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Abstract

The time series model selection problem is strongly rooted in residual analysis. In a typical
application many competing models are fitted, wherein the model features are so divergent that
direct comparison statistics, such as the likelihood ratio or Akaike Information Criterion, are
meaningless. This is because a time series model involves identification of transformation, unit
roots, fixed regression effects, and serial correlation patterns. Given this difficulty, we instead
advocate an indirect comparison through the entropy of the residual series, assessed through
serial correlation and marginal Gaussianity. The ideal residual – namely, a residual series that
behaves like Gaussian white noise – is our benchmark against which all model residuals are
compared, and provides the basis by which to judge diverse models’ superiority. We propose an
entropy information criterion that is minimized at the ideal residual, and increases with devi-
ations from either a Gaussian marginal or a non-white serial correlation pattern. Distribution
theory is provided, with supporting empirical studies as well as illustrations on retail data. It is
known that underfitting (the failure to specify enough model structure) is flagged through the
presence of residual serial correlation; a key finding of our research is that overfitting (specifying
superfluous model structure) is flagged through the presence of light-tailed residuals.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

The modeling of time series can be envisioned as the task of identifying a transformation that

reduces the data vector to a residual with maximum entropy. Whereas Jaynes (1957a, b) discusses

the maximum entropy principle in broad terms, recent literature on model-free prediction (Politis

2015) has stimulated interest in entropy-maximizing data transformations (henceforth, entropic

transformations). Such transformations typically involve marginal transforms (c.f., Box and Cox

(1964), Breiman and Friedman (1985)), dummy regressors or stochastic covariates, unit-root filters,

and whitening transformations arising from fitted models (Box and Jenkins (1970)). The implicit

goal of such efforts is to produce a residual series with Gaussian marginal structure without serial

correlation, i.e., a Gaussian white noise sequence. This objective is discussed under the rubric of the

model-free prediction principle, in Remark 2.3 of Politis (2013). Because the Gaussian distribution
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has maximal entropy among contenders with a given first and second moment structure, and because

entropy is increased by decreasing serial correlation, it follows that the ideal residual has maximum

entropy (Park and Bera, 2009).

Furthermore, as a practical matter the classical methods for fitting time series models yield the

best results – in terms of forecast performance and interpretability – when the residual series has

maximum entropy. This is because residual serial correlation demands a refined stochastic model

(this follows from the Wold decomposition, and basic approximation results for stationary time

series, as discussed in Brockwell and Davis (2009)), whereas heavy tails in the residual marginal

indicate outliers or extremes corresponding to unexplained phenomena (see discussion in McElroy

(2016a)). Remaining serial correlation or excess kurtosis will each contribute in different ways

to an increased forecast error variance, reducing the effectiveness of the model. Therefore, it is

commonplace in frequentist time series methodology and software to encounter model diagnostics

formulated as tests of residual serial correlation (Box and Pierce, 1970) and Gaussian marginal

structure (Shapiro and Wilk, 1965). So we may view the residual diagnostic procedures of TRAMO-

SEATS (Gómez, V. and A. Maravall, 1996) and X-12-ARIMA (U.S. Census Bureau, 2015) as tests

of residual maximum entropy.

Although an entropy-maximizing transformation exists mathematically – known as the Rosen-

blatt transformation (Rosenblatt, 1952) – its actual identification can be quite challenging; the

budget for this task can be audited in terms of all the time series modeling effort being exerted

worldwide (Politis, 2013). Complicating the picture is the empirical reality that many contending

entropic transformations exist for any given time series, and although each residual series may be

quite similar in its entropy characterization, the actual transformations utilized can be radically

different. For instance, one entropic transformation may involve a logarithmic transformation to-

gether with a SARIMA model identification and fitting, whereas another such transform for the

same series might involve no functional transform, instead using a large number of additive outlier

dummy regressors together with a non-seasonal ARIMA model specification.

Given the wide variety of entropic transformations available to a practitioner, it is vital to have

a disciplined method of selecting the best – although another possibility is to employ them all,

through a device of model averaging (Hoeting et al., 1999). In particular, given two models deemed

adequate from the standpoint of having a maximum entropy residual, which is to be preferred upon

purely empirical grounds? (That is, apart from aesthetic criteria, which might lead a scientist to

prefer marginal transformations to using many dummies.) A classical approach to this question

might involve a likelihood ratio test statistic, or more broadly a comparison of information criteria.

There are limitations to the likelihood approach, as discussed in McElroy (2016b): the models being

compared only describe the stationary aspects of the data, parsed through the serial correlation
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pattern. The Akaike Information Criterion (AIC) is broader, allowing multiple model comparisons,

but is still limited to time series models with a common unit root specification (Findley et al.,

1998). If comparing entropic transformations that involve different choices of unit root specification,

covariates, and/or marginal transformation, the available methods are either outright impossible

to utilize or have unknown statistical properties.

This paper adopts a new approach to the broad model comparison problem, recognizing that

likelihood-based comparison statistics are too narrow for real applications. In fact, our study was

motivated by a modeling challenge posited by the authors of a competing time series software: they

had devised a model for the time series of Motor Vehicles and Parts Dealers involving 26 additive

outliers and 2 level shifts, whereas X-12-ARIMA identified a logarithmic transformation with a

single additive outlier and level shift. The subsequent SARIMA models identified were (2,1,4)(0,0,2)

for the competitor, and (1,1,1)(2,0,0) for X-12-ARIMA. Both residual sequences seemed to be fairly

adequate from the standpoint of entropy – so which entropic transformation is preferred? Spurred

by this challenge, we have developed a framework for assessing and comparing the entropy of

residual series arising from quite different modeling paradigms. (We return to the Motor story in

Section 5.)

