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ABSTRACT

Small area estimation using area-level models can sometimes benefit from covariates

that are observed subject to random errors, such as covariates that are themselves esti-

mates drawn from another survey. Given estimates of the variances of these measurement

(sampling) errors for each small area, one can account for the uncertainty in such co-

variates using measurement error models (e.g., Ybarra and Lohr, 2008). Two types of

area-level measurement error models have been examined in the small area estimation

literature. The functional measurement error model assumes that the underlying true

values of the covariates with measurement error are fixed but unknown quantities. The

structural measurement error model assumes that these true values follow a model, leading

to a multivariate model for the covariates observed with error and the original dependent

variable. We compare and contrast these two models with the alternative of simply ig-

noring measurement error when it is present (näıve model), exploring the consequences

for prediction mean squared errors of use of an incorrect model under different underlying

assumptions about the true model. Comparisons done using analytic formulas for the

mean squared errors assuming model parameters are known yield some surprising results.

We also illustrate results with a model fitted to data from the U.S. Census Bureau’s Small

Area Income and Poverty Estimates (SAIPE) Program.
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1 Introduction

Linear mixed models, particularly that of Fay and Herriot (1979), have gotten great

attention in small area estimation. The Fay-Herriot (FH) model can be written

Yi = θi + ei θi = z′iδ + ui i = 1, . . . ,m (1)

where, for areas i indexed from 1 to m, the Yi are direct survey estimates of population

quantities θi, the sampling errors ei in Yi are assumed independent N(0, Di) with the Di

taken as known (they are actually estimated using survey micro-data), the zi are q × 1

vectors of regression covariates with corresponding coefficient vector δ, and the random

effects ui are distributed i.i.d. N(0, σ2
u) and independently of the ei.

In some cases it may be desired to augment the model for θi with one or more covariates

Xi that are themselves estimates taken from another survey that estimates characteristics

believed to be related to θi. One approach is to simply ignore the sampling error in Xi,

treating it like the covariates in zi which we shall assume are not subject to sampling or

other measurement errors. We shall call this the näıve Fay-Herriot model, which, taking

for simplicity the case of a single such covariate Xi, we write as

Yi = θi + ei θi = βNXi + z′iδN + ui,N . (2)

We add the “N” subscripts to the regression coefficients and the random effects (ui,N)

to distinguish this model from the measurement error models to come. The model as-

sumes that ui,N ∼ i.i.d. N(0, σ2
u,N), although with heteroscedastic sampling error in Xi

the assumption that var(ui,N) is constant is incorrect, implying that the model (2) is
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misspecified. This point is discussed further below.

An alternative to the näıve FH model is to use a measurement error model to ac-

count for the sampling (measurement) error in Xi. Assume xi denotes the population

characteristic being estimated by Xi with sampling error ηi, where the ηi are assumed

distributed independently N(0, Ci) and with the Ci taken as known (actually estimated

using survey micro-data). A generalization of the model (1) to include the covariate Xi

while accounting for its sampling error is

Yi = θi + ei θi = βxi + z′iδ + ui (3)

Xi = xi + ηi. (4)

If the xi are assumed to be fixed unknown quantities, then the model defined by (3)–(4) is

known as the functional measurement error model (FME model). This model is discussed

by Fuller (1987) and has been studied for small area estimation by Ybarra and Lohr

(2008), Arima, Datta, and Liseo (2015, 2016), and Arima, et al. (2017). Analogous unit

level measurement error models for small area estimation have been studied by Ghosh

and Sinha (2007), Datta, Rao, and Torabi (2010), and Arima, Datta, and Liseo (2012).

Another alternative to the näıve FH model is to specify a model for xi in (4) which,

with (3), implies bivariate models for (θi, xi)
′ and (Yi, Xi)

′. This is known as a structural

measurement error model (SME model). If xi follows the regression model xi = z′xiδx+vi,

with covariates zxi and residuals vi ∼ i.i.d. N(0, σ2
v) independent of ui, then the resulting
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model for (Yi, Xi)
′ can be written as

Yi
Xi

 =

θi
xi

+

ei
ηi


ei
ηi

 ∼ i.i.d. N(0,Ω) Ω =

Di 0

0 Ci

 (5)

=


z′i βz′xi

0 z′xi


 δ
δx

+

ui + βvi

vi


+

ei
ηi

 (6)

ui + βvi

vi

 ∼ i.i.d. N(0,Σ) Σ =

σ2
u + β2σ2

v βσ2
v

βσ2
v σ2

v

 . (7)

This model differs from a standard bivariate FH model in that the parameter β affects

both the regression mean function for Yi and the random effect covariance matrix Σ.

However, if the covariates zxi are linear functions of the covariates zi, then the fixed

effects regression part of (6) can be reparameterized to unrestricted linear regression

effects [z′iδy z
′
xiδx]

′ with regression covariates zi for the first equation and zxi for the

second. With this reparameterization β no longer affects the regression fixed effects, so

the matrix Σ can then be reparameterized in the general form Σ = [σjk], or by σ11, σ22,

and ρ = σ12/
√
σ11σ22 ∈ [−1, 1], as there is now a 1-1 correspondence between (σ2

u, σ
2
v , β)

and (σ11, σ22, σ12) or (σ11, σ22, ρ). Two instances where this condition on zxi holds are

(i) if the regression covariates are the same in both equations (zxi = zi), or (ii) if zxi is

just an intercept term (zxi = 1) and zi also includes an intercept.

Datta, et al. (2018) study the area level SME model, while Huang and Bell (2012)

present a study examining use of general bivariate models for small area estimation.

Analogous unit level models have been studied by Ghosh, Sinha, and Kim (2006) and

Torabi, Datta, and Rao (2009). Fuller (1987) and Buonaccorsi (2010) discuss additional
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measurement error models including nonlinear models and the Berkson model.

Note that the FME and SME models model the relation between the true unobserved

quantities θi and xi, whereas the näıve FH model models the relation between θi and the

observed Xi. The Xi contain noise in the form of generally heteroscedastic sampling error,

and this heteroscedasticity produces the näıve model’s misspecification noted earlier.

If Yi and Xi are estimates from the same survey sample their sampling errors ei and

ηi are likely to be correlated. This can be accommodated by replacing the off-diagonal

0 of Ω in (5) by the appropriate cov(ei, ηi) (estimated using survey micro-data). While

this works for the SME model, correlation between ei and ηi implies that the regressor

Xi and sampling error ei are correlated, violating a fundamental assumption of the FH

model and causing potentially severe problems for the näıve FH model. Hence, we do not

consider that situation here.

In this paper we compare the three alternative models – näıve FH, functional measure-

ment error, and structural measurement error – focusing on their predictive performance

for small area estimation. One motivating case involves the use of the näıve FH model

when measurement error (ηi) is present, comparing the näıve FH model’s predictive accu-

racy with those of the other two models. We also compare the predictive performance of

the functional versus structural measurement error models. We make these comparisons

using analytic formulas for the mean squared errors (MSEs) for the case where model pa-

rameters are known (first order approximations). This provides good approximations for

the case when the number of areas m is large. It is also relevant as the typically dominant

term in the MSEs for smaller values of m. Since the näıve FH model is misspecified, we

make precise in what sense its parameters are “known”.

Section 2 summarizes some theoretical results for the three alternative models, first
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on convergence of parameter estimates and then on small area prediction, covering both

the point predictors and their MSEs. We provide results for the three models first for the

case where the FME model is true, and then for the case where the SME model is true.

Derivations of these results are deferred to the Appendix. Section 3 compares, via contour

plots, the theoretical MSEs of small area predictors for the three models across ranges

of the parameters of a true SME model. Section 4 uses the theoretical MSE formulas to

compare prediction MSEs from the three models when they are applied to an empirical

example of modeling poverty rates of school-age children for U.S. counties. The example is

taken from the U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)

program. Section 5 then gives general conclusions.

2 Theoretical Results

To facilitate interpretation of the results, here we use the simplest possible versions

of the models outlined in the Introduction, specifically, models where the vector of non-

measurement error covariates reduces to just an intercept term, i.e., zi = 1. To revert

to fairly standard notation, we use α for the intercept coefficient instead of δ, so the

simplified model for θi in the FME and SME models (from (3)) becomes

θi = α + βxi + ui. (8)

For the SME model we assume that xi ∼ i.i.d. N(µ, σ2
x) so there are no regression terms

other than the mean µ in the model for xi.
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For the näıve FH model (2), the simplified model for θi becomes

θi = αN + βNXi + ui,N (9)

where, as before, we use the “N” subscript to distinguish the coefficients and random

effects in the näıve model (9) for θi, since this model differs from (8) by substituting Xi

in place of xi.

We now give some results on parameter estimation and small area prediction for these

models. The Appendix provides derivations of these results.

