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1.  Introductory Comments 
The national statistical institutes (NSIs), including the U.S. Census Bureau, developed the original 
methods for processing survey data.  The NSIs developed systematic, efficient generalized 
methods/software based on the Fellegi-Holt model of statistical data editing (1976) and the 
Fellegi-Sunter model of record linkage (1969).  The generalized software is suitable for processing 
files for businesses, survey institutes, and administrative organizations.  Early systems yielded high 
quality results but were often much too slow for even a hundred thousand records.  New 
computational algorithms yield drastic hundred-plus fold speed increases over algorithms used outside 
the NSIs and previously within the NSIs.  The software is suitable for processing hundreds of millions 
or billions of records in a few days.   
 
The NSIs utilize population-level administrative data, such as censuses of population and housing, tax 
records, wage and employment records, health records, and records of program participation. In order 
to combine survey data with these lists, it is necessary to process all files so that they are compatible 
and of suitable quality. Modeling data and performing edit/imputation can be a few steps in this 
process. Edit/imputation is an approach to cleaning administrative lists. Record linkage is another 
process that can be used to enhance the information available for analysis. This paper reviews details 
of modeling/edit/imputation and record linkage. It also presents a review of methods that adjust 
statistical analyses for probable record linkage error.  The statistical adjustment is a step taken after 
the other two processing steps in order to improve statistical inference based on the data files produced 
in the NSIs.   
 
A major issue for the different NSIs is developing teams that can create and maintain the generalized 
systems.  Fellegi-Holt systems have never been commercially available or in shareware (except two 
edit/imputation systems from Statistics Canada that are available for purchase).  Until twenty years 
ago, record linkage systems were often not commercially available or in shareware.  In many 
situations, the commercial systems can be expensive (as high as one million U.S. dollars), very time 
consuming to learn, and not easily adaptable for differing data because the source-code is proprietary.  
Five countries (Canada, Spain, Italy, the Netherlands, U.S.) have separately developed Fellegi-Holt 
edit/imputation systems.  Three countries (Canada, U.S., Italy) have separately developed 
Fellegi-Sunter record linkage systems.  Although the main edit ideas were in the Fellegi-Holt paper 
(1976), the first fully developed Fellegi-Holt system was from Statistics Canada in 1994.  The first 
fully developed Fellegi-Sunter record linkage system was by Statistics Canada in 1984.   
 
Section 2 provides an overview of the three main technical challenges reviewed in this paper.  It also 
provides brief remarks about the difficulty of developing software, particularly when the initial 
computational algorithms are one hundred to one thousand times too slow for production (i.e., 
twenty-to-fifty machines need to run in twelve hours but instead run in twelve hundred hours or 
longer).    
 
2.  Three Illustrative Computational and Statistical Challenges 



In this section, three technical examples are given and, because of its importance, an additional 
subsection with more details on developing systems is provided. 
 
2.1.  Example 1 
The NSIs through the 1960s primarily performed data collection manually.  Enumerators asked 
questions from survey forms and did minor corrections to the information provided by respondents.  
Other reviewers systematically went through the collected forms to make additional ‘corrections’.  
The data were keyed into the computers.  Processing software, beginning in the 1960s, incorporated 
hundreds (sometimes thousands) of ‘if-then-else’ rules into computer code so that ‘corrections’ were 
made more quickly and consistently.  Problems with the early systems were that there could be logical 
errors in the specifications of the edits (i.e., an edit such as ‘a child under 16 could not be married’), 
that there were coding errors, and that no systematic methods existed for assuring that joint 
distributions of variables were preserved in a principled manner. 
 
Starting in the 1980s, five NSIs separately developed ‘edit’ systems based on the Fellegi-Holt (1976, 
hereafter FH) model of statistical data editing.  The advantage of the FH systems were that edits 
resided in easily modified tables, the logical consistency of the system could be checked prior to the 
receipt of data, the main logic resides in reusable routines, and, in one pass through the data, a 
‘corrected record is guaranteed to satisfy edits.  Prior to FH theory, an ‘if-then-else’ edit system might 
run correctly on test decks (sets of records with known properties) but fail when non-anticipated edit 
patterns were encountered during production.  Additionally, there might be logic errors in the set of 
‘if-then-else’ rules.  NSIs hired individuals with expertise in Operations Research (typically Ph.D.s) 
who did theory and computational algorithms for the integer programming logic needed to implement 
FH systems.  NSIs in Canada, Spain, Italy, the Netherlands, and the U.S. separately developed general 
systems.  Each was able to demonstrate substantial computational efficiencies with the new systems 
that were portable across different types of survey data and that often ran on more than one computer 
architecture. 
 
The 1997 U.S. Economic Censuses (with a total of 8 million records in three files) were each 
processed in less than twelve hours.  Kovar and Winkler (1996) show that the Census Bureau SPEER 
system maintained the very high quality of Statistics Canada’s Generalized Edit/Imputation System 
while being 60 times as fast (due to new computational algorithms – Winkler 1995b).  Because of 
substantial hardware-speed increases in the last twenty years, most of the NSIs methods/software 
should be suitable for smaller administrative lists (millions or tens of millions of records).  Census 
Bureau software (Winkler 2013c) should be suitable for hundreds of millions of records or even 
billions of records. 
 
2.2.  Example 2 
Record linkage is the methodology of finding and correcting duplicates within a single list or across 
two or more lists.  The means of finding duplicates involve non-unique (quasi-) identifiers such as 
name, address, date-of-birth, and other fields.  Unique keys, such as a verified U.S. Social Security 
Number, often are not available on all files for all entities without error. Other variables such as name, 
address, and date-of-birth (called quasi-identifiers) must be used in combination to uniquely identify 
entities (people, businesses, etc.). Statistics Canada, the Italian National Statistical Institute (ISTAT), 
and the U.S. Census Bureau developed systems for record linkage based on the Fellegi-Sunter 
(hereafter FS) ideas.  Academic researchers, many of whom were professors of computer science and 



funded by various health agencies, developed other systems. 
 
Hogan and Wolter (1984) introduce a capture-recapture procedure (called the Post Enumeration 
Survey, PES) in which a second list was matched against the Decennial Census to evaluate and 
potentially correct-for under- and over-coverage.  Their procedure had seven components.  They 
believed that the record-linkage component had more error than the other six components combined.  
Hogan and Wolter estimated that manual matching would require 3000 individuals for six months with 
a false match error rate of a 5%.  Their PES estimation/adjustment procedures required at most 0.5% 
false match rate.   
 
Instead of relying on manual human-powered record linkage, the FS algorithms as implemented by the 
U.S. Census Bureau were used. Linkage was performed in about 500 contiguous regions in the U.S. 
The country was broken into regions to reduce computations and due to the power of computers at that 
time. In each region, it was necessary to estimate optimal parameters for the record linkage problem, 
which is a type of unsupervised learning classification. Parameters were estimated largely based on an 
application of the EM algorithm (Dempster, Laird, and Rubin 1977) viewing record linkage as a 
missing data and latent class problem.  
 
Using the computerized software, the U.S. Census Bureau accomplished the matching in six weeks. 
Approximately 200 individuals were needed for clerical matching (using additional information from 
paper files) and field follow-up. The clerical review region of possible matches consisted almost 
entirely of individuals within the same household who were missing first name and age (the only two 
fields for distinguishing individuals within households).  The EM-based estimation procedures for 
obtaining optimal parameters (Winkler 1988, Winkler and Thibaudeau 1991) yield a false match rate 
of at most 0.2%. This number was calculated based on field follow-up, two rounds of clerical review, 
and one round of adjudication.  
 