In particular, our work provides a new information criterion based upon logged p-values of

two statistics that each measure serial correlation and departures from Gaussianity. Because the

distribution for these test statistics is derived under a null hypothesis of a maximum entropy

residual – and not a null hypothesis of correct model specification – parameter uncertainty and

corrections for degrees of freedom are dispensed with (c.f., Ljung and Box, 1978). As an aside, the

treatment of Box-Pierce statistics under a correct model null – where the asymptotic distribution

then depends upon the number of estimated parameters – cannot be rigorously extended to the

case of dummy regressors or marginal transformations (McElroy and Monsell, 2014). Rather than

attempting to extend distributional results to these more complicated entropic transformations, we

instead utilize the device of a maximum entropy residual null hypothesis. However, it is important

to protect against overfitting, which can arise from using too many dummy regressors or too many

parameters in the stationary time series model specification (e.g., an AR(p) model with p too high).

A key empirical finding of our work is that overfitting results in light-tailed residuals, and therefore

can be detected through abnormally low marginal kurtosis.

The two sufficient facets of maximum entropy for a time series are serial correlation and Gaus-

sianity, so we propose a Box-Pierce statistic for the former and a sum of squared Hermite coefficients

for the latter. Other measures have been proposed in Granger and Lin (1994), and Hong and White

(2005). For the marginal structure, recall that any continuous random variable can be expressed

as a function of a Gaussian variable through the probability integral transform, and the Hermite

3



coefficients of this transform correspond to zero in the case of an identity transformation, i.e., when

the variable is Gaussian. The framework and estimation methodology of Janicki and McElroy

(2016) is adopted to testing the residual marginal for Gaussianity. Each test, for serial correlation

and Gaussianity, is formulated as a Wald statistic taking into account the maximum entropy null

hypothesis, and the asymptotic distributions derived in Section 3 are used to obtain p-values and

ultimately our proposed entropy information criterion.

The end result is a technique of model comparison that assesses any residual series against the

ideal maximum entropy residual, and ranks competitors through the proposed entropy information

criterion according to statistically significant deviance from optimality. Section 2 provides the un-

derlying framework for maximal entropy comparisons, including a discussion of Hermite coefficients

and serial correlation, while Section 3 provides definitions for both Wald test statistics, along with

asymptotic theory and computational facets. Section 4 validates the methodology through simu-

lations of test size and power, while Section 5 provides empirical analyses, returning to the Motor

example. The appendix contains details for calculation of our autocovariance matrices in a stable

and efficient way.

2 Framework for Maximum Entropy Comparisons

A time series {εt} has maximal entropy if there is no serial correlation and the marginal is Gaussian.

If we entertain a slightly larger space of time series with lower entropy, we can construct measures

upon this class to assess discrepancies from the ideal of Gaussian white noise. As we are interested

in applying our procedures to residual series from some postulated entropic transformation, it is

reasonable to expect that our class need be no larger than the space of stationary time series with

absolutely continuous marginal distribution. (A residual sequence exhibiting non-stationarity, such

as heteroscedasticity or unit roots, or exhibiting point masses in its empirical distribution, would

indicate immediate prior rejection of the entropic transformation.) Conceptually, we imagine a

parameter S (i.e., a function of the cumulant functions of {εt}) taking values in the positive quadrant

of the plane, where the first component assesses marginal structure and the second component

assesses serial correlation. If two residual time series {ε(1)
t } and {ε(2)

t } are in play, we obtain two

parameter vectors S1 and S2; see Figure 1.

The origin corresponds to Gaussian white noise, the case of maximal entropy in this class

of processes. Increases to the first component of parameter S correspond to departures from a

Gaussian marginal structure, while maintaining the same level of serial correlation. Conversely,

increasing the second component corresponds to additional serial correlation, while maintaining

the same marginal distribution. We might compare S1 and S2 through their magnitudes alone, if

we are indifferent to the angular portion in their polar decompositions.
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Figure 1: Example plot showing two hypothetical scores from two separate sets of residual values.

We can describe the entire class of residual processes {εt} as satisfying

εt = g(Zt), (1)

where {Zt} is a mean zero stationary Gaussian process with unit variance, and g is a monotonic

function satisfying
∫
g2(x)φ(x)dx < ∞. Here, φ and Φ represents the density function and cu-

mulative distribution function of the standard normal distribution respectively. Any continuous

marginal distribution F for εt can be entertained, taking g = F−1 ◦Φ. A wide variety of serial cor-

relation structures for {εt} can be entertained, as the autocovariance function for the residual can

be described in terms of the autocovariance function of {Zt}, together with the Hermite coefficients

(as described in (6) below).

The normalized Hermite polynomials (Samarodnitsky and Taqqu, 1994) are defined via

Hk(x) = (−1)kex
2/2 d

k

dxk
e−x

2/2 (2)

for k ≥ 0. The set of functions given by (2) are a complete orthonormal basis for L2(dΦ) with

respect to the inner product given by

〈f, h〉 =

∫ ∞
−∞

f(x)h(x)φ(x)dx. (3)

Since g ∈ L2 we can write

g(x) =
∞∑
k=0

ηkHk(x). (4)

The Hermite coefficients in (4) are given by
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ηk = 〈g,Hk〉. (5)

As H0(x) = 1 and H1(x) = x, the marginal distribution of εt is Gaussian if and only if g is an

affine mapping, which occurs if and only if ηk = 0 for k ≥ 2. Therefore, we might define the first

component of S to be given by
∑

k≥2 η
2
k.

