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Abstract

This paper develops representations of the "ideal" band-pass filter for nonstationary time series.
The approach ties together frequency domain perspectives that involve periodicity and gain functions
with a statistical modelling framework. The approximating filter has several advantages compared
to existing methods; it has a more attractive gain profile that more accurately matches the targeted
pass-band of the "ideal" filter when this is the desired gain. Also, our proposed filter addresses
the sample endpoint problem associated with previous representations and allows for evaluation
of the "ideal" filter’s implicit assumptions about trend-cycle dynamics. Further, it reveals how
filtering errors can result from the indiscriminate use of the "ideal" filter and allows one to quantify
such errors. A more flexible approach is to use a modelling framework to design band-pass filters
that adapt to series’ properties — consistent with how the trend and cycle components evolve and
relate to each other — rather than emulating a given gain function. Computer code is freely
available for implementing the methodology in a way that avoids the need for an expert operator.
An application to cyclical fluctuations in macroeconomic time series is presented, showing how
plausible and intuitive cycles are estimated via the ideal filter or with an adaptive framework.
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1 Introduction

Cyclical patterns of expansion-contraction occur in a broad range of time series, typically with varying
intensity and with changing duration around some central period. For instance, in cycles in economic
data, such movements typically recur with periodicity ranging from around 2 to 10 years. The analysis
and monitoring of such persistent and repetitive fluctuations around long-run levels are of great im-
portance to a large population of policymakers, economists, and forecasters. Researchers have devoted
substantial efforts to studying economic cycles and their relation to key aspects like energy prices, policy-
making, and international trade, see e.g. Cotis and Coppel (2005), Artis et al (2004), Filis (2010), Chen
and Mills (2012) and Blonigen et al (2015). In addition to business cycles in economic activity, over the
last several years, there has been growing awareness of cycles in financial and housing indicators, which
are linked in various ways to business cycles and can have distinct dynamic properties; see for example
recent contributions in Chen et al (2012), Claessens et al (2012), Borio (2014), Riinstler and Vlekke
(2016), Bulligan et al (2017), and Gonzalez and Marinho (2017). Stochastic cycles have also been used
in research in fields other than economics, e.g. Chow et al. (2009) focusses on their application and the
use of model diagnostics in psychology.

The accurate estimation of such cyclical signals is often key for understanding basic phenomena and
making predictions. Band-pass filters have been applied to this problem since they remove both low
and high frequency movements and focus on the mid-range frequencies associated with the cyclical com-
ponent; by virtue of noise elimination, they provide relatively smooth estimates and clear indications of
major transitions in the cycle. Harvey and Trimbur (2003) develop a class of band-pass filters, which
generalize Butterworth filters, to estimate cyclical as well as trend components. In particular, this par-
simonious class has gain functions given by compact analytical expressions that depend on order indices,
and the generalized Butterworth band-pass has parameters that control the location and sharpness of

the band. The filters account for the presence of trend and noise components and for differences in the



trend-cycle-noise properties across diverse macroeconomic indicators. The methodology also allows for
forecasting cyclical positions in a way coherent with the filtering operations and data characteristics.

Here, we generalize the existing methodology by using a damping parameter for trend-growth. The
model-based band pass filters from Harvey and Trimbur (2003) are employed in various studies of busi-
ness cycle fluctuations and financial and housing cycles, such as Artis et al (2004), Chen et al (2012),
Moés (2012), and Chen and Mills (2012). Chen et al (2012) explore leading indicator properties of US
macroeconomic variables at business cycle frequencies, while Chen and Mills (2012) investigate estimates
of the output gap, or cycle in Gross Domestic Product, for the Euro area. Busetti and Caivano (2016)
study the Italian business cycle using band pass filtering; Riinstler and Vlekke (2016) examine cyclical
components related to both housing and economic output; and recently, Gonzalez and Marinho (2017)
analyze cyclical patterns in credit and capital with a Bayesian approach to stochastic cycles as in Harvey,
Trimbur, and van Dijk (2007). A problem with Harvey and Trimbur (2003) is that the filters make use
of trends with ever increasing orders of integration. Here, we extend the trend so that the component
remains integrated of order one, even as the persistence increases; this helps avoid implausible features
like high-degree polynomials in the long-run forecast path. Hence there can be stability in trend-growth
while maintaining flexibility in the low-pass filters connected to the models.

An "ideal" filter, which has a block-like gain function, is a special case of the generalized Butterworth
filters. In this paper we give explicit representations, using a more general filter class than in Harvey
and Trimbur (2003), that are advantageous compared to previous work. Baxter and King (1999) and
Christiano and Fitzgerald (2003) focus on finite sample approximations to a particular "ideal" filter.
(Throughout this paper, we keep with standard terminology and refer to a block-like filter as the "ideal"
filter, while recognizing that it may be far from ideal in reality.) To emulate such a filter with pre-
specified business cycle periods, Baxter and King (1999) present a time-invariant approximating filter
that has become popular in economics. Their approach begins with the range of periods suggested for
business cycle fluctuations in the early work of Burns and Mitchell (1946), which extends from 1 1/2
to 8 years. They impose this interval stringently on the pass-band of the filter; mandating that all
relevant frequencies receive an equal weight of unity and that those outside the interval be completely
annihilated.

In this paper, a primary goal is to improve on the "ideal" filtering methodology used in previous
literature along three dimensions: the contour of the gain function, the treatment of end-point effects,
and the availability of diagnostics for the filter’s appropriateness. A related aim is to expand the available
methodology and allow for adaptive measurement of cyclical movements in economic indicators that

have different dynamic properties. To achieve these goals, we give various modelled forms of the "ideal"
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filter based on extensions (to account for more general trend dynamics) of the generalized Butterworth
class in Harvey and Trimbur (2003). The modelled ideal (MI) filters are designed explicitly using
various parameter combinations and have a direct basis in unobserved components models that generate
approximations to block-like gain functions as their optimal cycle estimators.

The MI filter solves the three key deficiencies of the Baxter-King (BK) filter. First, while the BK
gain displays substantial ripples in its variation over the desired band, the MI filters’ typical gain has
a significantly more stable pattern and gives a far closer match to the "ideal" filter’s gain function.
Second, the BK filter has the drawback of truncating the extracted cycle around the end of the sample,
so it omits estimates at the most important times for analysis of recent and current conditions and
for making informed policy decisions; in contrast, the asymmetric MI filters that give the observation
weights for near-series-endpoint estimates are provided by standard algorithms or formulas. Third, the
BK filter does not allow us to evaluate the viability of the ideal filter’s underlying assumptions, whereas
the MI filter directly makes available statistical evidence on its underlying models’ performance.

