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Abstract

We study the integral of the Frobenius norm as a measure of the discrepancy between two

multivariate spectral densities. Such a measure can be used to fit time series models, and

ensures proximity between model and process at all frequencies of the spectral density – this is

more demanding than Kullback-Leibler discrepancy, which is instead related to one-step ahead

forecasting performance. We develop new asymptotic results for linear and quadratic functionals

of the periodogram, and make two applications of the total Frobenius norm: (i) fitting time

series models, and (ii) testing whether model residuals are white noise. Model fitting results are

further specialized to the case of atomic structural time series models, wherein co-integration

rank testing is formally developed. Both applications are studied through simulation studies,

as well as illustrations on inflation and construction data.

Disclaimer: This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

In the fitting of vector time series models, it is of interest to know whether the model is a good fit

to the data. This problem can be addressed through a criterion function that provides a distance

measure between probability densities. In the case of univariate time series, Li (2004) gives an

overview of classical diagnostic tests of goodness-of-fit (gof), while Paparoditis (2000) and Chen

and Deo (2004) discuss frequency domain tests of gof. For multivariate time series, Hosking (1980),

Li and McLeod (1981), and Lütkepohl (2007) discuss time-domain gof tests; there has been less

literature on frequency-domain model fitting and gof testing, though see Akashi et al. (2017). Our

paper proposes a total (i.e., integrated) Frobenius norm of the multivariate spectral density as a

∗Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C.
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criterion function for time series, and develops the applications of model fitting and gof testing

accordingly.

Conventionally, these applications are handled through the Kullback-Leibler (KL) criterion

function (see Taniguchi and Kakizawa (2000) and McElroy and Findley (2015)), which provides

a measure of discrepancy between vector processes via assessing their relative Gaussian entropy;

this measure is also related to the Gaussian likelihood of a vector time series sample. The KL

criterion is related to one-step ahead forecast performance of competing models (at least in the case

of separable models, where the innovation covariance is separately parametrized), and therefore

presents a nuanced assessment of the proximity of two processes. It is entirely possible for two

competing models to forecast equally well, while having spectra that are completely distinct; see

McElroy (2016) for the univariate case.

It may be desirable to have a criterion that assesses proximity in a complete way. Instead

of requiring that certain functionals of competing model spectra be equal (as in the case of KL

discrepancy), we may wish to require that the spectra be identically equal at all frequencies. From

a testing standpoint, a non-zero discrepancy indicates some significant difference between the two

models’ spectra at some non-negligible set of frequencies. Failure to reject the null hypothesis of

a discrepancy will indicate that all functionals of the spectra yield identical values, in particular

implying that forecast performance is identical for all forecast leads. The total Frobenius norm

provides such a holistic criterion, essentially capturing the notion of equivalency of models. (See

Vuong (1989) and Rivers and Vuong (2002) for development of the concept of model equivalency

for time series.)

To illustrate the potential utility of such a holistic discrepancy paradigm, consider the use of

such a criterion to fit vector time series models. Because the model fit is required to be close at

all frequencies in the data – as opposed to consideration of one-step ahead forecast performance

(c.f., McElroy and Wildi (2013)) – we might expect the resulting model to be more flexible, being

suited for a broader range of applications. (Although the estimates arising from a total Frobenius

norm criterion – assuming a correct model specification – will be less efficient than the maximum

Gaussian likelihood estimators, they need not be inferior if the process is non-Gaussian.)

In the special case of simple multivariate structural time series models, an exact solution to the

minimization problem posed by the Frobenius norm criterion is available, resulting in the rapidly

computable method-of-moments (MOM) estimators introduced in McElroy (2017). We show these

MOM estimators are asymptotically normal with variances that can be easily calculated. We further

demonstrate how rank tests for the spectral density matrix can be conducted, thereby providing

an assessment of co-integration effects. Such applications, facilitated by the new asymptotic theory

developed in Section 3, are an attractive facet of the total Frobenius norm framework when working

with moderate dimension (say, greater than three but less than ten) time series.

As a second application, consider the problem of model gof testing. Here the relevant spectra
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are a fitted model’s spectral density and some non-parametric measure of the process’ spectra, such

as the periodogram or a tapered autocovariance spectral estimator (McElroy and Politis, 2014).

Whereas conventional diagnostics (e.g., Ljung-Box (LB) statistics; Ljung and Box (1978)) assess the

autocorrelations of the residuals, the total Frobenius norm actually encompasses these by insisting

on complete agreement (up to statistical uncertainty) between sample and model autocorrelations

at all lags. This is a more stringent criterion, making adequacy of model fit harder to earn –

this results in adequate models having a broader range of effective applications, because gof is not

restricted to performance at particular autocorrelation lags.

An essentially equivalent formulation of gof testing can be constructed by testing whether the

residual spectral density corresponds to white noise, i.e., whether or not the residual spectrum

is model equivalent to a white noise spectrum. See Davis and Jones (1968), Drouiche (2007),

McElroy and Holan (2009b), and the overview of Kohli and Pourahmadi (2012). This formulation

of the gof problem through the total Frobenius norm then yields a criterion resembling the LB

statistic, where the trace of squared autocovariances are examined for their discrepancy from zero.

However, the advantage of a frequency-domain formulation of the testing problem, is that the null

hypothesis corresponds only to white noise, whereas in time-domain formulations (such as LB) any

process having zero autocorrelations up to the maximum lag cutoff also satisfies the null (c.f., the

portmanteau of Lütkepohl (2007)). Moreover, the asymptotic distribution theory of portmanteau

statistics – such as Peña and Rodriguez (2002) or McElroy and Monsell (2014) – require that the

process’ tri-spectrum is zero; in contrast, our white noise test is valid under quite broad conditions,

with a simple asymptotic variance that remarkably is independent of the tri-spectrum.

Other applications could be developed (e.g., model comparisons, discrimination analysis, etc.),

but in this paper we focus upon model fitting and model diagnosis (gof). Section 2 provides the

basic properties of the new criterion function. For the model diagnosis results, new asymptotic

theory for quadratic functionals of the multivariate periodogram is developed and discussed in

Section 3. Section 4 develops the applications to model fitting, including a new asymptotic theory

for the MOM estimator of structural time series models, and a treatment of rank testing. Model

diagnosis via a frequency-domain white noise test is developed in Section 5. Both these applications

have simulation studies, validating the asymptotic theory in finite samples. We make two empirical

applications in Section 6, applying the MOM estimators, white noise tests, and rank tests to both

bivariate inflation data and four-variate housing starts data. Supplementary material includes

technical proofs and additional tables pertaining to the empirical applications.

2 Framework

For a complex (possibly non-square) matrix A, the Frobenius norm is defined via

‖A‖ =
√

tr(AA∗),
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where ∗ denotes conjugate transpose. We will abbreviate the trace of a matrix by [A]. For a sta-

tionary m-dimensional vector time series {xt} with autocovariance function Γ(h) = Cov(xt+h, xt),

the spectral density f is defined via

f(λ) =
∑
h∈Z

Γ(h)e−ihλ.

This is a Hermitian matrix-valued function. Evidently, the Frobenius norm of f(λ) depends on λ:

‖f(λ)‖2 = trf(λ)2 = [f(λ)2].

Taking the average over frequencies λ ∈ [−π, π] yields the square of the total Frobenius spectral

norm, which is a type of total variation in the process:

1

2π

∫ π

−π
[f(λ)2] dλ =

1

2π

∫ π

−π
‖f(λ)‖2 dλ =

∑
h∈Z

[Γ(h)Γ(−h)] =
∑
h∈Z
‖Γ(h)‖2,

which is an expression of the Plancherel identity. The middle equality follows from the identity

Γ(h) =
1

2π

∫ π

−π
f(λ)eiλh dλ.

This says that Γ(h) is the hth Fourier coefficient of f . Henceforth we denote such an integral via

〈f〉h. In terms of this notation, the total Frobenius norm is the square root of [〈f2〉0]. For short,

we use the notation |f |, i.e.,

|f | :=
√

[〈f2〉0].

Given two m-variate spectra f and g, we define the Frobenius Discrepancy (FD) as the squared

total Frobenius spectral norm of their difference:

FD(f, g) = |f − g|2.

Now the Frobenius norm has the property that ‖A‖ = 0 if and only if Ajk = 0 for all entries

1 ≤ j, k ≤ m. Hence |f | = 0 if and only if ‖f(λ)‖2 = 0 for almost every λ (with respect to Lebesgue

measure), and hence if and only if fjk(λ) = 0 for almost every λ and all 1 ≤ j, k ≤ m. We can

always alter a spectral density on sets of Lebesgue measure zero and retain the same autocovariance

sequence, although in such a case we may have f(λ) 6=
∑

h∈Z Γ(h)e−ihλ on a set of measure zero.

Two spectra that are equal except on a set of frequencies of Lebesgue measure zero are said to be

equal almost everywhere (a.e.). Therefore,

FD(f, g) = 0 if and only if f
a.e.
= g

This property will be referred to as complete equivalency of f and g. When f and g pertain to two

different fitted models, we say they are model equivalent.
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A related construction is the spectral residual of f with respect to g, which is well-defined so

long as g is invertible a.e. This spectral residual is given by f g−1, and is denoted f/g for short.

Such a quantity appears in multivariate time series analysis as the basis for fitting models via KL

discrepancy, where f is the multivariate periodogram and g is the model spectral density; then

KL(f, g) = 〈[f/g]〉0 + 〈log det g〉0,

which resembles FD(f, g) in some ways. In the context of signal extraction, the spectral residual

of the signal with respect to the process yields the frequency response function of the optimal

Wiener-Komogorov filter (McElroy and Trimbur, 2015). Note that such an object can be defined

even in cases where the residual itself is difficult to directly compute.

The key idea in model diagnosis in time series analysis is to ensure that all pertinent information

has been extracted from the data by the model – where the definition of pertinent is contingent on

the exact application, be it one-step ahead forecasting or the detection of cyclical turning points.

Formulating this paradigm in terms of entropy leads to the KL discrepancy; more generally, the

model fitting project can be described as an attempt to whiten the data, i.e., determine a g such

that the spectral residual of the data spectrum f (which might be the multivariate periodogram, or

some other nonparametric estimate) corresponds to white noise. Mathematically, we can express

such a situation via

f/g ≡ 〈f/g〉0.

This is equivalent a.e. to the formulation in terms of the Frobenius norm:

|f/g − 〈f/g〉0| = 0.

Although the spectral residual f/g is not a spectral density (it is not Hermitian, in general), by

direct calculation

|f/g − 〈f/g〉0|
2 = [〈(f/g)2〉0]− [〈f/g〉20] =

∑
h6=0

‖〈f/g〉h‖
2.

Hence, this quantity equals zero if and only if all the residual autocovariances – i.e., the quantities

〈f/g〉h – have Frobenius norm zero, for h 6= 0. Of course, this resembles the LB criterion of a sum

of squared residual autocorrelations. These results show that whiteness of the spectral residual

(and hence, adequancy of model fit) is equivalent to |f/g−〈f/g〉0| = 0, and hence model diagnosis

can proceed by the statistical testing of this null hypothesis.

Often a time series model is specified through a class of spectra F = {fθ : θ ∈ Θ} , leaving the

marginal structure (or the higher-order polyspectra) unspecified; while this is sufficient to describe

a Gaussian process, such an approach is frequently used to to model non-Gaussian processes as

well. Denote the spectral density of the data process by f̃ . If f̃ ∈ F , then the model is correctly

specified, and there exists some true θ̃ such that f̃ = f
θ̃
. The model F is fitted to the data via
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some criterion function, such as KL discrepancy, and if the model is correctly specified then the

minimizer is θ̃. If the model is mis-specified, then f̃ 6∈ F , but we still obtain a minimizer θ̃, which is

called the pseudo-true value (PTV). The PTV yields the element of F that is closest to f̃ , according

to the distance metric corresponding to the fitting criterion.

From this discussion, it is apparent that FD(fθ, f̃) could be used as a model fitting criterion,

with the value zero attained at the minimizer θ̃ corresponding to complete agreement, i.e., f
θ̃

a.e.
= f̃ .

In contrast, the KL criterion involves computing the trace variance of the spectral residual. The

application to model fitting is developed in Section 4. In practice, f̃ is unknown and will be replaced

by some nonparametric estimate f̂ , such as the periodogram or a tapered autocovariance spectral

estimator, and we obtain empirical estimates θ̂ by minimizing the corresponding criterion.

For model diagnosis, we could determine the spectral residual f̂/f
θ̂

(assuming an invertible

model) and proceed to check for whiteness. Alternatively, it may be simpler to compute the

multivariate periodogram of the model residuals, and use this as a proxy for the spectral residual.