On the other hand, the serial correlation structure is governed by the autocovariance function

γh(Z) of the process {Zt}. It follows from a result of Hannan (1970, p.83) that

γh(ε) =
∑
k≥1

k! η2
k γ

k
h(Z), (6)

which shows how serial correlation is transmitted through g via the Hermite coefficients. In par-

ticular, if {Zt} is i.i.d. then {εt} is serially uncorrelated, no matter whether g is the identity

or another transformation. However, as we cannot directly measure the serial correlation of the

posited {Zt} series, it is more straight-forward to measure the serial correlation of {εt} through

its own autocovariance function. Therefore, we might define the second component of S to be

given by
∑

k≥1 γ
2
k(ε). Henceforth we just write γk for γk(ε), as we shall not be concerned with the

autocovariances of {Zt}.
In terms of a hypothesis testing framework, we wish to adopt a null hypothesis that {εt} is

Gaussian white noise, which is the intersection of two hypotheses:

HG :{εt} marginally Gaussian (7)

HC :{εt} uncorrelated (8)

Thus, our null hypothesis isHC∩HG and the alternative hypothesis is the space of strictly stationary

short memory time series with continuous marginal distributed, denoted HΩ. We can parametrize

large portions of this space through the measures
∑

k≥2 η
2
k and

∑
k≥1 γ

2
k . This concept has been

explored in independent component analysis where mutual information (the Kullback-Leibler di-

vergence from a random vector’s joint distribution to the product of its marginal distributions) is

decomposed, under linear transforms, as the sum of two terms; one term expressing the decorre-

lation of components of a random vector and one term expressing the deviation from Gaussianity

(Cardoso 2003). In practice, we only consider a finite set of the Hermite coefficients and autocovari-

ances, i.e., we choose J and K such that η = [η2, η3, . . . , ηJ ]′ and γ = [γ1, γ2, . . . , γK ]′ are the focus.

The true Hermite and acf vectors will be denoted η̃ and γ̃. Under HG and HC respectively, these

are zero vectors. This suggests a Gaussianity test statistic and a correlation test statistic each based

upon estimators η̂ and γ̂ and standardized according to the appropriate null hypotheses. Then a

significant value of the Gaussian test statistic indicates rejection of HG only, whereas a significant

value of the correlation test statistic indicates rejection of HC only.
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Of course, alternative measures of correlation and Gaussianity could be utilized; there are fre-

quency domain tests of whiteness (Drouiche (2007), McElroy and Holan (2009)) as well as QQ-norm

plots, Shapiro-Wilk tests, or Kolmogorov-Smirnov tests for Gaussianity (Shapiro and Wilk (1965),

Kolmogorov (1933), Smirnov (1948), Massey Jr (1951)). Our methods have a fundamentally dif-

ferent approach from these. We advocate testing Gaussianity and whiteness with a model agnostic

approach where the hypothesis reflects understanding that model fitting was done. This means the

input data (residuals) may not be perfectly Gaussian or perfectly white noise. Clarifying, in our

tests for Gaussianity, the null hypothesis understands the input residuals may have a slight amount

of correlation left. This is seen in that variance-covariance matrix V (in equation (15) below) is not

diagonal. Our methods do not rely on tuning parameters or any knowledge of the models used to

produce the residual inputs. This allows models from vastly differing classes to be compared with

an equivalent magnitude relation. The results of our tests also have tractable asymptotic theory

and intuitive implications.

3 Testing

We propose estimating γ with the sample autocovariances (SACV) of the residual sample ε1, ε2, . . . , εT ,

and estimating η with the nonparametric quantile estimators of Janicki and McElroy (2016). The

SACV for observed residuals at lags k = 0, 1, . . . , (T − 1) is

γ̂k =
1

T

T−k∑
t=1

(εt+k − ε̄)(εt − ε̄) (9)

where ε̄ =
∑T

t=1 εt/T is the sample mean. Our estimator of η is based on the inner product (5).

Namely, ηk =
∫ 1

0 Q(u)Hk(Ξ(u)) du and we utilize a nonparametric estimate of Q, the order statistics

of {εt}, denoted {ε(t)}. Let Ξ = Φ−1, the Gaussian quantile function. Also, F and Q respectively

denote the cumulative distribution function and quantile function of εt.

η̂k =
T∑
t=1

ε(t)

∫ t/T

(t−1)/T
Hk(Ξ(u)) du. (10)

The estimator (10) can be viewed as a weighted sum of the order statistics {ε(t)}. Moreover,

these weights only depend on T and hence alleviate any computational complexity of doing numer-

ical integration during every estimation. These weights only need to be explicitly calculated once

for a single data analysis problem. We next review the distribution theory for the corresponding

test statistics obtained for the set of processes belonging to HΩ.
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Proposition 3.1 If {εt} is a stationary two-sided linear process, i.e. there exists absolutely summable

coefficients {ψj}j∈Z and a white noise sequence {wt}t∈Z with mean zero, variance σ2
w, and E[w4

t ] =

τσ4
w <∞ such that εt =

∑∞
j=−∞ ψjwt−j, then for non-negative integer K

√
T
(
γ̂ − γ̃

) L
=⇒ N (0,W )

as n→∞. The (j, k)th entry of the asymptotic covariance matrix W for j, k = 1, . . . ,K is

[W ]jk = (τ − 3)γ(j)γ(k) +

∞∑
`=−∞

[γ(`)γ(`− j + k) + γ(`+ k)γ(`− j)]

Because γ̃ is the zero vector under HC , the test statistic

T γ̂′W−1 γ̂ (11)

is proposed, where W is computed under the null HC given in (8). It follows from Proposition

3.1 that this test statistic (11) has an asymptotic χ2 distribution on K degrees of freedom under

HC . However, if HC is false – so that the true γ̃ is nonzero – then instead (γ̂ − γ̃)′W−1 (γ̂ − γ̃) =

OP (T−1), and the asymptotic power of the test statistic is driven by T times the term

γ̃′W−1 γ̃, (12)

known as the efficacy. Next, we consider the Hermite estimation. When HG is true, F = Φ and

Q = Ξ. We will use the following assumptions at times in what follows.