In the following, in terms of applications we are primarily interested in macroeconomic indicators and
in the consistent measurement of their cyclical fluctuations. For example, the assessment of the short-
to medium-term performance and "health" of the macroeconomy depends on measuring the stochastic
cycles in diverse economic indicators. In contrast to having period ranges like Burns-Mitchell (1946)
refer to the filter, a more satisfactory approach is to instead let them refer directly to the cyclical
component — in a series that also generally has trend and noise components. This direct specification
lines up better with the original intentions of business cycle researchers; in noting their intention to follow
Burns and Mitchell (1946), for instance, Baxter and King (1999) explicitly state that Burns and Mitchell
(1946) specified business cycles as cyclical components of no less than six quarters in duration and that
they typically last fewer than eight years. In a modelling framework, such conditions of intermediate
frequency may be used in a more direct and plausible manner and may help guide parameter values that
determine trend and cycle spectra. This contrasts with emulating a certain gain for the filter — which
should instead adapt to how the series’ components are related. Generally, the preferred gain functions
have varying curvature at low and high frequencies and a location that fits with the properties of the
input series, specifically with how the trend and noise component relate to the cyclical part.

As explored in this paper, the failure to adapt and modify a prespecified ideal filter entails risks to the
most basic conclusions about the cyclical properties of a time series. For instance, with the indiscriminate
application of the ideal filter, serially correlated output that appears to have some cyclicality is produced
from pure random noise. As another example, an artificial cycle is erroneously generated from a pure

random walk trend when applying an ideal band pass. Such spurious results and errors occur because,
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while starting with a plausible periodicity range, filters like that of BK skip crucial steps in jumping
directly to the gain function. Clearly, there are advantages of simplicity and automatic application in
the use of an ideal filter, and this provides a strong motivation for the current paper’s examinations of
it. However, as an offset to this benefit, there is a cost to using the ideal filter that can be substantial
and that depends on the input series. These costs may be understood via the modelled version of the
ideal filter set out below.

The paper proceeds as follow. In Section 2, we present the model-based representations of the ideal
filter and compare them with the BK approach. With given sets of parameter values for different indices,
the class of generalized Butterworth filters, along with a further generalization related to flexibility in
the trend, is brought to bear on the design problem. Section 3 discusses and highlights the crucial
limitations of the ideal filter with illustrations. Section 4 aims to clarify filter formation from underlying
components, which can be used for a wide range of problems, and show how the component dynamics
in the frequency domain feed into the design of filters. The decomposition model for macroeconomic
data is based on prior notions of component behavior, that involve business cycle knowledge; the op-
timal estimator of the cycle then generates band-pass filter classes. In Section 5, we give an explicit
framework with unobserved components models, which express the series’ statistical behavior and give
a quantitative lens for interpreting dynamics of trend-cycle-noise and their inter-relationships. Here, we
make adaptive band-pass filtering operational through a choice of parametric models for stochastic trend,
cycle, and noise components followed by optimal signal extraction. Parsimonious models are considered
with standard models for stochastic trend, and with different variations of a stochastic cycle model.
Analytical gain functions of the generalized Butterworth filters and the corresponding filters for related
models follow from derivation of minimum mean-square error cycle estimates. Section 6 then compares
the modelled ideal filter to that of the BK and adaptive filters in an application to extracting economic
cycles. We consider a dozen time series of national accounts data, taken from the Bureau of Economic
Analysis, that include Gross Domestic Product, Investment, Consumption, and other major categories
of economic output. For certain series, it turns out that the cycle is either artificially dampened or
incorrectly amplified by the ideal filter, whereas an adaptive filter accommodates the different cyclical

intensities found among the series. Section 7 concludes.

2 Ideal filter approximations: representation and evaluation

The main goal of this Section is to form model-based versions of the ideal filter to more effectively handle

situations when such a filter represents a tenable approach. Note that, as a general strategy, rather than



impose conditions on the gain, the current paper suggests a different approach, where the knowledge
about business cycles and their periodicity refer to the components and where the filter is adapted to
the input series. Nevertheless, in certain cases, an ideal filter may be a reasonable notion to entertain.
Therefore, instead of going from model to filter, in this Section we proceed in the opposite direction and
study the model that implies a certain emulated gain function. In this case, the target is the ideal filter
with gain indicated in figure 1 below. We first highlight the basic decomposition that is implicit in the
use of all filtering techniques and that is made explicit by specification of models with stochastic trend
and cyclical components. Next, the BK filter is reviewed and some major shortcomings are noted. The

rest of the Section is then devoted to the development of modelled representations of the ideal filter.

2.1 Decomposition and unobserved components

Band-pass filters aim to remove both low and high frequency movements in a time series, and so can give
smoother estimates and clearer indications of major transitions in the cycle. The basis for the design
of a band-pass filter — its purpose and necessity — is to extract a cyclical component 1),, made up of a

mid-range frequency spectrum, from a series y; that has other components:
yt:ut+¢t+€t7 t:]-aaT (1)

where 1, is composed of low-frequency parts and may be interpreted as stochastic trend and e, captures
any remaining noise.

In this paper, as empirical examples, we consider applications drawn from economics, for which the
decomposition in (1) is quite natural and is connected with business cycle interpretations. Hence, the
popularity of the ideal band pass filter of Baxter and King (1999) is not entirely surprising. Most
major economic series such as real GDP have a trend dominated by frequencies at the low end of the
spectrum. For an activity- or output-related variable, the trend component is dominated by forces such
as changes in population and productivity; it is described by growth theory and evolves slowly over
time. For other series, such as the unemployment rate, there may be other kinds of demographic factors
behind the trend. The cycle component has rather different properties, representing the expansions and
contractions that tend to recur around the trend as demand conditions adjust; these fluctuations have
some central frequency in an intermediate (business cycle) range. Lastly, most economic data is subject
to measurement error or is influenced by idiosyncratic effects unrelated to trend or cyclical movements
as well; hence the need for the band pass to cut out the highest frequencies.

In a later section we consider an explicit class of stochastic models of the form (1), which gives a

scientific and precise base for filtering methodology. This allows the use of statistical modelling principles
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and adaptive filter design. In the current section, we proceed directly to filtering in the frequency domain

to discuss representations of the ideal filter.

2.2 The Baxter-King filter

Many researchers have applied a strategy of gain emulation and have in particular sought to reproduce
the "ideal" filter!, which has a perfectly block-like gain function, as closely as possible in a finite sample.
The simple filter by Baxter and King (1999) [henceforth abbreviated as BK filter] represents the most
popular representation for economic data. This sub-section compares an approximating modelled filter
with the BK version.