(This approach has the drawback that parameter uncertainty is not accounted for, and hence there

is no protection against overfitting.) This application is further developed in Section 5.

A third application is given by model comparison testing. Suppose that a second model is

present, denoted by G = {fξ : ξ ∈ Ξ}, and is fitted (perhaps by the same criterion) to the data

process, yielding PTV ξ̃. Potentially both models are mis-specified. These two models can be either

nested (which means that the intersection of F and G is equal to the nested model) or non-nested

(both models have some spectra not contained in the intersection). The null hypothesis is model

equivalency, i.e., FD(f
θ̃
, f
ξ̃
) = 0, and this would be tested by fitting both models and computing

FD(f
θ̂
, f
ξ̂
). We shall not formally pursue this application any further here.

3 Asymptotic Theory of Linear and Quadratic Functionals of the

Periodogram

For subsequent analysis of the asymptotic properties of the total Frobenius norm, we need an un-

derstanding of the first and second moments of linear and quadratic functionals of the periodogram.

The foundation for these results is found in Brillinger (2001), although several novel extensions are

needed, as we discuss below. We consider a sample of size T , denoted {x1, x2, . . . , xT }, of the

strictly stationary m-variate time series {xt}. The jth component of xt is denoted xt,j . The vector

sample mean is denoted by x. Let the sample autocovariance be defined as

Γ̂(h) = T−1
T−h∑
t=1

(xt+h − x)(xt − x)′
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for h ≥ 0, and Γ̂(h) = Γ̂(−h)
′

for h < 0. We next define the Discrete Fourier Transform (DFT).

For any λ ∈ [−π, π], let

d(λ) =
T∑
t=1

(xt − x) e−iλt.

Note that this definition (as in the treatment of Brillinger (2001)) does not normalize by T−1/2,

which makes the asymptotic analysis easier to parse. We refer to components as dk(λ). The

periodogram I is defined such that I = T−1 d d∗ (suppressing λ), and it follows that 〈I〉h = Γ̂(h).

Next, for continuous real matrix-valued functions ϕ1, ϕ2, ϕ3 of frequency λ we define quadratic

and linear functionals via

Qϕ1,ϕ2(f, g) = 〈[ϕ1 f ϕ2 g]〉0 Lϕ3(f) = 〈[ϕ3 f ]〉0.

Note that the trace and integration operators are interchangeable by linearity. Plug-in estimators

for the quadratic and linear functionals Qϕ1,ϕ2(f, f) and Lϕ3(f) are Qϕ1,ϕ2(I, I) and Lϕ3(I); un-

fortunately, the quadratic estimator is biased because integration over frequencies is not equivalent

to averaging over Fourier frequencies when considering nonlinear functions of the periodogram; see

Chen and Deo (2000) and discussion in McElroy and Holan (2009a). As a result, it is important

to construct estimators based on discretizing the functionals’ integrals, restricting to the Riemann

mesh of Fourier frequencies. In particular, let λj = 2π(j − 1)/T − π, which for j = 1, 2, . . . , T is in

the set [−π, π], and define

Q̂ϕ1,ϕ2(f, g) = T−1
T∑
j=1

[ϕ1 f ϕ2 g](λj) L̂ϕ3(f) = T−1
T∑
j=1

[ϕ3 f ](λj).

Then consistent estimators of Qϕ1,ϕ2(f, f) and Lϕ3(f) are given by Q̂ϕ1,ϕ2(I, I) and L̂ϕ3(I). (Actu-

ally, if we integrate over all frequencies, the estimators Qϕ1,ϕ2(I, I) and Lϕ3(I) are also consistent,

but the variability in the former estimator will differ from what is given in Proposition 2 below.)

This section provides asymptotic theory for L̂ϕ3(I) and Q̂ϕ1,ϕ2(I, I), based on assumptions involv-

ing summability conditions on the cumulants of the {xt} process. Supposing that all moments exist

and the cumulant functions are defined via

γa1,...,ak(t1, . . . , tk−1) = cum{xt1,a1 , xt2,a2 , . . . , xtk−1,ak−1
, x0,ak}

for a1, . . . , ak ∈ {1, . . . ,m}. Clearly, γa1,a2(t1) equals the (a1, a2) entry of Γ(t1). We will assume

that Assumption B1 holds.

Assumption (B1): for all k ≥ 2 and each j = 1, . . . , k−1 and any k-tuple a1, . . . , ak ∈ {1, . . . ,m},
we have ∑

t1,...,tk−1∈Z
(1 + |tj |) |γa1,...,ak(t1, . . . , tk−1)| <∞.
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Under this condition the asymptotic behavior of the first moments of the linear and quadratic

functionals can be established.

Proposition 1. (Convergence of First Moments) Assume that {xt} is strictly stationary with

spectral density f̃ , and satisfies condition (B1). Then as T →∞,

EL̂ϕ3(I) = Lϕ3(f̃) +O(T−1)

EQ̂ϕ1,ϕ2(I, I) = Qϕ1,ϕ2(f̃ , f̃) + 〈[ϕ1 f̃ ] [ϕ2 f̃ ]〉0 +O(T−1).

Remark 1. It is already known (Lemma 3.1.1 of Taniguchi and Kakizawa (2000)) that

L̂ϕ2(I)
P−→ Lϕ2(f̃).

This result, as well as consistency of the quadratic functional, follows from Proposition 2 below.

Hence, we introduce the notation Lϕ2(I) and Qϕ1,ϕ2
(I, I) for the estimated functionals centered by

their respective means.

In the next result we utilize the notation [h] = [ϕh f̃ ], [hi] = [ϕh f̃ ϕi f̃ ], [hij] = [ϕh f̃ ϕi f̃ ϕj f̃ ],

and [hijk] = [ϕh f̃ ϕi f̃ ϕj f̃ ϕk f̃ ] for h, i, j, k ∈ {1, 2, 3, 4}. It can happen that a function ϕ appears

in such a term with its argument reflected and the matrix transposed, i.e, ϕ(−λ)′, in which case we

place an underscore under the index. The tri-spectral density is denoted by f̃ with four subindices

and three frequency arguments, and is defined via

f̃`ksr(λ, θ, ω) =
∑

h1,h2,h3∈Z
γ`ksr(h1, h2, h3) e

−i(λh1+θh2+ωh3).

We also use the notation

[[A f̃(λ,−λ, ω)B]] =
∑
`,k,r,s

Ak` f̃`ksr(λ,−λ, ω)Brs,

which can be visualized as taking the trace of A times the trispectrum with respect to the first two

indices, and also taking the trace of B times the trispectrum with respect to the latter two indices.

Proposition 2. (Convergence of Second Moments) Assume that {xt} is strictly stationary with

spectral density f̃ and satisfies condition (B1). Then as T →∞,

Cov
(√

T L̂ϕ1(I),
√
T L̂ϕ2(I)

)
→ 〈[12]〉0 + 〈[12]〉0

+ (2π)−2
∫ π

−π

∫ π

−π
[[ϕ1(λ) f̃(λ,−λ, ω)ϕ2(ω)]] dλ dω

and

Cov
(√

T Q̂ϕ1,ϕ2(I, I),
√
T L̂ϕ3(I)

)
→ 〈[1] [23]〉0 + 〈[132]〉0 + 〈[123]〉0 + 〈[2] [13]〉0

+ 〈[1] [23]〉0 + 〈[132]〉0 + 〈[123]〉0 + 〈[2] [13]〉0

+ (2π)−2
∫ π

−π

∫ π

−π
g123(λ, ω) dλ dω
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and

Cov
(√

T Q̂ϕ1,ϕ2(I, I),
√
T Q̂ϕ3,ϕ4(I, I)

)
→ (2π)−2

∫ π

−π

∫ π

−π
g1234(λ, ω) dλ dω

+ 〈[1][4][32]〉0 + 〈[1][243]〉0 + 〈[1][234]〉0 + 〈[1][3][24]〉0
+ 〈[4][132]〉0 + 〈[1342]〉0 + 〈[3][142]〉0 + 〈[1432]〉0
+ 〈[2][4][31]〉0 + 〈[31][42]〉0 + 〈[1423]〉0 + 〈[2][143]〉0
+ 〈[4][123]〉0 + 〈[1243]〉0 + 〈[2][134]〉0 + 〈[1324]〉0
+ 〈[14][23]〉0 + 〈[3][2][14]〉0 + 〈[1234]〉0 + 〈[3][124]〉0
+ 〈[1][243]〉0 + 〈[4][1][23]〉0 + 〈[1][3][24]〉0 + 〈[1][234]〉0
+ 〈[1342]〉0 + 〈[132][4]〉0 + 〈[142][3]〉0 + 〈[1432]〉0
+ 〈[4][2][13]〉0 + 〈[13][24]〉0 + 〈[1243]〉0 + 〈[123][4]〉0
+ 〈[1423]〉0 + 〈[143][2]〉0 + 〈[124][3]〉0 + 〈[1234]〉0
+ 〈[134]〉0 + 〈[1324]〉0 + 〈[14][2][3]〉0 + 〈[14][23]〉0,

where the functions g123(λ, ω) and g1234(λ, ω) depend upon the tri-spectral density, and are given

by (A.5) and (A.4) of the proof.

We here introduce a notation for the limiting covariances: write Vϕ1|ϕ2
, Vϕ1,ϕ2|ϕ3

, and Vϕ1,ϕ2|ϕ3,ϕ4
,

for the cases of linear-linear, quadratic-linear, and quadratic-quadratic, respectively. These quan-

tities depend on the matrix-valued functions ϕi, as well as the spectral density f̃(λ) and the

tri-spectral density f̃(λ,−λ, ω). Based on the moment convergence, we can formulate a central

limit theorem for vectors of linear and quadratic functionals.

Theorem 1. (CLT) Assume that {xt} is strictly stationary and satisfies condition (B1). Then the

vector of r linear and s quadratic functionals are jointly asymptotically normal:

√
T
[
Lϑ1(I), . . . , Lϑr(I), Qϕ1,ψ1

(I), . . . , Qϕs,ψs(I)
] L

=⇒ N (0, V ) ,

V =



Vϑ1|ϑ1 · · · Vϑ1|ϑr Vϑ1|ϕ1,ψ1
· · · Vϑ1|ϕs,ψs

...
. . .

. . .
. . .

. . .
...

Vϑr|ϑ1
. . . Vϑr|ϑr Vϑr|ϕ1,ψ1

. . . Vϑr|ϕs,ψs

Vϕ1,ψ1|ϑ1
. . . Vϕ1,ψ1|ϑr Vϕ1,ψ1|ϕ1,ψ1

. . . Vϕ1,ψ1|ϕs,ψs
...

. . .
. . .

. . .
. . .

...

Vϕs,ψs|ϑ1
. . . Vϕs,ψs|ϑr Vϕs,ψs|ϕ1,ψ1

. . . Vϕs,ψs|ϕs,ψs


.

This theory is somewhat more general than needed for our particular applications below, but

nonetheless provides a complete framework for understanding how second and fourth cumulant

functions impact the covariances of linear and quadratic functionals of the periodogram.
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4 Model Fitting

4.1 General Theory

Here we consider the fitting of model F via the integrated Frobenius norm, on the basis of the

periodogram. The discrepancy of the model F from truth is given by the measure FD(fθ, f̃) =

|f̃ − fθ|
2
, which equals

Qid,id(f̃ , f̃)− 2Qid,id(f̃ , fθ) +Qid,id(fθ, fθ)

= Qid,id(f̃ , f̃)− 2Lfθ(f̃) + 〈[f2θ ]〉0.

Replacing the quadratic functionals by their empirical versions yields the criterion function

F̂D(fθ, I) = Q̂id,id(I, I)− 2Lfθ(I) + 〈[f2θ ]〉0.

We define the estimator θ̂ obtained by minimizing this criterion. First we show that F̂D(fθ, I)

converges in probability to FD(fθ, f̃), plus a positive bias term.

Proposition 3. Assume that {xt} is strictly stationary with spectral density f̃ , and satisfies con-

dition (B1). Then for all θ ∈ Θ

F̂D(fθ, I)
P−→ |f̃ − fθ|

2
+ 〈[f̃ ]

2
〉0.

So long as this criterion is continuous with respect to θ, then θ̂ is consistent for the PTV, which

is the minimizer of |f̃ − fθ|. (Note that the minimizer of |f̃ − fθ| is equal to the minimizer of

|f̃ − fθ|
2

+ 〈[f̃ ]
2
〉0 as well, because the second term is free of θ.) The PTV is denoted θ̃. We also

define the matrix Mθ with jkth entry given by [〈∂θjfθ ∂θkfθ〉0].