2.1 Parameter estimators and their large sample limits

The Appendix details unbiased estimating equations for the parameters of the three

models considered here. The resulting estimators of α, β, and σ2
u for the simplified versions

of the FME and SME models are the same, and are given by

β̂ =
1
m

∑m
i=1(Xi − X̄)(Yi − Ȳ )

1
m

∑m
i=1(Xi − X̄)2 − C̄

α̂ = Ȳ − β̂X̄ (10)

σ̂2
u =

1

m

m∑
i=1

(Yi − α̂− β̂Xi)
2 − D̄ − β̂2C̄

where X̄ = m−1
∑m

i=1Xi, with analogous definitions of Ȳ , C̄, and D̄. For fitting the SME

model, we also have µ̂ = X̄ and σ̂2
x = 1

m

∑m
i=1(Xi−X̄)2−C̄. Result 1 gives the probability

limits of all these parameter estimators.

Result 1: For the FME and SME models given by (3)–(4) and by (5)–(7), respectively,

but with the simplified model for θi as in (8), the parameter estimators given in (10) are
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consistent for the true model parameters, that is,

β̂
P→ β α̂

P→ α σ̂2
u

P→ σ2
u (11)

where
P→ denotes convergence in probability as m → ∞ under the true model (whether

FME or SME). For fitting the SME model when it is true, we also have µ̂
P→ µ and

σ̂2
x

P→ σ2
x. For fitting the SME model when the FME model is true, we have µ̂

P→ x̄ =

limm→∞
1
m

∑m
i=1 xi and σ̂2

x
P→ s2

x = limm→∞
1
m

∑m
i=1(xi− x̄)2, with both limits assumed to

exist.

Remark 1: The estimators in (10) are the same for the two models despite being obtained

from different estimating equations – see equations (19) and (20) versus equations (36)–

(38) in the Appendix. The consistency results in (11) thus hold whether the true model

is the FME or the SME. These consistency results also hold for the more general versions

of these models considered in the Appendix.

The parameter estimators for fitting the näıve FH model with the simplified model

for θi as in (9) are given by

β̂N =
1
m

∑m
i=1(Xi − X̄)(Yi − Ȳ )

1
m

∑m
i=1(Xi − X̄)2

=
1
m

∑m
i=1(Xi − X̄)2 − C̄

1
m

∑m
i=1(Xi − X̄)2

× β̂

α̂N = Ȳ − β̂NX̄ (12)

σ̂2
u,N =

1

m

m∑
i=1

(Yi − α̂N − β̂NXi)
2 − D̄
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Result 2: When the FME model (or SME model) is true, the parameter estimators in

(12) have the following probability limits:

β̂N
P→ aβ α̂N

P→ α + (1− a)βx̄ σ̂2
u,N

P→ σ2
u + aβ2C̄ (FME model true)

β̂N
P→ a∗β α̂N

P→ α + (1− a∗)βµ σ̂2
u,N

P→ σ2
u + a∗β

2C̄ (SME model true)

where the “attenuation factors” are given by

a =
s2
x

s2
x + C̄

(FME model true) a∗ =
σ2
x

σ2
x + C̄

(SME model true). (13)

Remark 2: The results for convergence of β̂N in Result 2 are versions of the well-known

attenuation of the estimate of the regression parameter when measurement error is ignored

– see Theil (1971, p. 608) for the FME case and Fuller (1987, p. 3) for the SME case.

The limit for σ̂2
u,N shows that the näıve FH model inflates the estimate of the model error

variance σ2
u for the true model (whether FME or SME) by the amount aβ2C̄ (or a∗β

2C̄)

due to the failure of the näıve model to account for the measurement error.

2.2 Small area predictors and their MSEs

Result 3 lists the formulas for the predictors of θi for the three models. Note that

any of these formulas will apply whenever the corresponding model is assumed and used

for prediction, regardless of whether the true model is the FME, the SME, or some other

model. The FME predictor θ̂i,F is given by Theorem 1 of Ybarra and Lohr (2008), while

the näıve FH predictor θ̂i,N is simply the predictor of Fay and Herriot (1979) for the case

of our simplified näıve FH model. Derivations for the more general models are given in
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the Appendix.

Result 3: The predictors of θi from the simple versions of the FME, SME, and näıve FH

models considered here are as follows:

FME predictor : θ̂i,F = Yi −
Di

{
Yi − α̂− β̂Xi

}
Di + σ̂2

u + β̂2Ci

SME predictor : θ̂i,S = Yi −
Di

{
Yi − α̂− β̂Xi + β̂(Ci/(σ̂

2
x + Ci))(Xi − X̄)

}
Di + σ̂2

u + β̂2Ciσ̂2
x/(σ̂

2
x + Ci)

näıve FH predictor : θ̂i,N = Yi −
Di

{
Yi − α̂N − β̂NXi

}
Di + σ̂2

u,N

.

These are the empirical versions of the optimal predictors (best linear unbiased predictors)

under their respective assumed models.

Remark 3: Several special cases are worth noting from these results. First, as Di → 0 all

the predictors converge to the direct survey estimate Yi, and since its sampling variance

is then going to 0, all the predictors achieve design consistency assuming that Yi is itself

design consistent. Second, if Ci = C̄ it can be shown that the SME and näıve FH

predictors agree while the FME predictor generally remains different. (The Appendix

shows that, for the more general model considered there, the SME and näıve FH predictors

agree asymptotically when Ci = C̄.) Third, it can be seen that as σ̂2
x → ∞ the SME

predictor converges to the FME predictor. The same holds as Ci → 0, which implies in

the limit that xi is known. We can put these together and say that the SME and FME

predictors behave similarly when Ci/σ
2
x is small.

Remark 4: It can be shown that the formula for θ̂i,S can be obtained by taking the

formula for θ̂i,F and replacing Xi in the numerator of the fraction by E(xi|Xi) = Xi −

E(ηi|Xi) = Xi− [Ci/(σ̂
2
x +Ci)](Xi− X̄), and Ci = var(Xi−xi) in the denominator of the

9



fraction by var(xi|Xi) = Ciσ̂
2
x/(σ̂

2
x + Ci), these being the conditional mean and variance

of xi given Xi under the estimated model.

Table 1 gives, for the case when the FME model is true, the first order biases and

prediction error variances of the three predictors. The MSEs are then the squared biases

plus the variances. (The prediction error variance, and thus the MSE, for the FME model

is given by Theorem 1 of Ybarra and Lohr (2008).) The results assume the true FME

model parameters are known, but for the näıve FH model they account for the fact that

the estimates of the parameters are biased as shown in Result 2. This gives a realistic

approximation for the case when m, the number of areas, is large. The Table 1 entries

for the SME model use the quantity

Fi = (σ2
u +Di)(s

2
x + Ci) + β2s2

xCi. (14)

Table 1. Biases and prediction error variances when the FME model is true

Prediction model bias prediction error variance

FME 0 (σ2
u+β2Ci)Di

σ2
u+β2Ci+Di

SME −βDiCi

Fi
(xi − x̄) Di − D2

i [(s2x+Ci)+β
2s2xC

2
i /Fi]

Fi

näıve FH −βDi(1−a)

σ2
u+aβ2C̄+Di

(xi − x̄) (σ2
u+aβ2C̄)Di

σ2
u+aβ2C̄+Di

+
(

βDi

σ2
u+aβ2C̄+Di

)2

a(aCi − C̄)

Table 2 gives the results for the case when the SME model is true. In this case all the

predictors are unbiased in the sense that E(θ̂i − θi) = 0. Hence, the table just gives the

prediction error variances, which are also the MSEs. For F ∗i in Table 2, we substitute σ2
x

for s2
x in the expression (14), analogous to the definition of a∗ in (13).
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Table 2. Prediction error variances when the SME model is true

Prediction model prediction error variance = MSE

FME (σ2
u+β2Ci)Di

σ2
u+β2Ci+Di

SME Di − D2
i (σ2

x+Ci)

F ∗i

näıve FH (σ2
u+a∗β2C̄)Di

σ2
u+a∗β2C̄+Di

+
(

βDi

σ2
u+a∗β2C̄+Di

)2

a2
∗(Ci − C̄)

Several points are worth noting about the results of Tables 1 and 2.

1. The results for the FME predictor are the same in both cases, i.e., whether the FME

or SME model is true. To achieve unbiasedness under the assumption that the xi are

fixed, unknown quantities, the FME predictor eliminates them from the prediction

error. Hence, its prediction error results are not affected by whether the xi actually

are fixed and unknown or are random variables following some distribution, as the

SME model assumes.

2. When the FME model is true, the biases of the SME and näıve FH predictors are

proportional to (xi − x̄), which is unconstrained, and so can be arbitrarily large in

magnitude. Hence, for areas where |xi − x̄| is large the squared bias can dominate

the prediction MSE. Since the xi are unobserved it will typically be difficult to

estimate the squared bias (unless the Ci are small so the Xi are very good estimators

of the xi, in which case the motivation to use a measurement error model diminishes).

