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The indirect seasonal adjustment obtained by aggregat-
ing component seasonal adjustments may be inadequate,
whereas the direct adjustment of the aggregate can typi-
cally be ensured to be adequate by adjusting the statistical
model. Reconciliation techniques can be used to allocate
the discrepancies between the direct and indirect adjust-
ments of the aggregate unto the various component series,
essentially enforcing that the indirect procedure yields
the same outcome as the adequate direct procedure. This
paper proposes utilizing adequacy of the component sea-
sonal adjustments—given the modifications entailed by
reconciliation—as an additional constraint to the account-
ing problem. We focus on seasonal adjustments arising
from X-13ARIMA-SEATS and apply this constrained rec-
onciliation procedure to copper imports, a component of
gross domestic product.
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1 INTRODUCTION

The publication of seasonally adjusted data is an important function of federal statistical agencies.
While many time series, such as construction, retail, and import data published by the U.S. Census
Bureau, are available in both raw and adjusted formats, other important aggregates, such as gross
domestic product (GDP), are only published in an adjusted form. It is crucial that adjustments
are adequate, that is, all stable and dynamic seasonality has been suppressed, while causing min-
imal distortion to other dynamics, such as trend and business cycle. Moreover, for series that are
aggregates of other published components, the adjustments should satisfy the same accounting
constraints, that is, the aggregation of the component adjustments should equal the adjustment of
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the raw aggregate. This paper addresses this problem, being motivated by recent concerns about
residual seasonality in GDP.

GDP is the most heavily scrutinized economic time series, and beginning in 2015, there were
registered concerns about the adequacy of the seasonal adjustment, given that the first quar-
ter appeared to be systematically lower (Furman, 2015; Gilbert, Morin, Paciorek, & Sahm, 2015;
Groen & Russo, 2015; Rudebusch, Wilson, & Mahedy, 2015). Public concerns generated action
from the Bureau of Economic Analysis (BEA); preliminary findings determined that residual
seasonality could arise from the conversion of monthly data to quarterly data, and the more
subtle issue that aggregation of nonseasonal data can generate seasonal patterns (Moulton &
Cowan 2016). The topic of direct versus indirect adjustment, which has been studied at least as far
back as in the work Dagum (1979), was debated; because the direct approach violates accounting
constraints (aggregation), further work was focused upon indirect approaches.

Similar challenges have been encountered in other economic databases encountered across
the world, as discussed in the works of Hood and Findley (2001) and Astolfi, Ladiray, and Mazzi
(2001). Given the pervasiveness of the problem, there have been prior efforts at a solution, some
based upon attempts to improve the modeling of individual components. However, this is insuffi-
cient to address the core problem (as we demonstrate in Section 2); recognizing this, some authors
have advocated multivariate time series analysis to correctly understand linkages in signal content
across time series (Birrell, Steel, & Lin, 2011; McElroy, 2017). Others, such as Maravall (2006), have
made a forceful case for the direct approach, thereby sacrificing the goal of satisfying accounting
constraints. This paper instead adopts a univariate approach based on ideas from the extensive
literature on reconciliation.

Benchmarking problems (ensuring that certain temporal aggregation constraints are valid)
were addressed by Denton (1971), Cholette (1984), and later authors (summarized in Dagum &
Cholette, 2006), whereas methods that ensure aggregation relations hold across different time
series have long been available (Stone, Champernowne, & Meade, 1942). Recent works by
Di Fonzo and Marini (2011), Quenneville and Fortier (2012), and Chen (2012) have addressed the
temporal and contemporaneous facets simultaneously. Hyndman, Ahmed, Athanasopoulos, and
Shang (2011) studied the extension of these approaches to forecasting. However, these methods
primarily are useful for variables themselves (or their forecasts), not for latent signals of variables,
such as seasonal adjustments; in fact, a straightforward application of reconciliation methods can
result in a seasonal adjustment that satisfies accounting constraints but has residual seasonality
and, therefore, must be rejected. Hence, it is desirable to extend the simplicity of reconciliation
methodology to a context where latent signal content is appropriately handled.

This paper addresses this important gap in the reconciliation literature, focusing on the case
of accounting constraints. Note that we do not treat the problem of benchmarking, whereby
one wishes to ensure that temporal aggregations of a seasonally adjusted time series retain the
property of seasonal adjustment adequacy. Such a problem—in passing from monthly to quar-
terly data—does afflict the components of U.S. GDP, but we aim to address it in future work. Here,
we adapt the basic approach discussed in the work of Quenneville and Fortier (2012), namely,
to modify good adjustments of component parts as little as possible so as to ensure accounting
constraints are satisfied by including the facet of assessing and ensuring the adequacy of sea-
sonal adjustments. We first demonstrate the subtlety of this cross-aggregation phenomenon in
Section 2, showing that it cannot be provably resolved simply through larger sample sizes or
through more nuanced multivariate modeling.