Theorem 2. Assume that {xt} is strictly stationary with spectral density f̃ and satisfies condition

(B1). Also suppose that F̂D(fθ, I) is a twice continuously differentiable function of θ, that the PTV

θ̃ exists and is unique, and is in the interior of the parameter space. If M
θ̃

is invertible, then as

T →∞
√
T (θ̂ − θ̃) L

=⇒ N (0,M−1
θ̃

V
θ̃
M−1
θ̃

),

where Vθ is a matrix with jkth entry given by 2 [〈f̃ ∂θjfθ f̃ ∂θkfθ〉0].

Remark 2. For a short-hand, we will write Mθ = [〈∇fθ∇′fθ〉0], it being understood that the trace

operator does not act upon the gradients. Likewise, we write Vθ = 2 [〈f̃ ∇fθ f̃ ∇′fθ〉0].

4.2 Structural Models

We consider structural models (Harvey, 1989) for a time series {xt} that has been differenced to

stationarity. As shown in McElroy (2017), the model spectrum takes the form

fθ(λ) =
K∑
k=1

gk(λ)Θk, (1)

10



for scalar parameter-free real-valued even functions gk, and positive definite (pd) parameter matri-

ces Θk. Writing Θ = [Θ1,Θ2, . . . ,ΘK ], we have the parameter θ = vec(Θ) by definition. (There is

redundancy in θ, but it is more convenient to avoid using the vech operator.) Let G be the matrix

given by

Gik = 〈gigk〉0.

Also let g denote the vector of scalar functions gk. Then we define the MOM estimator (cf. McElroy

(2017)) to be the sample analogue of the minimizer with respect to θ of |f̃ − fθ|, where we allow

the components of θ to be real-valued. That is, we do not enforce the p.d. constraints on θ.

Proposition 4. The MOM estimator for the structural model (1) has formula

Θ̂ = 〈g′ ⊗ I〉0 ·
[
G−1 ⊗ 1m

]
= 〈g′G−1 ⊗ I〉0, (2)

where 1m denotes the identity matrix of dimension m.

Note that the MOM estimator in (2) is defined using the integral over all frequencies, and not the

average over Fourier frequencies, as the former is more convenient for computation – and the same

asymptotic theory applies, because for linear functionals of the periodogram there is an asymptotic

equivalency between integration and averaging over Fourier frequencies. For computation, we have

Θ̂k = 〈g′G−1ek ⊗ I〉0,

where ek is the kth unit vector. These estimators are very easy to calculate, amounting to just

fixed linear combinations of sample autocovariances, but are not guaranteed to be p.d. However,

the estimators are symmetric, which is proved using the property that I is Hermitian and that each

gk is an even function of λ. The whole vector of estimates is θ̂ = vec(Θ̂); the corresponding true

parameter is denoted θ̃, and does indeed correspond to p.d. Θ̃k. Replacing I by the true spectral

density in Proposition 4, it is immediate that the PTV exists whenever Θ̃k is p.d., and in such a

case the PTV is unique. When the model is correct, the secondary conditions of Theorem 2 are

satisfied, and the asymptotic theory for θ̂ is fairly straightforward.

Theorem 3. Assume that {xt} is strictly stationary with spectral density f̃ and satisfies condition

(B1). Then θ̂ is consistent for θ and

√
T (θ̂ − θ̃) L

=⇒ N (0,M−1 V M−1),

where M = G⊗ 1m2 and V = 2 〈gg′ ⊗ f
θ̃
⊗ f ′

θ̃
〉
0
.

Remark 3. From equation (1) it follows that

fθ ⊗ f ′θ =

K∑
`,k=1

g`gk Θ` ⊗Θk,

11



and hence the ijth block of V , of dimension m2 ×m2, is

Vij = 2

K∑
`,k=1

〈gigjg`gk〉Θ` ⊗Θk.

Substituting the estimates Θ̂ then yields an estimator V̂ , which can be swiftly calculated once the

four-array 〈gigjg`gk〉 has been determined. Moreover V̂
P−→ V follows from the consistency of θ̂ in

Theorem 3.

4.3 Simulation results

To evaluate the finite sample performance of the MOM estimator (2) we used a structural model

and tabulated the mean squared error of the estimators. Specifically, we used a model with a trend

{µt}, seasonal {ξt} (of period s), and irregular {ιt} components, which are related to the observed

process {xt} via

xt = µt + ξt + ιt. (3)

Here (1−B)µt = ηt, (1 +B +B2 + . . .+Bs−1)ξt = ζt, and {ηt}, {ζt}, and {ιt} are each indepen-

dent Gaussian vector white noise processes, with mean zero and variance matrices Σµ,Σξ and Σι,

respectively. For simulation the variance matrices are chosen as

Σµ =

[
σ21,µ ρµσ1,µσ2,µ

ρµσ1,µσ2,µ σ22,µ

]
, Σξ =

[
σ21,ξ ρξσ1,ξσ2,ξ

ρξσ1,ξσ2,ξ σ22,ξ

]
, Σι =

[
1 0

0 1

]
.

In model (3) the differencing functions are g1 = (1− cos(sλ))(1− cos(λ))−1, g2(λ) = 2 (1− cos(λ)),

and g3(λ) = 2 (1−cos(sλ)). In terms of the notation of Section 4.2, the variance component matrices

are Θ1 = Σµ, Θ2 = Σξ and Θ3 = Σι. The terms 〈gigjg`gk〉 used in the variance expression as in

Theorem 3 were computed using the integrate function in R. The variance parameters were set to

σ1,µ = σ1,ξ = 1, σ2,µ = 0.8, σ2,ξ = 0.6 , ρµ ∈ {0, 0.6, 0.9, 0.95, 1}, and ρξ ∈ {0, 0.4, 0.8, 0.9, 1}. We

generated n = 5000 Monte Carlo replications, and recorded the efficiency of the MOM estimators

as measured by their Monte Carlo root mean squared error (RMSE). The Monte Carlo RMSE for

a MOM estimator Θ̂k for a variance component Θk is defined as

RMSE(Θ̂k) = n−1
n∑
i=1

‖Θ̂k −Θk‖2.

The sample sizes were varied between T ∈ {200, 500}. Table 1 shows the efficiency of the MOM

estimators for model (3). The RMSE values decline when sample size increases from T = 200 to

T = 500 across all parameters by a factor close to
√

500/200, corroborating the asymptotic
√
T

rate of convergence. The RMSE for the trend component is generally the smallest while that for

the irregular component is the largest.
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ρξ 0.00 0.40 0.80 0.90 1.00 0.00 0.40 0.80 0.90 1.00

ρµ T = 200 T = 500

0.00 0.195 0.193 0.196 0.198 0.198 0.125 0.126 0.128 0.124 0.124

0.60 0.208 0.206 0.210 0.211 0.205 0.134 0.129 0.130 0.135 0.132

Σµ 0.90 0.221 0.211 0.211 0.214 0.222 0.141 0.136 0.141 0.136 0.136

0.90 0.226 0.210 0.221 0.226 0.217 0.140 0.141 0.137 0.134 0.137

1.00 0.220 0.222 0.227 0.220 0.221 0.139 0.137 0.137 0.137 0.136

0.00 0.282 0.272 0.270 0.268 0.271 0.186 0.185 0.175 0.172 0.173

0.60 0.290 0.290 0.289 0.296 0.295 0.190 0.192 0.185 0.187 0.192

Σξ 0.90 0.285 0.297 0.302 0.300 0.308 0.194 0.194 0.199 0.196 0.195

0.95 0.288 0.298 0.302 0.311 0.303 0.194 0.197 0.198 0.205 0.196

1.00 0.280 0.284 0.307 0.306 0.306 0.195 0.196 0.196 0.202 0.201

0.00 0.469 0.467 0.463 0.470 0.461 0.312 0.315 0.315 0.314 0.309

0.60 0.490 0.458 0.478 0.467 0.482 0.319 0.314 0.309 0.320 0.321

Σι 0.90 0.482 0.480 0.488 0.482 0.492 0.323 0.325 0.334 0.317 0.318

0.95 0.500 0.481 0.485 0.499 0.509 0.332 0.321 0.314 0.334 0.324

1.00 0.475 0.471 0.475 0.488 0.476 0.325 0.320 0.321 0.321 0.325

Table 1: Efficiency (root mean squared error) for the different variance component matrices using
MOM estimation for model (3)

4.4 Rank testing

An interesting application of the asymptotic normal theory developed in Theorem 3 is that of

testing for reduced rank structures of the variance matrices. A reduced rank variance matrix for

any of the structural components would indicate a corresponding co-integration effect (McElroy,

2017). Following McElroy and Jach (2017), testing whether variance matrices have reduced rank

can proceed via adopting the null hypothesis that one of the diagonal entries in the generalized

Cholesky Decomposition (Golub and Van Loan, 1996) is zero. These diagonal entries correspond

to sequential Schur complements, computed with respect to each upper left sub-matrix (McElroy,

2018), and therefore can be expressed as a ratio of determinants. Hence these Schur complements

are smooth functions of the entries of a matrix, and we can use the delta method in conjunction

with Theorem 3 to perform a reduced rank test.

For the present application we consider bivariate time series, and rank reduction is equivalent to

the determinant being zero (see McElroy and Jach (2017) for further discussion). We test whether

Σµ or Σξ have rank one by checking if the determinant of the matrix is zero. Specifically, we test

H0 : det(Θk) = 0 vs H1 : det(Θk) 6= 0

13



for variance component Θk, for k = 1, 2. Because N = 2 the variance components have the form

Θk =

[
Θk,11 Θk,12

Θk,21 Θk,22

]
,

and the estimated asymptotic variance of det Θ̂k will be vk = b′Wkk b, where b = (Θ̂k,22,−2Θ̂k,21, Θ̂k,11)
′

and Wkk is the diagonal block of the variance matrix M−1VM−1 in Theorem 3 associated with the

entries of Θk, with parameters replaced by their MOM estimates.

For simulation we used model (3) with the parameter specifications given in the previous sub-

section. Note that for either Σµ or Σξ, when the correlation parameter is equal to one, the matrices

are of reduced rank (i.e., rank one). Otherwise, for all other values the matrices have full rank

(i.e., rank two). Thus the type I error rate will be reached when the correlation is one, whereas

when the correlation moves away from the unity the power of the test will increase. Table 2 shows

the size and power of the test for reduced rank component for both the trend and the seasonal

components. The values corresponding to null values are identified in bold. The tests are generally

conservative, particularly at smaller sample sizes, with the test for the seasonal component being

more conservative than that for the trend component. The power for the trend component test

rises more rapidly than that of the seasonal component as the parameter value moves away from

the null.

H0 : det(Σµ) = 0 H0 : det(Σξ) = 0

ρξ ρξ

0.00 0.40 0.80 0.90 1.00 0.00 0.40 0.80 0.90 1.00

T = 200 T = 200

0.00 1.000 1.000 0.999 0.998 0.998 0.091 0.050 0.015 0.011 0.012

0.60 0.976 0.982 0.993 0.989 0.993 0.115 0.056 0.024 0.014 0.010

ρµ 0.90 0.367 0.421 0.468 0.479 0.484 0.122 0.091 0.027 0.019 0.005

0.95 0.125 0.146 0.171 0.167 0.180 0.105 0.093 0.025 0.014 0.009

1.00 0.020 0.014 0.019 0.015 0.007 0.136 0.097 0.021 0.014 0.012

T = 500 T = 500

0.00 1.000 1.000 1.000 1.000 1.000 0.506 0.213 0.052 0.046 0.019

0.60 1.000 1.000 1.000 1.000 1.000 0.462 0.323 0.064 0.037 0.016

ρµ 0.90 0.870 0.910 0.940 0.939 0.944 0.453 0.422 0.076 0.067 0.029

0.95 0.436 0.514 0.548 0.555 0.575 0.437 0.435 0.097 0.057 0.030

1.00 0.039 0.025 0.032 0.036 0.027 0.397 0.451 0.081 0.047 0.023

Table 2: Power of the test of reduced rank structure based on MOM estimates. Type I errors at
the null values are given in bold.
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5 Model Evaluation

5.1 Methodology

It is possible to consider the gof test statistic F̂D(fθ, I), where the parameter estimates are those

described above (or are maximum likelihood estimators, or some other
√
T -consistent estimators).

However, the asymptotic bias in F̂D(fθ, I) of 〈[f̃ ]
2
〉0 means that the distribution theory becomes

fairly complex; instead we consider model evaluation via assessment of the spectral residual. Instead

of analyzing I/f
θ̂

directly, we consider the periodogram J of the residual process. This may

be preferable in scenarios where the fitted model involves transformations, fixed regressors, and

stochastic effects, such that fθ is only a partial description of the model.

