)

Here tr denotes the trace. These estimators have small sample properties reviewed in the following

result.

Proposition 2 If X̂S ∼ N (Xµ, σ2B + Var[ES ]) and B is invertible, then the estimators µ̂ and

σ̂2 given by (19) and (20) are unbiased, with variances given by

Var[µ̂] = σ2C−1 + C−1X′B−1 Var[ES ]B−1XC−1

Var[σ̂2] = (n− 2)−2
(
2 (n− 2)σ4 + 4σ2 tr{GVar[ES ]}+ 2 tr{GVar[ES ]GVar[ES ]}

)
.

Proof of Proposition 2. Observe that

µ̂ = µ+ C−1X′B−1R,

showing that the estimator is unbiased. The formula for the variance of µ̂ also follows. From (20)

we obtain the expression

σ̂2 = (n− 2)−1 tr
{
G
(
BGRR′ −Var[ES ]

)}
,

whose expectation is σ2, using tr(GB) = n− 2 and GBG = G. Hence

Var[σ̂2] = (n− 2)−2 Var[R′GR] =
2

(n− 2)2
tr{GVar[R]GVar[R]},

which simplifies to the stated expression. 2

Now we describe the interpolated kriging estimator for this model. Using (7), and setting

σ2 c(t) = Cov[X , Z], we have γ = J c(t)σ2; applying (14), we obtain

Ẑ = µ0 + µ1(t− δ/2) + c(t)′ J ′B−
(
X̂S − µ0W 0 − µ1W 1

)
.

In the special case that x̂s follows an exact linear pattern the kriging estimate reduces to Ẑ =

µ0 + µ1(t − δ/2), the mean value of the population estimand. The kth component of c(t) is

determined from Lemma 2 with a2 = t, a1 = t−δ, b2 = k, b1 = k−1 for k = 1, 2, · · · , T . Supposing

that t ≥ δ and δ ≥ 1, we find that ck(t) is given by δ−1 times

[t2 − (t− δ)2]/2 if t < k − 1

[t2 − (t− δ)2]/2− (t− k + 1)3/6 if k − 1 < t < k

[t2 − (t− δ)2]/2− (t− k + 1)3/6 + (t− k)3/6 if k < t < k − 1 + δ

δ[k2 − (k − 1)2]/2 + (t− δ − k)3/6 if k − 1 + δ < t < k + δ

δ[k2 − (k − 1)2]/2 if t > k + δ.

14



When δ < 1, the expression is instead δ−1 times

[t2 − (t− δ)2]/2 if t < k − 1

[t2 − (t− δ)2]/2− (t− k + 1)3/6 if k − 1 < t < k − 1 + δ

[t2 − (t− δ)2]/2− (t− k + 1)3/6 + (t− k + 1− δ)3/6 if k − 1 + δ < t < k

δ[k2 − (k − 1)2]/2 + (t− δ − k)3/6 if k < t < k + δ

δ[k2 − (k − 1)2]/2 if t > k + δ.

An instantaneous estimate can be obtained, by taking the limit as δ → 0 of ck(t)/δ. In this

situation, there are only three cases of interest, and ck(t) equals
t if t < k − 1

t− (t− k + 1)2/2 if k − 1 < t < k

[k2 − (k − 1)2]/2 if t > k.

These expressions for c(t) are also featured in the formulas for the kriging MSE. Applying Lemma

2 to determine Var[Z], and using J ′B− J = A−1, we obtain from formula (15) that

MSE[Ẑ] = σ2 (t− 2δ/3)− σ2 c(t)′A−1 c(t) + c(t)′ J ′B−Var[ES ]B− J c(t).

This formula also applies with δ = 0, if point estimates are preferred over epoch-estimates.