Our proposed solution (Section 3) is motivated by pragmatic considerations: We do not require
additional modeling and human intervention but, instead, utilize seasonal adjustments of the
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component series and various partially cumulated series; by adding one variable at a time, we
can isolate the impact of offending components. Section 4 contains a simulation study that palpa-
bly demonstrates the cross-aggregation phenomenon, and the efficacy of the proposed method.
In Section 5, we apply this method to real copper imports, a component of GDP, and Section 6
concludes.

2 THE CROSS-AGGREGATION PHENOMENON

The phenomenon of cross-aggregation refers to the possibility that the aggregation of many series
deemed to be nonseasonal (either those for which no seasonality was detected or those that
are the outputs of a seasonal adjustment procedure) may exhibit seasonality. As the aggregate
can of course be adjusted—called the direct approach—this will not in turn be an aggre-
gate of the component series. However, adopting the aggregate of the component series as
the adjustment—called the indirect approach—is also not satisfactory because of its apparent
seasonality.

Such phenomena have been empirically observed in economic aggregates, such as U.S.
imports data. An economic explanation for the phenomenon can be rendered for component
series belonging to the same sector, or region, of measurement for a variable. Perhaps, the aggre-
gate activity over the sector or the region exhibits a seasonal pattern over time, but in each month
or quarter, the distribution of that activity over various components may be greater or lesser. A
possible illustration (suggested by Ben Cowan of BEA) states that a household or firm may allo-
cate a fixed portion of their budget to a particular sector (e.g., utilities) but allocate the actual
funds to different vendors in different months; whereas the overall budget allocation may be sub-
ject to seasonal vagaries (energy usage being dictated by climate changes), particular vendors may
receive essentially random chunks of that allocation and, hence, do not exhibit seasonal patterns
themselves.

This explanation actually suggests a stochastic mechanism for generating the
cross-aggregation phenomenon. (We credit Jonathan Wright, who suggested this construction
to the authors at the December 9, 2016, FESAC meeting.) We suppose that component time
series {Xt,i} for 1 ≤ i ≤ n and t ∈ Z can be written in terms of latent processes {St} and {Nt,i},
representing unobserved seasonal and nonseasonal dynamics, respectively, as follows:

Xt, i = St + Nt,i.

Note that the seasonal process is common to all the components. (Actually, this could be substan-
tially relaxed to the assumption that each seasonal St,i is cross-correlated across various series i,
and the same arguments apply, albeit less forcefully.) For simplicity, we suppose that all these time
series are stationary, although the case that the nonseasonal processes are I(1) is more realistic for
economic data. Assuming that {St} and {Nt, i} are uncorrelated with each other, the relationship
of autocovariances is

𝛾X , i(h) = 𝛾S(h) + 𝛾N, i(h)

for h ∈ Z, where each 𝛾Z denotes the autocovariance function of a corresponding process {Zt}.
The aggregate process is defined through some weighted sum

Xt,n =
n∑

i=1
wiXt, i,
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FIGURE 1 Autoregressive spectral estimator of a simulated monthly series with no apparent seasonality. The
gray dotted vertical lines indicate the seasonal frequencies

and in order to see the impact of averaging on seasonality, we impose that
∑n

i=1wi = 1. Finally, we
suppose that all the nonseasonal processes are uncorrelated with one another; hence,

𝛾Xn
(h) = 𝛾S(h) +

n∑
i=1

w2
i 𝛾N,i(h).

Clearly, the contribution of 𝛾S (h) to 𝛾Xn
(h) is much greater than was its contribution to 𝛾X,i(h). If

the weights are all equal to 1∕n, then the relative contribution of the seasonality has an n-fold
increase. In other words, it will be much more apparent in the aggregate autocovariance function,
whereas it may be indiscernible in the case of a single component, if 𝛾S (h) is small relative to
𝛾N,i(h).

By simple algebra, we can associate an interpretation to this decomposition as follows: St =
Xt,n − Nt,n and

Xt, i = Xt,n − (Nt,n − Nt, i),

which expresses a component series in terms of the aggregate minus a correction term. In the
example of a budget {Xt,n} allocated to utility usage, the funds allocated to a particular vendor
would deviate from the utility budget by Nt,n − Nt, i, which essentially cancels out the observable
seasonality.

Such processes are easy to simulate. In Figures 1 and 2, we present spectral density esti-
mates from a single such process {Xt,1} and the aggregate {Xt,10} of ten such processes. Although
no peaks are apparent in the first plot at the seasonal frequencies (marked with the numbers 1
through 6 on the x-axis), there are peaks apparent in the second plot at seasonal frequencies 1, 2,
3, 4, and 5. This example demonstrates the cross-aggregation phenomenon.