Assumption 1 (A1) F is twice differentiable on (a, b) where −∞ ≤ a ≤ b ≤ ∞, a = sup{x;F (x) =

0} and b = inf{x;F (x) = 1}.

Assumption 2 (A2) F ′ = f(x) > 0 on (a, b).

Assumption 3 (A3) For some γ > 0,

sup
a<x<b

F (x) (1− F (x))
|f ′(x)|
f2(x)

= sup
0<t<1

t(1− t) |f
′(Q(t))|

f2(Q(t))
≤ γ

Assumption 4 (A4) If A = lim
x↘a

f(x) < ∞ and B = lim
x↗b

f(x) < ∞ then either min(A,B) > 0 or

if A = 0 (B = 0) then f is nondecreasing (nonincreasing) on an interval to the right of a (to the

left of b).

Assumption 5 (A5) {F (εt), t ≥ 1} is a stationary ρ-mixing sequence of uniform [0, 1] random

variables with
∑∞

t=1 ρ(2t) <∞.
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Proposition 3.2 Let {εt} be a stationary sequence of random variables with common distribution

function F that is invertible, with F−1 = Q. Assume A1 - A5. Then we have

√
T
(
η̂ − η̃

) L
=⇒ N (0, V ) (13)

as n→∞, where the (j, k)th element of V is

Vjk =

∫ 1

0

∫ 1

0
q(u)q(v)Hj(Ξ(u))Hk(Ξ(v))R(u, v) du dv. (14)

Here R(u, v) =
∑∞

k=−∞Cov(1[F (ε0)≤u],1[F (εk)≤v]) and q = Q̇ is the derivative of the quantile func-

tion of the residual process.

It should be noted that (13) and (14) are expressed for all values η0, η1, . . . , ηJ . In our testing

we will simply omit η0 and η1 as discussed at the end of Section 2.

Remark 3.1 The calculation of V requires a computation of the summands defining R(u, v), which

is explained in the Appendix.

Again, because η̃ is the zero vector under HG, the test statistic

T η̂′ V −1 η̂ (15)

is proposed, where V is computed as described in Remark 3.1 above. It follows from Proposition

3.2 that this test statistic (15) has an asymptotic χ2 distribution on J−1 degrees of freedom under

HG. However, if HG is false then instead [η̂ − η̃]′ V −1 [η̂− η̃] = OP (T−1), and the asymptotic power

of the test statistic is driven by T times the term

η̃′ V −1 η̃, (16)

known as the efficacy. Both efficacies (12) and (16) offer a suitable notion of distance, analogous

to the Mahalanobis distance (Mitchell and Krzanowski, 1985). That is, we may think of the first

and second components of S in Figure 1 as being given by the efficacies (16) and (12).

Performing the tests (11) and (15) require a prespecified number of coefficients to be used. For

Gaussian testing, η2, η3, . . . , ηJ are used since standardized residuals have approximately η0 = 0

and η1 = 1. Including these values in (11) provides no added value. Moreover, inclusion of these

terms may even lead to a lower power test due to an inflated degrees of freedom. The correlation

test uses γ1, γ2, . . . , γK . When looking at diagnostics for a given set of residuals, multiple values

of J and K can be examined; this is similar to looking at many values of the maximal lag in the

Ljung-Box test for autocorrelation. It may not be immediately clear why many lags of η and γ are

used when expanding g.
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It is clear that the test statistics (11) and (15) have power to detect mis-specified models that

result from under-fitting, in the sense that the entropic transformation is unable to map the data

vector to a maximum entropy residual. However, it is vital to examine both correlation and Gaus-

sianity, because it is not uncommon that under-specified models yield serially correlated Gaussian

marginals, such that only the correlation test (15) is significant; this can be seen in the data anal-

ysis of section 5.2. The inclusion of additional covariates, or more nuanced modeling of the serial

correlation, may improve the entropic transformation, thereby resolving the under-fit. On the other

hand, overfitting can arise from including extraneous components of the entropic transformation,

such as spurious covariates or insignificant ARMA coefficients. These model inefficiencies present

a more subtle problem, essentially driving down the variability in sample autocovariances and

yielding marginal distributions that are overly light-tailed. Therefore, the Gaussianity test (11) is

important to detect overfitting.

4 Laboratory Studies

4.1 Size and Power of Test Statistics

To determine the power of tests derived in Section 3, we simulated series of varying lengths from

a residual process with known marginal and correlation structure. By allowing these attributes

to deviate away from our hypothesized Gaussian white noise assumption we can determine the

statistical power of our methods. Clearly this can be done by choosing nonzero vectors η̃ and γ̃

that generate large efficacies, as the efficacy drives the asymptotic power as discussed in Section 3.

But in order to parse our power results in terms of known distributions, we consider a Student’s t

marginal with ν degrees of freedom and an M -dependent autocorrelation structure.

This power study requires the ability to control the autocorrelation and the marginal distri-

bution of a set of hypothetical time series residuals. This task is accomplished by allowing the

marginal distribution of simulated residuals to be tν . Thus, as ν increases, the marginal structure

moves toward the null of HG. This task is easily accomplished with our methods by simply setting

Q in (14) as the quantile function of the tν distribution. This allows calculation of true η values

for a given residual process. For the study that follows, values of ν used were 2, 5, 10, 20, 40 and

∞ where ν =∞ represents HG.

Similarly, to allow for a single parameter to control the amount of autocorrelation, each simu-

lated set of residuals was M -dependent with exponentially decaying autocovariance as a function

of θ, i.e.