5 Application to Veteran Population

The methodology of the previous section, using the framework of Example 1, is here applied to the

variable “Total Veteran Population” stratified by veteran status, gender, and age. The values, along

with sampling error confidence intervals, were generated by a custom tabulation – for the smaller

counties, the 1-year estimate is not available on American Factfinder. The confidence intervals

are constructed using implicit Gaussian quantiles for 95% coverage, and thus the sampling error

variances can be deduced. For our analysis, the 1-year MYEs are available from 2006 through

2012. We begin by connecting the nomenclatures for these estimates in Table 1; for reference, see

http://www.census.gov/programs-surveys/acs/guidance/estimates.html.

In this paper, time t is in units of years, so that the fraction .25 corresponds to a quarter of

a year. Because X(0,1] denotes the first 1-year MYE available (for 2006), time t = 0 corresponds

to the instant preceding the beginning of January 1, 2006. The ACS defines an MYE as covering

a collection of years, where the actual times covered include January 1 of the start year through

December 31 of the final year. For example, the 2006-2008 MYE actually covers times up until

(but not including) the beginning of 2009. Such estimates are commonly (and fallaciously) viewed
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Interval of Dates ACS Designation Notation Midpoint

Jan.1, 2006 through Dec. 31, 2008 2006-2008 MYE X(0,3] 1.5

Jan.1, 2007 through Dec. 31, 2009 2007-2009 MYE X(1,4] 2.5

Jan.1, 2008 through Dec. 31, 2010 2008-2010 MYE X(2,5] 3.5

Jan.1, 2009 through Dec. 31, 2011 2009-2011 MYE X(3,6] 4.5

Jan.1, 2010 through Dec. 31, 2012 2010-2012 MYE X(4,7] 5.5

Jan.1, 2006 through Dec. 31, 2006 2006 MYE X(0,1] 0.5

Jan.1, 2007 through Dec. 31, 2007 2007 MYE X(1,2] 1.5

Jan.1, 2008 through Dec. 31, 2008 2008 MYE X(2,3] 2.5

Jan.1, 2009 through Dec. 31, 2009 2009 MYE X(3,4] 3.5

Jan.1, 2010 through Dec. 31, 2010 2010 MYE X(4,5] 4.5

Jan.1, 2011 through Dec. 31, 2011 2011 MYE X(5,6] 5.5

Jan.1, 2012 through Dec. 31, 2012 2012 MYE X(6,7] 6.5

Sept. 30, 2008 custom epoch MYE X{2.75} 2.75

Sept. 30, 2009 custom epoch MYE X{3.75} 3.75

Sept. 30, 2010 custom epoch MYE X{4.75} 4.75

Sept. 30, 2011 custom epoch MYE X{5.75} 5.75

Sept. 30, 2012 custom epoch MYE X{6.75} 6.75

Table 1: Correspondence of nomenclatures for various epochs, pertaining to the Total Veteran
Population variable.

by users external to USCB not as period estimates, but as estimates of the middle time period,

which would be noon of July 2 (or midnight July 2 for a leap year) of the middle year.

The desired application for the VA is to generate point estimates of September 30 of the final

year in a given 3-year MYE. Whereas the 2006-2008 MYE is an estimate of X(0,3] we ultimately

need to estimate Z = X{2.75}. In order to make our estimate be more comparable to the published

2006-2008 MYE, we might restrict our data to just X(0,1], X(1,2], and X(2,3] for the purposes of

computing X̂{2.75}; while not optimal from the standpoint of throwing away information, such an

estimate mimics the construction of the 2006-2008 MYE. However, we can also study the impact of

including X(0,3] on X̂{2.75}, and we consider both scenarios below. Table 1 displays the nomenclature

for the three custom epoch quantities, along with five possible 3-year MYEs and seven possible 1-

year MYEs corresponding to the entire time span.

Although the methodology has been tested on all counties and stratifications, for illustrative

purposes we focus on the national level, aggregating across gender and age groups. Using the three

1-year MYEs and one 3-year MYE corresponding to each three year span yields five possible spans.