Standard diagnostics tests for seasonality—such as those based on autocovariances, the spec-
tral density, or seasonal regressors—do not adequately detect seasonality in the component series
when the variability in the noise Nt,i is sufficiently strong to bury the signal St. This is more than
an issue of sample size; by suitably increasing 𝛾N,i(h), we can guarantee that there is no seasonality
present in each Xt,i.

To see why this is true, suppose that we declare that a time series is seasonal whenever its
autocorrelation function at lag p, the seasonal period (12 for monthly and 4 for quarterly), exceeds
a threshold 𝜅. We can set 𝜅 close to one, in order to demand high persistence year to year to qualify
as seasonality. (Such a diagnostic forms the basis for the commonly used QS statistics described
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FIGURE 2 Autoregressive spectral estimator of the aggregate of 20 simulated monthly series, each with no
apparent seasonality. The gray dotted vertical lines indicate the seasonal frequencies

in the work of Maravall (2012).) Supposing that Nt,i is white noise of variance 𝜎2, the seasonal
autocorrelation of the component process is

𝛾X ,i(p)
𝛾X ,i(0)

=
𝛾S (p)

𝛾S(0) + 𝜎2 =
𝜌S(p)

1 + 𝜎2∕𝛾S (0)
.

As the signal-to-noise ratio 𝛾S(0)∕𝜎2 decreases, the seasonality vanishes. Even a weak seasonality,
where 𝜅 is arbitrarily close to zero, will fail to result in a declaration of seasonality so long as the
signal-to-noise ratio is less than 𝜅∕(𝜌S(p) − 𝜅). Because this analysis pertains to the stochastic
process, quite apart from issues of statistical uncertainty arising from finite samples of time series,
it is clear that the cross-aggregation phenomenon cannot be resolved merely with longer samples.

The lag-p cross-correlation of two component series has the same sort of expression as the
seasonal autocorrelation, which indicates that multivariate analyses will also fail to detect the
seasonality. Given this predicament, this paper makes no attempt to capture such hidden season-
ality; instead, we propose to modify seasonally adjusted aggregates—where seasonality has been
detected—by a reconciliation procedure that balances the direct and indirect approaches.

3 RECONCILIATION METHODOLOGY

3.1 Framework and background
Following the treatment of Quenneville and Fortier (2012), we wish to solve a reconciliation
problem with the following structure. We say a seasonal adjustment is adequate if, according to a
seasonality diagnostic, there is no seasonality. There are component series {Xt, i} for 1 ≤ i ≤ n
that aggregate to a composite {Xt,n} via some operators, such as addition and multiplication. We
can individually adjust each component series, apply the same aggregation, and hope that the
resulting indirect adjustment of {Xt,n} is adequate; if not, we may prefer a direct adjustment of
{Xt,n}, although the aggregation relationship will surely no longer hold. In such a case, we wish
to modify the component adjustments so that they aggregate to the direct adjustment, while still
being adequate themselves. To parse this problem with notation, let the aggregation be denoted

Xt,n = ⊕n
i=1Xt, i,
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which holds true for each time t. We use the symbol ⊕ to denote a general form of aggregation;
in many applications, this is a straight summation, but might also be a weighted sum, or could
even involve multiplication or division. We presume that the associative property holds for ⊕.
This definition also holds for partial aggregates Xt, i for 1 ≤ i ≤ n, constituting an aggregation of
only the first i component series. The component adjustments are denoted

N̂t, i N̂t, i (1)

for 1 ≤ i ≤ n, denoting the adjustments of component series and partial aggregates respectively.
Each adjustment is purely a function of the corresponding {Xt, i} or {Xt, i}, generated by some
seasonal adjustment procedure. This procedure presumes there exists some algebraic operator ·
that defines the seasonal St, i such that

Xt, i = St, i · Nt, i

for 1 ≤ i ≤ n. This operator could be addition or multiplication, or something more exotic; it
may vary depending on i. We will assume that the adjustments (1) are all adequate; either the
component series are deemed nonseasonal according to the seasonality diagnostic—in which case
N̂t, i = Xt, i—or they require adjustment and this has been performed satisfactorily. (Any rejection
of adequacy at this stage would require tuning the procedure, perhaps by adjusting the underly-
ing models or parameters, and ultimately by such modifications, we presume that an adequate
adjustment is eventually obtained.) Given this notation, the direct adjustment is

N̂t,n,

obtained by applying the seasonal adjustment procedure to the full aggregate {Xt,n}. The indirect
adjustment is

⊕n
i=1N̂t, i,

obtained by applying the accounting constraints directly to the component adjustments of each
{Xt, i}. Neither the direct nor indirect solutions are satisfactory, as the former violates the account-
ing constraints and the latter may not be adequate. We propose to determine modifications of the
basic adjustments (1), for example, Ñt, i and Ñt, i, that have the properties of fidelity, accountability,
and adequacy.