Corr(Zt, Zt+h) = θh (17)
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for h = 0, 1, . . . ,M and the correlation is zero otherwise. For the simulation that follows M was

chosen to be five. As θ decreases we move toward HC . Values of θ used in the simulation were 0,

0.05, 0.1, 0.2, 0.25, 0.3 and 0.4 (which all correspond to a positive definite ACF function). Tables

1 through 6 provide results of this power study. Each table is for a fixed level of ν and all values

of θ. The values provided were for 1000 simulations of each series for the given values ν and θ.

The length of each series, n, was also changed; values of n were doubled from 50 through 800.

The values displayed in the table are the proportion of rejections out of the 1000 simulated series.

Ideally we can see power increase in all dimensions. That is, the power of our testing framework

increases as n increases, θ increases (we move farther from uncorrelated assumption) or ν decreases

(we move farther from the Gaussian assumption).

Table 1: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν = 2 and varying levels of correlation θ

ν = 2 ν = 2 ν = 2 ν = 2 ν = 2 ν = 2 ν = 2
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.973 0.027 0.968 0.021 0.967 0.033 0.968 0.046 0.964 0.079 0.972 0.110 0.938 0.229
100 1.000 0.029 0.999 0.045 1.000 0.048 1.000 0.126 0.997 0.179 1.000 0.264 0.998 0.496
200 1.000 0.047 1.000 0.061 1.000 0.079 1.000 0.229 1.000 0.381 1.000 0.525 1.000 0.818
400 1.000 0.059 1.000 0.057 1.000 0.140 1.000 0.429 1.000 0.627 1.000 0.779 1.000 0.934
800 1.000 0.054 1.000 0.087 1.000 0.194 1.000 0.752 1.000 0.873 1.000 0.959 1.000 0.993

Table 2: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν = 5 and varying levels of correlation θ

ν = 5 ν = 5 ν = 5 ν = 5 ν = 5 ν = 5 ν = 5
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.557 0.039 0.566 0.030 0.546 0.049 0.570 0.069 0.561 0.156 0.567 0.215 0.571 0.406
100 0.819 0.047 0.806 0.042 0.841 0.065 0.811 0.212 0.824 0.338 0.816 0.515 0.792 0.817
200 0.970 0.048 0.975 0.055 0.970 0.121 0.971 0.502 0.976 0.717 0.961 0.907 0.963 0.994
400 0.999 0.034 1.000 0.071 1.000 0.256 1.000 0.854 1.000 0.974 0.999 0.999 0.996 1.000
800 1.000 0.051 1.000 0.135 1.000 0.518 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν = 10 and varying levels of correlation θ

ν = 10 ν = 10 ν = 10 ν = 10 ν = 10 ν = 10 ν = 10
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.201 0.036 0.173 0.046 0.200 0.055 0.219 0.116 0.184 0.154 0.222 0.237 0.248 0.438
100 0.340 0.028 0.331 0.037 0.333 0.093 0.353 0.225 0.377 0.373 0.379 0.560 0.407 0.883
200 0.548 0.054 0.574 0.063 0.584 0.147 0.551 0.486 0.592 0.751 0.585 0.914 0.593 0.998
400 0.812 0.054 0.807 0.100 0.831 0.250 0.810 0.874 0.836 0.982 0.832 0.998 0.839 1.000
800 0.985 0.045 0.985 0.159 0.984 0.536 0.981 0.997 0.984 1.000 0.981 1.000 0.985 1.000
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Table 4: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν = 20 and varying levels of correlation θ

ν = 20 ν = 20 ν = 20 ν = 20 ν = 20 ν = 20 ν = 20
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.068 0.039 0.068 0.040 0.074 0.050 0.119 0.114 0.085 0.152 0.116 0.240 0.139 0.451
100 0.110 0.039 0.112 0.042 0.125 0.067 0.143 0.240 0.159 0.388 0.179 0.571 0.206 0.860
200 0.193 0.048 0.185 0.057 0.199 0.135 0.193 0.528 0.238 0.750 0.250 0.910 0.304 0.999
400 0.282 0.041 0.293 0.102 0.354 0.266 0.346 0.868 0.369 0.986 0.369 0.998 0.406 1.000
800 0.496 0.050 0.519 0.120 0.544 0.535 0.546 0.996 0.591 1.000 0.565 1.000 0.600 1.000

Table 5: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν = 40 and varying levels of correlation θ

ν = 40 ν = 40 ν = 40 ν = 40 ν = 40 ν = 40 ν = 40
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.030 0.039 0.037 0.037 0.055 0.040 0.060 0.102 0.088 0.177 0.064 0.252 0.108 0.465
100 0.055 0.040 0.061 0.037 0.066 0.073 0.082 0.232 0.097 0.390 0.105 0.566 0.169 0.864
200 0.089 0.044 0.111 0.064 0.107 0.127 0.128 0.527 0.148 0.782 0.160 0.921 0.197 0.996
400 0.135 0.046 0.160 0.082 0.149 0.288 0.186 0.882 0.197 0.980 0.227 1.000 0.255 1.000
800 0.202 0.057 0.196 0.141 0.222 0.557 0.214 0.997 0.250 1.000 0.247 1.000 0.310 1.000

Table 6: Power study results for Gaussianity (Gaus) tests and Correlation (Corr) test for fixed
t-distribution level ν =∞ and varying levels of correlation θ

ν =∞ ν =∞ ν =∞ ν =∞ ν =∞ ν =∞ ν =∞
θ = 0 θ = .05 θ = .1 θ = .2 θ = .25 θ = .3 θ = .4

n Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr Gaus Corr

50 0.026 0.042 0.031 0.042 0.032 0.042 0.031 0.108 0.047 0.157 0.077 0.236 0.091 0.471
100 0.052 0.050 0.034 0.057 0.056 0.078 0.062 0.268 0.066 0.395 0.090 0.587 0.133 0.863
200 0.076 0.041 0.070 0.063 0.080 0.141 0.098 0.518 0.105 0.781 0.126 0.907 0.185 0.994
400 0.116 0.054 0.110 0.088 0.112 0.275 0.124 0.869 0.156 0.973 0.146 1.000 0.215 1.000
800 0.139 0.057 0.171 0.149 0.149 0.551 0.201 0.999 0.184 1.000 0.218 1.000 0.256 1.000
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4.2 Assessing Overfitting Through Kurtosis