3. The MSEs in Table 2 for the SME and näıve models can be obtained by taking the

expressions for squared bias plus prediction error variance from Table 1, substituting

σ2
x for s2

x and also for (xi − x̄)2, and simplifying. This is the difference between

assuming the xi fixed and unknown versus assuming xi ∼ i.i.d. N(µ, σ2
x).

4. As noted earlier, if an area has Ci = C̄ then the SME and näıve FH predictors

agree. Hence, when Ci = C̄ the biases, error variances, and MSEs of the SME and
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näıve FH predictors are the same. If the SME model is true then the SME predictor

is optimal, and thus so is the näıve FH predictor for areas with Ci = C̄, in which

case both are superior to the FME predictor. In fact, comparing the MSEs of the

näıve and FME predictors from Table 2, and given that 0 ≤ a∗ < 1, one can show

directly that the FME predictor’s MSE is larger when Ci = C̄.

5. When the SME model is true, for areas with Ci = C̄ the “reported MSE” for the

näıve FH model will agree with the true MSE. The reported MSE is the MSE one

would compute assuming the näıve model to be true, and is given by the first term

in the näıve FH MSE expression in Table 2. The second term is obviously zero

when Ci = C̄, and is positive when Ci > C̄. We thus see that when Ci > C̄ the

reported MSE understates the true MSE, while when Ci < C̄ the second term in the

MSE is negative so the reported MSE overstates the true MSE. The misspecification

of the näıve FH model when the SME model is true can thus lead to substantial

misstatement of the MSEs except for areas for which Ci is close to C̄.

An implication of points 4 and 5, and the analogous result stated earlier for the point

predictors, is that if Ci = C̄ for all i = 1, . . . ,m, then the prediction results for the

SME and näıve FH models are the same. This provides some basis for the statement

sometimes made that measurement error in covariates doesn’t affect model prediction.

Put another way, this statement is true only if the Ci are constant for all areas, and only

when comparing prediction results for the näıve FH model to those for the SME model.

Prediction results for the FME model will be different.
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3 Comparing MSEs for the Alternative Predictors

We now compare the performance of the three alternative model predictors when

applied to data from a true SME model, making such comparisons across a range of

values for the model parameters and the Di and Ci values. The comparisons use the MSE

results of Table 2, examining percentage differences in the MSEs calculated, for example,

as

100

(
MSEF

MSES

− 1

)
(15)

for comparing MSEs of the FME and SME predictors. We similarly define the analogs to

(15) for comparing MSEs for the näıve FH and FME predictors, and of the näıve FH and

SME predictors, as well as for comparing the reported and actual MSEs of the näıve FH

predictor. Assuming that the SME model is true facilitates the comparisons. Assuming

that the FME model is true leads to the complication that the MSEs for the structural

and näıve models depend on xi (Table 1), which has unrestricted variation over areas.

Section 4 nonetheless makes some MSE comparisons under a true FME model.

For making relative comparisons as in (15) the scale of the data doesn’t matter, so

rescaling to Yi/σu will not affect these comparisons. This is also true for rescaling Xi to

Xi/σx. These rescalings reduce the number of varying parameters we need to consider by

two, which lets us express 1/σ2
u times MSEF , MSES, MSEN , and M̂SEN (the reported

MSE for the näıve FH predictor), all computed assuming the SME model is true, in terms

of the following four scale independent quantities:

rD =
Di

σ2
u

, rC =
Ci
σ2
x

, ρ = corr(θi, xi), r̄C =
C̄

σ2
x

. (16)
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The Appendix illustrates such re-expression for the calculation of MSES/σ
2
u. To simplify

the notation, we omit the i subscript from rD and rC , though except in the unusual

situation where the Di and Ci are actually constant over areas, one needs to compute

the MSE expressions separately for each area i. To compare MSEs we examine contour

plots over (rD, rC) for each of the MSE percentage differences defined as in (15), viewing

the MSE percentage difference as a function of (rD, rC). We examine such plots for fixed

values of ρ and r̄C (which do not vary over i).

Figure 1 gives contour plots of (15) for ρ = 0.3 and ρ = 0.7. The x- and y-axes of

the plots, representing the values of rD and rC , range from 0.1 to 10, and are shown

with log scaling. We need not set r̄C for these comparisons because MSEF and MSES

do not depend on C̄. The results in the plots are easy to summarize: the percentage

differences are all positive, favoring the SME model which here is assumed to be true, and

the differences increase with both rD and rC , so that the more sampling or measurement

error is present, the larger is the advantage to use of the SME predictor. When either rD or

rC is small, say generally below 1, the MSE percentage differences are small, which is why

no contours show up plotted in this area, and choice of model has little effect on prediction

accuracy. In fact, when both rD and rC are sufficiently small the FME and SME predictors

are both close to the direct estimator Yi, leading to small MSE differences, a pattern

repeated in subsequent graphs. Towards the upper right corner the MSE percentage

differences become substantial in both graphs, larger for ρ = 0.7. Analysis of the formula

for MSEF/MSES reveals that, for given values of rC and rD, the MSE percent differences

increase with ρ > 0 to the point where ρ = [1 + rC/
√

(1 + rC)(1 + rD)]−.5, and then they

decline to 0 as ρ increases to 1. Over the range of values [1, 10] for rC and rD, this

maximum point varies from about ρ = 0.57 to ρ = 0.91. Note that the results for ρ and
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Figure 1: Contours of 100 (MSEF/MSES − 1) for two values of ρ when the SME model
is true.

for −ρ would be the same since the MSEs actually depend on ρ2.

For the other MSE comparisons, which are shown in Figures 2-4, the percentage differ-

ences depend on all four quantities in (16). To get a general idea of how the comparisons

vary, we take ρ = 0.7 as a representative value, and examine contour plots for r̄C = 0.1,

1, and 10. It is worth noting that the analogous plots done for ρ = 0.3, 0.5, and 0.9, not

shown here, present similar patterns, though with the patterns generally shifted some-

what in location on the plots, and typically with contours representing lower or higher

percentage differences.

Figure 2 shows contour plots of 100 (MSEN/MSEF − 1), comparing MSEs for the

näıve and FME predictors. In these plots we see both positive and negative contours,

indicating regions where the FME predictor does better, and other parts where the näıve

FH predictor does better. The patterns in these plots can be understood by keeping in
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rho = 0.9, rCbar = 10Figure 2: Contours of 100 (MSEN/MSEF − 1) for ρ = 0.7 and r̄C = 0.1, 1, and 10 when
the SME model is true.

mind that (i) for small values of rC the FME predictor acts like the SME predictor, which

here is optimal, so the FME predictor performs well, and (ii) for rC close to r̄C the näıve

FH predictor acts like the SME predictor and so performs well. Thus, in the plot for

r̄C = 0.1, both the FME and näıve FH predictors perform similarly to the optimal SME

predictor for small values of rC , so there is little difference in their MSEs. Apart from

this case where both perform well, the näıve FH predictor performs better when rC is

sufficiently close to r̄C , where the meaning of “sufficiently close” depends on the values of

r̄C and rD.

The results in Figure 2 showing that for certain regions the näıve FH predictor has

lower prediction MSE than the FME predictor may at first seem surprising given that,

when the SME model is true, the näıve model is misspecified since it ignores the measure-

ment error in Xi. In contrast, the FME model accounts for the measurement error in Xi

and, since it makes no assumptions about the xi, it is not inconsistent with the true SME

model. In fact, as we move towards larger amounts of measurement error overall (larger

values of r̄C), the MSE advantages of the näıve FH predictor become more substantial
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Figure 3: Contours of 100 (MSEN/MSES − 1) for ρ = 0.7 and r̄C = 0.1, 1, and 10 when
the SME model is true.

and cover larger ranges of the rC and rD values. The general explanation for this is that,

when measurement error is substantial, the FME model’s avoidance of any modeling as-

sumptions about the xi can lead to rather inefficient use of the data Xi, while the näıve

FH predictor makes suboptimal but better use of the Xi unless rC is very different from

r̄C (equivalently, Ci is very different from C̄.)