Table 2 gives information about the data used in each span, and the parameter estimates obtained

from (19) and (20). Initially we consider just the single year estimates of a span, and later we
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Span Data Used µ̂0 µ̂1 log σ̂2

2006-2008 X(0,1], X(1,2], X(2,3], X(0,3] 23.82 -.50 -5.50

2007-2009 X(1,2], X(2,3], X(3,4], X(1,4] 23.26 -.52 -4.69

2008-2010 X(2,3], X(3,4], X(4,5], X(2,5] 22.78 -.32 -1.36

2009-2011 X(3,4], X(4,5], X(5,6], X(3,6] 22.03 -.20 -2.53

2010-2012 X(4,5], X(5,6], X(6,7], X(4,7] 22.08 -.29 -4.31

Table 2: Spans utilized to calibrate parameter estimates (expressed in units of millions).

add the 3-year MYE of the span to see how the kriging estimates change. (But we use the same

parameter calibrations, based on just using the single year estimates.)

For each of the five spans of Table 2, the three 1-year MYEs are used to calibrate the model.

Clearly, determining three parameters from three data points cannot be conceived as inference, but

these rough parameter calibrations are adequate for our application of generating custom epoch-

estimates. By setting the epoch length δ to either 3, 1, or 0, and considering all times t pertaining to

the total time span (so t ∈ (0, 3] for the 2006-2008 span, and t ∈ (1, 4] for the 2007-2009 span, etc.)

we can generate a sequence of epoch estimates. The uncertainty can also be generated, which is

defined as the square root of 1.96 times the kriging MSE (this generates a 95% confidence interval).

In Figure 1 the results are presented for the first span, with δ = 1 in the left panels. The kriging

estimates (red) intersect the right endpoints of the three single year estimates of the span in the

upper left panel; however, the interpolation property is not guaranteed once the 3-year MYE is

introduced, and hence in the lower left panel the kriging estimates deviate slightly from the right

endpoints. This deviation is more evident in the spans of Figures 3 and 4, where the data does not

adhere to a linear pattern. The left panels of Figures 2 and 5 are similar to those of the first span,

because of the linear structure of the estimates.

Results for δ = 0 are presented in the right panels of Figures 1 through 5. As expected,

the kriging estimates pass below the single-year estimates, there being an expected shift of µ1/2.

When the data are roughly linear, as in Figures 1, 2, and 5, the custom point estimates follow a

linear trend line and have low uncertainty; but in Figures 3 and 4 there is more curvature in the

kriging estimates to accommodate the change in the downward trend of Veteran Population, and

the uncertainty is concomitantly greater. These are also the spans with a larger innovation variance

σ2 (Table 2).

The method can be utilized for other values of δ, including non-integer custom epoch lengths.

We verified that when using two single year estimates and a 3-year MYE and setting δ = 3, the

method exactly replicates the 3-year MYE. We also computed custom estimates for all the available

data (all single year estimates and 3-year MYEs exhibited in Table 2) for a variety of δ values,

from δ = 5 continuously down to δ = 0. The general feature is that for larger epochs the custom
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Figure 1: Custom epoch-estimates (red) for 2006-2008 Span of ACS (black), for δ = 1 (left panels)
and δ = 0 (right panels). Upper panels correspond to using just single year estimates, while the
lower panels add the 3-year MYE of the span. Shading corresponds to sampling uncertainty in the
MYEs, and kriging uncertainty in the epoch-estimates.

estimates have a more linear structure with low kriging uncertainty, whereas the curvature and

uncertainty increase (and the interpolants shift downwards) as δ decreases to zero.

6 Conclusion

This paper addresses an important applied concern with published MYEs of the ACS: how to

construct customized epoch estimates? We present a methodology – applicable in a context of

limited resources – to generate custom estimates with arbitrary length and arbitrary start date.