2.3. Example 3 
Large national files can yield useful information in statistical, demographic and economic analyses. 
Combining large national files can enable additional analyses. If there are errors in files or they are 
merged with some inaccuracies, then analyses might not be completely accurate. Can files be 
cleaned-up before and after the process of merging them together? Can analyses be adjusted to 
compensate for possible linkage error? 
 
A conceptual picture would link records in file A × X = (ai, …, an, x1, …, xk) with records in file 
B × X = (b1, …, bm, x1, …, xk)  using common quasi-identifying information X= (x1, …, xk) to 
produce the merged file A × B = (ai, …, an, b1, …, bm) for analyses.  The variables x1, …, xk are 
quasi-identifiers such as names, addresses, dates-of-birth, and even fields such as income (when 
processed and compared in a suitable manner).  Individual quasi-identifiers will not uniquely identify 
correspondence between pairs of records associated with the same entity; sometimes combinations of 
the quasi-identifiers may uniquely identify.  Each of the files A and B may be cleaned for duplicates 
and then cleaned up for missing and contradictory data via edit/imputation.   
 
If there are errors in the linkage, then completely erroneous (b1, …, bm) may be linked with a given 
(ai, …, an) and the joint distribution of (ai, …, an, b1, …, bm) in A × B may be very seriously 
compromised.  If there is inadequate cleanup (i.e., non-effective edit/imputation) of A × X = (ai, …, 



an, x1, …, xk)  and B × X = (b1, …, bm, x1, …, xk) , then analyses may have other serious errors in 
addition to the errors due to the linkage errors.  For instance, each of files A and B may have 3% 
duplicates or edit/imputation errors.  If there is 3% matching error, then the joint file A × B could have 
9% error.  If there were 9% error in a file, then how would an NSI determine if any analysis on A × B 
could be performed? If there were 5% error in either of the files A or B, how would the NSI determine 
that the errors existed or how to correct for them?  If there were 5% error in the matching between 
files A and B. how would the NSI determine that there was too much error and how would the NSI 
correct for the error? 
 
2.4 Skills Needed for Developing Generalized Systems  
Winkler and Hidiroglou (1998) provide an overview of the teams that developed generalized systems.  
The teams, often consisting of five-fifteen individuals, worked two-four years to get preliminary 
results for the potentially most difficult parts of a new system.  If initial results were promising, the 
NSIs added more individuals for upwards of ten years to develop the completed systems. By the mid 
1990s, NSIs had failed in at least ten attempts of initial development of Fellegi-Holt systems and, by 
the mid 2010s, NSIs had failed in possibly thirty attempts of the initial development of Fellegi-Sunter 
systems.   
 
For as long as ten years, Eurostat tried to co-ordinate European Union (EU) NSIs in development.  
NSIs that had developed their own systems were unwilling (even when Eurostat could provide 
considerable extra money) to write versions of their systems in different computer languages on 
completely different computer architectures. The potential users in other NSIs (who typically did not 
have suitable technical backgrounds) often insisted on considerable new features that they claimed 
were critical to the needs of their NSI. One NSI that had developed a system pointed out that the 
requested changes in the general software would have caused the general software to be unsuitable for 
most of their survey databases.  Another NSI (that had developed a general system with a different 
computer language, different hardware, and completely different OR algorithms) corroborated that 
making similar changes would have also made their system unusable most of the time.  Commercial 
companies were unwilling to develop systems because Eurostat (initially) wanted the source code for a 
new system to be available to EU participants.  The commercial companies would be unable to 
copyright/patent their methods/code.  It was not clear that resources would be available for 
maintenance of the software. 
 
The generalized software for production record linkage in the 1990 Decennial Census began in January 
1984 and lasted until July 1994.  Fifteen individuals did most of the development.  For some 
development and intermediate tests, an additional five-ten individuals were used.  The final 1990 
production system had thirty-plus modules. Three modules (the main matcher, name standardization, 
and address standardization) were completely rewritten in 1992-1994 to make the entire set of software 
much easier to apply in newer applications. Although many programs needed speed improvements of 
at least a factor of ten, a main parameter estimation program needed a speed improvement of at least 
200.  Two statisticians created three additional versions of the parameter-estimation software over a 
year.  The final software was 220 times as fast as the first version and was barely fast enough for 
production (reducing the amount of time in each of ~500 areas from thirty-six hours to at most twenty 
minutes).  Without the speed improvements, the entire system was too slow for production (three-six 
weeks for the entire U.S. using seven VAX 8700s – about the same speed as a fast 80386 PC but the 
VAXes were able to address much more memory). 



 
The edit/imputation system for the 1997 U.S. Economic Censuses consisted of twenty-plus programs 
developed by fifteen individuals over four years.  Many of the modules were variants of programs 
from the 1992 Economic Censuses.  The legacy software needed to be ported from Univac to VAXes 
or rewritten from scratch.  The set covering algorithms and integer programming parts of the 
Fellegi-Holt system were new and written for VAXes (and other Census Bureau computers).  Winkler 
(1995b) develops new integer programming algorithms after deciding that the GEIS (Generalized 
Edit/Imputation System) software from Statistics Canada was too slow.  The GEIS software, however, 
was faster than the first two versions of the SPEER edit software that Winkler had written. Because 
Winkler had written some record linkage modules for Statistics Canada, he received access to GEIS 
source code that he agreed to keep private.  Statistics Canada adopted Chernikova algorithms after 
William Pulleyblank (OR professor at Waterloo) indicated that the Statistics Canada algorithms were 
slightly faster than algorithms of Pulleyblank’s and far faster than standard OR algorithms on three test 
decks. The new Census Bureau SPEER software (Kovar and Winkler 1996) was sixty times as fast as 
GEIS and just as highly accurate.  SPEER allowed processing each of the three Economic Censuses 
(containing a total of eight million records) in twelve hours or less. 
 
Each of the Census Bureau systems is portable across IBM PCs, VAXes, and Linux servers.  The 
software, upon recompilation, also runs without modification on MacIntoshes and IBM mainframes.  
Much of the software is in FORTRAN because the development teams consisted almost entirely of 
FORTRAN programmers. The remainder of the software is in C.  Other NSIs have had to convert 
their software as they moved to new machines.  For instance, Statistics Netherlands converted from 
Pascal to C++; Statistics Canada converted from PL/I on IBM mainframes to C/C++ for their newer 
mainframes, Linux servers and IBM PCs.  
 
Sections 3-5 discuss the three challenges: edit/imputation, record linkage, and adjustment of statistical 
analysis for linkage error. The discussion provides additional background, delineation of methods, and 
examples. In the case of the third challenge, work in progress and some suggested methods for 
addressing the issue are described. 
 
3. Edit/Imputation 
Fellegi and Holt (1976, hereafter FH) propose a statistical data editing model for edit/imputation 
primarily for discrete data. The FH paper (Theorem 1) rediscovered one of the fundamental results of 
logic programming.  As implemented at the U.S. Census Bureau, the imputation part of the system 
uses ideas of filling-in missing data according to extensions of the missing-at-random (mar) model of 
Little and Rubin (2002, Chapter 13) and further extensions by Winkler (2008).  It then applies the 
theory of Winkler (2003) that connects editing with imputation.  The computational ideas are 
set-covering algorithms (Winkler 1997) and three model-building algorithms based on the EMH 
algorithm (Winkler 1993) that extend the ECM algorithm of Meng and Rubin (1993) from linear to 
convex constraints.  Key algorithmic breakthroughs increased speed of these four computational 
algorithms by factors of 100-1000.  The generalized software (Winkler 2008, 2010) is suitable for use 
in most survey situations with discrete data and is sufficiently fast for hundreds of millions or billions 
of records. Without the algorithmic speed increases, the system was unusable (taking weeks/months 
instead of hours) on the Census Bureau censuses and many of the surveys. 
 