Assessment of overfitting is more nuanced from a model agnostic approach such as ours. This

is a direct result of most current overfitting assessments being done through penalizing model

parameters. Adding extraneous terms that do not improve the model fit will hurt the likelihood

value. The problem is this methodology does not address the fundamental problem: it is difficult

to compare model fits from differing prior adjustments. If data is log-transformed, modified for

calendar effects (such as trading day or moving holidays) or any other adjustments prior to a model

being fit, the resulting typical diagnostics will be non-nested and on differing scales. Our methods

can do these comparisons directly. Moreover, our methods detect light tailed or extreme residuals,

both of which can result from overfitting. A common statistical measure that compares the tail of a

distribution to that of the Gaussian distribution is the kurtosis (Ruppert, 1987). We do not have a

direct one-to-one relationship between our Hermite coefficients and kurtosis, κ = E[ε4]/E[ε2]2. This

is seen by considering a slight pertubation from standard normal in the third Hermite coefficient.

Let

η = (0 1 0 ∆ 0 0 · · · )′.

Then

εt = (1− 3∆)Zt + ∆Z3
t . (18)

Hence any fourth moment expression for (18) will involve high order, even moments of the standard

normal. For a standard normal random variable Z, the kth even moment is E[Zk] = 2−k/2 k!
(k/2)! .

We break down the types of overfitting into two situations. The first is, when a model follows

the finite sample data too closely, results in model residuals with very light tails, or κ < 3. This

issue is a common pitfall whereby the model not only fits the underlying dependent variable, but

also fits the noise unique to each observed sample (Lever et al., 2016). Hence, the resulting residuals

become light tailed. We simulate residuals from this process by truncating the tails of a standard

normal distribution at a cutoff value. The results are shown in Figure 2. We see our test for

Gaussianity has high power for lightly tailed residuals and the power converges to the type I error

rate as the tails of the Gaussian return to normal. One example of the estimates η̂ for this example

is given in Table 7. Following the logic above, we see the largest coefficient in magnitude is indeed

η̂3, but it is not the only non-zero coefficient. This simulated residual series produced a p-value of

0.0092, and failed the residual test at a Type I error rate of 0.05. Moreover, it has κ = 2.614516 and

the coefficient estimates reiterate the discussion above that no one single ηk coefficient dominates

detection of kurtosis; together they form a powerful test again the null of normality.

The second overfitting situation is when a model follows the mean too closely and hence produces

heavy tailed residuals such that κ > 3. Of course we are assuming here the raw transformed series
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Figure 2: Power of Gaussian testing procedure for light tailed distributions.

Table 7: Parameter estimates for simulation with cutoff value of 2.5 and sample size n = 800.

η̂2 = .00578 η̂3 = −.05095 η̂4 = −.00060 η̂5 = −.01208
η̂6 = −.00352 η̂7 = .00595 η̂8 = .00498

does not itself look like Gaussian white noise. Without this assumption the overfitting paradigm

discussed here and a suitable model overlap. In this situation some residuals, especially from

economic models or any data which reacts to possible latent shock and volatility effects, will be

extreme. Any observed data value that is out of the ordinary in magnitude will be ignored by the

model and result in heavy tailed residuals. Our testing proceedue performs well in this overfitting

scenario. This can be seen in the power study of section 4.1. Each of the Tables 1 through 6

represents a different level of t-distribution degrees of freedom. Smaller values of ν correspond to

a residual process with heavier tails than the assumed standard normal distribution.

5 Data analysis

Our methods are oriented toward users who want to automatically compare residuals coming from

competing, well fit, models. In this line of thinking, all of our residual analysis is done from an

automated fitting point-of-view. In Section 5.1 we compare data transformations prior to model

fitting and in Section 5.2 we show our methods will also alert users to overfitted models.

5.1 Motor Vehicles and Parts Dealers

This series is of interest due to two suggested prior adjustments from automatic model fitting

algorithms. Models with dramatically different prior adjustments can be difficult to compare e.g)

pre-transformed model residuals no longer come from nested models. Autobox and X-13ARIMA-

SEATS are two software programs that can do automatic model selection (Automatic Forecasting

Systems, Inc. 1986 and US Census Bureau 2015). Hence, both softwares make automatic choices
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about data transformations. For example, log or no log transformation in X-13ARIMA-SEATS is

decided by fitting an airline model to each and selecting the series transformation that produced a

preferable likelihood.

We will look at monthly vehicle and parts dealers retail sales. The Motor Vehicle and Parts

Dealers subsector is part of the retail trade sector and this series is from fixed point-of-sale locations.

Establishments in this subsector typically operate from a showroom or an open lot where vehicles

are on display. A plot of the raw retail series is shown in Figure 3. It is clear that the raw series has

some values that change levels of magnitude and will need to be adjusted prior to model fitting.

When the series is passed through both automated time series modeling routines vastly different

prior transformations are suggested 1. One program suggests taking a logarithmic transformation,

including a single additive outlier and including one level-shift for the recession in the mid 2000’s.

The other program suggests no logarithmic transformation; instead the level of magnitude change

is handled via 26 additive outliers and two level shifts. It should be emphasized that this is not a

comparison of the two software products (X-13ARIMA-SEATS and Autobox) but a demonstration

of the testing procedures in a real world situation. Plots of the prior adjustments are shown in

Figure 4.