In macroeconomic work, Baxter and King (1999) proposed using the interval from 6 to 32 quarters.
The perfectly sharp gain then passes through this particular interval of periods associated with business
cycles. The corresponding frequency range has lower limit A, = 7/16 and upper limit A\, = 7/3.
The filter has equivalent impact on the amplitudes of different frequency parts within that interval, as
indicated by the dashed line in figure 1.

Given a truncation parameter K, the BK filter may be expressed in terms of the lag operator L as
K
BEK(L)= Y _ bL
j=—K
where the coefficients are

by = (1/|jlm)[sin[j] Ay —sin[j|A] +cu —a, j#0

bO = Gy —

with the constants c,, ¢; given by

1= S sinlj| A/ () 1= S sinljl AJ/G)

j=—K j=—K

9K + 1 4= 9K + 1

Cy =

The construction of the filter involves the choice of K; increasing this parameter gives a closer finite

sample approximation but leads to the omission of K estimates at both the beginning and end of the

'The use of the word "ideal" implies an innate preference for this sharp gain function. But such a rigid prior on periods
is often inappropriate for the gain, as illustrated in later sections. It may be more ideal for the filter to account for the
spectral shape of the cycle consistent with the input series and with its trend; in economics, we expect the cyclical part’s
spectral peak to lie within a vaguely defined business cycle range and which otherwise can have flexible characteristics.

We use the standard terminology "ideal" in this paper only as an adjective describing the block gain shape.



sample. The authors suggest using K = 12 for quarterly data as a compromise between diminished
accuracy in representation of the filter and loss of information near sample endpoints.

A highly unsatisfactory aspect of the BK filter is that, in the crucial pass-band region of intermediate
frequencies, the gain function displays large, undesirable ripples. Figure 1 shows the gain of the BK
filter (the dashed-dotted line) vs. the "ideal" gain (dashed line) with K = 12. As the frequency increases
starting from the low end, the BK gain first rises to around 1.05, then falls back to below 0.95; finally,
the gain rises to nearly 1.10 before finally tapering off toward zero at the right edge of the pass-band

interval. Additional oscillations in the gain function of lesser consequence occur at higher frequencies.
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Figure 1: Gain functions for BK filter (truncation of twelve observations, as recommended for quarterly
time series) shown as dotted-dashed line, ideal gain shown as dashed line, and model-based representation

of ideal filter indicated by solid line.

2.3 Ideal Filter — Modelled Versions

We consider generalizations of the Butterworth class of filters whose gain functions have the following

compact forms:

1
¢ (2—2cos \) (1+¢%—2¢ cos \)m—1

GBY (X0, Ae, p, ¢, ) =

1 + 1+p2 cos? Ac—2p cos A cos A " +1
ie (2—2cos \)(1+¢p% —2p cos A)m—1 9x 14p*+4p2? cos? Ac—4(p+p3) cos Ac cos A-+2p2 cos 2\
(2)



and

q [ 14-p2 cos? A\e—2p cos \c cos A "
K 14p%+4p2 cos? Ac—4(p+p3) cos Ac cos A+2p2 cos 2\
GBY (X 6, A, pr ¢, ) =
mn\"\ ¥ s My 4 > o )
1 + 14p? cos? Ac—2p cos Ac cos A +1
q¢ (2—2cos \)(1+¢p%—2¢ cos \)m—1 Ix 1+p%+4p2 cos? A\c—4(p+p3) cos Ac cos A-+2p? cos 2

(3)
where 0 < ¢,p < 1 and ¢¢, ¢, > 0. The notation makes explicit the dependence on parameter values.
The five parameters {¢, A, p, qc, ¢} all have interpretations related to implicit time series models of
trends and cycles; in this Section we focus on their role in determining the form of the gain function.
Note that this form is more general than that in Harvey and Trimbur (2003) since it allows for values
of the trend-related parameter ¢ less than unity; the merits of this added flexibility are discussed with
reference to underlying statistical models below.

Given positive integers m and n, {GB  (X\; A, p, 4¢. @), GBE (X Aey p, dc, 4x) } stands for a low-pass
and band-pass filter pair, each of order m,n and defined mutually for internal consistency. The positive
integer m denotes the low-pass index and n the band-pass index of the pair of filters; this terminology
refers to the fact that n primarily influences the band pass filter and m the low pass filter of a given
collective, though both m and n affect the precise forms of GBfﬁg?n and of GBf;{’m jointly. The parameter
Ac is a major frequency that determines the location around which the band-pass filter is concentrated.
The parameters g; and g, are referred to as "signal-noise" ratios for the trend and cycle, respectively,
due to their connection with unobserved components models that is explained in more detail below; they
influence the gains’ location and spread. The parameters ¢ and p mainly determine the filters’ width
and curvature.

Expression (3) encompasses a wide variety of gain shapes for the band-pass filter, which can be tuned
to the desired shape by an appropriate setting of orders and parameters. The orders m,n directly affect
the sharpness of the filters, with higher m being especially pertinent for more rectangular low-pass filters
and higher n for sharper band-passes. The two filters {GBffl”n()\; ey P54¢, Gr), GBgf}n()\; Aoy £, 4c, Q) } 0
a given pair work in tandem and have complementary gain functions, which tend to focus on different
areas of the frequency interval, while also sharing some overlap at contiguous frequencies. Here, we
are primarily interested in the band-pass member of each pair; the band-pass filter is able to extract
out the mid-range part of the spectrum in a way that concurs with how the low-frequency part is
extracted by the complementary low-pass. For other purposes, note that if we were to focus attention
on trend estimation, the low-pass filter in (2) improves on techniques like the HP filter (which is given
by GBE (A Ae, p, s qx) by setting m = 2, ¢ = 1,q¢ = 1/1600, and g, = 0), since it now adapts to the
cyclical movements of the input series.

Using the parametric class given in equation (3), we can choose various combinations of parameter
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Figure 2: Gain functions for different ideal filter approximations with n = 6,both with p = 0.8, ¢ = 0.97.
For the solid curve {g,,q,, A} = {0.0124, 0.0322, 0.4910}, while for the dotted curve, {g;,q,, Ac} =
{2.524, 0.279, 0.398}.