The methodology avoids utilizing covariates or spatial correlation structure to build a finer model,

as this would require a level of attention that is impractical for the publication goals. The method

does smoothing and interpolation, being similar to a cubic spline; the parameters of the smoother

are calibrated by applying simple formulas derived from a GLS methodology.

Our approach explicitly recognizes the presence of sampling error, but assumes it is indepen-
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Figure 2: Custom epoch-estimates (red) for 2007-2009 Span of ACS (black), for δ = 1 (left panels)
and δ = 0 (right panels). Upper panels correspond to using just single year estimates, while the
lower panels add the 3-year MYE of the span. Shading corresponds to sampling uncertainty in the
MYEs, and kriging uncertainty in the epoch-estimates.

dent of the population process. It is shown that when using Gaussian conditional expectation

formulas the interpolation property is typically not satisfied, but by using a modification and by

removing estimand redundancies the interpolation property can be guaranteed. This modification

essentially eliminates the contribution of sampling error variability to the kriging formulas, and as

a consequence the variability is increased.

These general results are further specified to the case where the population process is a Brownian

Motion with linear drift, and the sampling errors are driven by a continuous time white noise. The

resulting covariance functions are derived for applications. This method is applied to several spans

of the veteran population variable of the ACS, demonstrating both the interpolation property and

the facility to generate custom point estimates. An interesting extension would consider an integer-

valued process, such as the Poisson, for the population estimand, with alternative derivations of

parameter calibration and interpolation.

A criticism of this work states that custom epochs should not be estimated with a δ less
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Figure 3: Custom epoch-estimates (red) for 2008-2010 Span of ACS (black), for δ = 1 (left panels)
and δ = 0 (right panels). Upper panels correspond to using just single year estimates, while the
lower panels add the 3-year MYE of the span. Shading corresponds to sampling uncertainty in the
MYEs, and kriging uncertainty in the epoch-estimates.

than the minimal observed epoch length, because statistically we have no information about such

short epochs. This is also a criticism of the model, which does not attempt to provide a nuanced

description of such short epochs – these features are not identifiable given the data. However,

such a critique can be offered against all applications of temporal or spatial interpolation. Thus,

our response is that the results should be absorbed with caution: we can provide custom point

estimates, contingent on a continuous-time model that cannot be verified at such small time scales.

More nuanced models of the superpopulation process could be entertained, say by consider-

ing more flexible serial dependence structures and/or non-Gaussian marginal distributions. Being

unable to really validate our model choices anyways, due to the small sample sizes, we have not

pursued these generalizations. It might also be of interest to utilize information from neighboring

regions in a longitudinal approach to the problem, although the caution here is that such addi-

tional data will not furnish a direct improvement to the interpolation problem, because none of the

available regions are observed at finer time scales. A functional data analysis could alternatively be
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Figure 4: Custom epoch-estimates (red) for 2009-2011 Span of ACS (black), for δ = 1 (left panels)
and δ = 0 (right panels). Upper panels correspond to using just single year estimates, while the
lower panels add the 3-year MYE of the span. Shading corresponds to sampling uncertainty in the
MYEs, and kriging uncertainty in the epoch-estimates.

applied, although the inability to indefinitely refine the temporal sampling scale limits the appeal.

Another suggestion that we have received, is that with access to the micro-data a user might

directly compile monthly (or potentially higher frequency) estimates, which could then be smoothed

to reduce the higher sampling error variability. Such a solution is viable for USCB employees with

access, but all others must either beg for a custom tabulation (unlikely to be granted, due to

resource constraints), obtain special sworn status themselves with access to a Census Data Center,

or work with the published MYEs. This paper develops a methodology for users belonging to this

third category.
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Figure 5: Custom epoch-estimates (red) for 2010-2012 Span of ACS (black), for δ = 1 (left panels)
and δ = 0 (right panels). Upper panels correspond to using just single year estimates, while the
lower panels add the 3-year MYE of the span. Shading corresponds to sampling uncertainty in the
MYEs, and kriging uncertainty in the epoch-estimates.
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