• Fidelity: Ñt, i is close to N̂t, i, and Ñt, i is close to N̂t, i.
• Accountability: Ñt, i = ⊕i

𝑗=1Ñt, i.
• Adequacy: Ñt, i and Ñt, i are nonseasonal for 1 ≤ i ≤ n.

As to fidelity, we know that N̂t, i is an adequate seasonal adjustment of Xt, i, so we would like our
modification Ñt, i to involve as little change as possible. As to accountability, this is the aggregation
constraint that the final batch of series (1 ≤ i ≤ n) should satisfy; we are building up to that
final constraint (given by i = n) and seek to impose this subconstraint each step of the way. As to
adequacy, we need the components Ñt, i to be nonseasonal, and imposing that the subaggregates
Ñt, i to be nonseasonal as well will assist us to ensure that the main aggregate is adequate.

To see why it is important to consider all partial aggregates and proceed recursively, consider
the approach discussed in the work of Quenneville and Fortier (2012); assuming that all time
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series are positive (if series are negative, the criterion can be altered in the manner described
in Section 5), they propose the relative quadratic loss criterion to minimize deviations from the
original adequate component adjustments:

(𝑦t,1, … , 𝑦t,n) =
n∑

i=1

(
N̂t, i − 𝑦t, i

)2
∕N̂t, i.

We seek to minimize this function with each {yt, i} belonging to the space of adequate adjustments
subject to the aggregation constraint

⊕n
i=1𝑦t, i = N̂t,n,

that is, using the adequate direct adjustment of the aggregate as a benchmark. If the accounting
constraint involves straight aggregation (i.e., ⊕ is +), then the constrained optimization problem
can be solved using Lagrangian multipliers and the solution (Quenneville & Fortier, 2012) is

Ñt, i =
N̂t,n∑n
𝑗=1 N̂t, 𝑗

N̂t, i 1 ≤ i ≤ n

Ñt,n = N̂t,n.

This solution rescales each component adjustment by a ratio of direct to indirect adjustment of
the aggregate. The potential difficulties with such a solution are clear: If the indirect adjustment
has seasonality, this will still be present in the ratio and, hence, will be introduced into Ñt, i when
the ratio multiplies the nonseasonal N̂t, i.

3.2 A new approach
Although the above approach may fail, it can be modified to be effective by proceeding recur-
sively. The recursive nature is the following: Supposing that fidelity, accountability, and adequacy
hold up to some i, we then seek conditions under which it holds for the case i + 1 as well. The
compatibility condition then becomes (for additive aggregations)

𝑦
t, i+1

= Ñt, i + 𝑦t, i+1, (2)

where the equality follows from the recursive principle. The fidelity attribute is imposed by
seeking minimizers yt, i + 1 and 𝑦

t, i+1
to

i+1

(
𝑦t,i+1, 𝑦t, i+1

)
= 𝛼i+1

(
N̂t, i+1 − 𝑦t, i+1

)2
∕N̂t, i+1 + 𝛽i+1

(
N̂t, i+1 − 𝑦

t, i+1

)2
∕N̂t, i+1.

Fidelity is built directly in through relative squared loss. The nonnegative parameters 𝛼i + 1, 𝛽 i + 1
allow for unequal weighting of the two portions and grant additional flexibility in the fidelity crite-
rion. Finally, the adequacy attribute is checked for the minimizers. Note that, if we had adequacy
at iteration i but then it fails at iteration i + 1, then we have isolated the problem to the inclusion
of the new series Xt, i + 1, and we can focus our attention there.

Adequacy is checked by assembling solutions over all times t and computing a diagnostic 𝛿

that is compared to a threshold 𝜏. In the case of Maravall's (2012) QS diagnostic, 𝛿 is computed
from the sample autocovariances of the time series, and 𝜏 is one minus a p value corresponding
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to an asymptotic distribution—low p values indicate inadequacy. At the ith stage, we seek time
series {yt, i + 1} and {𝑦

t, i+1
} such that

(i) i+1(𝑦t,i+1, 𝑦t, i+1
) is minimized, for each t;

(ii) Equation (2) holds for each t; and
(iii) 𝛿({yt, i + 1}) ≥ 𝜏 and 𝛿({𝑦

t, i+1
}) ≥ 𝜏.