Figure 3: Close-up showing a high-frequency part — the right-side tail — of gain functions for different ideal
filter approximations with n = 6,both with p = 0.8, ¢ = 0.97. For the solid curve {QC,GH,XC} = {0.0124,
0.0322, 0.4910}, while for the dotted curve, {qc,quc} = {2.524, 0.279, 0.398}.
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values to design approximating filters for the desired gain profile, which in this case has the perfectly
sharp profile with pre-specified boundaries related to business cycle periodicity. To achieve sufficient
sharpness of the gain and emulate the block-like shape of the "ideal" filter, we require relatively high
values for n. For the low-pass order, we set m = 2; higher values could be used, but they are not
necessary for generating sharp band pass filters, and m = 2 is underpinned by a simple, plausible trend
model as explained below. To explore the properties of different band-pass order representations, we use
three alternative values given by n = 4,6, and 8. The order n represents a choice of trade-off between
filter length in the time domain (which relates to achievable accuracy of finite sample estimates) and
sharpness of gain function. Other aspects of the trade-off pertain to implied statistical models; the
number of total processes needed in defining the model is linked to n, so that a sixth order case has
12 total cycle and auxiliary elements. Also, models with higher n require more computing time for
estimation and smoothing. In theory, arbitrary positive integers could be used for m and n. However,
very high values of m would imply implausible implied trend models, as noted later on. ~We have
experimented with filters having m < 5 without computational hurdles. In terms of the band-pass
index n, values of at least 10 are feasible computationally; since the incremental differences in raising
n become very slight at this point, we did not investigate even higher values, though they remain a
possibility that could be helpful depending on the application.

Given the three candidate values of the order n = {4,6,8}, substantial sharpness in the gain also
necessitates a sufficiently large damping factor; for the current application, the value p = 0.8 is chosen.
Lastly, a high value of ¢ (as discussed below, this relates to the persistennce of trend-growth) is needed,
so the value 0.97 (between the lower bound of 0.95 used for quarterly data applications and unity) is
used. Using the orders {4,6,8} gives a broad range of gain sharpness - orders less than 4 are unlikely to
produce decent approximations, while increasing the order to above 8 involves some undesirable features
with excessively intense cyclical patterns in end of series estimates (this implies an extremely resonant
cycle that has implausible forecasts). Furthermore, in the evolution toward a block-like filter, as n rises,
the benefits begin to reach a limit at very high orders, i.e. the advances from 4 to 6 are more noticeable
than those from order 6 to 8, whereas incremental improvements in gain sharpness become rather small
after order 8.

For a given order, GBffﬁn()\) also depends on the primary frequency parameter and two major g-
ratios, which represent the three remaining filter parameters: ¢, g., and A\.. The flexibility in the
approximating gain is achieved — apart from changing n — by using different combinations {q¢, ¢., A},
which are obtained as the solutions to three equations. The first two equations are composed by setting

the gain equal to one-half at the business cycle boundaries, that is GB/, () = 1/2 for A = 7 /16, /3
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corresponding to periods of 1 1/2 and 8 years. A third equation is formed by setting the gain equal to
a high value very close to unity (the gain will never be exactly one though it may get very close) at a
mid-range frequency, that is GB (\) =1 — & when A = 0.55 for some small ¢ > 0. This constitutes
three equations in three unknowns that may be solved numerically. In practice, this was achieved using
a program written in the Mathematica language of Wolfram (2003); this approach is both simple and
very fast to execute. By varying e monotonically and obtaining the solutions {g, .., A}, the designed
gain is gradually adjusted in rectangular resolution and fidelity to the ideal gain.

For each n, there is a certain span in the right tail’s sharpness that can be attained, which translates
into different qualities of noise removal. To illustrate this, for n = 6 twelve representative combinations
for a certain set of €’s, are selected among the various solutions — there is a single solution for each specific
g, so that by varying e different parameter triplets are obtained. As € is adjusted monotonically, g,
and g, also vary monotonically. Figure 2 displays the two extreme cases considered among the twelve
possibilities, in the sense of being the sharpest vs. the least sharp. Ten other combinations with g,
and g, lying between the values in the extreme cases are also considered. In figure 2, the dotted line
represents the approximation with the least noise elimination and corresponds to {@C,QK,XC} = {2.524,
0.279, 0.398}, while the solid line gives the sharpest gain obtained for {QC,GH,XC} = {0.0124, 0.0322,
0.4910}.

The close-up in figure 3 reveals the contrast in the right-side tail in greater detail and clearly indicates
how the filter with smaller values of g., g, eliminates more high-frequency parts. The discrepancy in
low-frequency removal is more modest and is detected through examination of the close-up in figure B.1
in Appendix B. Between these two extremes is a sequence of filters with gains enclosed by the two shown
in the figures, where in each case the gain equals one-half for periods of 1 1/2 and 8 years.

A similar type of filter range occurs for the order set to 4, and the gain is less block-like than for sixth
order. Figures B.2, B.3, and B.4 in Appendix B show how the span between the gains, with the slowest
relative to the most rapid descent at higher frequencies, appears somewhat larger. On the other hand,
for n = 8 there is less apparent variability in the frequency response’s contour among the possibilities

entertained.

2.4 Determination of ideal filter representations

Note that the suitability of the ideal filter representation depends on the type of series in question.
Hence in Section 6, a number of major macroeconomic time series representing Gross Domestic Product

and its components are analyzed to explore patterns in the appropriateness of various approximations
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and variation in results across data series. These 12 time series are chosen because they indicate the
most important measure of activity in the domestic economy, and its major components have different
dynamic properties, making it fruitful to analyze the different major components separately in order to
understand overall activity. For a given series, each representation (12 combinations for each of n = 4, 6,
and 8 so 36 in total) of the ideal filter is fitted by maximizing the log-likelihood subject to the constraints
implied by the filter parameters, which consist of variance ratios. The full parameter vector includes
all variance parameters and slope constants that describe the series’ dynamics, while the specification
of ¢'s in the filter’s formula omits information about a scale factor and about trend growth rates. Note
that the differential behavior in the right tail of the gain function across different approximations means
that different quantities of noise will be removed from an input series, which will affect the smoothness
of the extracted cyclical signal. The estimated noise variance depends on the ¢ values, already specified
in the filter form, and relates to the observed process’s scale.

For order 6, the parameter estimates are contained in table set D3 in Appendix D, while the corre-
sponding diagnostics are reported in table set D4. For each series, various fit statistics help determine
the best representation from among the 12 possibilities. Comparing these choices across the 12 national
accounts variables leads to the selection of a specific representation from among the 12 candidates. For
each of the three band pass orders, a representation was selected in this way, where the aim is to focus
on approximate ideal filters modelled for quarterly US series related to economic activity. Details are

provided below in the Application Section.
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Figure 4: Three modelled representations of the ideal filter for various orders.