Figure 3 gives contour plots of 100 (MSEN/MSES − 1), comparing MSEs for the näıve

and SME predictors. Since the SME model is assumed true for the purposes of these

computations, all the contours shown are positive, with the exception of a zero line in

each plot (represented here by the contour plotting function of R (R core team 2016) as

a set of “0” labels not joined by a line). These zero contours occur as horizontal lines for

r̄C = 0.1, 1, and 10 on the three plots, these being where rC = r̄C , implying Ci = C̄, which

is when the näıve FH and SME predictors agree. Apart from this, the plots for r̄C = 0.1

and 1 show substantial positive contours for large values of rC that also increase with rD,

while for r̄C = 10 the substantial positive contours occur for small rC as rD grows large.
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Figure 4 gives contour plots of 100
(

M̂SEN/MSEN − 1
)

, comparing the reported and

actual MSEs for the näıve FH predictor. As with Figure 3, the three plots should show

zero contours at the values r̄C = 0.1, 1, and 10, respectively (which are poorly represented

in the first two plots, and absent from the third). In these plots the regions above the

zero contours have negative values that reflect understatement of the true MSE by the

reported MSE, while the regions below the zero contours have positive values that reflect

overstatement of the true MSE. The first two plots show regions for rC > r̄C with signif-

icant understatement of the true MSE, while the second two reflect at most very minor

overstatement of the true MSE when rC < r̄C . This pattern remains when the axis ranges

are expanded to include larger values of rD and rC . While further extrapolation of these

results to more general cases than those considered here is questionable, they nonetheless

suggest that understatement of MSE by the näıve FH model may be a potentially more

serious problem than overstatement.
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4 SAIPE Illustration

The previous section compared the performance of the three alternative model predic-

tors across a range of values for the model parameters and the Di and Ci values for a true

SME model. Here we take a model developed for an important small area application

– modeling county poverty rates of school-age children for U.S. counties – to determine

realistic values of the model parameters and the Di and Ci values. We take the fitted

model as a true model, and then use the theoretical formulas from Section 2 to compare

small area prediction MSEs for the three alternative model predictors. We do this using

the fitted SME model as truth, and then repeat the exercise using the corresponding

FME model as truth. For the latter we simulate the true covariate values xi from the

fitted SME model, since the prediction biases and MSEs depend on these values which are

not observed. We emphasize that our objective here is not in producing county poverty

estimates; we use the poverty rate data merely to get a realistic model for illustrating the

results from Section 2.

We fit the SME model to estimates of poverty rates of school-age children for U.S.

counties from the American Community Survey, or ACS (U.S. Census Bureau 2014),

the largest U.S. household survey. ACS produces annual estimates based on one year

or five years of data collection. Here, we use 2010 ACS one-year estimates of county

poverty rates of school-age children as the primary response variable Yi. We center the

analogous 2005-2009 ACS five-year estimates, and treat them as a covariate Xi which

is subject to measurement error. We also use covariates from administrative records as

the covariates zi not subject to measurement error. These are drawn from two sources

– tabulations of income tax records obtained under an agreement with the U.S. Internal
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Revenue Service, as well as recipient counts from the Supplemental Nutrition Assistance

Program, a program that provides food subsidies to low income households. The specific

covariates used are the same as those of Arima et al. (2017), though that paper jointly

modeled two years of poverty rates using a multivariate FME model. All covariates

used here are centered about their means. The model we use here is similar to models

applied to such data by Bell et al. (2007), and is related to the county production model

used by the SAIPE Program. SAIPE produces poverty estimates at the state, county,

and school district level for different age groups, including the school-age group 5-17.

For more information about SAIPE, see Bell et al. (2016) or the SAIPE web page at

https://www.census.gov/programs-surveys/saipe.html/.

We fitted the SME model to the poverty rate data via maximum likelihood using R

(R core team 2016) to obtain values of the parameters defining our “true model.” This

yielded σ̂2
u = 0.0012, σ̂2

x = 0.0064, and β̂ = 0.407. These parameter values imply that

ρ̂ = β̂[σ̂2
x/(σ̂

2
u + β̂2σ̂2

x)]
.5 (see Appendix) is about 0.7. We omit the estimates of the other

model parameters since they do not affect the first order MSE calculations done here.

For the Di and Ci values we used estimates from a Generalized Variance Function

(GVF, see Wolter, 1985) developed for the sampling variances of the 2010 one-year and

2005-2009 five-year ACS county school-age poverty rate estimates, respectively. The

specifics of the GVF are described in Franco and Bell (2013). After the SME model

fitting, but for use when computing the MSEs, the Di and Ci values were altered to pro-

tect against their disclosure by adding zero mean bivariate normal noise to the log(Di)

and log(Ci) values, and exponentiating the results. The noise terms added to the Di

and Ci had a correlation of 0.5 and variances of 2/ni and 2/5ni, respectively, where the

ni are the 2010 one-year ACS county sample sizes. Thus, more noise was added to the
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log(Di) than to the log(Ci), and more noise was added for counties with smaller sample

sizes. The resulting Di values range from about 0.00005 to 0.12 with a median of 0.0046,

while Ci ranges from 7× 10−6 to 0.013 with a median of 0.0009. Resulting values of the

ratios rD = Di/σ̂
2
u range from about 0.04 to 100 with a median of about 4, and values

of rC = Ci/σ̂
2
x range from about 0.001 to 2 with a median of about 0.14. The noise

altered values still provide a practically plausible range of values for the Di and Ci, and

the general appearance of the plots that follow was not materially changed by the noise

infusion.

Figure 5 panels (a)–(c) display ratios comparing first order approximations of the

three model predictors’ MSEs plotted against Ci on the log scale, with a vertical line

at C̄ = 0.0014 shown for reference. Panel (a) shows the ratios of MSEs for the SME

and näıve predictors. We note that, due to their optimality under the assumed SME

model, the SME model predictors always have lower prediction MSEs than the näıve

model predictors. Because the Ci’s are strongly related to the Di’s (with a correlation of

about 0.9), for small Ci’s the Dis are also likely to be small, and all three model predictors

are then approximately equal to the direct estimators, so that the MSEs of the näıve and

SME predictors are similar. We will see this trend in all four panels of Figure 5. In panel

(a), the ratio reaches its maximum of approximately one when Ci ≈ C̄. This agrees with

a result given in Remark 3 of Section 2.2, where we noted that the two predictors are

equivalent at this point. For Ci > C̄ the ratios decline rapidly to values approaching 30%

larger MSEs for the näıve predictors.

Panel (b) shows the ratios of the SME and FME predictors’ MSEs. Again, the SME

predictor performs best since we are assuming the SME model is true. For Ci < C̄ the

MSE differences are small, but the differences become pronounced for high values of Ci,
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Figure 5: First order approximations of MSE ratios plotted against Ci for the U.S. county
school-age children in poverty model when the SME model is true. For panels (a)-(c), the
ratios are of the true MSEs of the SME and naive, SME and FME, and FME and naive
models, respectively. Panel (d) shows the ratios of the reported MSEs and the true MSEs
of the naive model. The vertical lines mark C̄.
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with the FME predictor MSEs up to 40% or more higher than those for the SME predictor.

Panel (c) shows the corresponding MSE ratios for the FME and näıve FH predictors.

The näıve predictor has slightly higher MSEs than the FME predictor for small Ci but

lower MSEs for large Ci’s, a pattern expected from the results in panels (a) and (b).

The two predictors’ MSEs are approximately equal at some value of Ci < C̄. The FME

predictor’s MSEs are larger by about 20% or more than the näıve predictor’s MSEs for

the largest Ci values.

Note that the MSE that is obtained for the FME predictor when the SME model is

actually true is still correct to the first order, though the FME predictor is not optimal.

However, the MSE obtained assuming the näıve model is true, what we call the “reported”

MSE, differs from the näıve model predictor’s true MSE. Panel (d) plots the ratios of the

first order approximations of the reported and true MSEs of the näıve model predictor

when the SME model is true. As noted in Section 2.2, the näıve model overstates the

MSEs for small Ci’s and understates them for large Ci’s, while correctly estimating the

MSE at Ci = C̄. The overstatement for Ci < C̄ is relatively small, less than 10%, while

the understatement for Ci > C̄ becomes large, increasing with increasing Ci to more than

40%.

One might argue that the SME model is more reasonable than the FME model for

this application, because if one is willing to assume a model for the true poverty rates

as measured by the ACS 2010 estimates, why not assume a model for the true five-year

average poverty rates as essentially measured by the ACS 2005–2009 estimates? Still,

it is of interest to investigate the performance of each of the predictors when the FME

model holds. This presents a further challenge because the true xi’s are not known. For

this illustration, we generate them as xi
i.i.d.∼ N(0, σ̂2

x), and then treat these as the true
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values. (Recall that we centered the Xi values so that E(xi) ≡ µ̂ = X̄ = 0.) For the FME

model parameters we used the estimates obtained from fitting the SME model since the

parameter estimators we developed in (10) agree for the FME and SME models. While

we have no explicit proof, we expect the ML parameter estimators used in this illustration

would converge for m→∞ to the same quantities for both the FME and SME models.

Figure 6 panels (a)–(d) are analogous to Figure 5, but assume for the first order

approximations that the FME model is true. Panel (a) plots the ratios of the SME and

FME predictor MSEs. Although our assumption that the FME model is true makes the

FME predictor “optimal,” for many counties it actually performs worse than the SME

predictor with respect to the MSE. This is because the FME predictor’s optimality is in

the class of unbiased predictors, and both the SME and the näıve predictors are biased,

so there is no mathematical contradiction. The difference in MSEs can be up to about

50% in either direction. However, there are relatively few points for which the SME MSE

is more than 20% higher than the FME MSE, while there are a substantial number where

the SME MSE is more than 20% lower than the FME MSE. Computing the bias and

variance terms of the MSE separately reveals that for this application when the SME

predictor performs worse than the FME predictor in panel (a) it is due to the bias of the

former.