In order to avoid bias of fitting a time series model to data that was prior adusted with the

same software, the two competing prior adjusted series will be fit with the automatic arima model

identification routines in R’s forecast package. Each series will be passed to the auto.arima()

function with the specified prior transformation already preformed and outliers and level shift

supplied at those predetermined locations (Hyndman and Khandakar 2008). In what follows we

will use a superscript log to indicate components of the log-adjusted series and a superscript ao to

indicate any component from the preadjustment of adding 26 AO’s. For example, xlogt and εlogt will

represent the original series after being log adjusted and the resulting residuals after log adjustment.

The automated R routine found the best fitting model for xlogt to be SARIMA(1, 1, 1)(2, 0, 0)12 while

the best fitting model for xaot was a SARIMA(2, 1, 4)(0, 0, 2)12. The coefficients in the fitted models

are given in Table 8.

Table 8: Coefficients for models chosen by auto.model for the Motor series but two different prior
adjustments. “Log model” refer to the series which has been log transformed. “AO model” refers
to the series which has had 26 additive outliers included but no log transform

φ1 φ2 θ1 θ2 θ3 θ4 Φ1 Φ2 Θ1 Θ2

Log model 0.1157 -0.5181 0.6662 0.1773
AO model 0.1111 0.5749 -0.3897 -0.5624 0.3198 -0.2777 0.786 0.4796

The fitted residuals scaled by their sample standard deviation for both models are plotted in

1Since the interest here lies in analysis of the resulting residuals from model fitting we will not distinguish what
transformation each program (AutoBox or X-13ARIMA-SEATS) suggested.
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Figure 3: raw retail series

Figure 5. These residual values are then passed through our hypothesis testing framework.

The test for residual autocorrelation given by (15) gives a test statistic of 13.587 (p-value 0.093)

for εlogt and a test statistic value of 10.281 (p-value 0.246) for εaot . Here, K was chosen to be eight.

The test for residual normality given by (11) give a test statistic of 4.29 (p-value 0.7456) and 5.22

(p-value 0.6336) for εlogt and εaot respectively. Here M = 8. For further intuition the values of η̂ and

γ̂ for each series are given in Table 9. Figure 6 provides a visual representation of the results of the

hypothesis testing. Our methodology suggests the transform using a multitude of additive outlier

regressors produces residuals closer to Gaussian white noise, albeit slightly. Expanding, Figure 6

shows εlog deviates less from the Gaussian distribution but has more autocorrelation than εao.

Table 9: Parameter estimates
j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

γlogj 0.0055 -0.0629 0.1507 -0.1076 0.0508 -0.071 -0.0776 0.0448

γaoj -0.0065 0.0156 -0.0209 0.0197 0.0419 -0.1660 -0.0883 -0.0509

ηlogj 0.0167 -0.0007 0.0130 0.0004 0.0013 -0.0281 -0.0115

ηaoj -0.0011 -0.0055 -0.0335 -0.0313 0.0292 0.0083 -0.0187

5.2 Over and under fitting

In section 5.1 we saw a model with many additive outlier regressors produce residuals that more

closely mimicked Gaussian white noise than its log transformed counterpart. A natural question is

when will having too many regressors in your model be detrimental to the residuals? Our testing
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framework also has the added advantage of being able to detect over-fit models. Over-fitting is

currently being used (and possible abused) in many modeling situations.

Consider the following two retail sales series, automobile dealers and clothing stores. Each

series consists of monthly observations from January 1992 through June 2015. These series are

plotted in Figure 7. In order to demonstrate the need for testing Gaussianity and autocorrelation

concurrently we fit two separate models to each of the series. First the series are differenced as

well as seasonally differenced. Moreover, an automated model fitting procedure was then used to

make sure only moderate seasonal lags were required. We mimic underfitting with a low order

autoregressive process. An AR(1) is fit and the resulting residuals are testing using the methods

suggested by (11) and (15). We imitate overfitting with an excessively high order autoregressive

process. An AR(50) is fit and the same testing procedure applied the the resultant residuals.

The underfit model is identified by our correlation test for both series. The test statistic (15)

is 22.74 (8.9e-4) and 79.04 (5.6e-15) for the automobile dealers and clothing stores respectively

with p-values given in parenthesis. Both tests indicate a strong presence of residual autocovariance

presence. The test (11) gave values of 55.08 (0) and 13.14 (0.04). For the clothing store retail series

even a simple AR(1) model produces residuals with poor evidence against a normally distributed

null.

A more interesting result comes for the overfitting case. After overfitting each series the corre-

lation tests given by (15) gave 0.1746 (0.99) for the automobile dealers series and .1333 (0.99) for

the clothing stores. Failure to reject here indicates these models produce uncorrelated residuals.

However, the normality test (11) picks up on the overfitting. The test statistics (p-values) for these

series are 26.91 (0.0002) and 18.59 (0.0049).

This dichotomy of model fitting issues require a two faceted approach to detection of model

misspecification. Many model residuals, depending on the type of misspecification, will still pass

univariate diagnostic tools. Our methods are able to detect both under and overfit model residuals.

6 Concluding Remarks

It is more important than ever to have fundamentally sound tools to compare and diagnose models.

Statistical models are being fit using ever more sophisticated techniques and a plethora of software

and software libraries/packages. Having tools to compare, contrast and diagnose these model fits,

which traverse a wide variety of model paradigms, is paramount. The ideas and tests advocated in

this paper can be applied to any model comparison where that produces residuals.

We have provided a statistical test that has highly applicable interpretation and is model ag-

nostic. We do not rely on penalty terms, a model specification or knowledge of the optimization

routine used in fitting. All that is needed is the residuals from a model or set of residuals from
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competing models. The guiding principle that a better fitting model will produce residuals closer to

maximum entropy will traverse all residual producing modeling paradigms. These models can now

be compared; regardless of the pre-transformations, unit roots, fixed effects or serial correlation

patterns.