3.1. Edit/Imputation Background 



The intent of classical data collection and clean-up is to provide a data file that is free of logical errors 
and missing data.  For a statistical agency, an interviewer might fill out a survey form during a 
face-to-face interview with the respondent.  The ‘experienced’ interviewer would often be able to 
‘correct’ contradictory data or ‘replace’ missing data during the interview.  At a later time, analysts 
might make further ‘corrections’ prior to the data on paper forms being placed in computer files.  The 
purpose is to produce a ‘complete’ (i.e., no missing values) data file that has no contradictory values in 
some variables.  The final ‘cleaned’ file would be suitable for various statistical analyses.  In 
particular, the statistical file would allow determination of the proportion of specific values of the 
multiple variables (i.e., joint inclusion probabilities). 
 
In this section, the presentation covers Fellegi-Holt methods for continuous economic data (SPEER, 
Winkler 1995b) and for discrete data (DISCRETE, Winkler 1997, 2003, 2008, 2010).  The SPEER 
system has been in use since 1997.  The DISCRETE system uses far more difficult general integer 
programming methods for editing than the SPEER system.  It also uses new theory (Winkler 1990c, 
1993) and a series of new combinatorial methods for imputation.  Most NSIs have developed separate 
FH methods for continuous and discrete data.  Statistics Canada developed GEIS methods for 
continuous data and CANCEIS (Bankier 2000) methods for discrete data.  Winkler and Chen (2002) 
proved that the methods for CANCEIS are consistent with FH principles.  Statistics Netherlands (De 
Waal et al. 2011) has a hybrid methodology suitable for both discrete and continuous data that is 
optimal for edit properties but may not be optimal for preserving joint distributions.   
 
Naïvely, dealing with edits is straightforward.  If a child of less than sixteen years old is given a 
marital status of ‘married’, then either the age associated with the child might be changed (i.e., to older 
than 16) or the marital status might be changed to ‘single’.  The difficulty consistently arises that, as a 
(computerized) record r0 was changed (‘corrected’) to a different record r1 by changing values in fields 
in which edits failed, the new record r1 might fail other edits that the original record r0 had not failed.  
The interaction between the set of edits yields enormously large combinatorial optimization problems. 
 
In a real-world survey situation, subject matter ‘experts’ may develop hundreds or thousands of 
if-then-else rules that are used for the editing and hot-deck imputation.  Because it is exceptionally 
difficult to develop the logic for such rules, most edit/imputation systems do not assure that records 
satisfy edits or preserve joint inclusion probabilities.  Further, such systems are exceptionally difficult 
to implement because of (1) logic errors in specifications, (2) errors in computer code, and (3) no 
effective modeling of hot-deck matching rules.  As demonstrated by Winkler (2008), it is effectively 
impossible with the methods (classical if-then-else and hot-deck) that many agencies use to develop 
edit/imputation systems that preserve either joint probabilities or to create records that satisfy edit 
restraints.  This is true even in the situations when Fellegi-Holt methods are used for the editing and 
hot-deck is used for imputation. 
 
An edit/imputation system that effectively uses the edit ideas of Fellegi and Holt (1976) and modern 
imputation ideas (such as in Little and Rubin 2002) has distinct advantages.  First, it is far easier to 
implement (as demonstrated in Winkler 2008).  Edit rules are in easily modified tables.  The logical 
consistency of the entire system can be tested automatically according to the mathematics of the 
Fellegi-Holt model and additional requirements on the preservation of joint inclusion probabilities 
(Winkler 2003).  Second, the optimization that determines the minimum number of fields to change or 
replace in an edit-failing record is in a fixed mathematical routine that does not need to change.  Third, 



imputation is determined from a model (limiting distribution) and automatically preserves joint 
distributions.  Most modeling is very straightforward.  It is based on variants of loglinear modeling 
and extensions of missing data methods that are contained in easily applied, extremely fast 
computational algorithms (Winkler 2006b, 2008; also 2010).  The methods create records that always 
satisfy edits and preserve joint inclusion probabilities. 
 
3.2. Fellegi-Holt Model 
Fellegi and Holt (1976) were the first to provide an overall model to assure that a changed record r1 
would not fail edits.  Their theory requires the computation of all implicit edits.  Implicit edits are 
edits that can be logically derived from an originally specified set of ‘explicit’ edits.  If the implicit 
edits are available, then it is always possible to change an edit-failing record r0 to an edit passing 
record r1.  The availability of ‘implicit’ edits makes it quite straightforward and fast to determine the 
minimum number of fields to change in an edit-failing record r0 to obtain an edit-passing record r1 
(Barcaroli and Venturi 1997).  In particular, the implicit edits drastically speed up standard Integer 
Programming algorithms such as branch-and-bound by quickly forcing solutions into more suitable 
regions. Fellegi and Holt indicated how hot-deck might be used to provide the values for filling in 
missing values or replacing contradictory values.  
 
3.3. Imputation Generalizing Little-Rubin 
The intent of filling-in missing or contradictory values in edit-failing records r0 is to obtain records r1 
that can be used in computing the joint probabilities in a principled manner.  The difficulty observed 
by many individuals is that a well-implemented hot-deck does not preserve joint probabilities.   Rao 
(1997) provided a theoretical characterization of why hot-deck fails even in two-dimensional 
situations.  The failure occurs even in ‘nice’ situations where individuals had previously assumed that 
hot-deck would work well. Other authors in the 1980s had shown empirically that hot-deck fails to 
preserve joint distributions.  Andridge and Little (2010) provide a review of hot-deck-related 
literature. 
 
Little and Rubin (2002, Chapter 13) provide a model for filling-in missing data according to the 
missing-at-random (mar) data.  The modeling methods can be considered as a correct extension of 
‘hot-deck’.  With ‘hot-deck’ a record with missing values is matched against the entire set of complete 
records that have no missing data.  In practice, NSIs might have a record with twenty variables of 
which five had missing values.  Typically, there would be no donors (complete data records that 
match on the fifteen non-missing values.  To find matches among the set of complete data records, 
NSIs developed collapsing rules that would take subsets of the fifteen variables to match on.  In 
extreme (but typical) situations, collapsing would continue until only 2-4 variables were used for 
matching.  In all situations with collapsing, joint distributions of the final data were substantially 
distorted. Most NSIs have not developed systematic, efficient methods for collapsing.   
 
3.4. Connecting Edit with Imputation 
With classical edit/imputation in the NSIs, the logic in the software consists of a number (hundreds or 
thousands) of ‘if-then-else’ rules where values in fields in a record r associated with failing edits are 
replaced with values that would cause the ‘corrected’ record to no longer fail edits. With the 
development of FH systems, the NSIs, for the first time, can assure that a ‘corrected’ record will no 
longer fail edits.  Because the ‘substitutions’ of values due to editing were not designed to assure that 
joint distributions were preserved, statisticians later developed imputation models for filling in missing 



values or replacing ‘erroneous’ values associated with failing edits that assured joint distributions were 
preserved.  Some ‘corrected’ records did not satisfy edits because the imputation methods did not 
effectively account for the entire set of edit restraints. 
 