Figure 4 shows the three gain functions corresponding to representations of order 4, 6, and 8. The
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Figure 5: Three modelled representations of the ideal filter for various orders, with a focus on the low

frequency region.

parameter settings for {q, G..» A}, as determined based on diagnostics and fit statistics for a set of U.S.
macroeconomic time series, are {0.04946, 0.04589, 0.4611} for n = 6, {0.05722, 0.174, 0.4146} for n = 4,
and {0.05188, 0.01226, 0.4815} for n = 8. In terms of fidelity to the ideal gain, there is a noticeable
improvement in the approximation in going from fourth to sixth order, in that the right side of the
gain around the higher frequency cutoff is more cleanly captured; components with larger frequencies
are more effectively removed. Increasing the cycle index further to n = 8 also leads to an improved
approximation, though the changes are more modest. There are similar alterations in the left-hand
side of the gain, as illustrated in the close-up plot in figure 5, which focusses on a sub-interval of low
frequencies. These differences appear small in figure 4 but are brought out more clearly in figure 5 once
the focus rests on the more limited span of frequencies relegated primarily to trend. Similar to the high
frequency part of the spectrum, in the low frequency area there is a significant adjustment toward a
block-like gain shape as n increases from 4 to 6, and further moderate changes in moving to order 8 in
figure 5.

Figure 1 above shows the preferred ideal filter representation for order n = 6; recall the most notable
contrasts with the BK filter: GBY, (\) cuts out more low-frequency content and is far smoother than
BKs. In applying any given filter, the effect of the operation is to take a weighted average of the
observations. We compute the implied weights for the model-based version of the "ideal" filter using
the "zero-one" method; these results are compared to the BK weights in figure B.5. The patterns for

the two filters appear close for many separations; however, there are some differences in weights that can
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be gleaned from the plot, in addition to non-zero weights at lags beyond the 12-period truncation for
the modelled version. This divergence in the weights at bigger separations is reflected in more apparent
discrepancies in the gain function, where the longer kernel of the model-based filter leads to the more
attractive frequency profile displayed in figure B.5. Appendix B gives some additional details on the
design of suitable approximations to the "ideal" filter.

Note that this analysis of gain functions and filter design has been conducted with economic data
in mind. In a different type of application, say with data related to the solar cycle — manifested in
sun-spot numbers or intensity for instance — the boundaries of the ideal filter could be changed to more
appropriate values, perhaps surrounding 8 to 14 years or so. (Likewise, with respect to the modelling
strategy described below, the interval restriction for the central frequency parameter could be adjusted
— or simply discarded if the likelihood function is sufficiently well-defined around a maximum for some
plausible period). The same approach to approximation may then be used to design suitable filters for

the modified range.

3 Flexibility in filter design and problems of the "ideal" filter

In certain applications in engineering (from which field it originated), the "ideal" filter may indeed
represent the choice strategy; for time series in economics and the social sciences, however, this is typically
not the case. The entire point of using a band-pass in the first place is that the cycle component combines
with other components. We must apply some operator, or weighting function, to the observations to
extract out the fluctuations of interest in the presence of these additional components. Below, we
show how the gain functions of optimal filters depend on, for instance, the typical strength of cyclical
movements, the type of trend, and the degree of variability of trend shocks and irregular movements.
In general, the stochastic nature of fluctuations and the composition of the chief dynamics warrants
a more nuanced and careful treatment to avoid the kind of pitfalls illustrated in the next sub-section.
In particular, for two simulated series, we examine the output from the empirical filter of Baxter and
King (1999); though they proposed a specific simple and fixed approximation to the "ideal" filter,
the conclusions hold generally for any reasonably close approximation. For the first case, we use an
elementary stochastic trend - the simple random walk case; for the second case, we filter a purely random
process. Both examples are devoid of cyclical dynamics, and they provide fundamental and poignant

illustrations of the substantial risk of fallacious results with a non-adaptive filter and how, at a minimum,
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it is preferable to consider a broader array of gain functions that have some degree of flexibility.

This section illustrates two basic examples of spurious results coming from the automatic use of
the "ideal" filter as motivation for our modelling methodology. We start with a series given solely by
a stochastic trend. For this case, with all changes permanent, when extracting a cycle, it is preferred
that the filter produce a series of negligible values and attribute most of the movements to trend. If
however, a fixed and pre-specified band-pass filter is applied, such as the "ideal" filter, then a cycle
is effectively created by the filtering. For the second example, with series equated to white noise, the
spurious generation of cycle by the "ideal" filter is also a severe problem; our adaptive design method

evades this pitfall.
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Figure 6: Simulated random walk (dotted green line) and estimated trend (solid blue line) using model-

based approach.

3.1 Simulated illustration I: Random walk trend

Consider as a first case a time series that has only a trend component, y; = p,. This could be viewed
as a limiting situation of a variable that has a very weak cycle and very little additional noise, such as
a core inflation series with volatile price components removed. The simplest stochastic trends, random

walks for I(1) series or smooth trend models for 1(2) series, are widely used in time series modelling.
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Figure 7: Estimated cycle (solid blue line) using model-based approach, along with output from the BK

filter (dotted red line), for a simulated random walk.

Here, we consider for the nonstationary part a random walk y, defined by

e = phy_y + ¢y G~ WN(O, 0?) (4)

Suppose we have a simulated series for u, based on disturbance variance of 0% = 0.01 and a starting
value of p, = 3.00 with 7" = 350, as displayed in figure 6. The trend generally meanders down over the
sample period, with the pace quickening in the latter part. Figure 6 also shows the estimated trend from
fitting a time series model according to the method described in Sections 4 and 5. Figure 7 displays the
BK output, along with the estimated cycle. The span of the BK output, which might be erroneously
associated with a cyclical amplitude, is far greater than that of the model-fitted cycle. Additionally,
there is a good deal more persistence in the BK-generated series, and it appears to possess peaks and
troughs and spurious qualities that would be expected from the estimation of a veritable cyclical process.
Now, in this case where the series contains only a trend, it is desirable to reach a conclusion as close as
possible to the non-existence of a cycle or a very weak one at most. It is clear from figure 7 that the

BK filter fails in this regard.

The previous example was based on a nonstationary trend component. It might seem that there are
special implications of applying a band-pass filter in the presence of nonstationarity given the theoretical

dichotomy between stationary and nonstationary dynamics. This point is raised for the HP filter in

17



375 |
350
325

3.00

275

250

225 | | ‘

Figure 8: Simulated Gaussian white noise (green, dotted line) and estimated trend (blue, solid line)

using model-based approach.