Panel (b) of Figure 6 plots ratios of the MSEs of the SME and näıve predictors against

Ci. It shows that when the FME model is true, the SME predictor sometimes performs

better and sometimes performs worse than the näıve predictor in terms of MSE. The same

statement can be made about the functional and näıve predictors based on panel (c), which

shows the ratios of the FME and näıve MSEs plotted against Ci. However, as Ci increases

beyond C̄ the FME MSE is almost always higher than the näıve predictor’s MSE.
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Figure 6: First order approximations of MSE and bias squared ratios for the U.S. county
school-age children in poverty model when the FME model is true, plotted against Ci
or xi. Panels (a)-(c) show the ratios of the true MSEs of the SME and FME, SME and
naive, and FME and naive models, respectively. Panel (d) shows the ratios of the reported
MSEs and the true MSEs of the naive model. Panel (e) shows the ratios of the biases
squared of the SME and naive models. All panels plot the ratios against Ci except panel
(f), which plots the ratio of the true MSEs of the SME and naive models against xi. The
vertical lines mark C̄ or x̄, as appropriate.
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Panel (d), which plots the ratio of reported to true MSE of the näıve predictor, reminds

us that the näıve model will misstate the mean squared error, sometimes overstating it

and sometimes understating it. The overstatement is small, up to about 10%, but the

understatement is more considerable, up to and beyond 40%. Overstatement is most

likely for Ci < C̄ and understatement for Ci > C̄, though these tendencies do not hold

for every county (as they do for the SME model) due to the variations in the squared bias

terms under the FME model.

Since both the SME and näıve predictors are biased under the FME model, we can

analyze the relationship between their respective biases. Panel (e) of Figure 6 shows

the ratio of the bias squared of the SME predictors and the näıve predictors. It shows

that the SME predictor has lower squared bias for Ci < C̄, and higher squared bias for

Ci > C̄, with equality when Ci = C̄, where the two predictors are equal. This suggests

that the extreme points in the top right quadrant in panel (b) are due to the bias. The

specific realization of xi in our generation of the data will also influence these extreme

points. Panel (f) plots the ratio of the SME and näıve true MSEs plotted against xi. The

vertical line represents the mean of xi, which is approximately 0 due to how the xi’s were

generated. Note that the extreme points in the top quadrants have high deviations of

xi from its mean. On the other hand, the most extreme points in the bottom quadrants

correspond to values where xi is close to x̄. This suggests large deviations of xi’s from

x̄ will have more impact on the true MSEs of the SME predictors than on those of the

näıve predictors. For the majority of points, however, the SME model’s MSEs are lower

than those of the näıve model based on our first order approximations.
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5 Conclusions

This paper considered three models proposed for small area estimation when one

or more regression covariates are measured with error: the functional and structural

measurement error models (FME and SME), and the näıve Fay-Herriot model. Section 2

established certain theoretical results for these models about parameter estimation, their

small area predictions, and their corresponding prediction biases, error variances, and

MSEs. This led to several observations relating the models including (i) the näıve and

SME model predictions and MSEs agree, at least asymptotically, for areas with Ci = C̄,

(ii) SME prediction results converge to FME prediction results as σ2
x → ∞, and (iii) in

the presence of measurement error the näıve model is misspecified, so it will misstate the

prediction MSE except for areas with Ci = C̄.

Section 3 made prediction MSE comparisons between the three models over ranges

of the true model’s parameter values for the case when the true model was the SME.

Section 4 made such comparisons taking as truth a particular SME model obtained by

fitting it to data on poverty rates of school-age children for U.S. counties. This model is

very similar to models used by the Census Bureau’s SAIPE program, so its use provided

results for a realistic case of a true SME model. MSE comparisons were also obtained for

an analogous FME model by simulating values of the unobserved true covariate values xi.

The MSE comparisons of Sections 3 and 4 tended to favor the SME model overall.

Comparisons to the näıve model showed that the näıve predictor can fare poorly for

Ci not near C̄, with substantial MSE increases compared to the SME model predictor.

Regarding the näıve model’s additional problem of misstatement of MSE for Ci not near

C̄, understatement of MSE when Ci > C̄ appeared more serious than overstatement of
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MSE for Ci < C̄.

From the comparisons of the SME and FME models, it was noted that when the

SME model is true the FME predictor can have substantially higher prediction MSE

when sampling and measurement error are large (Di and Ci are large). While the FME

predictor can be best when the FME model is true, it was also not unusual in this case

for the SME and näıve FH predictors to actually have lower MSEs than the “optimal”

FME predictor. This is because the optimality of the FME predictor for the FME model

is among the class of unbiased predictors given fixed xi, while the SME and näıve FH

predictors, being biased, fall outside this class and so can and sometimes do have lower

MSE. Though more research is needed on this point, it appears that while the avoidance

of modeling assumptions for the xi gives the FME model some potential for robustness,

this can come at a significant cost in terms of higher prediction error variances for some

areas.

A practical consideration related to this last point is that, in small area estimation,

the most likely candidates for useful covariates with quantified measurement error (the Ci

being known, or actually estimated) are other survey estimates Xi of population quantities

xi thought to be related to the population quantities θi whose direct estimates Yi we seek

to improve with our model. This leads to the question of why, if we believe we can

adequately model θi through Yi, we would choose the FME model over the SME model

to avoid modeling xi through Xi?
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Appendix

Asymptotic evaluations of estimators and predictors under the

FME model

We consider the following functional measurement error (FME) model:

Yi = θi + ei, θi = x′iβ + z′iδ + ui, Xi = xi + ηi, i = 1, . . . ,m, (17)

where Xi and zi are p and q component vectors, respectively, and the ei’s, ui’s and ηi’s

are independently distributed, each with zero mean, and with respective variances given

by Di, σ
2
u and Ci. We define Y = (Y1, . . . , Ym)′, C∗i = Diag(Ci,0q,q), and

A =


X ′1 z′1
...

...

X ′m z′m

 , (18)

which is the observed design matrix of covariates. We use EF (·) and VF (·) to denote the

expectation and variance operators under the FME model. Let (β′, δ′) = γ′. Under the

model in (17)

EF

[
(A′A−

m∑
i=1

C∗i )γ

]
= EF (A′Y ),
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which leads to an unbiased estimating equation,

(A′A−
m∑
i=1

C∗i )γ = A′Y, (19)

for γ. Also, for i = 1, . . . ,m, EF [(Yi −X ′iβ − z′iδ)2] = Di + σ2
u + β′Ciβ leads to another

unbiased estimating equation,

1

m

m∑
i=1

(Yi −X ′iβ − z′iδ)2 − D̄ − β′C̄β − σ2
u = 0. (20)

Assuming non-singularity of the matrix A′A −
∑m

i=1C
∗
i , an estimator of γ follows from

(19). We denote this estimator by γ̂F (the subscript F is used to denote the FME model

fitting), which is

γ̂F = (A′A−
m∑
i=1

C∗i )−1A′Y. (21)

Using this in (20), an estimator of σ2
u follows, given by

σ̂2
u,F =

1

m

m∑
i=1

(Yi −X ′iβ̂F − z′iδ̂F )2 − D̄ − β̂′F C̄β̂F . (22)

We assume that the following limits exist, where

lim
m→∞

1

m

m∑
i=1

 xi

zi


 xi

zi


′

= K, (23)

lim
m→∞

1

m

m∑
i=1

C∗i = Diag(C̄,0q,q), (24)
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and K and C̄ are assumed positive definite matrices. Let
PF→ denote weak convergence

under the FME model. Then under the model in (17), with the assumptions in (23) and

(24), and by weak laws of large numbers, we get

1

m
(A′A−

m∑
i=1

C∗i )
PF→ K,

1

m
A′Y

PF→ Kγ, γ̂F
PF→ K−1Kγ = γ.

Using the consistency of γ̂F and standard arguments, it follows that

σ̂2
u,F −

[
1

m

m∑
i=1

(Yi −X ′iβ − z′iδ)2 − D̄ − β′C̄β

]
PF→ 0.

Finally, using this and weak laws of large numbers we get

1

m

m∑
i=1

(Yi −X ′iβ − z′iδ)2 − D̄ − β′C̄β PF→ σ2
u ⇒ σ̂2

u,F

PF→ σ2
u.

This establishes consistency of the estimators γ̂F and σ̂2
u,F derived from the unbiased

estimating equation approach.

We know from Ybarra and Lohr (2008) that, under the FME model with known

parameters γ and σ2
u, the best linear unbiased predictor of θi is

θ̃i,F = Yi −
Di

Di + σ2
u + β′Ciβ

(Yi −X ′iβ − z′iδ).