Winkler (2003) provides the first theory that connects imputation with the entire set of edit restraints. 
Winkler (1997) had earlier provided set-covering algorithms that were at least one hundred times as 
fast as set-covering algorithms that IBM developed for the Italian Labour Force Survey (Barcaroli and 
Venturi 1997 and private communications with the authors).  With suitably fast set-covering 
algorithms all implicit edits were available prior to building imputation models that systematically and 
globally assures that all records passing through the system would satisfy all edits and, in aggregate, 
preserve joint distributions.  Lemma 1 (Winkler 1990c) shows how structural zeros (edit restraints) in 
a contingency table could be consistent with the other restraints in a contingency table such as 
interactions and certain convex constraints.  The theory assures that, if individuals created suitable 
structures using implicit edits in just the right manner, then imputation can be made consistent with the 
edit restraints. 
 
Although the theory assured that it was possible to develop generalized systems, the previously 
existing methods for doing the computation associated with the methods of Chapter 13 in Little and 
Rubin (2002) were 103-106-times too slow for use on national files or large administrative lists. 
 
3.5. Substantially Decreased Development Time and Improved Accuracy 
The generalized software yields significant time-savings and dramatically increased accuracy.  Prior 
to the FH systems, each edit/imputation system (in all NSIs) was written from scratch each time a 
survey form was changed slightly. Winkler and Petkunas (1997) showed that the edit part of the 
system could each be created in less than four hours for three different small survey systems.  Winkler 
(2008) indicates that the imputation part of the system can be created in less than one week with most 
Census Bureau demographic surveys.  This a dramatic reduction for most small-to-intermediate size 
surveys where as many as ten analysts (subject matter specialists) and five programmers took a year to 
create the new version of the system. The main computational algorithms in a FH system are constant 
across different survey applications.  The software does not contain the numerous errors in contrast to 
when systems are rewritten from scratch.  
 
3.6. Achieving Extreme Computational Speed 
The set covering algorithms (Winkler 1997) were 100-1000 times as fast as algorithms developed by 
IBM for the Italian Labour Force Survey at ISTAT (Barcaroli and Ventura 1997 and private 
communications with the authors).  Barcaroli and Ventura provided the Italian Labour Force data for 
advanced testing of later versions of the algorithms of Winkler (1997).  The data were 
non-confidential because they consisted of edit restraints.  The key to the speed of the set covering 
algorithms was certain data structures and software loops that allowed the computational algorithms to 
learn both likely successful and likely unsuccessful computational paths. In the initial testing, 
computation on the Decennial Census short-form implicit edits dropped from 24 hours to six minutes.  
Subsequent testing on the Decennial Census long-form (still shorter than the Italian Labour Force data) 
allowed computation of implicit edits in six hours. Based on additional testing at the Census Bureau 
and ISTAT with the Italian Labour Force data, the new set covering algorithms took 6-24 hours on a 
200 Mhz Pentium Pro PC.  The IBM algorithms might have taken 800+ days on the largest IBM 
mainframe (based on testing with smaller subsets of the Italian Labour Force data and e-mail 



communications with ISTAT). It was more than ten years (Winkler 2003, 2008, 2010) before theory 
connecting edit and imputation were developed and a series of computational algorithms were created 
that were suitable for imputation in many of the largest situations.  
 
The current loglinear modeling algorithms (Winkler 2008, 2010) do the EM fitting as in Little and 
Rubin (2002) but with computational enhancements that scale subtotals exceedingly rapidly and with 
only moderate use of memory.  The algorithms also deal with the edit restraints (Winkler 2003, 1993, 
1990c). The computational speed for a contingency table of size 600,000 cells is 45 seconds on a 
standard Intel Core I7 machine and for a table of size 2.0 billion cells is approximately 500 minutes 
(each with epsilon 10-12 and 200 iterations).  In the larger applications, 16 Gb of memory are required.  
The key to the speed is the combination of effective indexing of cells and suitable data structures for 
retrieval of information so that each of the respective margins of the M-step of EM-fitting are 
computed rapidly. Naive algorithms in SAS or R programs might not converge to a solution in the 
600,000-cell situation in less than one week. Based on extrapolation in the 2-billion-cell situation, the 
new EM algorithms might take five days on a standard Census Bureau server with Intel chips while 
taking centuries with SAS Proc Catmod. 
 
A nontrivially modified version of the indexing algorithms allows near instantaneous location of cells 
in the contingency table that match a record having missing data.   This is the key logical extension of 
Little and Rubin (2002, Chapter 13).  An additional algorithm nearly instantaneously constructs an 
array that allows binary search to locate the cell for the imputation (for the two algorithms: total < 2.0 
milliseconds cpu time).  For instance, if a record has 12 variables and 5 have missing, it is likely to 
need to delineate all 100,000+ cells in a contingency table with 0.5 million or 0.5 billion cells and then 
draw a cell (donor) with probability-proportional-to-size (pps) to impute missing values in the record 
with missing values.  This type of imputation assures that the resultant ‘corrected’ microdata have 
joint distributions that are consistent with the model.  A naively written SAS search and pps-sample 
procedure might require as much as a minute cpu time for each record being imputed. 
   
4. Record Linkage 
Record linkage is the methodology of finding and correcting duplicates within a single list or across 
two or more lists via quasi-identifiers.  In the first subsection, background on the Fellegi-Sunter model 
of record linkage is provided. In the second subsection, a method for estimating ‘optimal’ parameters 
is presented; it was used for approximately five hundred regions without training data (unsupervised 
learning) in a production system for the 1990 Decennial Census.  In the third subsection methods for 
estimating false match rates without training data are shown.  The methods are not as accurate as the 
semi-supervised methods of Larsen and Rubin (2001) and Winkler (2002). The fourth subsection 
focuses on how one can achieve extreme computational speed suitable for sets of national files and 
administrative lists with hundreds of millions or billions of records. The last two sections deal with 
data quality and with name and address standardization. The name and address standardization can 
have a greater effect on matching efficacy than the parameter-estimation methods. 
 
4.1. Fellegi-Sunter Model  
Fellegi and Sunter (1969) provide a formal mathematical model for ideas that had been introduced by 
Newcombe et al. (1959, 1962).  They introduced many ways of estimating key parameters without 
training data.  To begin, notation is needed.  Two files A and B are matched.  The idea is to classify 
pairs in a product space A × B from two files A and B into M, the set of true matches, and U, the set of 



true nonmatches.  Fellegi and Sunter, making rigorous concepts introduced by Newcombe (1959), 
considered ratios of probabilities of the form: 
 

R =  P( γ ∈ Γ | M) / P( γ ∈ Γ | U)                                            (1) 
 
where γ is an arbitrary agreement pattern in a comparison space Γ.  For instance, Γ might consist of 
eight patterns representing simple agreement or not on the largest name component, street name, and 
street number.  Alternatively, each γ ∈ Γ might additionally account for the relative frequency with 
which specific values of name components such as "Smith" and "Zabrinsky” occur.  Then P(agree 
“Smith” | M) < P(agree last name | M) < P(agree “Zabrinsky” | M) which typically gives a less 
frequently occurring name like “Zabrinsky” more distinguishing power than a more frequently 
occurring name like “Smith” (Fellegi and Sunter 1969, Winkler 1995a).  Somewhat different, much 
smaller, adjustments for relative frequency are given for the probability of agreement on a specific 
name given U.  The probabilities in (1) can also be adjusted for partial agreement on two strings 
because of typographical error (which can approach 50% with scanned data (Winkler 2004)) and for 
certain dependencies between agreements among sets of fields (Larsen and Rubin 2001, Winkler 
2002).  The ratio R or any monotonely increasing function of it such as the natural log is referred to as 
a matching weight (or score). 
 
The decision rule is given by: 
 
   If R > Tµ, then designate pair as a match. 
 