Let J denote the periodogram of the estimated residuals, with g̃ denoting the spectral density

of the true residual process, and consider the testing problem |g̃|2 − ‖〈g̃〉0‖
2 = 0; this quantity is

always non-negative, but equals zero if and only if g̃ corresponds to white noise. Rewriting this

functional as

|g̃|2 − ‖〈g̃〉0‖
2 = Qid,id(g̃, g̃)− [〈g̃〉20]

it can be seen that substituting J for g̃ yields a statistic that converges to |g̃|2 + 〈[g̃]2〉0 − [〈g̃〉20]
(this is shown in the proof of Proposition 5, below). In the case that g̃ ≡ Σ, corresponding to a

white noise process, the limit reduces to [Σ]2, which is nonzero except in trivial cases. In order to

obtain a statistic that converges to zero (the null hypothesis value of |g̃|2 − ‖〈g̃〉0‖
2), we propose

to subtract the quantity [〈J〉0]
2, which converges to [Σ]2 under the null. These arguments suggest

defining a model evaluation functional Eval(g̃) and estimator Êval(J) as follows:

Eval(g̃) = |g̃|2 − ‖〈g̃〉0‖
2 + 〈[g̃]2〉0 − [〈g̃〉0]

2 = Qid,id(g̃, g̃) + 〈[g̃]2〉0 − [〈g̃〉20]− [〈g̃〉0]
2

Êval(J) = |J |2 − ‖〈J〉0‖
2 − [〈J〉0]

2 = Q̂id,id(J, J)− [〈J〉20]− [〈J〉0]
2.

The estimator Êval(J) can be alternatively expressed with the final two terms, [〈J〉20] and [〈J〉0]
2,

having their integral replaced by a sum over Fourier frequencies; this can make calculation easier.

However, because these two terms involve integrals/sums over a linear function of the periodogram,

the asymptotic theory is the same, whether we use integrals or sums (c.f., Chen and Deo (2000)).

The evaluation estimator converges in probability to the correct quantity for the testing problem,

as shown below.

Proposition 5. Assume that {xt} is strictly stationary with spectral density f̃ , and satisfies con-

dition (B1). Then as T →∞,

Êval(J)
P−→ Eval(g̃).

Also, EÊval(J) converges to the same limit.
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Remark 4. Proposition 5 does not assume that the null hypothesis is true. But if the residual is

white noise, then g̃ ≡ Σ, and

Eval(g̃) = |Σ|2 − ‖〈Σ〉0‖
2 + 〈[Σ]2〉0 − [〈Σ〉0]

2 = 0.

Evidently, Êval(J) can be negative, because of the presence of the bias-correction term [〈J〉0]
2.

In order to test the null hypothesis, we need a limit theory for the model evaluation estimator.

Unlike the case of the LB statistic, based upon a finite number of sample autocovariances, in this

case the limit distribution is normal – this is essentially due to the inclusion of the bias-correction

term [〈J〉0]
2.

Theorem 4. Assume that {xt} is strictly stationary with spectral density g̃ and satisfies condition

(B1). Then as T →∞
√
T
(

Êval(J)− Eval(g̃)
)
L

=⇒ N (0, v′W v)

W =


V〈g̃〉0|〈g̃〉0 V〈g̃〉0|id

V〈g̃〉0|id,id

Vid|〈g̃〉0
Vid|id Vid|id,id

Vid,id|〈g̃〉0
Vid,id|id Vid,id|id,id

 ,
where v′ = {−2,−2[〈g̃〉0], 1} and the block entries of W (which is symmetric) are given by

V〈g̃〉0|〈g̃〉0 = 2 〈[〈g̃〉0 g̃ 〈g̃〉0 g̃]〉0 + (2π)−2
∫ π

−π

∫ π

−π
[[〈g̃〉0 g̃(λ,−λ, ω) 〈g̃〉0]] dλ dω,

Vid|〈g̃〉0
= 2 〈[g̃ 〈g̃〉0 g̃]〉0 + (2π)−2

∫ π

−π

∫ π

−π
[[g̃(λ,−λ, ω) 〈g̃〉0]] dλ dω,

Vid|id = 2 〈[g̃2]〉0 + (2π)−2
∫ π

−π

∫ π

−π
[[g̃(λ,−λ, ω)]] dλ dω,

V〈g̃〉0|id,id
= 4 〈[g̃] [g̃ 〈g̃〉0 g̃]〉0 + 4 〈[g̃2 〈g̃〉0 g̃]〉0 + (2π)−2

∫ π

−π

∫ π

−π
g123,〈g̃〉0(λ, ω) dλ dω,

g123,〈g̃〉0(λ, ω) = 2 [[g̃(λ,−λ, ω) 〈g̃〉0]] [g̃(λ)] + 2 [[g̃(λ) g̃(λ,−λ, ω) 〈g̃〉0]],

Vid|id,id = 4 〈[g̃] [g̃2]〉0 + 4 〈[g̃3]〉0 + (2π)−2
∫ π

−π

∫ π

−π
g123,id(λ, ω) dλ dω,

g123,id(λ, ω) = 2 [[g̃(λ,−λ, ω)]] [g̃(λ)] + 2 [[g̃(λ) g̃(λ,−λ, ω)]],

Vid,id|id,id = 8 〈[g̃]2 [g̃2]〉0 + 16 〈[g̃] [g̃3]〉0 + 12 〈[g̃]4〉0 + 4 〈[g̃2]2〉0 + (2π)−2
∫ π

−π

∫ π

−π
g1234(λ, ω) dλ dω,

g1234(λ, ω) = 4 [[g̃(λ,−λ, ω)]] [g̃(λ)] [g̃(ω)] + 4 [[g̃(λ,−λ, ω) g̃(ω)]] [g̃(λ)]

+ 4 [[g̃(λ) g̃(λ,−λ, ω)]] [g̃(ω)] + 4 [[g̃(λ) g̃(λ,−λ, ω) g̃(ω)]].

In general, calculation of W is daunting due to the complexity of the covariances appearing in

Theorem 4, but under the null hypothesis of white noise there is a remarkable simplification to the

limiting variance – all the dependence on the tri-spectrum vanishes.
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Corollary 1. Assume that {xt} is strictly stationary with white noise spectral density g̃ = Σ, and

satisfies condition (B1). Then as T →∞
√
T Êval(J)

L
=⇒ N (0, 4 [Σ4] + 4 [Σ2]

2
).

Corollary 1 can be applied by substituting the sample variance matrix of the residual process,

i.e., Σ̂ = Γ̂(0), in the expression for the asymptotic variance.

5.2 Simulation results

To test the utility of Corollary 1 in finite sample, we use the evaluation criterion to check model

order specification in a two dimensional VAR(2) process. Specifically, the true model, chosen for

data generation, was

xt =

[
0.3 −0.3

0 0.4

]
xt−1 +

[
−0.01 −0.1

−0.1 0.25

]
xt−2 + zt, (4)

where {zt} were Gaussian white noise with mean zero and variance I2, the two dimensional identity

matrix. The roots of the VAR polynomial are 0.812, −0.338, and 0.113± 0.121i. The sample sizes

explored were T = 200, 500, and 1000. The number of Monte Carlo replications was 5000. After

generating the data from the VAR(2) specification, we repeatedly fit the data using a VAR(p)

model for p ∈ {1, 2, . . . , 8}. Thus, for p = 1 the model will be mis-specified (and rejections pertain

to empirical power), whereas for p ≥ 2 the models are correctly specified. However, as p grows the

properties of the test in over-specified models are affected by finite sample terms, and hence the

nominal size level may be violated. Table 3 provides the proportion of empirical rejections for two

sided tests of correct model order, using the limiting distribution of Êval(J) given in Corollary 1,

where the error variance Σ is estimated from the residuals. Of course in the mis-specified models

the estimate of Σ will be also affected by the mis-specification.

The variance expression in Corollary 1 holds even when the innovations have a non-Gaussian

distribution. To check the power properties of the test, we repeated the simulation exercise for

model (4) when the innovations for the true model are generated from a multivariate Student’s t

distribution with 4 degrees of freedom and identity as the scale matrix. The results are given in

Table 4; the proportions are remarkably close to the corresponding values for the Gaussian case,

indicating the robustness of the proposed test against distributional assumptions.

6 Empirical Analyses

6.1 Bivariate Inflation

We examine the bivariate Personal Consumption Expenditures (PCE) inflation data discussed in

McElroy and Trimbur (2015). The first series measures core inflation (excluding food and energy
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p T = 200 T = 500 T = 1000

1 0.089 0.217 0.697

2 0.024 0.043 0.045

3 0.027 0.050 0.055

4 0.038 0.059 0.059

5 0.062 0.073 0.064

6 0.078 0.089 0.064

7 0.096 0.108 0.066

8 0.103 0.132 0.082

Table 3: Size and power of the model evaluation test, computed based on residuals from a VAR(p)
to the VAR(2) model (4), for different model orders and different sample sizes. Values of p ≥ 2
correspond to size, and should be close to the nominal level of 5%, whereas values in the row for
p = 1 correspond to power. The innovations for the true model are generated from a Gaussian
distribution.

p T = 200 T = 500 T = 1000

1 0.062 0.183 0.376

2 0.029 0.048 0.051

3 0.050 0.066 0.059

4 0.062 0.080 0.077

5 0.085 0.100 0.084

6 0.100 0.127 0.098

7 0.132 0.139 0.130

8 0.146 0.176 0.139

Table 4: Size and power of the model evaluation test, computed based on residuals from a VAR(p)
to the VAR(2) model (4), for different model orders and different sample sizes. Values of p ≥ 2
correspond to size, and should be close to the nominal level of 5%, whereas values in the row for
p = 1 correspond to power. The innovations for the true model are generated from a multivariate
Student’s t with 4 degrees of freedom and identity as the scale matrix.

items) whereas the second series is total inflation; the data were obtained from the Bureau of

Economic Analysis, and covers 1986Q1 through 2010Q4. Changes in level to both series over the

sample period indicate the possible presence of a stochastic trend; as in McElroy and Trimbur

(2015), we proceed by fitting a structural model (3) with only random walk trend and irregular

components, because the seasonal component {ξt} is not needed.

Because the dimension and sample size are small, direct MLE is feasible. We computed MLE

results for comparison with the MOM estimators, examining both an unrestricted model (i.e.,

the basic model) and the common trends restriction, whereby Σµ is enforced to have rank one.

These results are summarized in Appendix B of the Supplementary Material. While parameter
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estimates do indeed differ between the MOM and MLE, the former approach does effect a whitening

transformation on the data, and at the same time is considerably faster – less than a second (on

our machine) is required to compute the MOM estimators, whereas over a minute is required for

the MLE optimization routine. In order to assess the model gof, we applied the white noise test

to the PCE data, fitted according to the MOM method:
√
T Êval(J) = −1.893, with the variance

estimated at 475.458. Hence the model cannot be rejected (normalized test statistic is −0.0868,

with p-value .465).

Both the MOM and MLE estimates of Σµ indicate the possibility of common trends, as the

former estimate has a cross-correlation of .784, whereas the latter is .999906. The MOM correlation

estimate is not particularly close to unity, though if we account for variability it is possible that the

rank one hypothesis cannot be rejected. For the test of common trend the results were 741.3569 for

the det(Θk), with an estimated variance of 500, 699.6, and a normalized test statistic of 1.047704.

Hence the null hypothesis of common trends cannot be rejected.

6.2 Four-variate Housing Starts

Our second empirical illustration involves housing starts, which are published by the U.S. Census

Bureau on a monthly basis, for the regions corresponding to South, West, Northeast (NE), and

Midwest (MW). As in McElroy (2017), we study “New Residential Construction 1964–2012, Hous-

ing Units Started, Single Family Units” from the Survey of Construction of the U.S. Census Bu-

reau, available at http://www.census.gov/construction/nrc/how_the_data_are_collected/

soc.html. Because of the presence of both a highly dynamic trend and seasonal, a structural model

(3) with second order stochastic trend (d = 2) is used along with a seasonal {ξt} that is additively

composed of six atomic seasonal processes, one for each principal monthly seasonal frequency. The

model involves eight latent components, each of which is specified by a 4×4-dimensional covariance

matrix, yielding a total of 80 parameters.

With a restricted sample size corresponding to the latest 9 years, we were able to run MLE for an

unrestricted model, and make comparisons to the MOM estimates. These results are summarized

in Appendix B of the Supplementary Material. Again, parameter estimates differ between the

MOM and MLE, but the former approach does effect a whitening transformation on the data. The

difference in speed is significant: 78 minutes for the MLE optimization, versus less than one second

for MOM calculation. We also fitted the model using MOM applied to the entire data span of 49

years; in this case, the MOM calculation is still less than one second, whereas a single Gaussian

likelihood evaluation (with an efficient Durbin-Levinson implementation) takes more than a second.