Replacing the unknown model parameters in θ̃i,F with the parameter estimators derived

above, the EBLUP of θi is obtained as

θ̂EBi,F = Yi −
Di

Di + σ̂2
u,F + β̂′FCiβ̂F

(Yi −X ′iβ̂F − z′iδ̂F ). (25)
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Simple calculations lead to EF (θ̂EBi,F − θi) → 0, implying asymptotic unbiasedness of the

EBLUP predictor under the FME model. Again by simple calculations we obtain

MSEF (θ̂EBi,F ) = EF (θ̂EBi,F − θi)2 → Di(σ
2
u + β′Ciβ)

Di + σ2
u + β′Ciβ

. (26)

If we ignore the measurement error in Xi, then we fit the following näıve FH model

Yi = θi + ei, θi = X ′iβN + z′iδN + ui,N , i = 1, . . . ,m, (27)

where, as usual, we assume that ei’s and ui,N ’s are independently distributed with means

zero and variances Di and σ2
u,N , respectively. To avoid confusion, we use the subscript N

for the parameters in the näıve model. Using (β′N , δ
′
N) = γ′N , we estimate γN and σ2

u,N by

γ̂N = (A′A)−1A′Y, (28)

σ̂2
u,N =

1

m

m∑
i=1

(Yi −X ′iβ̂N − z′iδ̂N)2 − D̄. (29)

Using these estimators, the näıve EBLUP of θi would be obtained as

θ̂EBi,N = Yi −
Di

Di + σ̂2
u,N

(Yi −X ′iβ̂N − z′iδ̂N). (30)

With respect to the true model in (17), the näıve FH model given by (27) is misspec-

ified. We study the limiting behavior of the näıve model parameter estimators γ̂N and

σ̂2
u,N , and of the näıve predictor θ̂EBi,N , under the true model in (17). It easily follows that

1

m
A′A

PF→ K + Diag(C̄,0q,q) := K∗,
1

m
A′Y

PF→ Kγ.
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We partition the matrices K and K∗ as

K =

K11 K12

K21 K22

 , K∗ =

K∗11 K∗12

K∗21 K∗22

 .
Note that Kij = K∗ij, for (i, j) 6= (1, 1) and K∗11 = K11 + C̄. Using the inversion formula

for partitioned matrices it can be shown, using K11.2 to denote K11 −K12K
−1
22 K21, that

K−1
∗ =

 (K11.2 + C̄)−1 −(K11.2 + C̄)−1K12K
−1
22

−K−1
22 K21(K11.2 + C̄)−1 K−1

22 +K−1
22 K21(K11.2 + C̄)−1K12K

−1
22

 ,
and, after writing (K11.2 + C̄)−1K11.2 = Ã, we find that

K−1
∗ K =

 Ã 0p,q

K−1
22 K21(Ip − Ã) Iq

 .
Putting all these together, it follows that

γ̂N
PF→ K−1

∗ Kγ =

 Ãβ

δ +K−1
22 K21(Ip − Ã)β

 := γ̄. (31)

Thus, β̂N estimates a function of β which is shrinking β to 0p. After substantial simplifi-

cations it follows that

σ̂2
u,N

PF→ σ2
u + β′C̄Ãβ := σ2

u + τ. (32)

Note that τ = β′(C̄−1 + K−1
22.1)−1β > 0 unless β = 0 (since C̄ is assumed to be positive

33



definite). So σ̂2
u,N overestimates σ2

u with probability converging to 1.

Using (31) and (32) in (30) we get, after simplifications, that

EF (θ̂EBi,N − θi)
PF→ −Di(xi −K12K

−1
22 zi)

′(I − Ã)β

Di + σ2
u + τ

, (33)

an asymptotic expression for the bias of the näıve EBLUP θ̂EBi,N . After more simplification,

we also get that

VF (θ̂EBi,N − θi)
PF→ Di(σ

2
u + τ)

Di + σ2
u + τ

+
D2
i {β′(Ã′Ci − C̄)Ãβ}

(Di + σ2
u + τ)2

. (34)

Combining the square of (33) and (34) gives the limiting expression for MSEF (θ̂EBi,N ) =

EF (θ̂EBi,N − θi)2.

We now investigate the impact of model misspecification when, instead of the true

FME model in (17), we fit the following structural measurement error (SME) model:

Yi = θi + ei, θi = x′iβ + z′iδ + ui, (35)

Xi = xi + ηi, xi = µ+ vi, i = 1, . . . ,m,

where the ei’s, ui’s, ηi’s and vi’s are independently distributed with zero means, and with

variances Di, σ
2
u, Ci and Σx, respectively. We assume that Σx is a positive definite matrix.

In our SME formulation in (35) we assume that zi1 = 1 for an intercept, and for simplicity

of calculations that zi2, . . . , ziq are centered about their respective means.
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Under the model in (35), we can create the following unbiased estimating equations:

m∑
i=1

(Yi −X ′iβ − z′iδ)zi = 0q, (36)

m∑
i=1

(Xi − µ) = 0p, (37)

m∑
i=1


Yi − z′iδ
Xi − µ


Yi − z′iδ
Xi − µ


′

−

Di + σ2
u + β′(µµ′ + Σx)β β′Σx

Σxβ Σx + Ci


 = 0p+1,p+1. (38)

Let µ̂S, δ̂S, β̂S, Σ̂x,S and σ̂2
u,S denote a solution to (36)–(38). The subscript S is used to

indicate the SME model is being fitted. Note that µ̂S = X̄, and

Σ̂x,S =
1

m

m∑
i=1

(Xi − X̄)(Xi − X̄)′ − C̄, (39)

Σ̂x,Sβ̂S =
1

m

m∑
i=1

(Yi − z′iδ̂S)(Xi − X̄), (40)

σ̂2
u,S =

1

m

m∑
i=1

(Yi − z′iδ̂S)2 − D̄ − β̂′S(X̄X̄ ′ + Σ̂x,S)β̂S, (41)

m∑
i=1

(Yi −X ′iβ̂S − z′iδ̂S)zi = 0q. (42)

We assume Σ̂x,S is positive definite. We show below that the estimators δ̂S, β̂S and

σ̂2
u,S obtained by solving (39)–(42) also solve the estimating equations (19) and (20),

which correspond to the FME model fitting. Since zi1 = 1, from (36) it follows that

Ȳ − X̄ ′β̂S − z̄′δ̂S = 0. Using this, it follows from (39) and (40), after simplification, that

m∑
i=1

(XiX
′
i − Ci) β̂S +

(
m∑
i=1

Xiz
′
i

)
δ̂S =

m∑
i=1

YiXi. (43)
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From (42), we get

(
m∑
i=1

ziX
′
i

)
β̂S +

(
m∑
i=1

ziz
′
i

)
δ̂S =

m∑
i=1

Yizi. (44)

Equations (43) and (44) can also be written as

(
A′A−

m∑
i=1

C∗i

)β̂S
δ̂S

 = A′Y.

From this equation, and the assumption that A′A −
∑m

i=1 C
∗
i is non-singular, it follows

that (β̂′S, δ̂
′
S)′ also satisfies (19), so γ̂S = γ̂F . Using γ̂S = γ̂F in (41) and equation (39), it

can be shown after a lot of simplification that

σ̂2
u,S =

1

m

m∑
i=1

(
Yi − z′iδ̂F

)2

− D̄ − β̂′F

{
1

m

m∑
i=1

(XiX
′
i − Ci)

}
β̂F

=
1

m

m∑
i=1

(
Yi −X ′iβ̂F − z′iδ̂F

)2

+
1

m
β̂′F

(
m∑
i=1

XiX
′
i

)
β̂F

+
2

m
β̂′F

{
m∑
i=1

Xi

(
Yi −X ′iβ̂F − z′iδ̂F

)}
− D̄ − β̂′F

(
1

m

m∑
i=1

XiX
′
i − C̄

)
β̂F . (45)

Using
∑m

i=1Xi(Yi −X ′iβ̂S − z′iδ̂S) = −
∑m

i=1 Ciβ̂S (from (43)), we get from (22) and (45)

that

σ̂2
u,S =

1

m

m∑
i=1

(Yi −X ′iβ̂F − z′iδ̂F )2 − D̄ − β̂′F C̄β̂F = σ̂2
u,F .

These calculations show that fitting the SME model using the estimating equations given

by (36)–(38) will lead to estimators of δ, β and σ2
u that are identical to the estimators of
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these parameters given in (21) and (22) that were obtained by fitting the FME model.