This problem can be solved by using (2) to re-express i+1 in terms of yt, i + 1 alone and solving

min
{𝑦t,i+1}

∑
t
i+1(𝑦t, i+1, Ñt, i + 𝑦t,i+1) such that 𝛿({𝑦t, i+1}) ≥ 𝜏, 𝛿({𝑦

t, i+1
}) ≥ 𝜏. (3)

A solution is sought to (3) by searching over all possible time series {yt, i + 1} and, in principle, can
be obtained via Lagrangian techniques with inequality constraints (cf. Kuhn & Tucker, 1951). That
a solution exists is obvious, as yt, i + 1 ≡ 0 for all t is nonseasonal, also yielding 𝑦

t, i+1
= Ñt, i, which

is likewise nonseasonal; such a solution, however, will likely produce a high value in i+1. While
we have experimented with such a nonlinear optimization technique, the dimension is equal to
the length of the time series, and hence, such an approach is infeasible for production.

Instead, we advocate seeking an analytical solution to (i) and (ii), followed by checking that
(iii) holds. To further facilitate finding a solution rapidly, we allow 𝛼i and 𝛽 i to vary at each stage.
Rewriting the compatibility condition as a functional constraint and minimizing  subject to this
constraint, the method of Lagrange multipliers yields the solution

Ñt, i+1 =
N̂t, i+1

(
N̂t, i+1 − 𝛾i+1Ñt, i

)

𝛾i+1N̂t, i+1 + (1 − 𝛾i+1)N̂t, i+1

(4)

Ñt, i+1 =
N̂t, i+1

(
N̂t, i+1 + (1 − 𝛾i+1)Ñt, i

)

𝛾i+1N̂t, i+1 + (1 − 𝛾i+1)N̂t, i+1

, (5)

where 𝛾 i + 1 = 𝛽 i + 1∕(𝛽 i + 1 + 𝛼i + 1). Clearly these solutions satisfy the accountability property, but
they may or may not be adequate. When 𝛾 i + 1 = 0 (or 𝛽 i + 1 = 0), we have the solution

Ñt, i+1 = N̂t, i+1 Ñt, i+1 = N̂t, i+1 + Ñt, i,

which is indirect adjustment, that is, do not alter the original component adjustment, and define
the aggregate adjustment by straight summation. On the other extreme, when 𝛾 i + 1 = 1 (or
𝛼i + 1 = 0), we obtain the solution

Ñt, i+1 = N̂t, i+1 − Ñt, i Ñt, i+1 = N̂t, i+1,

which imposes a direct adjustment on the aggregate, solving for the component adjustment by
subtraction. This has the demerit of potentially yielding negative values.

Therefore, with 𝛾 i + 1 = 0, the component adjustment is adequate, but the aggregate is deter-
mined indirectly and, hence, may be inadequate. Conversely, with 𝛾 i + 1 = 1, we obtain a direct
adjustment of the aggregate, but the component adjustment is determined by a subtraction and
may be inadequate. We seek some 𝛾i + 1 ∈ [0, 1] such that both the component adjustment and the
aggregate adjustment are adequate; we propose to search for such a 𝛾i + 1, beginning with the indi-
rect adjustment (𝛾i + 1 = 0). In this formulation, there is no optimal choice of 𝛾i + 1, but we favor
lower values a priori (because in the base case that indirect adjustment is adequate, we should
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obtain 𝛾i + 1 = 0 if we were to spuriously run the procedure) and, hence, seek the smallest value
of 𝛾i + 1 such that (i), (ii), and (iii) are satisfied. Our proposed algorithm is as follows:

1. Determine N̂t, i and N̂t, i for all 1 ≤ i ≤ n. (These are adequate.)
2. Set Ñt,1 = Ñt, i equal to N̂t,1, and let i = 1.
3. Recursively determine Ñt, i+1 and Ñt, i+1 from Ñt, 𝑗 and Ñt,𝑗 for 1 ≤ j ≤ i utilizing the Lagrange

solution (4) and (5), based on some choice of 𝛾 i + 1.
4. Check for adequacy of component adjustment and partial aggregate adjustment.
5. If inadequate, return to step 3 and use a different choice of 𝛾 i + 1; else, increment i and go to

step 3.
6. Terminate when i = n.

Note that series are prescreened such that if the indirect adjustment is adequate, no fur-
ther action is needed. (Equivalently, we obtain 𝛾i + 1 = 0 immediately.) When we reach i = n,
step 4 has already checked our final aggregate for adequacy; if this diagnostic is satisfactory, we
are finished.

4 SIMULATION EXPERIMENTS

Our implementation of the reconciliation algorithm uses the X-11 (Findley, Monsell, Bell, Otto, &
Chen, 1998) option of the X-13ARIMA-SEATS software program to adjust each input series, using
the QS diagnostic (Maravall, 2012) applied to the trend-differenced seasonal adjustment. In par-
ticular, we compute the original adjustments using X-11 by first pretesting each component series
or partial aggregate with QS and only proceed to adjustment if there is a detection of seasonality.
A posttest is also applied to ensure our assumption that the initial adjustments are adequate. (We
also investigated the performance using different seasonal diagnostics, with similar results being
obtained.) Then, we proceed to steps 2 through 6 of the algorithm in Section 3, in step 5 gradually
incrementing 𝛾i + 1 from an initial value of zero by steps of size 1∕n to a final value of one.