In order to assess the model gof, we applied the white noise test, obtaining
√
T Êval(J) = −7.728,

with the variance estimated at 48.042. Hence the model cannot be rejected.
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Appendix A Proofs

Proof of Proposition 1. Without loss of generality, we replace the sample mean in the DFT by the true mean,

because the error in doing so is of lower order. The result for linear functionals is known (Lemma 3.1.1 of

Taniguchi and Kakizawa (2000)). For the quadratic case, we note that

Qϕ1,ϕ2(I, I) = 〈[ϕ1 I ϕ2 I]〉0 = T−2 〈(d∗ ϕ1 d) (d∗ ϕ2 d)〉0,

which by Lemma P5.1 of Brillinger (2001) approximates the estimator Q̂ϕ1,ϕ2(I, I), with error of order T−1.

Based on such an approximation, one could work with the estimator Qϕ1,ϕ2(I, I) instead of Q̂ϕ1,ϕ2(I, I), but

as mentioned in the text it is simpler to focus upon the latter. To that end, we write

Q̂ϕ1,ϕ2
(I, I) = T−3

T∑
j=1

(d∗ ϕ1 d)(λj) (d∗ ϕ2 d)(λj). (A.1)

Here, λj is a Fourier frequency defined as λj = 2πj/T −π. (The subtraction by π ensures that we stay in the

interval [−π, π].) Denote entry r, s of ϕ via ϕ(r, s;λ); each of these components are a function of λ. Then

EQ̂ϕ1,ϕ2(I, I) = T−3
T∑
j=1

∑
`,k,r,s

ϕ1(`, k;λj)ϕ2(r, s;λj)E[d∗` (λj) dk(λj) d
∗
r(λj) ds(λj)],

and we can apply Theorem 2.3.2 of Brillinger (2001) to the inner expectation. Equation (4.3.15) of Brillinger

(2001) yields

cum(d∗` (λj), dk(λi)) = O(1) + ∆(T )(λj − λi) f̃∗`k(λj), (A.2)

where ∆(T )(ω) equals T if ω = 0, but equals zero otherwise. The inner expectation of the four DFTs is

broken into a sum over all indecomposable partitions; because the mean of a DFT is zero, we only need to

∗Center for Statistical Research and Methodology, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100,
tucker.s.mcelroy@census.gov
†University of Maryland, Baltimore County and U.S. Census Bureau
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consider three partitions that each involve two pairs. For two of these partitions, we would obtain ∆(T ) = T ,

but for the third partition we obtain ∆(T ) = 0; writing the table as {` k r s}, the substantive partitions are

{(` k) (r s)} and {(` s)(k r)}. Therefore

EQ̂ϕ1,ϕ2(I, I) = T−3
T∑
j=1

∑
`,k,r,s

ϕ1(`, k;λj)ϕ2(r, s;λj)·{(
O(1) + T f̃∗`k(λj)

) (
O(1) + T f̃∗rs(λj)

)
+
(
O(1) + T f̃∗`s(λj)

) (
O(1) + T f̃kr(λj)

)}
→ 〈[ϕ1 f̃ ] [ϕ2 f̃ ]〉0 + 〈[ϕ1 f̃ ϕ2 f̃ ]〉0

as T →∞, where the final line uses the fact that f̃ is Hermitian.

Proof of Proposition 2. We provide the proof for the hardest case (the third), noting that similar techniques

yield the easier two cases. Applying (A.1) twice, we obtain

Cov
(√

T Q̂ϕ1,ϕ2(I, I),
√
T Q̂ϕ3,ϕ4(I, I)

)
= T−5

T∑
j1,j2=1

∑
`1,`2

∑
k1,k2

∑
r1,r2

∑
s1,s2

ϕ1(`1, k1;λj1)ϕ2(r1, s1;λj1)ϕ3(`2, k2;λj2)ϕ4(r2, s2;λj2)·

cum
(
d∗`1(λj1) dk1(λj1) d∗r1(λj1) ds1(λj1), d∗`2(λj2) dk2(λj2) d∗r2(λj2) ds2(λj2)

)
.

To compute the cumulant we utilize Theorem 2.3.2 of Brillinger (2001), which indicates that we proceed by

summing over all indecomposable partitions of the table with two rows and four columns, multiplying the

cumulants for sets of random variables (DFTs) corresponding to each set of a given partition. Hence, any

partitions involving a 1-element set contribute zero, because the cumulant of a single DFT is its mean, which

is zero. Which partitions are relevant depends on whether the sum over frequencies collapses to a single

summation: if λj1 = ±λj2 , the sum over frequencies collapses to a single summation, and the only partitions

we need consider are those involving four sets of size 2 (proved below); otherwise, if λj1 6= ±λj2 there is a

double summation and the relevant partitions involve one set of size 4 and two sets of size 2 (proved below).

In determining which partitions are relevant, we can focus on those indecomposable partitions of the table

that yield the highest order in T , all other partitions of lesser order being asymptotically negligible.

Diagonal Case: First suppose that λj1 = ±λj2 . Because no 1-element sets need be considered, the

maximal number of sets in a partition is four (which must be four 2-element sets) – and we show that some

of these partitions will yield a cumulant O(T 4). Any other type of partition would have fewer than three

sets, so that the cumulant would be at most O(T 3), and thus can be ignored. First setting λj1 = λj2 , we

write the table

d∗`1(λj1) dk1(λj1) d∗r1(λj1) ds1(λj1)

d∗`2(λj1) dk2(λj1) d∗r2(λj1) ds2(λj1).

A four 2-element set partition that is indecomposable must have at least one 2-element set with an element

in both of the two rows. There are many of these, but only 20 of them are O(T 4): using (A.2), we only need

consider 2-element sets where the sum of the corresponding frequencies is zero, i.e., sets where one element

2



corresponds to a DFT and the other element to a conjugate DFT. We denote these 20 partitions with the

following notation: the symbols ], [, \, and ? will denote membership in a particular 2-element set:[
] ] [ \

\ [ ? ?

] [
] ] [ \

? [ \ ?

] [
] ] [ \

\ ? ? [

] [
] ] [ \

? ? \ [

]
[
] [ \ ]

[ \ ? ?

] [
] [ \ ]

[ ? ? \

] [
] [ \ ]

? ? [ \

] [
] [ \ ]

? \ [ ?

]
[
] [ \ \

[ ] ? ?

] [
] [ \ ?

[ ] ? \

] [
] [ \ ?

? ] [ \

]
[
] [ \ \

? ] [ ?

] [
] [ [ \

\ ] ? ?

] [
] [ [ \

? ] \ ?

]
[
] [ \ \

[ ? ? ]

] [
] [ \ ?

[ \ ? ]

] [
] [ \ ?

? \ [ ]

]
[
] [ \ \

? ? [ ]

] [
] [ [ \

\ ? ? ]

] [
] [ [ \

? ? \ ]

]

As a result, the covariance of the quadratic forms has an asymptotic contribution from the diagonal case

(with λj1 = λj2) of

T−1
T∑
j=1

∑
`1,`2

∑
k1,k2

∑
r1,r2

∑
s1,s2

ϕ1(`1, k1;λj)ϕ2(r1, s1;λj)ϕ3(`2, k2;λj)ϕ4(r2, s2;λj)·{
f̃∗`1k1(λj) f̃

∗
r1k2(λj) f̃s1`2(λj) f̃

∗
r2s2(λj) + f̃∗`1k1(λj) f̃

∗
r1k2(λj) f̃s1r2(λj) f̃

∗
`2s2(λj)

+ f̃∗`1k1(λj) f̃
∗
r1s2(λj) f̃s1`2(λj) f̃k2r2(λj) + f̃∗`1k1(λj) f̃

∗
r1s2(λj) f̃s1r2(λj) f̃

∗
`2k2(λj)

+ f̃∗`1s1(λj) f̃k1`2(λj) f̃
∗
r1k2(λj) f̃

∗
r2s2(λj) + f̃∗`1s1(λj) f̃k1`2(λj) f̃

∗
r1s2(λj) f̃k2r2(λj)

+ f̃∗`1s1(λj) f̃k1r2(λj) f̃
∗
r1s2(λj) f̃

∗
`2k2(λj) + f̃∗`1s1(λj) f̃k1r2(λj) f̃

∗
r1k2(λj) f̃

∗
`2s2(λj)

+ f̃∗`1k2(λj) f̃k1`2(λj) f̃
∗
r1s1(λj) f̃

∗
r2s2(λj) + f̃∗`1k2(λj) f̃k1`2(λj) f̃

∗
r1s2(λj) f̃s1r2(λj)

+ f̃∗`1k2(λj) f̃k1r2(λj) f̃
∗
r1s2(λj) f̃s1`2(λj) + f̃∗`1k2(λj) f̃k1r2(λj) f̃

∗
r1s1(λj) f̃

∗
`2s2(λj)

+ f̃∗`1k2(λj) f̃k1r1(λj) f̃s1`2(λj) f̃
∗
r2s2(λj) + f̃∗`1k2(λj) f̃k1r1(λj) f̃s1r2(λj) f̃

∗
`2s2(λj)

+ f̃∗`1s2(λj) f̃k1`2(λj) f̃
∗
r1s1(λj) f̃k2r2(λj) + f̃∗`1s2(λj) f̃k1`2(λj) f̃

∗
r1k2(λj) f̃s1r2(λj)

+ f̃∗`1s2(λj) f̃k1r2(λj) f̃
∗
r1k2(λj) f̃s1`2(λj) + f̃∗`1s2(λj) f̃k1r2(λj) f̃

∗
r1s1(λj) f̃

∗
`2k2(λj)

+ f̃∗`1s2(λj) f̃k1r1(λj) f̃s1`2(λj) f̃k2r2(λj) + f̃∗`1s2(λj) f̃k1r1(λj) f̃s1r2(λj) f̃
∗
`2k2(λj)

}
This converges to

〈[1][4][32]〉0 + 〈[1][243]〉0 + 〈[1][234]〉0 + 〈[1][3][24]〉0
+ 〈[4][132]〉0 + 〈[1342]〉0 + 〈[3][142]〉0 + 〈[1432]〉0
+ 〈[2][4][31]〉0 + 〈[31][42]〉0 + 〈[1423]〉0 + 〈[2][143]〉0
+ 〈[4][123]〉0 + 〈[1243]〉0 + 〈[2][134]〉0 + 〈[1324]〉0
+ 〈[14][23]〉0 + 〈[3][2][14]〉0 + 〈[1234]〉0 + 〈[3][124]〉0
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Next, setting λj1 = −λj2 we write the table

d∗`1(λj1) dk1(λj1) d∗r1(λj1) ds1(λj1)

d`2(λj1) d∗k2(λj1) dr2(λj1) d∗s2(λj1).

Again, there are 20 relevant partitions:[
] ] [ ?

[ \ \ ?

] [
] ] [ \

[ \ ? ?

] [
] ] [ \

? ? [ \

] [
] ] [ \

? \ [ ?

]
[
] [ \ ]

? [ \ ?

] [
] [ \ ]

\ [ ? ?

] [
] [ \ ]

? ? \ [

] [
] [ \ ]

\ ? ? [

]
[
] [ \ \

] [ ? ?

] [
] [ \ ?

] [ \ ?

] [
] [ [ ?

] \ \ ?

]
[
] [ [ \

] \ ? ?

] [
] [ ? \

] \ ? [

] [
] [ ? ?

] \ \ [

]
[
] [ [ ?

\ \ ] ?

] [
] [ [ ?

\ ? ] \

] [
] [ ? ?

\ [ ] \

]
[
] [ \ ?

\ [ ] ?

] [
] [ ? ?

\ \ ] [

] [
] [ \ ?