From our derivation that γ̂S = γ̂F and σ̂2
u,S = σ̂2

u,F , and from the convergence under

the FME model of the estimators γ̂F and σ̂2
u,F to γ and σ2

u, we immediately conclude that

the parameters estimated by fitting the SME model converge to their true values under

the FME model. If we write (Yi, X
′
i) = Y ∗

′
i , (θi, x

′
i) = θ∗

′
i , D∗i = Diag(Di, Ci) and

Σ =

σ2
u + β′Σxβ β′Σx

Σxβ Σx

 ,
from the multivariate Fay-Herriot model, the EBLUP of θ∗i is given by

θ̂∗EBi,MFH = Y ∗i −D∗i
(
D∗i + Σ̂

)−1

Yi − µ̂′β̂S − z′iδ̂S
Xi − µ̂

 . (46)

If λ = (1,0′p)
′ denotes a unit vector with the first component 1 and all others zero, then

the EBLUP of θi, denoted by θ̂EBi,S , is the first component of θ̂∗EBi,MFH , which is, λ′θ̂∗EBi,MFH .

Using the block diagonal structure of D∗i and using the inverse formula for partitioned

matrices, it follows after substantial simplifications that

λ′D∗i

(
D∗i + Σ̂

)−1

Yi − X̄ ′β̂S − z′iδ̂S
Xi − X̄

 =
Di

{
Yi −X ′iβ̂S − z′iδ̂S + β̂′SCi(Σ̂x,S + Ci)

−1(Xi − X̄)
}

Di + σ̂2
u,S + β̂′SCi(Σ̂x,S + Ci)−1Σ̂x,Sβ̂S

,

and finally,

θ̂EBi,S = Yi −
Di

{
Yi −X ′iβ̂S − z′iδ̂S + β̂′SCi(Σ̂x,S + Ci)

−1(Xi − X̄)
}

Di + σ̂2
u,S + β̂′SCi(Σ̂x,S + Ci)−1Σ̂x,Sβ̂S

. (47)
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By similar simplification that was used to obtain equation (47), we can derive that

VS(θ̂EBi,S − θi) =
Di{σ2

u + β′Ci(Σx + Ci)
−1Σxβ}

Di + σ2
u + β′Ci(Σx + Ci)−1Σxβ

+O(m−1). (48)

We note that

Σ̂x,S
PF→ lim

m→∞

1

m

m∑
i=1

(xi − x̄)(xi − x̄)′ := Sx. (49)

By the convergence properties of γ̂F and σ̂2
u,F , and the result in (49), it follows from (47)

that the asymptotic bias of the predictor θ̂EBi,S under the FME model is given by

EF (θ̂EBi,S − θi) = − Diβ
′Ci(Sx + Ci)

−1(xi − x̄)

Di + σ2
u + β′Ci(Sx + Ci)−1Sxβ

+O(m−1). (50)

After considerable simplifications, it can be shown that

VF (θ̂EBi,S − θi) =
Di{σ2

u + β′(C−1
i + S−1

x )−1β}
Di + σ2

u + β′(C−1
i + S−1

x )−1β

−
(

Di

Di + σ2
u + β′(C−1

i + S−1
x )−1β

)2

β′
{

(C−1
i + S−1

x )Sx(S
−1
x + C−1

i )
}−1

β +O(m−1).

(51)

Combining the square of (50) and (51), we obtain an asymptotic expression forMSEF (θ̂EBi,S ).
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Asymptotic evaluations of estimators and predictors under the

SME model

We first evaluate the estimators and predictors derived under the FME model. Let

PS→ denote convergence in probability under the SME model, and let ES(·) denote the

expectation. Simple calculations and weak laws of large numbers imply that

γ̂F = γ̂S
PS→ γ, σ̂2

u,F = σ̂2
u,S

PS→ σ2
u.

Thus, the parameter estimators from fitting the SME and FME models both estimate the

true model parameters consistently. With these results it follows from (25) that

ES(θ̂EBi,F − θi) = 0 +O(m−1). (52)

Moreover,

VS(θ̂EBi,F − θi) =
Di(σ

2
u + β′Ciβ)

Di + σ2
u + β′Ciβ

+O(m−1). (53)

In the same fashion, for the SME predictor it follows from (47) that

ES(θ̂EBi,S − θi) = 0 +O(m−1)

and, after a little simplification of (48),

VS(θ̂EBi,S − θi) = Di −
D2
i

σ2
u +Di + β′Ci(Σx + Ci)−1Σxβ

+O(m−1). (54)
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For the simpler case considered in the main text (scalar xi), the result (54) can be seen

to reduce to the SME model result given in Table 2 by noting that Fi/(σ
2
x + Ci) =

σ2
u +Di + β2σ2

xCi/(σ
2
x + Ci).

We now turn to estimators and predictors derived under the näıve FH model. Let

δ = (δ1, . . . , δq)
′. We note that

ES(
1

m
A′Y ) =

µµ′ + Σx µz̄′

z̄µ′ 1
m

∑m
i=1 ziz

′
i


β
δ

 (55)

and

ES(
1

m
A′A) =

µµ′ + Σx + C̄ µz̄′

z̄µ′ 1
m

∑m
i=1 ziz

′
i

 . (56)

Note that z̄ = (1, 0, . . . , 0)′ (a q× 1 vector) and m−1
∑m

i=1 ziz
′
i is a block diagonal matrix,

which we denote by Diag(1, G22). We assume that this matrix converges to a positive

definite matrix Diag(1,Γ22). Let R denote the matrix on the right hand side of (56). Par-

tition R−1 in conformity with R. Adopting the usual notation, R−1 = ((Rjk))j,k=1,2,

it can be checked that (R11)−1 = (µµ′ + Σx + C̄) − µz̄′(
∑m

i=1 ziz
′
i/m)−1z̄µ′. Since,

z̄′(
∑m

i=1 ziz
′
i/m)−1z̄ = 1, we get

R11 = (Σx + C̄)−1, (57)

and

R21 = −R−1
22 R21R

11 = −Diag(1, G−1
22 )(1, 0, . . . , 0)′µ′R11 = −(1, 0, . . . , 0)′µ′(Σx + C̄)−1.
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If we denote the square matrix on the right hand side of (55) by S, we note that S =

R−Diag(C̄,0q,q). Consequently,

R−1S =

Ip −R11C̄ 0p,q

−R21C̄ Iq

 and R−1Sγ =

(Ip −R11C̄)β

δ −R21C̄β

 .
Denote (Σx + C̄)−1Σx by Ǎ. After simplification, we get

R−1Sγ =



Ǎβ

δ1 + µ′(Ip − Ǎ)β

δ2

...

δq


:= γ̄. (58)

By (58), it follows that γ̂N
PS→ γ̄. This shows that under the näıve model while

the parameters δ2, . . . , δq are consistently estimated, estimates of the parameter vector

β are shrunk to the null vector. We now find the probability limit of σ̂2
u,N . Recall that

σ̂2
u,N = m−1

∑m
i=1(Yi −X ′iβ̂N − z′iδ̂N)2 − D̄. Since, letting β̄ = Ǎβ and γ̄ = [β̄′, δ̄′]′,

ES(Yi −X ′iβ̂N − z′iδ̂N)2 = ES(Yi −X ′iβ̄ − z′iδ̄)2 +O(m−1)

= Di + σ2
u + (β − β̄)′Σx(β − β̄) + β̄′Ciβ̄ + (γ − γ̄)′

 µ

zi


 µ

zi


′

(γ − γ̄) +O(m−1),
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after substantial simplification,

ES(σ̂2
u,N)→ σ2

u + β′C̄(Σx + C̄)−1Σxβ = σ2
u + β′C̄Ǎβ. (59)

We know that the näıve EBLUP of θi is

θ̂EBi,N = Yi −
Di

Di + σ̂2
u,N

(Yi −X ′iβ̂N − z′iδ̂N).

It can be checked that

ES(θ̂EBi,N − θi)→ 0 as m→∞.

Also, after substantial simplification, we obtain

VS(θ̂EBi,N − θi) =
Di(σ

2
u + β′C̄Ǎβ)

Di + σ2
u + β′C̄Ǎβ

+

(
Di

Di + σ2
u + β′C̄Ǎβ

)2

β̄′(Ci − C̄)β̄ +O(m−1).

Equality of the SME and näıve FH predictors when Ci = C̄

Remark 3 noted that, for the simple form of the model considered there, the SME

model predictor of θi for a small area for which Ci = C̄ agrees with the corresponding

predictor obtained from the näıve FH model. Here we establish this result asymptotically

when one or both covariates Xi and zi are vector valued. We assume that the first element

of zi is 1 for an intercept.