We comment briefly on the QS criterion. It can be applied to the irregular or the
trend-differenced seasonally adjusted component, and in either case, outlier regression effects
(e.g., additive outliers and level shifts) should be first removed; in our applications, we only apply
QS to the seasonally adjusted component. QS is defined as

max{0, 𝜌(p)}2

T − p
+

max{0, 𝜌(2p)}2

T − 2p
,

for sample size T, and the null hypothesis is that 𝜌(p) ≤ 0 and 𝜌(2p) ≤ 0 (see Findley, Lytras,
& McElroy, 2017). Because the diagnostic is based upon autocorrelations alone, this criterion is
not able to distinguish between genuinely seasonal processes and those which are nonseasonal
and yet happen to have strong seasonal correlation arising through tight linkages between the
intervening months. For instance, a seasonal autoregression of order one with parameter 𝜙p will
have 𝜌(p) = 𝜙p, whereas a regular AR(1) process of parameter 𝜙1 will have 𝜌(p) = 𝜙

p
1 . Clearly,

the seasonal autocorrelation 𝜌(p) is identical for these two processes whenever 𝜙p
1 = 𝜙p. While

the null hypothesis implies that no seasonality is present, the converse need not be true.
For example, with 𝜙 = 0.98 and p = 4, we obtain 𝜌(4) = 0.92. To see the impact in sim-

ulation, consider 105 repetitions of a 20-year quarterly Gaussian AR(1) process with 𝜙 = 0.98.
The empirical type-I error rate is 0.975 based on the nominal of 0.05, that is, a 97.5% chance of
falsely indicating seasonality. Repeating the study with 𝜙 = 0.1, the type-I error rate drops to
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TABLE 1 Values of the QS statistic p value for
n = 20 components and their partial aggregates

i Xt, i Xt, i N̂t, i N̂t, i Ñt, i Ñt, i

1 0.009 0.009 1.000 1.000 1.000 1.000
2 0.635 0.000 0.635 1.000 0.635 0.890
3 0.293 0.000 0.293 1.000 0.293 0.899
4 0.052 0.001 0.052 1.000 0.052 0.227
5 0.021 0.000 0.021 1.000 0.341 0.015
6 0.226 0.000 0.226 0.930 1.000 0.016
7 0.004 0.000 1.000 1.000 1.000 0.365
8 0.133 0.000 0.133 1.000 0.133 0.040
9 0.647 0.000 0.647 1.000 0.677 0.010
10 0.067 0.000 0.067 1.000 0.927 0.022
11 0.489 0.000 0.489 1.000 1.000 0.017
12 0.028 0.000 0.028 1.000 1.000 0.012
13 0.009 0.000 1.000 1.000 1.000 0.035
14 0.085 0.000 0.085 1.000 0.782 0.010
15 0.009 0.000 0.898 1.000 0.898 0.035
16 0.502 0.000 0.502 1.000 0.502 0.011
17 0.159 0.000 0.159 1.000 1.000 0.015
18 0.002 0.000 1.000 1.000 1.000 0.027
19 0.149 0.000 0.149 1.000 0.611 0.010
20 0.016 0.000 0.016 1.000 0.908 0.021

Note. Columns 2 and 3 pertain to raw data, columns 4 and
5 pertain to the initial adjustments, and columns 6 and 7
pertain to the reconciled adjustments.

0.015. However, for the null that 𝜌(p) ≤ 0 and 𝜌(2p) ≤ 0, the test is approximately correctly
sized. Therefore, we interpret the QS results as follows: Low p values provide evidence that there
is high seasonal autocorrelation (though this does not necessarily entail the presence of seasonal-
ity), whereas high p values indicate the absence of positive seasonal autocorrelation, and hence,
the series cannot be seasonal. In our simulations, we set the threshold of adequacy at 𝜏 = 0.01.

For a simulation experiment, we follow the broad prescription described in Section 2: A sin-
gle seasonal pattern is randomly generated, to which independent simulations of white noise and
random walk are added. The variability in the random walk, which represents a trend effect, is
chosen so that it does not dominate the seasonality; the white noise variance is set sufficiently
high so that seasonality will rarely be detected by QS for any component series. All of these sim-
ulations are exponentiated because the reconciliation method presumes positive input series. We
then aggregate up n = 20 such simulations, expecting that the seasonal behavior will become
more apparent as the degree of partial aggregation increases. Table 1 records the QS p values in
columns 2 and 3: Observe that, as most of the component series are nonseasonal (excepting series
1, 7, 13, 15, and 18), all of the partial aggregates (i ≥ 2) indicate strong seasonality according to
the QS criterion. (Although QS can wrongly flag trend-persistent series as seasonal, as mentioned
above, independent confirmation by other seasonal diagnostics confirms the general pattern evi-
dent in Table 1.) Figures 1 and 2 tell the same story: The component series are nonseasonal, but
the aggregates display extremely salient seasonality.
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FIGURE 3 Autoregressive spectral estimator of the reconciled aggregate of 20 simulated monthly series, each
with no apparent seasonality. The gray dotted vertical lines indicate the seasonal frequencies