\ ? ] [

]

Hence, the covariance of the quadratic forms has an asymptotic contribution from the diagonal case (with

−λj1 = λj2) of

T−1
T∑
j=1

∑
`1,`2

∑
k1,k2

∑
r1,r2

∑
s1,s2

ϕ1(`1, k1;λj)ϕ2(r1, s1;λj)ϕ3(`2, k2;−λj)ϕ4(r2, s2;−λj)·{
f̃∗`1k1(λj) f̃

∗
r1`2(λj) f̃

∗
k2r2(λj) f̃s1s2(λj) + f̃∗`1k1(λj) f̃

∗
r1`2(λj) f̃s1k2(λj) f̃r2s2(λj)

+ f̃∗`1k1(λj) f̃
∗
r1r2(λj) f̃s1s2(λj) f̃`2k2(λj) + f̃∗`1k1(λj) f̃

∗
r1r2(λj) f̃s1k2(λj) f̃`2s2(λj)

+ f̃∗`1s1(λj) f̃k1k2(λj) f̃
∗
r1r2(λj) f̃`2s2(λj) + f̃∗`1s1(λj) f̃k1k2(λj) f̃

∗
r1`2(λj) f̃r2s2(λj)

+ f̃∗`1s1(λj) f̃k1s2(λj) f̃
∗
r1r2(λj) f̃`2k2(λj) + f̃∗`1s1(λj) f̃k1s2(λj) f̃

∗
r1`2(λj) f̃

∗
k2r2(λj)

+ f̃∗`1`2(λj) f̃k1k2(λj) f̃
∗
r1s1(λj) f̃r2s2(λj) + f̃∗`1`2(λj) f̃k1k2(λj) f̃

∗
r1r2(λj) f̃s1s2(λj)

+ f̃∗`1`2(λj) f̃k1r1(λj) f̃
∗
k2r2(λj) f̃s1s2(λj) + f̃∗`1`2(λj) f̃k1r1(λj) f̃s1k2(λj) f̃r2s2(λj)

+ f̃∗`1`2(λj) f̃k1s2(λj) f̃s1k2(λj) f̃
∗
r1r2(λj) + f̃∗`1`2(λj) f̃k1s2(λj) f̃

∗
k2r2(λj) f̃

∗
r1s1(λj)

+ f̃∗`1r2(λj) f̃k1r1(λj) f̃`2k2(λj) f̃s1s2(λj) + f̃∗`1r2(λj) f̃k1r1(λj) f̃`2s2(λj) f̃s1k2(λj)

+ f̃∗`1r2(λj) f̃k1k2(λj) f̃`2s2(λj) f̃
∗
r1s1(λj) + f̃∗`1r2(λj) f̃k1k2(λj) f̃

∗
r1`2(λj) f̃s1s2(λj)

+ f̃∗`1r2(λj) f̃k1s2(λj) f̃`2k2(λj) f̃
∗
r1s1(λj) + f̃∗`1r2(λj) f̃k1s2(λj) f̃

∗
r1`2(λj) f̃s1k2(λj)

}
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Noting that the argument of ϕ3 and ϕ4 is −λj , and using the underscore notation, the above converges to

〈[1][243]〉0 + 〈[4][1][23]〉0 + 〈[1][3][24]〉0 + 〈[1][234]〉0
+ 〈[1342]〉0 + 〈[132][4]〉0 + 〈[142][3]〉0 + 〈[1432]〉0
+ 〈[4][2][13]〉0 + 〈[13][24]〉0 + 〈[1243]〉0 + 〈[123][4]〉0
+ 〈[1423]〉0 + 〈[143][2]〉0 + 〈[124][3]〉0 + 〈[1234]〉0
+ 〈[134]〉0 + 〈[1324]〉0 + 〈[14][2][3]〉0 + 〈[14][23]〉0.

This accounts for the entire contribution from the diagonal case.

Off-diagonal Case: Now we suppose that λj1 6= λj2 , and hence the double sum does not collapse to a

single summation. In this case, of the partitions with four 2-element sets they are all either decomposable

or only contribute terms of order O(T 2). This is because such a partition that is indecomposable must have

two sets with an element in each row – see examples in the prior case. (The definition of indecomposable

requires one set to have an element in each row, but as this would only leave three free slots in each row,

we must have at least one other set with this property.) But because λj1 6= λj2 , (A.2) ensures that the

contribution to the cumulant from such sets is O(1), indicating that the largest possible order from such

a partition is O(T 2). Such terms can be ignored, because there exist indecomposable partitions yielding

O(T 3) terms in the cumulants: these partitions involve one 4-element set and two 2-element sets. Moreover,

no other partitions need be considered: the only other partitions (that don’t involve 1-element sets) with

three sets would have two 3-element sets and one 2-element set, but the cumulant of a 3-element set will

never be O(T ), according to equation (4.3.15) of Brillinger (2001). This expression states that the m-fold

cumulant of m DFTs can be O(T ) so long as the sum of the frequency arguments is zero; there is no way

this can happen when the frequencies take the form λj1 ,−λj1 , λj2 ,−λj2 . The expression of equation (4.3.15)

of Brillinger (2001) in the case m = 4 is

cum(d`(λj1), dk(λj2), dr(λj3), ds(λj4)) = O(1) + ∆(T )

(
4∑
i=1

λji

)
f̃`krs(λj1 , λj2 , λj3). (A.3)

Using the table

d∗`1(λj1) dk1(λj1) d∗r1(λj1) ds1(λj1)

d∗`2(λj2) dk2(λj2) d∗r2(λj2) ds2(λj2),

we find that there are 16 indecomposable partitions consisting of one 4-element and two 2-element sets,

such that the contribution is O(T 3). The four elements of the 4-element set must be allocated with two

elements in each row, because if three belong to a single row it is impossible for the sum of all frequencies

to equal zero, as required in (A.3). (Also, if all four elements belonged to a single row, the partition would

be decomposable.) Also, once the 4-element set is allocated with two members in each row, each of the

remaining 2-element sets must be contained in a single row (otherwise the sum of frequencies cannot equal

5



zero, and the contribution will be less than O(T 3)). There are 16 such partitions, which we list below:[
] ] [ [

] ] \ \

] [
] ] [ [

] \ \ ]

] [
] ] [ [

\ ] ] \

] [
] ] [ [

\ \ ] ]

]
[
] [ [ ]

] ] \ \

] [
] [ [ ]

] \ \ ]

] [
] [ [ ]

\ ] ] \

] [
] [ [ ]

\ \ ] ]

]
[
[ ] ] [

] ] \ \

] [
[ ] ] [

] \ \ ]

] [
[ ] ] [

\ ] ] \

] [
[ ] ] [

\ \ ] ]

]
[
[ [ ] ]

] ] \ \

] [
[ [ ] ]

] \ \ ]

] [
[ [ ] ]

\ ] ] \

] [
[ [ ] ]

\ \ ] ]

]
The contribution to the covariance is therefore

T−2
T∑

j1 6=j2=1

∑
`1,`2

∑
k1,k2

∑
r1,r2

∑
s1,s2

ϕ1(`1, k1;λj1)ϕ2(r1, s1;λj1)ϕ3(`2, k2;λj2)ϕ4(r2, s2;λj2)·

{
f̃`1k1`2k2(−λj1 , λj1 ,−λj2) f̃∗r1s1(λj1) f̃∗r2s2(λj2) + f̃`1k1`2s2(−λj1 , λj1 ,−λj2) f̃∗r1s1(λj1) f̃∗k2r2(λj2)

+ f̃`1k1k2r2(−λj1 , λj1 , λj2) f̃∗r1s1(λj1) f̃∗`2s2(λj2) + f̃`1k1r2s2(−λj1 , λj1 ,−λj2) f̃∗r1s1(λj1) f̃∗`2k2(λj2)

+ f̃`1s1`2k2(−λj1 , λj1 ,−λj2) f̃k1r1(λj1) f̃∗r2s2(λj2) + f̃`1s1`2s2(−λj1 , λj1 ,−λj2) f̃k1r1(λj1) f̃k2r2(λj2)

+ f̃`1s1k2r2(−λj1 , λj1 , λj2) f̃k1r1(λj1) f̃∗`2s2(λj2) + f̃`1s1r2s2(−λj1 , λj1 ,−λj2) f̃k1r1(λj1) f̃∗`2k2(λj2)

+ f̃k1r1`2k2(λj1 ,−λj1 ,−λj2) f̃∗`1s1(λj1) f̃∗r2s2(λj2) + f̃k1r1`2s2(λj1 ,−λj1 ,−λj2) f̃∗`1s1(λj1) f̃k2r2(λj2)

+ f̃k1r1k2r2(λj1 ,−λj1 , λj2) f̃∗`1s1(λj1) f̃∗`2s2(λj2) + f̃k1r1r2s2(λj1 ,−λj1 ,−λj2) f̃∗`1s1(λj1) f̃∗`2k2(λj2)

+ f̃r1s1`2k2(−λj1 , λj1 ,−λj2) f̃∗`1k1(λj1) f̃∗r2s2(λj2) + f̃r1s1`2s2(−λj1 , λj1 ,−λj2) f̃∗`1k1(λj1) f̃k2r2(λj2)

+ f̃r1s1k2r2(−λj1 , λj1 , λj2) f̃∗`1k1(λj1) f̃∗`2s2(λj2) + f̃r1s1r2s2(−λj1 , λj1 ,−λj2) f̃∗`1k1(λj1) f̃∗`2k2(λj2)
}
.

The tri-spectral density has the properties that f̃`ksr(λ,−λ, ω) = f̃`krs(λ,−λ,−ω), f̃`ksr(λ,−λ, ω) = f̃k`sr(−λ, λ, ω),

and f̃`ksr(λ,−λ, ω) = f̃sr`k(ω,−ω, λ). These are verified as follows:

f̃`ksr(λ,−λ, ω) =
∑

h1,h2,h3

γ`ksr(h1, h2, h3) e−iλ(h1−h2)−iωh3

=
∑

h1,h2,h3

γ`krs(h1 − h3, h2 − h3,−h3) e−iλ(h1−h2)−iωh3

=
∑

k1,k2,k3

γ`krs(k1, k2, k3) e−iλ(k1−k2)+iωk3 = f̃`krs(λ,−λ,−ω)

f̃`ksr(λ,−λ, ω) =
∑

h1,h2,h3

γk`sr(h2, h1, h3) e−iλ(h1−h2)−iωh3

=
∑

k1,k2,k3

γk`sr(k1, k2, k3) eiλ(k1−k2)−iωk3 = f̃k`sr(−λ, λ, ω)

f̃`ksr(λ,−λ, ω) =
∑

h1,h2,h3

γ`ksr(h1, h2, h3) e−iλ(h1−h2)−iωh3

=
∑

h1,h2,h3

γsr`k(h3 − h2,−h2, h1 − h2) e−iλ(h1−h2)−iωh3

=
∑

k1,k2,k3

γsr`k(k1, k2, k3) eiλk3−iω(k1−k2) = f̃sr`k(ω,−ω, λ).
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In the first calculation, this uses

γ`ksr(h1, h2, h3) = cum{xh1,`, xh2,k, xh3,s, x0,r}

= cum{xh1−h3,`, xh2−h3,k, x−h3,r, x0,s} = γ`krs(h1 − h3, h2 − h3,−h3)

and the change of variable k1 = h1 − h3, k2 = h2 − h3, and k3 = −h3. The second calculation uses the fact

that cumulant arguments can be permuted, and the change of variable k1 = h2, k2 = h1, and k3 = h3. The

third calculation uses

γ`ksr(h1, h2, h3) = cum{xh1,`, xh2,k, xh3,s, x0,r}

= cum{xh3−h2,s, x−h2,r, xh1−h2,`, x0,k} = γsr`k(h3 − h2,−h2, h1 − h2)

and the change of variable k1 = h3−h2, k2 = −h2, and k3 = h1−h2. We can use these properties to express

every occurence of the tri-spectral density in terms of the frequency arguments (λj1 ,−λj1 , λj2) by rearranging

the subscript indices. Then it is possible to greatly simplify the summations, letting T → ∞. (The double

sum over frequencies will tend to a double integral, not-withstanding the omission of the diagonal portion,

which has measure zero.) Then the limiting contribution to the covariance (where curly braces denote a

matrix argument to the double bracket) simplifies to the double integral (weighted by (2π)
−2

) over λ and ω

of

g1234(λ, ω) = [[ϕ1(λ) f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ2(λ) f̃(λ)] [ϕ4(ω) f̃(ω)] (A.4)

+ [[ϕ1(λ) f̃(λ,−λ, ω) {ϕ3(ω) f̃(ω)ϕ4(ω)}]] [ϕ2(λ) f̃(λ)]

+ [[ϕ1(λ) f̃(λ,−λ, ω) {ϕ4(ω) f̃(ω)ϕ3(ω)}]] [ϕ2(λ) f̃(λ)]

+ [[ϕ1(λ) f̃(λ,−λ, ω)ϕ4(ω)]] [ϕ2(λ) f̃(λ)] [ϕ3(ω) f̃(ω)]

+ [[{ϕ1(λ) f̃(λ)ϕ2(λ)} f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ4(ω) f̃(ω)]

+ [[{ϕ1(λ) f̃(λ)ϕ2(λ)} f̃(λ,−λ, ω) {ϕ3(ω) f̃(ω)ϕ4(ω)}]]

+ [[{ϕ1(λ) f̃(λ)ϕ2(λ)} f̃(λ,−λ, ω) {ϕ4(ω) f̃(ω)ϕ3(ω)}]]

+ [[{ϕ1(λ) f̃(λ)ϕ2(λ)} f̃(λ,−λ, ω)ϕ4(ω)]] [ϕ3(ω) f̃(ω)]

+ [[{ϕ2(λ) f̃(λ)ϕ1(λ)} f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ4(ω) f̃(ω)]

+ [[{ϕ2(λ) f̃(λ)ϕ1(λ)} f̃(λ,−λ, ω) {ϕ3(ω) f̃(ω)ϕ4(ω)}]]

+ [[{ϕ2(λ) f̃(λ)ϕ1(λ)} f̃(λ,−λ, ω) {ϕ4(ω) f̃(ω)ϕ3(ω)}]]

+ [[{ϕ2(λ) f̃(λ)ϕ1(λ)} f̃(λ,−λ, ω)ϕ4(ω)]] [ϕ3(ω) f̃(ω)]

+ [[ϕ2(λ) f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ1(λ) f̃(λ)] [ϕ4(ω) f̃(ω)]

+ [[ϕ2(λ) f̃(λ,−λ, ω) {ϕ3(ω) f̃(ω)ϕ4(ω)}]] [ϕ1(λ) f̃(λ)]

+ [[ϕ2(λ) f̃(λ,−λ, ω) {ϕ4(ω) f̃(ω)ϕ3(ω)}]] [ϕ1(λ) f̃(λ)]

+ [[ϕ2(λ) f̃(λ,−λ, ω)ϕ4(ω)]] [ϕ1(λ) f̃(λ)] [ϕ3(ω) f̃(ω)].