   If Tλ ≤ R ≤ Tµ, then designate pair as a possible match 
        and hold for clerical review.                                              (2) 
 
   If  R < Tλ, then designate pair as a nonmatch. 
 
The cutoff thresholds Tµ and Tλ are determined by a priori error bounds on false matches and false 
nonmatches.  Rule (2) agrees with intuition.  If γ∈ Γ consists primarily of agreements, then it is 
intuitive that γ∈ Γ would be more likely to occur among matches than nonmatches and ratio (1) would 
be large.  On the other hand, if γ∈ Γ consists primarily of disagreements, then ratio (1) would be 
small.  Rule (2) partitions the set γ ∈ Γ into three disjoint subregions.  The region Tλ ≤ R ≤ Tµ is 
referred to as the no-decision region or clerical review region.  In some situations, resources are 
available to review pairs clerically.  If no resources are available for clerical review, then the cutoffs 
Tµ and Tλ can be chosen equal (Herzog et al. 2007). 
 
Fellegi and Sunter (1969, Theorem 1) proved the optimality of the classification rule given by (2).  
Their proof is very general in the sense in it holds for any representations γ ∈ Γ over the set of pairs in 
the product space A × B from two files.  As they observed, the quality of the results from 
classification rule (2) were dependent on the accuracy of the estimates of P( γ ∈ Γ | M) and P( γ ∈ Γ | 
U).   
 
Figure 1 provides an illustration of the curves of log frequency versus log weight for matches and 
nonmatches, respectively.  The two vertical lines represent the lower and upper cutoffs thresholds Tλ 



(denoted by L in the Figure) and Tµ, (denoted by U) respectively.  The x-axis is the log of the 
likelihood ratio R given by (1).  The y-axis is the log of the frequency counts of the pairs associated 
with the given likelihood ratio.  The plot uses pairs of records from a contiguous geographic region 
that were matched in the 1990 Decennial Census.  The clerical review region between the two cutoffs 
primarily consists of pairs within the same household that are missing both first name and age (the 
only two fields that distinguish individuals within a household). 
 

 
 
 
4.2. Estimating Parameters 
This section summarizes current extensions of the EM procedures for estimating false match rates.  
With any matching project, a primary concern is with false match rates among the set of pairs among 
designated matches above the cutoff score Tµ in (2) and the false nonmatch rates among designated 
nonmatches below the cutoff score Tλ in (2).  Very few matching projects estimate these rates 
although valid estimates are crucial to understanding the usefulness of any files obtained via the record 
linkage procedures (see section 4.3 below).   
 
If a small amount of training data is available, then it may be possible to improve record linkage and 
provide good estimates of error rates.  Larsen and Rubin (2001) combined small amounts of (labeled) 
training data with large amounts of unlabeled data to estimate error rates using an MCMC procedure.  
In machine learning (Winkler 2000), the procedures are referred to as semi-supervised learning.  In 
ordinary machine learning, the procedures to get parameters are “supervised” by the training data that 
is labeled with the true classes into which later records (or pairs) will be classified.  Winkler (2002) 
also used semi-supervised learning with a variant of the general EM algorithm.   
 
Both the Larsen and Rubin (2001) and Winkler (2002) methods were effective because they accounted 
for interactions between the fields and were able to use labeled training data that was concentrated 
between the lower cutoff Tλ and the upper cutoff Tµ. Winkler (1988) observed that the conditional 
independence model (naive Bayes) in the paper was an approximation of a general interaction model.  
Winkler (2014, also Herzog et al. 2010) provided more complete explanations of why the 1988 
procedure was a best naïve Bayes approximation of a general interaction model.  The 



model-approximation methods were re-discovered by Kim Larsen (2005) who used 
much-slower-to-compute general-additive models. 
 
Because the EM-based methods of this section serve as a template of other EM-based methods, the 
following provides details of the unsupervised learning methods of Winkler (2006a) that are used for 
estimating the basic matching parameters and, in some situations, false match rates.  The basic model 
is that of semi-supervised learning that combines a small proportion of labeled (true or pseudo-true 
matching status) pairs of records with a very large amount of unlabeled data.  The conditional 
independence model corresponds to the naïve Bayesian network formulization of Nigam et al. (2000).  
The more general formulization of Winkler (2000, 2002) allows interactions between agreements (but 
is not used in this paper).  
  
The development is similar theoretically to that of Nigam et al. (2000).  The notation differs very 
slightly because it deals more with the representational framework of record linkage.  Let γi be the 
agreement pattern associated with pair pi.  Classes Cj are an arbitrary partition of the set of pairs D 
that is a subset in A × B.  Later, the assumption is that some of the Cj will be subsets of M and the 
remaining Cj are subsets of U.  Unlike general text classification in which every document may have 
a unique agreement pattern, in record linkage, some agreement patterns γi may have many pairs pi(l) 
associated with them. In record linkage, the parameter Θ generally represents a Dirichlet-Multinomial 
model.  Specifically,  
 

P(γi | Θ) = ∑i |C| P(γi | Cj; Θ) P(Cj ; Θ )                                       (3) 
 
where (i is a specific pair, Cj is a specific class, and the sum is over the set of classes.  Under the 
Naïve Bayes or conditional independence (CI), the following equality holds 
 

P(γi | Cj ; Θ) = Π k  P(γi,k | Cj ; Θ)                                         (4) 
 
where the product is over the kth individual field agreement γik in pair agreement pattern γi.  In some 
situations, a Dirichlet prior is used 
 
       P(Θ) = Π j ( ΘCj )α-1   Π k  ( Θ γi,k | Cj ) α-1                             (5) 
 
where the first product is over the classes Cj and the second product is over the fields (quasi-identifiers 
such as first name, last name, age, etc.).  The symbol Du to denotes unlabeled pairs and Dl to denote 
labeled pairs.  Given the set D of all labeled pairs Dl and unlabeled pairs Du that partition D, the log 
likelihood is given by 
 
    lc(Θ | D; z) =  log ( P(Θ))  + 
      (1-λ ) ∑ i∈Du  ∑ j zij log (P(γi | Cj ; Θ)  P(Cj ; Θ)) + 
      λ ∑ i∈Dl ∑ j zij log (P(γi | Cj ; Θ)  P(Cj ; Θ)).                            (6) 
 
where 0 ≤ λ ≤ 1.  The first sum is over the unlabeled pairs and the second sum is over the labeled 
pairs.  In the third terms of equation (6), the sum is over the observed zij.  The estimation is using 
the EM algorithm (Winkler 1993, 2002). In the second term, expected values for the zij based on the 
initial estimates P(γi | Cj; Θ) and P(Cj; Θ) are put in (i.e., the E-step in the EM algorithm). After 



re-estimating the parameters P(γi | Cj; Θ) and P(Cj; Θ)) during the M-step (that is in closed form under 
condition (CI)), new expected values are put in and the M-step is repeated.  The computer algorithms 
are easily monitored by checking that the likelihood increases after each combination of E- and 
M-steps and by checking that the sum of the probabilities add to 1.0. If λ is 1, then only training data 
are used and the methods correspond to naïve Bayes methods in which training data are available.  If 
λ is 0, then the situation is for unsupervised learning situations of Winkler (1988, 2006a). Winkler 
(2000, 2002) provides more details of the computational algorithms. 
 