We noticed earlier that the proposed estimators of the model parameters of the SME

model depend on C̄ only and not on the individual Ci’s. Since the EB predictor of θi in

the SME model also depends on Ci, and we are interested in small areas with Ci = C̄, we
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consider a special case of the SME model where all Ci’s are equal to C. From this special

case we explain a relationship among the parameters between the balanced SME model

and the näıve FH model. Writing δ = (δ1, δ
′
2)′, the balanced SME model has Yi = θi + ei

along with

θi = x′iβ + δ1 + z′2,iδ2 + ui and Xi = xi + ηi,

where ui, xi and ηi are independently and normally distributed with zero means except

for xi which has mean µ, and with respective variances σ2
u, Σx and C. In the näıve FH

model θi is expressed as

θi = X ′iβN + δ1,N + z′2,iδ2,N + ui,N ,

where the Xi’s are treated as fixed and ui,N ∼ N(0, σ2
u,N). If we decompose xi in the

SME model as xi = E(xi|Xi)+ [xi−E(xi|Xi)], then, noting that E(xi|Xi) = µ+Σx(Σx+

C)−1(Xi − µ) = µ+ Ǎ(Xi − µ) and V (xi|Xi) = (Σ−1
x + C−1)−1, we can write

θi = x′iβ + δ1 + z′2,iδ2 + ui

= X ′i(Ǎ
′β) + δ1 + µ′(Σx + C)−1Cβ + z′2,iδ2 + ui + β′[xi − E(xi|Xi)].

Identifying ui + β′[xi − E(xi|Xi)] as ui,N , Ǎ′β as βN , δ1 + µ′(Σx + C)−1Cβ as δ1,N , and

δ2 as δ2,N , we obtain that σ2
u,N = σ2

u + β′(Σ−1
x + C−1)−1β. We estimated βN , δ1,N , δ2,N ,

and σ2
u,N by method of moments (in this case, ordinary least squares conditional on the

Xi’s). We know that these estimators are consistent for βN , δ1,N , δ2,N , and σ2
u,N .

We also know that our proposed estimators β̂S, δ̂1,S, δ̂2,S, σ̂2
u,S, µ̂S and Σ̂x,S are all
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consistent. We estimate Ǎ by Â = Σ̂x,S(Σ̂x,S + C)−1. From consistency of the two sets

of estimators under the two models (and the näıve FH model as induced by the balanced

SME model), we have the following results:

(i) β̂N − Â′β̂S
PS→ 0,

(ii) σ̂2
u,N − σ̂2

u,S − β̂S(Σ̂−1
x,S + C−1)−1β̂S

PS→ 0

(iii) δ̂2,N − δ̂2,S
PS→ 0

(iv) δ̂1,N − δ̂1,S − µ̂′S(Σ̂x,S + C)−1Cβ̂S
PS→ 0.

Using (i)-(iv), we obtain after some simplification that

X ′iβ̂N + z′iδ̂N −X ′iβ̂S − z′iδ̂S + (Xi − µ̂S)′(Σ̂x,S + C)−1Cβ̂S
PS→ 0,

(Di + σ̂2
u,N)− [Di + σ̂2

u,S + β̂′S(Σ̂−1
x,S + C−1)−1β̂S]

PS→ 0.

Using these two expressions in θ̂EBi,S (given in equation (47)) and θ̂EBi,N (given in equation

(25)), we immediately obtain that

θ̂EBi,S − θ̂EBi,N
PS→ 0.

To conclude this remark, we note that although δ2,N = δ2 and δ̂2,N − δ̂2,S
PS→ 0, there is no

guarantee that, in general, δ̂2,N = δ̂2,S. Equality may or may not hold, depending on the

estimation method. For our proposed estimators of δ̂2,S and δ̂2,N , they are not equal.

Re-expression of MSE formulas for doing contour plots

We illustrate by showing how we re-express MSES/σ
2
u in terms of rD = Di/σ

2
u, rC =

Ci/σ
2
x, and ρ. Given the result from Table 2 that MSES = Di−D2

i (σ
2
x +Ci)/F

∗
i , we start
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by re-expressing F ∗i :

F ∗i = (σ2
u +Di)(σ

2
x + Ci) + β2σ2

xCi

= σ2
uσ

2
x

{
(1 + rD)(1 + rC) +

β2σ2
x

σ2
u

rC

}
.

From (7), noting that for our simplified model σ2
v = σ2

x, we have

ρ2 = corr(θi, xi)
2 =

β2σ4
x

(σ2
u + β2σ2

x)σ
2
x

=
β2σ2

x

σ2
u + β2σ2

x

⇒ rρ :=
ρ2

1− ρ2
=
β2σ2

x

σ2
u

which implies that F ∗i = σ2
uσ

2
x[(1 + rD)(1 + rC) + rρrC ]. Then

MSES = σ2
u

{
Di

σ2
u

− (1/σ2
u)D

2
i (σ

2
x + Ci)

σ2
uσ

2
x[(1 + rD)(1 + rC) + rρrC ]

}
⇒ MSES

σ2
u

= rD −
r2
D(1 + rC)

(1 + rD)(1 + rC) + rρrC
.

References

Arima, S., Bell, W.R., Datta, G.S., Franco, C., and Liseo, B. (2017). Multivariate Fay-

Herriot Bayesian estimation of small area means under functional measurement error.

Journal of the Royal Statistical Society A, 180, 1191–1209, DOI:10.1111/rssa.12321.

Arima, S., Datta, G. S., and Liseo, B. (2012). Objective Bayesian analysis of a measure-

ment error small area model. Bayesian Analysis, 7, 363–384.

Arima, S., Datta, G. S., and Liseo, B. (2015). Bayesian estimators for small area models

when auxiliary information is measured with error. Scandinavian Journal of Statistics,

45



42, 518–529.

Arima, S., Datta, G.S., and Liseo, B. (2016). Accounting for measurement error in

covariates in SAE: An overview. Chapter 8 in Analysis of Poverty Data by Small Area

Estimation, M. Pratesi (ed.), West Sussex, UK: Wiley, 151–170.

Bell, W.R., Basel, W.W., Cruse, C., Dalzell, L., Maples, J.J., O’Hara, B., and Powers, D.

(2007), “Use of ACS Data to Produce SAIPE Model-Based Estimates of Poverty for

Counties,” unpublished technical paper available at https://www.census.gov/library/

working-papers/2007/demo/bell-01.html.

Bell, W. R., Basel, W. W., and Maples, J. J. (2016). An overview of the U.S. Census

Bureau’s Small Area Income and Poverty Estimates program. Chapter 19 in Analysis

of Poverty Data by Small Area Estimation, M. Pratesi (ed.), West Sussex, UK: Wiley,

349-378.

Buonaccorsi, J.P. (2010). Measurement Error: Models, Methods, and Applications. Boca

Raton: Chapman and Hall/CRC Press.

Datta, G. S., Delaigle, A., Hall, P., and Wang, L. (2018). Semi-parametric prediction

intervals in small areas when auxiliary data are measured with error. Statistica Sinica,

28, 2309–2335, DOI: 10.5705/ss.202016.0416.

Datta, G. S., Rao, J. N. K., and Torabi, M. (2010). Pseudo-empirical Bayes estima-

tion of small area means under a nested error linear regression model with functional

measurement errors. Journal of Statistical Planning and Inference, 250, 2952-2962.

Fay, R. E. and Herriot, R. A. (1979). Estimates of income for small places: an appli-

cation of James-Stein procedure to census data. Journal of the American Statistical

Association, 74, 269–277.

46



Franco, C. and Bell, W. R. (2013). Applying bivariate binomial/logit normal models to

small area estimation. Proceedings of the American Statistical Association, Section

on Survey Research Methods, 690–702, URL http://ww2.amstat.org/sections/srms/

Proceedings/.

Fuller, W. A. (1987). Measurement Error Models. New York: Wiley.

Ghosh, M. and Sinha, K. (2007). Empirical Bayes estimation in finite population sam-

pling under functional measurement error models. Journal of Statistical Planning and

Inference, 137, 2759–2773.

Ghosh, M., Sinha, K., and Kim, D. (2006). Empirical and hierarchical Bayesian es-

timation in finite population sampling under structural measurement error models.

Scandinavian Journal of Statistics, 33, 591–608.

Huang, E. T. and Bell, W. R. (2012). An empirical study on using previous Ameri-

can Community Survey data versus Census 2000 data in SAIPE models for poverty

estimates. Research Report Number RRS2012–4, Center for Statistical Research and

Methodology, U.S. Census Bureau, URL https://www.census.gov/srd/papers/pdf/

rrs2012–04.pdf.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna:

R Foundation for Statistical Computing. URL https://www.R-project.org/

Theil, H. (1971). Principles of Econometrics. New York: Wiley.

Torabi, M., Datta, G. S., and Rao, J. N. K. (2009). Empirical Bayes estimation of small

area means under nested error linear regression model with measurement errors in the

covariates. Scandinavian Journal of Statistics, 36, 355–368.

47



U.S. Census Bureau (2014). American Community Survey Design and Methodology (ver-

sion 2.0, January 2014), URL https://www.census.gov/programs-surveys/acs/

methodology.html.

Wolter, K. M. (1985). Introduction to Variance Estimation. New York: Springer-Verlag.

Ybarra, L. M. R. and Lohr, S. L. (2008). Small area estimation when auxiliary information

is measured with error. Biometrika, 95, 919–931.

48