Similar calculations for the linear and mixed quadratic-linear cases yield terms involving the tri-spectrum as
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well, and

g123(λ, ω) = [[ϕ1(λ) f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ2(λ) f̃(λ)] (A.5)

+ [[{ϕ1(λ) f̃(λ)ϕ2(λ)} f̃(λ,−λ, ω)ϕ3(ω)]]

+ [[{ϕ2(λ) f̃(λ)ϕ1(λ)} f̃(λ,−λ, ω)ϕ3(ω)]]

+ [[ϕ2(λ) f̃(λ,−λ, ω)ϕ3(ω)]] [ϕ1(λ) f̃(λ)].

Proof of Theorem 1. We apply the method of cumulants to the functionals. The key result that is needed

is that higher-order cumulants of the linear and quadratic functionals tend to zero. We demonstrate this

through quadratic functionals only, the other cases being similar. Suppose we have an m-fold cumulant of

normalized quadratic functionals, each of which takes the form
√
T Q̂ϕ,ψ(I, I). Generalizing the arguments

of the proof of Proposition 2, we obtain a factor of order of T−2m from the 2m periodograms, T−m from

the discretization of the m integrals, and Tm/2 from the normalizations, for an overall T 3m−m/2 in the

denominator. For the cumulant, we must now consider a table with m rows and 4 columns. We claim that

the largest possible order of the sums (over all frequencies) of such cumulants is O(T 2m+1). In the diagonal

case, where the m sums really collapse to a single sum – in the manner discussed in the proof of Proposition

2 – one obtains the highest order possible for the cumulant by taking an indecomposable partition with 2m

sets of size 2. By (A.2), this would yield O(T 2m), which together with the single summation gives an overall

O(T 2m+1). However, of the m summations we might allow some pairs to collapse to a single summation,

and others may not.

Suppose we consider a pair of summations to be distinct, but all the others collapse to a single summation.

Now, the partition involving 2m sets of size 2 will be of lower order, as any 2-element sets straddling distinct

rows corresponding to the two frequencies of the paired summation will no longer satisfy λj1 +λj2 = 0; there

is at least one such 2-element set (because the partition is indecomposable), so the cumulant order drops to

T 2m−1. Moreover, by combining two 2-element sets into a 4-element set, we can obtain a factor of T if (A.3)

is satisfied, although there will be at most 2m− 1 sets in such a partition – ultimately yielding O(T 2m−1).

Because the total number of summations is two, we would obtain an overall O(T 2m+1) for this case.

Proceeding by the same argument, distinct summations over frequencies add an overall order of T but also

limit the types of partitions that will yield cumulant terms of order T ; we can always merge two 2-element

sets into a 4-element set when determining the relevant partitions, in moving from a collapsed summation

to a double summation – but this will decrease the size of the partition by one. This is compensated by

having an additional summation – so the largest possible order is T 2m+1. Pairing this with the denominator

T 3m−m/2, the m-fold cumulant is O(T 1−m/2), which tends to zero when m > 2.

Clearly, if we are talking about the m-fold cumulants of the same quadratic functional, this establishes

that it is asymptotically normal. But because the discussion pertains to m-fold cumulants of any collection

of quadratic functionals, joint asymptotic normality also follows from the Cramer-Wold device. Extending

these arguments to joint relations with linear functionals completes the proof.

Proof of Proposition 3. The convergence in probability follows from Propositions 1 and 2 (cf. Remark 1),

applied to |I − fθ|2:

|I − fθ|2 = 〈[I2]〉0 − 2 〈[I fθ]〉0 + |fθ|2
P−→ 〈[f̃2]〉0 + 〈[f̃ ]

2
〉0 − 2 〈[f̃ fθ]〉0 + |fθ|2.
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Theorem 2. Write F̂ (θ) for FD(fθ, I), and F̃ (θ) for FD(fθ, f̃). First,

0 = ∇F̂ (θ̂) = ∇F̂ (θ̃) +∇∇′F̂ (θ̃) (θ̂ − θ̃) +RT

by a Taylor series expansion, where RT depends on θ̂− θ̃ quadratically. We proceed to compute the gradient

and Hessian of F̂ (θ):

∂θjF̂ (θ) = −2 [〈∂θjfθ (I − fθ)〉0]

∂θj∂θkF̂ (θ) = −2 [〈∂θj∂θkfθ (I − fθ)〉0] + 2 [〈∂θjfθ ∂θkfθ〉0],

and the first term has asymptotic mean

−2 [〈∂θjfθ (f̃ − fθ)〉0].

This we recognize as the derivative of F̃ (θ), which is zero at θ = θ̃. Therefore

∇F̂ (θ̃) = −2 [〈∇fθ (I − f̃)〉0],

where the trace operator does not act on the gradient. An application of Theorem 1, in conjunction with

our other assumptions yields √
T ∇F̂ (θ̃)

L
=⇒ N (0, 4Vθ̃). (A.6)

Next, the Hessian of F̂ (θ) converges in probability to 2Mθ, because the first term is actually OP (T−1/2)

(by Lemma 3.1.1 of Taniguchi and Kakizawa (2000)). If this matrix is invertible at θ̃, we conclude that

θ̂ − θ̃ = OP (T−1/2) and further that

θ̂ − θ̃ = .5M−1
θ̃
〈[∇fθ (I − f̃)]〉0 + oP (T−1/2).

So using (A.6), the theorem is proved.

Proof of Proposition 4. We can write the criterion function as

|I − fθ|2 =

K∑
i,k=1

Gik[Θi Θ′k]− 2

K∑
i=1

[Θi 〈Igi〉0] + 〈[I2]〉0

= [Θ (G⊗ 1m) Θ′]− 2[Θ 〈g ⊗ I〉0] + 〈[I2]〉0.

Computing the gradient, we now see that the stated formula (2) for the MOM estimator is a critical point,

and a minimizer, of this criterion. The same proof, with f̃ in place of I, shows that the formula for the PTV

is obtained by replacing f̃ for I in (2).

Lemma 1. For a possibly non-square matrix A,

√
T 〈A (vec(I − fθ̃))〉0

L
=⇒ N

(
0, 2 〈A (fθ̃ ⊗ f

′
θ̃
)A′〉

0

)
.
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Proof of Lemma 1. To prove the Lemma, for each ` let α` be the matrix such that vec(α′`) = {e`A}′. Then

for any f

A vec(f) =


e′1A vec(f)

e′2A vec(f)
...

 =


vec(α′1)

′
vec(f)

vec(α′2)
′
vec(f)

...

 =


[α1f ]

[α2f ]
...

 .

Now by Lemma 3.1.1 of Taniguchi and Kakizawa (2000), we have the joint CLT

√
T 〈A (vec(I − fθ̃))〉0 =

√
T


[
α1|I − fθ̃|

2
][

α2|I − fθ̃|
2
]

...


L

=⇒ N
(
0, 2{〈[αjfθ̃α

′
kfθ̃]〉0}j,k

)
.

It can be shown using algebraic identities that

[αjfθ̃α
′
kfθ̃] = vec(α′j)

′
vec(fθ̃α

′
kfθ̃) = e′jAfθ̃ ⊗ f

′
θ̃

vec(α′k) = e′jAfθ̃ ⊗ f
′
θ̃
A′ek,

and hence that 〈[αjfθ̃α
′
kfθ̃]〉0 is the jkth entry of A 〈fθ̃ ⊗ f

′
θ̃
〉
0
A′. The result follows. Note that the transpose

on the second appearance of fθ̃ guarantees that the limiting covariance matrix is symmetric.

Proof of Theorem 3. The result follows from Lemma 1 upon writing

θ = vec Θ =


〈(g′G−1e1) vec(f)〉0
〈(g′G−1e2) vec(f)〉0

...

 = [〈A vec(f)〉0} ,

where A = G−1g ⊗ 1m2 .

Proof of Proposition 5. We claim that

E|J |2 = O(T−1) + |g̃|2 + 〈[g̃]
2〉0, (A.7)

by Proposition 1, and also

|J |2 = oP (1) + |g̃|2 + 〈[g̃]
2〉0

follows from both Propositions 1 and 2. Next, we determine the mean of [〈J〉20], using the techniques of the

proof of Proposition 1:

E[〈J〉20] = E[〈T−1d d∗〉20] = T−4
∑
j1,j2

∑
`,r

E[d∗` (λj1) d`(λj2) d∗r(λj2) dr(λj1)],

and the outer summations are broken into terms where j1 = j2, j1 = −j2, or j1 6= ±j2. Utilizing the

arguments of Proposition 2, the first two such terms contribute O(T−1), and only the off-diagonal term is

dominant, yielding

E[〈J〉20] = O(T−1) + T−4
∑

j1 6=±j2

∑
`,r

(O(1) + T f∗`r(λj1)) (O(1) + T f`r(λj2)) = O(T−1) + [〈g̃〉20].

Furthermore, vec〈J〉0
P−→ vec〈g̃〉0 by Lemma 3.1.1 of Taniguchi and Kakizawa (2000), and hence [〈J〉20]

P−→
[〈g̃〉20], using

[〈J〉20] = vec〈J ′〉0
′
vec〈J〉0.
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Next, we determine the second moment of [〈J〉0]:

E[〈J〉0]
2

= E〈T−1d∗ d〉20 = T−4
∑
j1,j2

∑
`,r

E[d∗` (λj1) d`(λj1) d∗r(λj2) dr(λj2)],

and the outer summations are broken into terms where j1 = j2, j1 = −j2, or j1 6= ±j2. Again, the first two

such terms contribute O(T−1), and only the off-diagonal term is dominant, yielding

E[〈J〉0]
2

= O(T−1) + T−4
∑

j1 6=±j2

∑
`,r

(O(1) + T f∗``(λj1)) (O(1) + T f∗rr(λj2)) = O(T−1) + [〈g̃〉0]
2
.

Moreover, [〈J〉0] = Lid(J), so its convergence in probability to [〈g̃〉0] follows from Propositions 1 and 2.

Assembling these results, we find that

Êval(J) = |J |2 − [〈J〉20]− [〈J〉0]
2 P−→ |g̃|2 + 〈[g̃]

2〉0 − [〈g̃〉0
2
]− [〈g̃〉0]

2
,

which equals Eval(g̃). Also,

E Êval(J) = E|J |2 − E[〈J〉20]− E[〈J〉0]
2

= O(T−1) + Eval(g̃).

Proof of Theorem 4. We begin by expanding Êval(J)− Eval(g̃) into four terms:

Êval(J)− Eval(g̃) = |J |2 − |g̃|2 − 〈[g̃]
2〉0

− [〈J − g̃〉0 〈J + g̃〉0]− 〈[J − g̃]〉0 〈[J + g̃]〉0

=
(
|J |2 − E|J |2

)
+
(
E|J |2 − |g̃|2 − 〈[g̃]

2〉0
)

− vec〈J ′ − g̃′〉0
′
vec〈J + g̃〉0 − 〈[J − g̃]〉0 〈[J + g̃]〉0.

The second term is O(T−1) by (A.7). For the third term, we know that vec〈J + g̃〉0 = vec〈2g̃〉0+OP (T−1/2),

whereas

〈J − g̃〉0 = 〈J − EJ〉0 + 〈EJ − g̃〉0 = OP (T−1/2) +O(T−1).

As a result, the third term equals

vec〈J ′ − EJ ′〉0
′
vec〈2g̃〉0 +OP (T−1) +O(T−1) = 2 [〈g̃〉0 〈J − EJ〉0] +OP (T−1) +O(T−1).