4.3. Estimating False Match Rates 
This section provides a summary of current extensions of the EM procedures for estimating false 
match rates.  To estimate false-match rates, it is possible to obtain reasonably accurate estimates of the 
right tail of the curve of nonmatches and the left tail of the curve of matches such as given in Figure 1. 
Similar methods, but with less data, were given in Belin and Rubin (1995).  With any matching 
project, the concern is with false match rates among the set of pairs among designated matches above 
the cutoff score Tµ in (2) and the false nonmatch rates among designated nonmatches below the cutoff 
score Tλ in (2).  Very few matching projects estimate these rates although valid estimates are crucial 
to understanding the usefulness of any files obtained via the record linkage procedures.  Sometimes, 
reasonable upper bounds for the estimated error rates can be obtained by experienced practitioners and 
the error rates are validated during follow-up studies (Winkler 1995a).  If a moderately large amount 
of training data is available, then it may be possible to get valid estimates of the error rates using 
training data only.    
 
Belin and Rubin (1995) were the first to provide an unsupervised method for obtaining estimates of 
false match rates.  The method proceeded by estimating Box-Cox transforms that would cause a 
mixture of two transformed normal distributions to closely approximate two well separated curves 
such as given in Figure 1. They cautioned that their methods might not be robust to matching situations 
with considerably different types of data.  Winkler (1995a) observed that their algorithms would 
typically not work with business lists, agriculture lists, and low quality person lists where the curves of 
nonmatches were not well separated from the curves of matches.  Scheuren and Winkler (1993), who 
had the Belin-Rubin EM-based fitting software, observed that the Belin-Rubin methods did work 
reasonably well with a number of well-separated person lists. 
 
The Data Files 
Three pairs of files were used in the analyses.  The files are from 1990 Decennial Census matching 
data in which the entire set of 1-2% of the matching status codes that were believed to have been in 
error for these analyses have been corrected.  The corrections reflect clerical review and field 
follow-up that were not incorporated in computer files originally available to us.   
 
A summary of the overall characteristics of the empirical data is in Table 1.  In the following, the 
totals only consider pairs that agree on census block id (small geographic area representing 
approximately 50 households) and on the first character of surname.  Less than 1-2% of the matches 
are missed using this set of blocking criteria.  They missing matches (pairs) represent a fixed lower 
bound on the estimated false match rates.  They are not considered in the analysis of this paper.   
 



 
Table 1.  Summary of Three Pairs of Files 
______     _____________________________ _______   ____ 
            Files       Files      Files 
          A1    A2     B1   B2    C1   C2 
Size      15048 12072  4539 4851  5022 5212 
# pairs     116305      38795      37327 
# matches   10096       3490       3623_  _   
 
 
   The matching fields are:  
 
Person Characteristics:  First Name, Age, Marital Status, Sex 
Household Characteristics:  Last Name, House Number, Street Name, Phone 
 
Typically, everyone in a household will agree on the household characteristics.  Person characteristics 
such as first name and age help distinguish individuals within household.  Some pairs (including true 
matches) have both missing first name and age.  
 
In the following, various partial levels of agreement in which the string comparator values are broken 
out as [0, 0.66], (0.66, 0.88], (0.88, 0.94], and (0.94, 1.0].   The intervals were based on knowledge of 
how string comparators were initially modeled (Winkler 1990b, also 2006c) in terms of their effects of 
likelihood ratios (1).  The string comparators take values between 0 – total disagreement and 1 – exact 
character-by-character agreement.  The first interval is referred to as disagreement.  The disagreement 
is combined with the three partial agreements and blank to get five value states (base 5).  The large 
base analyses consider five states for all characteristics except sex and marital status; the smaller base 
considers only three (agree/blank/disagree).  The total number of agreement patterns is 140,625.  In 
the earlier work (Winkler 2002), the five levels of agreement worked consistently better than two 
levels (agree/disagree) or three levels (agree/blank/disagree).   
 
The pairs naturally divide into three classes:  C1- match within household, C2 - nonmatch within 
household, C3 – nonmatch outside household.  In the earlier work (Winkler (2002) considered two 
dependency models in addition to the conditional independence model.  In that work in which small 
amounts of labeled training data were combined with unlabeled data, the conditional independence 
model worked well and the dependency models worked slightly better.  Newcombe and Smith (1975) 
and later by Gill (2001) first used the procedures for dividing the matching and estimation procedures 
into three classes without the formal likelihood models given by equations (3)-(6). 
 
For data sets, ‘pseudo-truth’ is created in which matches are those unlabeled pairs above a certain high 
cutoff and nonmatches are those unlabeled pairs below a certain low cutoff.  Figure 1 illustrates the 
situation using actual 1990 Decennial Census data in which log of the probability ratio (1) is plotted 
against the log of frequency.  With the datasets of this paper, high and low cutoffs in a similar manner 
are chosen that do not include in-between pairs in the designated ‘pseudo-truth’ data sets. These 
‘designated’ pseudo-truth data sets are used in a semi-supervised learning procedure that is nearly 
identical to the semi-supervised procedure where actual truth data was used.  A key difference from 
the corresponding procedure with actual truth data is that the sample of labeled pairs is concentrated in 
the difficult-to-classify in-between region where, in the ‘pseudo-truth’ situation, there is no way to 



designate comparable labeled pairs.  The sizes of the ‘pseudo-truth’ data are given in Table 2.  The 
errors associated with the artificial ‘pseudo-truth’ are given in parentheses following the counts.  The 
Other class gives counts of the remaining pairs and proportions of true matches that are not included in 
the ‘pseudo-truth’ set of pairs of ‘Matches’ and ‘Nonmatches’.  In the Other class, the proportions of 
matches vary somewhat and would be difficult to determine without training data. 
 
Table 2.  ‘Pseudo-Truth’ Data with Actual Error Rates 
_______________________________________________________________________ 
                Matches         Nonmatches         Other___ 
A pairs       8817 (.008)     98257 (.001)      9231 (.136) 
B pairs       2674 (.010)     27744 (.0004)     8377 (.138) 
C pairs       2492 (.010)     31266 (.002)_     3569 (.369) 
 
To determine how accurately it is possible to estimate the lower cumulative distributions of matches 
and the upper cumulative distribution of nonmatches.  This corresponds to the overlap region of the 
curves of matches and nonmatches.  If it is possible to accurately estimate these two tails of 
distributions, then it is possible to accurately estimate error rates at differing levels.  The comparisons 
consist of a set of figures with different plots of the cumulative distribution of estimates of matches 
versus the true cumulative distribution with the truth represented by the 45 degree line.  As the plots 
get closer to the 45 degree lines, the estimates get closer to the truth.  The plotting is only for the 
bottom 30% of the curves given in Belin and Rubin (1995, Figures 2, 3).  Generally, the only concern 
is with the bottom 10% of the curves for the purpose of estimating false match rates.  Because of the 
different representation with the 45 degree line, it is much better for comparing three different methods 
of estimation for false match rates. 
 
The primary results are from using the conditional independence model and ‘pseudo-semi-supervised’ 
methods of this section with the conditional independence model and actual semi-supervised methods 
of Winkler (2002).  With the ‘pseudo-truth’ data, the best sets of estimates of the bottom 30% tails of 
the curve of matches with conditional independence and λ=0.2 (equation (6)) can be obtained.   
Figure 2a,b,c illustrates the set of curves that provide quite accurate fits for the estimated values of 
matches versus the truth.   The 45 degree line represents the truth whereas the curve represents the 
cumulative estimates of matches for the right tails of the distribution.  The plots are for the estimates 
of the false match probabilities divided by the true false match probabilities.  Other at results were 
considered for λ=0.1, 0.5, and 0.8 and various interactions models. The results under conditional 
independence (CI) were the best with λ=0.2 (equation (6)).  Several different ways of constructing the 
‘pseudo-truth’ data were also looked at.  Additionally, other pairs of files in which all of the 
error-rates estimates were better (closer to the 45 degree line) than those for the pair of files given in 
Figure 2 were considered. 
 