From these simulations, the initial adjustments are obtained, to which the QS diagnostic is
applied, with QS p values given in columns 4 and 5 of Table 1. All of these are adequate; note that
partial aggregates for 2 ≤ i ≤ 20 required adjustment. The final step is the reconciliation, which
proceeds through 20 iterations: The values of 𝛾 ranged from zero in several cases (the indirect
adjustment) to as high as 0.75, which comes fairly close to direct adjustment. The reconciled series
have QS p values provided in columns 6 and 7 of Table 1 and display adequacy—although for par-
tial aggregates 9, 14, and 19, the degree of seasonality present is the maximal amount permissible.
We can visually assess the adequacy of the final aggregate (i = 20) by the spectral density plot of
Figure 3: The seasonal peaks are no longer evident, in comparison with Figure 2. (There was no
visual discrepancy between the initial and reconciled adjustments, so these are not displayed.)

5 NOMINAL AND REAL NIPA COPPER IMPORTS

While a complete analysis of the thousands of component series constituting GDP is beyond the
scope of this article, we here provide an analysis of one constituent part and the solution given by
the reconciliation methodology of Section 3. Earlier work by economists at BEA, documented in
the work of Moulton and Cowan (2016), described various problematic series, and we here focus
on the National Income and Product Account (NIPA) copper imports data, which is available for
quarters from 2006 through the end of 2015. (This is admittedly easier than reconciling monthly
series.) As the nominal estimates are based upon monthly trade data published by the U.S. Census
Bureau, the corresponding real series is obtained by deflating via a price series available from
Industrial Production Index data (available from Bureau of Labor Statistics); see Figure 4.

Although there is no evidence of seasonality in the nominal or price data, there is evidence
of weak seasonality in the real copper imports. The p values for QS are 0.715 and 0.700 for nom-
inal copper imports and price but 0.143 for real copper imports. (These results are based off first
differences of the logged data, although arguably these are not unit root processes.) The spectral
density estimates (not shown) broadly support these results, as the autoregressive spectral esti-
mator for real copper has a global maximum at frequency 𝜋 (a seasonal frequency)—although we
cannot be sure whether this is a real peak, as it occurs on the boundary of [ −𝜋, 𝜋]. The weak sea-
sonality indicated by the 0.143 p value seems to be driven by a somewhat substantial lag-8 sample
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FIGURE 4 Nominal and real copper imports (2006.Q1 through 2016.Q4)
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FIGURE 5 Direct and indirect seasonal adjustments (SAs) of real copper imports (2006.Q1 through 2016.Q4)

autocorrelation in log difference real copper. Therefore, to corroborate the presence of weak sea-
sonality, we fit a quarterly SARIMA(0,1,0)(0,0,2) model to log real copper and find that the first
and second seasonal moving-average coefficients are 0.037 (not significant) and 0.249 (standard
error of 0.150). (This model was superior, according to AIC, to several other SARIMA contenders.)
As the second seasonal moving-average coefficient generates a lag-8 effect in the autocorrelation
and is weakly significant (p value for upper one-sided test is 0.048), we may be justified in having
concerns about the presence of seasonality.

Assuming that one wants to take action in such a scenario, without a reconciliation methodol-
ogy, it is unclear how to proceed; the nominal and price components are deemed to be nonseasonal
so that the indirect adjustment is identical to real copper imports. On the other hand, the direct
adjustment is adequate (obtained using automatic settings with a log transformation) with a
QS p value of 0.961. Unfortunately, it differs slightly from the indirect adjustment, as shown in
Figure 5.

This minor discrepancy indicates that a slight reconciliation can achieve fidelity, accountabil-
ity, and adequacy. With regard to the methodology of Section 3, we take log nominal copper and
the negative of log price (divided by 100) as the input series, which are enforced to sum up to log
real copper. Because we are in log scale for the aggregation relationships, a slight modification to
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the methodology is needed, as the input series are no longer positive. Hence, we will instead use
the objective function

i+1

(
𝑦t, i+1, 𝑦t, i+1

)
= 𝛼i+1

(
N̂t, i+1 − 𝑦t,i+1

)2
+ 𝛽i+1

(
N̂t, i+1 − 𝑦

t, i+1

)2
.