Our exposition has focused on the case of ideal residuals following a Gaussian white noise as-

sumption. This is by far the most widely used assumption on the residuals of competing time series

models. However, there is room for future research to extend our methods to other marginal distri-

butions. This can be accomplished by changing the function g in (4). For example, if uniformly dis-

tributed residuals are optimal, simply pick g = Φ. For χ2
2 marginals, choosing g(Z) = −2 log(Φ(Z))

would suffice. Further discussion of choices of g and structures created can be seen in Janicki and

McElroy (2016). Our work could also be extended to different correlation structures in a similar

fashion.

Another extension of our work to be explored is allowing an expression of efficacy to depend on

the angular portion of their polar decomposition as discussion in Section 2. If we accept the perfect

entropic reduction transformation premise of Rosenblatt (1952), and further that finding the exact

transformation is unlikely, the model fitting exercise become one of minimizing a distance between

perfection and practicality. In this mind set, such a representation could allow tests which are

biased toward an analysts preference for deviating away from maximum entropy in the direction of

Gaussianity or correlation. This approach could increase forecasting performance and/or statistical

inference depending on the ultimate goal of the analysis.

A Gaussian Quadrant Probability

We only need to compute V when HG is true, so that F = Φ. Then for k ≥ 0

Cov(1[F (ε0)≤u],1[F (εk)≤v]) = P[ε0 ≤ Ξ(u), εk ≤ Ξ(v)]− P[ε0 ≤ Ξ(u)]P[εk ≤ Ξ(v)]

Observe the first term on the right hand side of the above equation, P[ε0 ≤ Ξ(u), εk ≤ Ξ(v)], is a

quadrant probability for a bivariate Gaussian random variable with mean [−Ξ(u),−Ξ(v)]′, variance

γ0 and lag k correlation ρk = γk/γ0. This bivariate Gaussian quadrant probability can be expressed

in terms of confluent hypergeometric functions. The confluent hypergeometric function of the first

kind (Abramowitz and Stegun (1964, Chapter 13)) with parameters a and b is

F1(x; a, b) =

∞∑
n=0

(a)nx
n

(b)nn!
. (19)

Here (a)n notates the rising factorial function, i.e., for a positive integer value n, (a)0 = 1 and

(a)n = a(a + 1)(a + 2) · · · (a + n − 1). If a = 0 or x = 0 then F1(x; a, b) = 1. The confluent
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hypergeometric function is a special case of the generalized hypergeometric functions (Muller,

2001). In Chandramouli and Ranganathan (1999) the bivariate quadrant probability is derived for

the case of equal means, and Livsey, McElroy, and Lund (2017) generalizes this formula to the case

of orthant probabilities for Gaussian variables with unequal means. Let [Z1, Z2]′ be a bivariate

Gaussian random vector with mean [µ1, µ2]′, equal variances γ0 and correlation ρ. Then

P[Z1 ≤ 0, Z2 ≤ 0] =
1

4

∞∑
`=0

(2ρ)`

`!

F1( `2 ; 1
2 ;

µ21
2γ0

)

Γ(1− `/2)
−
√

2µ1√
γ0

F1( `+1
2 ; 3

2 ;
−µ21
2γ0

)

Γ((1− `)/2)

 (20)

·

F1( `2 ; 1
2 ;

µ22
2γ0

)

Γ(1− `/2)
−
√

2µ2√
γ0

F1( `+1
2 ; 3

2 ;
−µ22
2γ0

)

Γ((1− `)/2)

 .

We denote P[Z1 ≤ 0, Z2 ≤ 0] = φQ(µ1, µ2, γ0, ρ). In (20), Γ(·) denotes the gamma function, i.e.,

Γ(λ) =
∫∞

0 xλ−1e−xdx. The gamma function has poles at negative integers, so care should be taken

when evaluating this expression. If either µ1 or µ2 are zero then only odd values of ` will yield a

nonzero term in the probability expression. It follows that

R(u, v) = min(u, v)− uv + 2
∑
k≥1

{
φQ(−Ξ−1(u),−Ξ−1(v), γ0, ρk)− uv

}
.

Computation of (20) can be done in a computationally stable and efficient manner. The ulti-

mate utility will come from the accuracy of the finite approximation to the infinite sum. Rapid

convergence makes the approximation very accurate. Expanding, the confluent hypergeometric

(19) is stable for moderate size |xab |. This requirement does not hinder our methods since the

convergence of (20) depends on the decay rate of (2ρ)`. For our problem, in the summation (20),

∣∣∣xa
b

∣∣∣ ∝ γ0

2µ
`.

If for large γ0 a user runs into numerical instability, writing the power series expansion of the

confluent hypergeometric function in its continued fraction counter part can extend the range of

numerical accuracy. Details of this continued fraction representation are provided in Jones and

Thron (1980). Hence, for moderate values of ρ we expect the number of terms needed for accurate

evaluation of (20) to be small. Since in our application ρ will be the ACVF between residual lags,

it will be small (a null of zero).
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Motor Vehicles and Parts Dealers − U.S. Totals − Log transform
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Figure 4: Comparison of pre-adjustments to motor vehicles and parts dealers series. Top plot shows
location of 26 additive outlier regressors and two level shift regressors. Bottom plot shows a log
transform along with two additive outlier regressors and a level shift.
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Figure 5: raw residuals from automated model selection routines. Top plot is εlogt . Bottom plot is
εaot .
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Figure 6: Results from Automobile Dealers series residuals. Longer line is from εlogt . Shorter line
is from εaot .
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Figure 7: Retail series
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