Figures 2d,e,f are the corresponding curves using the methods of Belin and Rubin (1995).  The curves 
are substantially farther from the 45 degree lines because they are only using the distributions of 
weights (natural logs of likelihood ratio (1)).  Using the detailed breakout of the string comparator 
values, the fact that the 3-class EM (Winkler 1993) provides much better estimates, and the breakout 
available from equation (6), it is possible to use more information that allows the estimated curves in 
Figure 2a,b,c to be closer to the truth than the corresponding curves in Figure 2d,e,f.   
 
 



 
Figure 2.  Comparison of Error Rate Estimation Procedures of Winkler (2006, first column, unsupervised), 
Belin and Rubin (1995, second column, unsupervised), and Winkler (2002, third column, semi-supervised). 
 
 
The final sets of curves (Figure 2g,h,i) are similar to the semi-supervised learning of Winkler (2002) 
that achieved results only very slightly worse than Larsen and Rubin (2001) but for which the EM 
computational speeds (10 minutes in each of ~500 regions) were at least 100 times as fast as the 
MCMC methods of Larsen and Rubin.  It is difficult for the unsupervised methods to perform as well 
as the semi-supervised methods because the relatively small sample can be concentrated in the clerical 
review region between the lower cutoff Tλ and the upper cutoff Tµ.  Because underlying truth data 
were available, in some regions only 1/40 of the ‘truth’ sample was truly a match whereas in other 
regions 1/10 of the ‘truth’ sample was truly a match.  In the 1990 Decennial Census, the clerical 
region consisted almost entirely of individuals within the same household who were missing both first 
name and age (the only two fields for distinguishing within the household).  Because of the 
requirement to match all 457 regions of the U.S. in 3-6 weeks to provide estimates required by law, it 
was not possible to perform clerical review in each region or use approximations across certain regions 
because the optimal parameters vary significantly from region to region (Winkler 1989a). 
 
4.4. Achieving Extreme Computational Speed 



Early record linkage (Newcombe 1959, 1962) had difficulty dealing with the computation associated 
with files having a few thousand records each.  To deal with the computational burden, individuals 
used blocking.  With blocking, individuals sorted two files on a key such as a postal code and first 
character of surname.  Only pairs agreeing on the sort (blocking) key are considered.  To deal with 
situations where there are typographical error in either the postal code or first character of the surname. 
A second blocking pass may use part of the postal code and house number.  
 
By the 1990s, NSIs might be working with millions of records to which they might apply 5-10 
blocking passes.  For the first blocking pass, individuals sorted the two files on the first blocking 
criteria and then performed matching.  Prior to a second pass, individuals created residual files from 
the two passes after removing the records associated with pairs that were believed to be matches.  
Individuals sorted the two residual files according to the second blocking criteria and the matching 
repeated.  With five blocking passes, individuals need to read and process each file fourteen times. 
Individuals needed to sort each of the two files five times. With a large administrative file with 0.5 
billion records, ~3.5 times the size of an original file was needed for each sort.  The sort might take 
12+ hours.  Processing of a pair of files of 0.5 billion records each with five blocking passes might 
take two-eight weeks.  Often the matching could not be performed because too much disk space was 
needed. 
 
To alleviate the situation and very significantly speed up processing, Yancey and Winkler (2004, 2009) 
created BigMatch technology. With BigMatch, there is only one pass against each file. There is no 
need to sort any of the files. One file is read (a smaller file then can be broken into small subparts) into 
memory with suitable indices created according to the blocking criteria.  The suitable indices are in 
memory. The creation of ten sets of indices with each corresponding to blocking criteria takes about 
the same amount of time as a single sort of the file. Each record in the larger file is read only once. All 
pairs corresponding to all the blocking passes are written into appropriate files.  The U.S. Decennial 
Census is broken into ~500 contiguous regions.  The overall matching strategy is controlled by Linux 
scripts. Each region is matched against ~500 regions.  This natural, but crude, parallelization can 
easily extend to administrative lists.   
 
Winkler (2004) provides some methodological insights into BigMatch and for putting bounds on the 
false nonmatch rates.  Winkler et al. (2010) provide details related to the 2010 Decennial Census 
matching system that processed 1017 pairs (300 million × 300 million) using four blocking criteria.  
The four blocking criteria were determined by three individuals who had developed better blocking 
criteria than Winkler (2004).  With the four blocking criteria detailed processing was performed on 
only 1012 pairs.  Auxiliary testing in 2005 and 2006 using 2000 Decennial Census data provided 
estimates of properly matching 97.5% of all duplicates.   
 
The BigMatch software ran in 30 hours using 40 cpus of an SGI Linux machine with 2006 Itanium 
chips.  Each cpu processed 400,000+ pairs per second.  Most new High Performance Computer 
(HPC) machines would be 2-8 times as fast due to more memory, more cpus, and faster cpus.  Based 
on the number of pairs processed within a given time, BigMatch is 50 times as fast as parallel 
PSwoosh software (Kawai et al. 2006) developed by computer scientists at Stanford.  BigMatch is 10 
times as fast as recent Dedoop software (Kolb and Rahm 2013) that uses sophisticated load balancing 
methods.  The later software and two other sets of parallel software (Yan et al. 2013, Karapiperis and 
Verykios 2014) would not have been available for the 2010 Decennial Census. BigMatch is 500 times 



as fast as software used in some statistical agencies (Wright 2010). 
 
4.5. Lack of Quality in Files 
The definition ‘good quality’ is that almost all quasi-identifiers are not missing and that the 
quasi-identifiers must be in suitably comparable forms.  In combination, the set of quasi-identifiers 
should be able to delineate most matches accurately.  The following examples of ‘errors’ in seemingly 
ok data are very difficult to overcome. 
 
Following the 1990 Decennial Census, several small tests of matching administrative records from two 
localities were performed in which lists were matched against the 1990 Census files.  Laws were 
changed to allow the matching and review.  In one instance, a school board list was compared against 
the Census.  Being able to count children under fifteen has often been difficult.  For one school, half 
the students could not be matched.  Review showed that in half of the classrooms (students were 
broken out by school and classroom), every first name, every last name, and every date-of-birth 
contained typographical error; in the other half of the classrooms, every first name, every last name, 
and every date-of-birth appeared to have been correctly keyed into the computer. The assumption was 
that two individuals had keyed in the data. It was not possible to overcome severe errors of this type in 
representation of the quasi-identifiers associated with the students. 
 
The following provides an example of where quasi-identifiers are severely in error.  One record in one 
file contained ‘Susan K Smith, 950901’ and the other record in the other file contained ‘Karen Jones, 
780322’ where the second quasi-identifier is the date-of-birth in YYMMDD format.  The first first 
name is correct.  The second first name of Karen is the name that the woman uses most of the time.  
The first last name is her maiden name.  The second last name is her name that was changed (possibly 
after marriage).  The second date-of-birth is completely wrong. The completely wrong date-of-birth 
can occur when the date-of-birth is copied from an adjacent line on paper such in the situation with 
voter registration files and databases. With some pairs of lists only a small portion of representations of 
the quasi-identifiers will have these types of errors.  With other lists, twenty-plus-percent of the 
representations will have these types of errors (making accurate matching effectively impossible).   
 
4.6. Name and Address Standardization  
Most of the methods of preprocessing files prior to parameter-estimation and matching involve name 
and address standardization.  If there is 5% error in name standardization in File A and in File B and 
there is 5% error in address standardization in File A and in File B, then the number of true matches 
erroneously missed during matching could be as much as 20%.  These errors can be by far the largest 
source of error when matching ‘good quality’ files. Only the name standardization is described.  The 
address standardization has substantial similarity.  
 