Harvey and Jaeger (1993), while Murray (2003) considers the "ideal" filter in this manner. However, as
discussed in Appendix C, the root cause of the filtering problem is the mere presence of other components

with spectral power in the band of interest, whether stationary or nonstationary.

3.2 Simulated illustration II: White noise irregular

To give a different representative example and to illustrate that filtering distortions do not critically
depend on nonstationarity, we now consider a second case where adaptive filtering may help avoid
serious errors in analysis. Suppose the pre-specified band-pass filter is mistakenly applied to a pure

irregular process. The simulated series is now ¥y, = o+ €, where
g, ~NID(0,0%), t=1,....T

Figure 8 shows such a series that has no stochastic trend or cycle present; the simulation is based on
an irregular variance of 0.1 and a constant mean of j;, =3.00 again with 7" = 350. The results of using
the Baxter-King band-pass are shown (as the dotted line), along with the adaptive results (as the solid
line). The adaptive results were again obtained by using a model-based approach and first estimating
a general model with all three components prior to filtering. In figure 9, it can be seen that the BK

filter gives rise to an apparent cycle that has more persistence than a white noise process and that has
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Figure 9: Estimated cycle (red, solid) using model-based approach and output from BK filter (black,

dotted) for simulated Gaussian white noise.

peaks and troughs at short intervals; this result constitutes a completely spurious cycle being created
out of pure noise. Using such a false discovery for policy or other major decisions could prove extremely
detrimental. In contrast, the modeling approach gives the correct finding of the absence of cyclical

components in the series.

4 Cyclical movements and adaptive gain functions for diverse
time series: basic considerations

This Section sets out the framework underpinning the adaptive estimation of cyclical movements. This
general formulation allows us to develop ideal filtering methodology that has several advantageous aspects
and that gives a way to understand and evaluate the implicit assumptions, on the modelling side, involved
in the application of an ideal filter approximation. We consider how an appropriate band-pass filter
seeks to extract a cyclical component from an observed series in the presence of other components; then
the defining characteristic of the band-pass means having its gain concentrated around an adjustable
span of intermediate frequencies — in a malleable fashion.

We first discuss the flexible expression of cyclical periodicity that is designed to let the data speak and

account for different quasi-periodic properties across series. These moldable cyclical notions are used

19



in combination with trend and noise, and directly expressed in unobserved components form. Then,
signal extraction methods can be employed to decipher the precise structure of the gain function of the
optimal band-pass.

At the core of the problem, a given set of observations must be filtered to estimate cyclical components
when additional components exist that can be confounded. Most macroeconomic series are nonstationary
and usually contain a prominent stochastic trend as well as being subject to short-lived or temporary
factors. Indeed, the premise for using band-pass filters is to extract the cyclical component from a time
series by removing such low- and high-frequency components. From a time series perspective, we can
express this structure with trend-cycle-noise dynamics as in (1), where 1), is a stationary component
having cyclical properties’ and ¢, is higher-frequency noise. We stress that such decompositions are
already implicit in the gain of a band-pass filters; an econometric specification of the model makes
explicit their stochastic form of components and provides a theoretical basis and quantitative approach
for estimation of cycles. In this way, the unobserved components approach with structural trends and
cycles provides a bridge between frequency-domain ideas and strategies on the one hand, and statistical

and econometric modelling on the other.

4.1 The expression of periodicity through cyclical spectra

From the frequency domain perspective, we use a versatile concept of cyclical process as reflected in a
spectral peak at some mid-range period. This general definition allows for diverse cases; three spectral
examples are shown in figure 10. A certain region of central frequencies receives the most emphasis, and
in having a gradual decline in the spectrum about the peak, there is generally a continuous change in
weights. This means that nearby frequencies are weighted similarly, rather than going from a significant
positive weighting to being suddenly and sharply deleted when the frequency changes by very small
amounts. In contrast the ideal filter’s definition via the gain function involves discontinuity at the high
and low cutoff frequencies.

In figure 10, the dashed line represents a sharply defined cycle, as the amplitude of frequency parts
decreases rapidly as the distance increases from the central frequency of maximal spectral power. The
dotted line indicates a cyclical process of higher frequency at its peak and with a larger spread; compared
to the sharp apex case, its movements can be expected to show more times of either very persistent or

very noisy stretches within a general upswing or downturn; essentially the character of fluctuations shows

2If a band-pass filter is used to extract the stationary component, then clearly we expect the stationary component to

have strong mid-range components characteristic of a stochastic cycle.
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more variety relative to a simple fixed cycle. Finally, the spectrum of a longer periodicity stochastic
cycle is shown by the solid line. In addition to having a lower central frequency, the process also
has substantial power around the lowest frequencies near the origin, reflecting significant persistence
in its fluctuations. Overall, these three examples are intended to illustrate the generality of the cases

considered, which aims to cover the wide array of stochastic cycles that may be encountered in practice.
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Figure 10: Three examples of a stochastic cyclical process, represented in the frequency domain, that
have a peak at a mid-range period. The solid curve is the spectrum of a highly persistence cycle. The
dotted curve represents a weakly defined cycle. The dashed line is the spectrum of a pronounced
stochastic cycle. The vertical solid lines mark their central frequencies. The vertical dotted segments

mark the business cycle interval end-points with periods of 8 (left) and 1 1/2 (right).

In macroeconomics the basis for business cycle analysis is our knowledge about previous upturns
and downturns in the U.S. economy, which have had an average period of around 5 to 8 years; this is
suggestive for the spectral peak location. The cyclical movements have displayed a range of different
realized durations and intensities across specific historical episodes. Previous patterns in macroeconomic
growth suggest that a full swing in the business cycle — a sequence of expansion followed by contraction
— of about six to eight years is more likely than a short boom-bust pattern of around two years or than
an extra long swing of say, twelve years or more. This suggests for the fluctuations a range of possible
periodicity — so the appropriate spectrum may have a good deal of breadth around the peak that occurs
around some intermediate period — and with declining power away from the peak. We recognize that
such notions must be applied only loosely for economic time series, since each individual time series will

have its own idiosyncrasies. Therefore the range, location, and other aspects of cycle spectrum naturally
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differ across indicators having their own individual properties.

Further, we don’t know in advance about the exact properties of the cycles before the analysis; indeed,
the modelling of business cycles remains subject to uncertainty, and one goal of this paper is to shed
new light on this area. We allow for flexibility in cyclical spectra across different economic series, which
then implies malleable filters for business cycle movements, with the detailed structures being guided
primarily by the data. There is also the consideration that business cycles may have evolved and may
show longer typical duration in the post-WWII period; the typical period may have changed from say
5 years to as high as 8 years, which means higher probabilities of episodes lasting, say 10 or 12 years.
As evidenced in recent decades, somewhat more extreme episodes are possible; the occurrence of rather
long expansions supports the occasional presence of significant momentum or longer periodicity in the

business cycle.