Similarly, for the fourth term we have 〈[J + g̃]〉0 = 〈[2g̃]〉0 +OP (T−1/2), so that overall we obtain

Êval(J)− Eval(g̃) =
(
|J |2 − E|J |2

)
− 2[〈g̃〉0 〈J − EJ〉0]− 2 [〈g̃〉0] · [〈J − EJ〉0] +O(T−1) +OP (T−1).

In the notation of Theorem 1, we are studying a linear combination of two linear and one quadratic functional,

each centered by its expectation. Note that by passing 〈g̃〉0 into the inner integral, we obtain

[〈g̃〉0 〈J〉0] = L〈g̃〉0(J).
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Therefore

√
T
(

Êval(J)− Eval(g̃)
)

=
√
T
(
−2 (L〈g̃〉0(J)− EL〈g̃〉0(J))− 2[〈g̃〉0] (Lid(J)− ELid(J))

+(Qid,id(J, J)− EQid,id(J, J))
)

+ oP (1)

= {−2,−2[〈g̃〉0], 1} ·
√
T


L〈g̃〉0(J)− EL〈g̃〉0(J)

Lid(J)− ELid(J)

Qid,id(J, J)− EQid,id(J, J)

+ oP (1).

Applying Theorem 1, the trivariate random vector is asymptotically normal with variance matrix W as

given in the statement of the theorem, and with individual entries computed according to Proposition 2.

The stated result now follows.

Proof of Corollary 1. Taking g̃ ≡ Σ = 〈g̃〉0 in the variance expressions of Theorem 4 yields

V〈g̃〉0|〈g̃〉0 = 2 [Σ4] + (2π)
−2
∫ π

−π

∫ π

−π
[[Σ g̃(λ,−λ, ω) Σ]] dλ dω,

Vid|〈g̃〉0
= 2 [Σ3] + (2π)

−2
∫ π

−π

∫ π

−π
[[g̃(λ,−λ, ω) Σ]] dλ dω,

Vid|id = 2 [Σ2] + (2π)
−2
∫ π

−π

∫ π

−π
[[g̃(λ,−λ, ω)]] dλ dω,

V〈g̃〉0|id,id
= 4 [Σ] [Σ3] + 4 [Σ4] + (2π)

−2
∫ π

−π

∫ π

−π
g123,〈g̃〉0(λ, ω) dλ dω,

g123,〈g̃〉0(λ, ω) = 2 [[g̃(λ,−λ, ω) Σ]] [Σ] + 2 [[Σ g̃(λ,−λ, ω) Σ]],

Vid|id,id = 4 [Σ] [Σ2] + 4 [Σ3] + (2π)
−2
∫ π

−π

∫ π

−π
g
123,id(λ, ω) dλ dω,

g
123,id(λ, ω) = 2 [[g̃(λ,−λ, ω)]] [Σ] + 2 [[Σ g̃(λ,−λ, ω)]],

Vid,id|id,id = 8 [Σ]
2

[Σ2] + 16 [Σ] [Σ3] + 12 [Σ4] + 4 [Σ2]
2

+ (2π)
−2
∫ π

−π

∫ π

−π
g1234(λ, ω) dλ dω,

g1234(λ, ω) = 4 [Σ]
2

[[g̃(λ,−λ, ω)]] + 4 [Σ] [[g̃(λ,−λ, ω) Σ]]

+ 4 [[Σ g̃(λ,−λ, ω)]] [Σ] + 4 [[Σ g̃(λ,−λ, ω) Σ]].

Now with v′ = {−2,−2 [Σ], 1}, we find the limiting variance is (after some cancellations)

4V〈g̃〉0|〈g̃〉0 + 8 [Σ]Vid|〈g̃〉0
+ 4 [Σ]

2
Vid|id − 4V〈g̃〉0|id,id

− 4 [Σ]Vid|id,id + Vid,id|id,id

= 4 [Σ4] + 4[Σ2]
2

+ (2π)
−2
∫ π

−π

∫ π

−π
h1234(λ, ω) dλ dω,

h1234(λ, ω) = 4 [Σ] [[g̃(λ,−λ, ω) Σ]]− 4 [Σ] [[Σ g̃(λ,−λ, ω)]].

Next, we claim that the double integral of [[Af(λ,−λ, ω)B]] is equal to that of [[B f(ω,−ω, λ)A]], for any

tri-spectrum f and matrices A and B. This is proved from the definition of the double bracket, and utilizing

the third property of the tri-spectrum derived in the proof of Proposition 2, namely that f`ksr(λ,−λ, ω) =

fsr`k(ω,−ω, λ); two changes of variable in the sums allow us to swap pairs of indices, and thereby interchange

the positions of A and B. As a result, the integral of h1234 is zero, and the result is proved.

12



References

[1] Brillinger, D.R. (2001) Time Series: Data Analysis and Theory. Philadelphia: Siam.

[2] Taniguchi, M., and Kakizawa, Y. (2000) Asymptotic Theory of Statistical Inference for Time Series.

Springer-Verlag, New York.

13



Appendix B Supplementary Tables

A.1 Bivariate Inflation

We computed the Gaussian divergence (−2 times the log Gaussian likelihood) for MOM, unrestricted MLE,

univariate MLE (i.e., the models restricted such that all cross-correlations are zero, resulting in univariate

structural models), and common trend MLE (i.e., the trend covariance matrix is enforced to have rank one),

resulting in −1680.292, −1708.125, −1665.786, and −1708.125 respectively. Since lower values are better,

we see that the MOM fit appears to be better than the univariate MLE fit, but substantially worse than

unrestricted MLE. The common trend MLE gives approximately the same divergence as the unrestricted

case, because the trend correlation is so close to unity when it is freely estimated.

We can also directly compare the resulting covariance matrix estimates, expressed here in units of millions.

A substantial discrepancy between the MOM and MLE results is observed, although both fits to the data

ultimately provide an adequate whitening transformation.

MOM unrestricted MLE constrained MLE

Core Total Core Total Core Total

Core 15.660 34.396 4.588 4.977 4.589 4.979

Total 34.396 122.889 4.977 5.400 4.979 5.402

Table B.1: Estimates of Σµ, the trend covariance matrix (units of millions) for bivariate inflation data, based
on MOM, unrestricted MLE, and common trends MLE.

MOM unrestricted MLE constrained MLE

Core Total Core Total Core Total

Core 10.781 5.256 18.916 27.757 18.914 27.749

Total 5.256 81.805 27.757 174.140 27.749 174.124

Table B.2: Estimates of Σι, the irregular covariance matrix (units of millions) for bivariate inflation data,
based on MOM, unrestricted MLE, and common trends MLE.

A.2 Four-variate Housing Starts

For the reduced span of the last nine years, we fitted both MOM and MLE (unrestricted), with divergences

959.806 and 913.573 respectively. From the standpoint of likelihood, the MOM estimates are inferior to

MLE, although both adequately whiten the data. As for the covariance estimates, there is a fairly close

agreement between the MLE and MOM based on the nine-year span; the MOM covariances based on the

full span are also quite close.
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9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.0954 0.0471 0.0170 0.0326 0.0875 0.0397 0.0124 0.0280 0.0941 0.0380 0.0111 0.0214

West 0.0471 0.0274 0.0101 0.0196 0.0397 0.0209 0.0064 0.0138 0.0380 0.0240 0.0054 0.0110

NE 0.0170 0.0101 0.0049 0.0081 0.0124 0.0064 0.0027 0.0047 0.0111 0.0054 0.0027 0.0039

MW 0.0326 0.0196 0.0081 0.0170 0.0280 0.0138 0.0047 0.0096 0.0214 0.0110 0.0039 0.0088

Table B.3: Estimates of Σµ, the trend covariance matrix for four-variate Starts data, based on MLE (9-year
span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.0797 0.0698 0.0177 0.0399 0.0651 0.0744 0.0159 0.0511 0.1072 0.0868 0.0276 0.0644

West 0.0698 0.0747 0.0201 0.0457 0.0744 0.0897 0.0163 0.0568 0.0868 0.0801 0.0201 0.0485

NE 0.0177 0.0201 0.0080 0.0150 0.0159 0.0163 0.0046 0.0131 0.0276 0.0201 0.0089 0.0172

MW 0.0399 0.0457 0.0150 0.0385 0.0511 0.0568 0.0131 0.0406 0.0644 0.0485 0.0172 0.0401

Table B.4: Estimates of the first atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.0176 0.0017 0.0035 0.0149 0.0154 -0.0000 0.0111 0.0280 0.0233 0.0142 0.0064 0.0285

West 0.0017 0.0094 0.0048 0.0072 -0.0000 0.0233 -0.0062 -0.0013 0.0142 0.0119 -0.0006 0.0153

NE 0.0035 0.0048 0.0117 0.0158 0.0111 -0.0062 0.0122 0.0204 0.0064 -0.0006 0.0079 0.0107

MW 0.0149 0.0072 0.0158 0.0449 0.0280 -0.0013 0.0204 0.0508 0.0285 0.0153 0.0107 0.0362

Table B.5: Estimates of the second atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.0471 0.0435 -0.0187 0.0115 0.0512 0.0649 -0.0007 0.0585 0.0747 -0.0133 0.0225 0.0410

West 0.0435 0.0489 -0.0204 0.0138 0.0649 0.1116 -0.0155 0.0585 -0.0133 0.0317 -0.0042 -0.0078

NE -0.0187 -0.0204 0.0155 -0.0004 -0.0007 -0.0155 0.0611 0.0205 0.0225 -0.0042 0.0200 0.0113

MW 0.0115 0.0138 -0.0004 0.0143 0.0585 0.0585 0.0205 0.0786 0.0410 -0.0078 0.0113 0.0226

Table B.6: Estimates of the third atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.1256 0.0330 -0.0228 0.0188 0.0151 0.0074 -0.0142 0.0143 0.0418 -0.0065 -0.0018 -0.0074

West 0.0330 0.0349 -0.0088 0.0106 0.0074 0.0679 -0.0137 0.0236 -0.0065 0.0020 -0.0004 0.0015

NE -0.0228 -0.0088 0.0078 -0.0045 -0.0142 -0.0137 0.0141 -0.0152 -0.0018 -0.0004 0.0005 0.0001

MW 0.0188 0.0106 -0.0045 0.0088 0.0143 0.0236 -0.0152 0.0178 -0.0074 0.0015 0.0001 0.0014

Table B.7: Estimates of the fourth atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

15



9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.0107 0.0151 -0.0001 -0.0024 0.0139 0.0246 0.0014 0.0086 0.0090 0.0107 -0.0022 0.0038

West 0.0151 0.0304 0.0001 0.0079 0.0246 0.0440 0.0024 0.0136 0.0107 0.0127 -0.0026 0.0043

NE -0.0001 0.0001 0.0009 0.0005 0.0014 0.0024 0.0002 0.0022 -0.0022 -0.0026 0.0008 -0.0026

MW -0.0024 0.0079 0.0005 0.0169 0.0086 0.0136 0.0022 0.0256 0.0038 0.0043 -0.0026 0.0106

Table B.8: Estimates of the fifth atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 0.1179 -0.0117 0.0138 0.0186 0.1109 0.0034 0.0094 0.0434 0.0298 -0.0055 0.0027 0.0134

West -0.0117 0.0277 -0.0023 0.0030 0.0034 0.0034 -0.0012 0.0002 -0.0055 0.0022 0.0009 -0.0028

NE 0.0138 -0.0023 0.0077 0.0040 0.0094 -0.0012 0.0015 0.0042 0.0027 0.0009 0.0020 0.0008

MW 0.0186 0.0030 0.0040 0.0311 0.0434 0.0002 0.0042 0.0174 0.0134 -0.0028 0.0008 0.0061

Table B.9: Estimates of the sixth atomic seasonal covariance matrix for four-variate Starts data, based on
MLE (9-year span), MOM (9-year span), and MOM (49-year span).

9-year MLE 9-year MOM 49-year MOM

South West NE MW South West NE MW South West NE MW

South 6.5252 0.8111 0.1909 -0.5699 10.4195 -0.2665 0.2241 -3.5556 7.8623 0.0752 0.1554 -0.5432

West 0.8111 1.2563 0.2305 0.4889 -0.2665 0.6848 0.2621 0.4431 0.0752 2.7924 0.0972 0.2862

NE 0.1909 0.2305 0.3038 0.1529 0.2241 0.2621 0.5119 -0.0478 0.1554 0.0972 0.9486 0.1649

MW -0.5699 0.4889 0.1529 1.0762 -3.5556 0.4431 -0.0478 2.3841 -0.5432 0.2862 0.1649 1.8240

Table B.10: Estimates of Σι, the irregular covariance matrix for four-variate Starts data, based on MLE
(9-year span), MOM (9-year span), and MOM (49-year span).
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