Then, imposing (2), the method of Lagrange multipliers yields the solution

Ñt, i+1 = (1 − 𝛾i+1)N̂t, i+1 + 𝛾i+1

(
N̂t, i+1 − Ñt, i

)

Ñt, i+1 = (1 − 𝛾i+1)
(

N̂t, i+1 + Ñt, i

)
+ 𝛾i+1 N̂t, i+1,

which replace (4) and (5) in the algorithm of Section 3. For our results, we set the QS thresh-
old to a p value of 𝜏 = .50, which will screen out even a low degree of seasonality. The input
series for nominal and price are both deemed nonseasonal according to QS, and hence, they are
not adjusted. (Note that running nonseasonal series through X-13ARIMA-SEATS could result in
small changes.) Running the method, a value of 𝛾2 = 0.32 is selected, indicating that the rec-
onciled aggregate is more similar to the indirect adjustment than the direct adjustment. As a
byproduct, modifications to the adjustments for nominal and price are calculated, although the
changes are small. The resulting QS p values for first differences of log nominal (Ñ1), price (Ñ2),
and real (Ñ2) are 0.715, 0.619, and 0.503. There was no change to nominal copper, but the price
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FIGURE 6 Price series with and without reconciliation (2006.Q1 through 2016.Q4)

Year

Lo
g 
R
ea
l C

op
pe
r

2006 2008 2010 2012 2014 2016

8.
0

8.
2

8.
4

8.
6

8.
8

9.
0

Reconciled SA
Indirect SA

FIGURE 7 Reconciled and indirect seasonal adjustments of real copper imports (2006.Q1 through 2016.Q4)
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was adjusted slightly (Figure 6). A comparison of the indirect adjustment for real copper imports
(which was identical to real copper imports) to the reconciled adjustment is given in Figure 7.

Further experimentation reveals that altering the QS threshold has an impact on 𝛾2, as
expected; increasing the QS critical value demands a lower degree of seasonality, with more
recourse to the direct adjustment through a higher value of 𝛾2. A second observation is that nomi-
nal copper suffers no modifications merely because it was listed first (index i = 1) in our method,
but reversing the order of the input series would instead place reconciliation on nominal copper
instead of price. Either way, the modifications are quite small in this example.

6 CONCLUSION

The problem of direct versus indirect seasonal adjustment has existed for many decades, and
nuanced approaches involving multivariate modeling have been advanced; these have the lim-
itation, thus far, of relying on linear accounting constraints (that is, weighted sums). The extra
resources required for multivariate modeling may yield dividends in terms of more nuanced
understanding of joint dynamics and a better quantification of uncertainty. Because cross-series
dependence is measured by multivariate models, in principle, the cross-aggregation phenomenon
can be assessed and accounted for, as argued in the work of Findley et al. (2017). Nevertheless,
in practice, the success of such an approach is contingent upon the ability of multivariate time
series models to capture such cross-sectional patterns.

This paper instead aims to satisfy accounting constraints while maintaining fidelity to adjust-
ments deemed optimal when a time series is analyzed in isolation and avoids extensive joint
modeling. Such an approach, which is motivated by the reconciliation literature, can be adopted
under a wider array of accounting constraints—one only needs to modify the constraint function
in the Lagrangian method. A key challenge in adopting reconciliation techniques for seasonal
adjustment is ensuring the adequacy of all outputs. This was not addressed in previous litera-
ture (Denton, 1971); for forecasting reconciliation (Hyndman et al., 2011), it is not important.
This paper sets forth a novel solution to this problem, by incorporating a quality diagnostic as an
inequality constraint in the optimization.

To our knowledge, this is the first article to demonstrate through theory and simulation that
the cross-aggregation phenomenon (as suggested by Jonathan Wright) is fundamental, that is, it
is a phenomenon associated with the data process and not merely the inadequacies of our models
or our information sets. Our motivation stems from a composite indicator consisting of series cor-
responding to subclassifications, although extensions to spatial aggregation (e.g., regional GDP
summing to national GDP) can be envisioned as another application. In such a scenario, we forgo
the attempt to model spatial correlation patterns in regional latent seasonal processes and directly
apply the reconciliation methodology. While we have stated a preference here for indirect adjust-
ments (lower values of the 𝛾 weights orient our solution in this direction) when possible, this
could be altered in the algorithm by adopting other values of 𝛾 .

We have found—in other case studies not reported here—that many apparent instances of the
cross-aggregation phenomenon can indeed be resolved through either careful modeling or appro-
priate interpretation of diagnostics. Therefore, one needs to adopt a proper measure of skepticism
toward claims of such phenomena being detected in production databases. Given this proviso, the
example of real copper imports gives support to the belief that the cross-aggregation phenomenon
exists empirically, and not just in simulation. For such instances, the methods of this paper will
be useful.
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This report is released to inform interested parties of research and to encourage discussion. The
views expressed on statistical issues are those of the author and not necessarily those of the
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