4.2 Spectral shapes for economic series and estimation of cyclical compo-

nents

For economic time series (and data in numerous other fields), the frequent presence of trend has been
well-known for some time; this motivated for instance Granger’s (1966) discussion of the "typical spectral
shape" as having most of its power concentrated toward low-end frequencies. Additionally, as discussed
above, the movements in macroeconomic indicators (measuring aggregate activity), relative to trend or
long-run level, tend to recur with some regularity and in periodic fashion. This suggests a generalization
of Granger’s spectral shape — an extension of the kind of (pseudo-)spectrum common for an observed
process in economics — to incorporate additional power around some intermediate vicinity as in figure
10. The use of ¥, in (1) is tantamount to such an expansion of form in the frequency domain.

An illustration is given in figure 11, which builds the overall spectrum, f,()), from component spectra
(assuming uncorrelated components). The spectra are based on models (7) and (13), set out below,
with certain parameter values. Starting from the frequency origin and moving to the right, the trend
pseudospectrum, f,(A), tapers off while the cycle spectrum, f,,()), gradually rises at higher frequencies.
The sum of their spectra gives the spectrum of the observed series, f,()), which has the same pattern
as f,(\) around low frequencies but also has a local spectral peak from fy(\).

As the frequency transitions into the mid-range, the trend’s pseudospectrum tapers off as the cycle
spectrum rises, and the two eventually intersect at some point, with this particular frequency equally
associated with trend and cycle. As the frequency increases further, the cyclical spectrum dominates

as its apex is approached. At still higher frequencies, fy(\) falls off and crosses the irregular spectrum,
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Component and Data Spectra

Figure 11: Ilustration of trend pseudospectrum and stochastic cycle spectrum.

Figure 12: Illustration of trend (low-pass) and cycle (band-pass) filters formed from model.
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fe(A\), which is flat.
Starting with the base decomposition in (1), the optimal filter’s gain function accounts for the re-
lationship between the components as expressed in their spectra. The gain of the low-pass filter that

gives the optimal estimator of the trend may be expressed as

Ju(A)
F(\) = = 5
R OV AEVER Ay )
Likewise, the gain of the band-pass filter that gives the optimal estimator of the cycle is
fs(N)
F(\) = 6
LRSI VR REYERAOY )

where [p denotes low-pass and bp stands for band-pass. This gives the frequency domain expression
of the Wiener-Kolmogorov filters, which minimize the mean-squared error of each component (see Bell
[1984]).

The filter gains for the trend and cycle depend on the interactions among f,(\), fy(A), and f.(A).
Consider the band-pass implied by the trend-cycle components of figure 11; the gain is shown in figure
12. It starts out near zero for low frequencies and then gradually rises. The gain reaches one-half where
the spectra cross, and continues increasing as we move toward the peak of the cycle spectrum. The
gain never reaches exactly unity, though if the trend spectrum falls away rapidly enough as frequency
increases® and the irregular variance is relatively small, then the gain may come close. Finally, at higher
frequencies, the gain fades back toward zero. Hence, in general the band-pass gain has some curvature,
where the flexibility emerges from the combination of the components with various characteristics (and

with shared frequency regions in their spectra).

5 Adaptive estimation of cyclical components: explicit method-

ology

Above, the goal was to explain filter formation and give illustrations to clarify the method. Here, we
make the method operational by considering a certain class of models for (1). We then consider examples

of band-pass filters, which illustrate how one may design a specific gain profile.

3For purpose of illustration, I have selected an example where the trend pseudospectrum falls away gradually enough
so that the effects of the crossing with the cycle spectra can be seen graphically. In practice, the trend pseudospectrum

may decay more or less rapidly.
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5.1 Modelling economic fluctuations with stochastic trends and cycles

Explicit decomposition models are reviewed here for the essential trend-cycle-noise components. These
models have simple interpretations, they serve to make the adaptive filtering method operational, and
they also provide all the advantages of time series models in general - in giving statistical summaries and
parameter estimates (in this case, with intuitive quantities such as cycle period) useful for interpretations
and descriptions, whose explanatory performance can be measured via fit and diagnostic evaluations,
and allowing for forecasts of future values.

Here, we consider a damped smooth trend:

fy = Hy1 + By, (7)
Bi=1=¢)B+¢B 1+, C~WN(0,09)

where [3, is the slope, and the coefficient ¢ satisfies the relation 0 < ¢ < 1. Often, ¢ has been set to
unity, which gives the integrated random walk or smooth trend model.

A more flexible trend results from allowing this parameter to have values less than one, in which
case [3, has unconditional mean (. This specification describes the tendency for growth rates well above
or below 3 to revert back toward /3 over time. This seems plausible for economic series like real GDP;
following unusually high 3,, the smooth trend form with ¢ = 1 would imply that further positive and
negative changes of a given magnitude are equally probable. In contrast, for potential or trend output,
one would actually expect relatively rapid growth to more likely be followed by some moderation at
some stage. Regarding the mean, for some series, § = 0 is a plausible assumption. For instance, for
an inflation measure or the unemployment rate, it seems unreasonable that the series tends to increase
indefinitely moving forward, as policy responses would keep such advances in check. For GDP in
contrast, and associated component series like investment, there tends to be a positive long-term rate of
growth.

A more general trend is obtained as

Hong = Hopg—1 7+ 1415 (8)
e = ¢,Uz',t—1 + 115 1=2,..,m—1
with p, , = B8, as given in (7). This model underpins the generalized Butterworth filter whose gain has
the form in (2) and (3). Here we focus attention on an order m = 2 trend given in (7) because it works
well empirically, is relatively simple, and allows us to focus on the band-pass aspect.

In building structural time series processes for overall series or as components, we start with linear

difference equations and intertwine them with stochastic shocks. In the case of a cyclical component,
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we first consider a simple fixed cycle

Y, = Acos( At — w) (9)

with period 27 /)., amplitude A, and phase w being fixed parameters to start with. This initially
departs from a linear construction, but we can design a linear difference equation form by re-expressing
and transforming (9).