The name standardization software will break up a free-form name into components (called parsing) 
and sometimes change commonly occurring words to a consistent spelling.  The quasi-identifier 
‘Reverend John K Smoth Junior DD’ might have each of the separate words (components) put in 
locations so that the corresponding components from different records can be compared.  The words 
‘Reverend’ and ‘Junior’ might be replaced by consistent abbreviations ‘Rev’ and ‘Jr’.  With another 
record ‘John Smith’ it might be possible to pull off the first name ‘John’ could be compared with the 
first name ‘John’.  The name ‘Smith’ could be compared with the last name ‘Smoth’ (that has 
typographical error).  String comparator metrics (Winkler 1990b) could be used to compare the pairs 



of strings that have typographical error.  Between 1988 and 1994, almost all the improvements in 
Census matching were due to the improvements in standardization.  The basic parameter-estimation 
methods described in the first four subsections of this section did not need improvement. 
 
For the 1990 Decennial Census production, there were several modules for name and address 
standardization that were felt to be suitable for production matching at the time.  By 1994, the Census 
Bureau had completely rewritten and substantially extended the name and address standardization 
software.  The address standardization was formally compared to the two best-selling commercial 
address standardization packages using a test deck of twenty thousand control addresses and eighty 
thousand addresses that were difficult to standardize.  Whereas the two commercial address 
standardizers were unable to exceed a fifty percent standardization rate, the Census Bureau 
standardization exceeded a ninety-eight percent standardization rate.  Ad hoc tests showed that the 
Census Bureau name standardizer exceeded alternative name standardizers. 
 
5. Models for Adjusting Statistical Analyses for Linkage Error 
An early model for adjusting a regression analysis for linkage error is due to Scheuren and Winkler 
(1993). By making use of the Belin-Rubin predicted false-match rates, Scheuren and Winkler were 
able to give (somewhat crude) estimates of regressions that had been adjusted for linkage error to 
correspond more closely with underlying ‘true’ regressions that did not need to account for matching 
error.  Many papers subsequent to Scheuren and Winkler have assumed that accurate values of false 
match rates (equivalently true match probabilities) are available for all pairs in A × B.  The difficulty 
in moving the methods into practical applications is that nobody has developed suitably accurate 
methods for estimating all false match rates for all pairs in A × B when no training data are available.   
 
For additional information, Reiter (2018) provides an overview on adjusting statistical analyses for 
linkage error and some elementary examples. 
 
Lahiri and Larsen (2005) later extended the model of Scheuren and Winkler with a complete 
theoretical development. In situations where the true (not estimated) matching probabilities were 
available for all pairs, the Lahiri-Larsen methods outperformed Scheuren-Winkler methods and were 
extended to more multivariate situations than the methods of Scheuren and Winkler (1993).  Variants 
of the models for continuous data are due to Chambers (2009) and Kim and Chambers (2012a,b) using 
estimating equations.  The estimating equation approach is highly dependent on the simplifications 
that Chambers et al. made for the matching process. 
 
Trancredi and Liseo (2011) applied Bayesian MCMC methods to discrete data. The Trancredi-Liseo 
methods are impressive because of the number of simultaneous restraints with which they can deal.  
The Trancredi-Liseo methods are extraordinarily compute intense (possibly requiring as much as 12 
hours computation on each block (approximately 50-100 households).  There are eight million blocks 
in the U.S where people live. 
 
Goldstein et al. (2012) provide MCMC methods for adjusting analyses based on very general methods 
and software that they developed originally for imputation (Goldstein et al. 2009).  They provide 
methods of estimating the probabilities of pairs based on characteristics of pairs from files that have 
previously been matched.  They are able to leverage relationships between vector x ∈A to y ∈ B 
based on a subset of pairs on which matching error is exceptionally small and then extend the 



relationships/matching-adjustments to the entire set of pairs in A × B.   The Goldstein et al. (2012) 
methods are highly promising, possibly in combination with other methods.  It is not clear that it is 
possible to encounter situations similar to Goldstein et al. (2012) where estimates of matching 
probabilities are very highly accurate and where it is possible to obtain highly accurate estimates of 
relationships for (x, y) pairs on A × B (particularly from previous matching situations),  
 
Hof and Zwinderman (2012, 2015) provide EM-based methods for adjusting a statistical analysis for 
matching error.  Like the other methods, their procedure successively and iteratively makes 
adjustment for linkage error and errors in the statistical models.  They provide a considerable number 
of details related to the likelihoods and how the various terms are approximated.  For individuals 
familiar with EM-based methods, their procedure appears fairly straightforward to apply.   
 
The natural way of analyzing discrete data is with loglinear models on the pairs of records in A × B.  
Performing analyses for discrete data ais more difficult than for situations with certain regression 
models where the form of the model gives us considerable simplifying information.  Chipperfield et al 
(2011) gives certain insights that are not available in many of the other papers.  The Chipperfield et al. 
methods are closely related to Winkler (2002) which contains a full likelihood development. For 
consistency with Chipperfield et al. (2011) the notation is slightly changed.  Rather than break out A 
and B as (a1, …, an) and (b1, …, bm), it is possible to merely enumerate A with x in A and B with y in 
B.  All observed pairs have probabilities pxy where pxy represents all pairs of records in A × B with x 
in A and y in B.  If the truth is known, all the pxy would be known.  It is possible to estimate the pxy 
in a semi-supervised fashion as with the likelihood equation given in (6).  Chipperfield et al. (2011) 
take a sample of pairs sc for which they can determine pxy exactly (no estimation error) for all pairs x 
and y associated with sc.  In some situations, the methods work very well.  In other situations, a very 
large truth sample may be needed; else there would not be sufficient information for the estimation. 
 
The methods for adjusting regression analyses for linkage error with continuous regression situations 
have been more successful than the methods for adjusting statistical analyses of discrete data because 
of various inherent simplifications due to the form of regression models of continuous data.   
 
6. Concluding Remarks 
The paper provides background and an overview of methods of edit/imputation and record linkage that 
have been developed and used in the National Statistical Institutes.  The generalized systems apply the 
theory of Fellegi and Holt (1976) and Fellegi and Sunter (1969), respectively.  While improving 
quality, the generalized systems also yield significant cost- and time-savings. The methods of adjusting 
statistical analyses for linkage error are a large and difficult area of current research.  A crucial aspect 
of developing generalized software and investigating new methods is having highly skilled teams that 
can do new theory when needed.  The teams also need to develop a large group of new computational 
algorithms that are sufficiently powerful and fast for production systems. 
 
 
7. Issues and some related questions 
a.  If an NSI does not have the skill and/or resources to develop their own systems, then how does the 
NSI create suitable test decks to evaluate the quality of record linkage and edit/imputation software 
developed by vendors or in shareware?   
b.  File A contains name and address of persons.  File B contains name and date-of-birth for the same 



population of persons.  Is it possible to do the matching?  What would be an upper bound on the false 
match rate? 
c.  Two files A and B represent the same population.  Files A and B both contain the quasi-identifiers 
first name, last name, and date-of-birth.  If file A has missing first name for twenty-five percent of the 
records and file B has missing first name for twenty-five percent of the records, what is the maximum 
matching rate that can be achieved? 
d.  Two files A and B are matched where the main output has all pairs along with matching weight 
and quasi-identifiers in a form that is reasonably easy to use.  There are resources available to review 
a certain number of pairs to determine whether they are a true or false match? How does one efficiently 
draw a sample that can be used in determining the false match rate?  Is it possible to determine the 
false nonmatch rate?  Why? 
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