First, write

1, = (g cos At + 5 sin Act) (10)

which is equivalent to (9) with A = /¢35 +¢5* and w = tan~(¢§/1,). Next, let the amplitude vary

over time according to A, = p'\/1g + 15> where p is a damping parameter:

1, = p'(1g cos At + 105 sin A.t) (11)

with 0 < p <1 and 0 < A, < 7. The scale of oscillations decays by p each period.
We convert this to linear difference form by augmenting the cycle with a companion process ¢} that

also evolves over time, and then writing a recursion:

P, cos A,  sin A, Uy
= , . (12)
vy —sin . cos A, Uy
where the constants 1, and 1, become the starting values of the vector in the above equation. The linear
difference equation (12) generates 1, where the form including the process v} enables us to express the
cycle as part of a linear bivariate equation.

The definition of a stochastic cycle v, uses the above recursion and augments equation (12) by adding

a vector of shock variables to the right hand side. The process evolves as

COS A, sin A, _ s
(Gh _, Yy q L s (13)
(N —sin A, cos A, (O sy

where s; and s are the shocks feeding into the cycle and auxiliary process respectively. Then the
cyclical fluctuations tend to recur with frequency A., which may be interpreted as a central frequency,
with corresponding period of 27 /...

A time-varying amplitude can be defined as A, = y/(¢? +¢}?) , which would be the initial scale
of the cycle if, starting at time ¢, the cycle were projected forward in time in the absence of shocks.
Similarly, a phase can be computed via w; = tan~*(¢); /1,). Proceeding to t + 1, according to (12),
at first the position of the cycle advances by A., the amplitude is multiplied by p, and the phase stays

the same. However, with random shocks added to ¢,,; and v;,,, the amplitude and phase change
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stochastically over time. The particular manner in which they evolve is determined by the nature of
the shocks. In this way, stochastic properties of 1), depend on the specification of the shock vector.

Now in the simplest case, s; and s} are uncorrelated white noise, that is, [s;,s7] = [k¢, £7] ~ WN(0, 0?)
and the error r, is uncorrelated with «} for all s, ¢. This case is a first order cycle, ¢, ;. As another case,
the shocks can themselves be periodic; this form is connected with the idea of a resonant process, where
cyclical forces feeding into a process accentuate the overall oscillatory behavior of the system. A second
order cycle has stochastic shocks given by a first order cycle, i.e., 1, is subject to [s;,s7] = [, ¥7 ]
1, can be constructed to have even more resonance by taking the shocks in (13) to be of second order,
which gives a third order cycle, and so forth.

Generally, a class of models is built recursively, for n > 1, by making the shocks to 1, ; periodic of
order n — 1. In each case, the model in (13) guarantees a peaked spectral shape reaching its maximum
around A.. As n rises, the spectrum increasingly concentrates in a band around A.. Since a given value
of p is tied to more persistence as n increases, estimates of p for a given series usually show a pattern of
decline with rising order. This form with both x; and x; present, along with both s, and s}, is referred
to as the "Balanced" model type. An alternative specification with x; and all s} set to zero is called
the "Butterworth" form. These two models are discussed further in Appendix E.

Trimbur (2006) provides a detailed characterization of the "Balanced" cycles, for which analytical
expressions can be derived for properties in the time and frequency domains. The spectrum of this class

of processes has the form
fu,(N) = oV (n, p)hy(N) (14)

where V(n, p) is the cycle variance for 02 = 1, so that a2V (n, p) is the overall cycle variance for any
combination of n,p, and 02 = 1. The formulas for V(n, p) and hy(\) are given in Trimbur (2006).
The examples of possible cyclical spectra in figure 10 are based on this class with particular parameter
values. For reference the frequency range corresponding to six to thirty-two quarters is indicated by the
vertical dashed segments. These three cases of hy(\) give representations of different kinds of cyclical
behavior. The dotted curve represents a dispersed density that was generated with n = 6, p = 0.65, and
Ae = 27/12. This illustrates how a targeted spectral band or shape may be represented by densities that
are flexibly constructed. The solid-line spectral density was designed by setting the central frequency
equal to 27 /18, giving a major period of 4 1/2 years, and setting n = 2 with p = 0.72. There are three
primary differences in the two spectra. First, the solid density peaks at a lower frequency; second, it has
a greater spread and includes some very low frequencies connected with more persistence, and third, the

solid density includes less power at higher frequencies linked to periods of three years or less. Lastly,
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a more subtle difference is that the n = 2 spectrum contains slightly more of the very high frequency
components than does the sixth order case. The dashed curve indicates a more sharply designated
cycle.

For macroeconomic data, we might have some vague information about the spectrum of 1, related
to business cycle notions; so our broad expectation is that the cyclical spectrum resemble one of those
in figure 10. However, given that the precise shape of h,(A) is unclear, it becomes important to use
the available data for a given series to determine its precise cycle properties. One can choose among

different forms of v, ,, each of which may be estimated to tailor its underlying parameters. For the

n,t
"Butterworth" model, the dynamics are similar to those of the Balanced form. The power spectrum
has a compact form; however, as there is no known analytical expression for the variance, the spectral
density cannot be formulated in general.

For the third component in equation (1), the irregular ¢; is specified as white noise, a mean zero,
serially uncorrelated sequence of random variables, denoted by WN (0, 02) where o2 is the variance. If
the additional noise in the series stems from unusual events and perhaps also measurement error specific
to each period, then this assumption gives a reasonable starting point.

Throughout, we assume that uncorrelated disturbances drive the different components; this assump-
tion seems natural for components that have rather distinct properties, and it gives symmetric filters near
the middle of the series. This assumption can be generalized; however, other restrictions may become

necessary to make sure the model stays identified, and the close link with the band pass literature in

statistics would be broken.

5.2 Filter Design

Now assume that the decomposition in (1) holds with trend given by (8) and cycle following the n-th
order process 1, ; of Butterworth form. Then, using (5) and (6), forming the ratios gives the general
class of filters in (2) and (3). Expressions (2) and (3) remain relatively compact and with various choices
of parameter values, a diverse array of gain contours is achieved. We assume that trend follows (7)
so the order m is set to two. We focus attention on the order n of the cycle, which directly affects
the sharpness of the filters. The quantities g- = O'z /o? and q, = 02/0? are "signal-noise" ratios for the
trend and cycles, as they indicate the variability of each regular component relative to irregular or noisy
fluctuations. The cyclical parameter A\. giving the main frequency of oscillation of the cycle is intuitively
related to the region of highest gain in the band-pass filter.

Our preferred approach is to adapt the filter across various cases by choosing parameters fitted to
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each input series. Here, we pursue a classical framework; note that in some cases, the finite sample
likelihood may not be sufficiently well identified to produce suitable estimates. One option is to use
a Bayesian approach as in Harvey, Trimbur, and van Dijk (2007); an alternative is to impose sufficient
constraints on parameter values. Here, the filtering strategy is made operational by preserving loose
conditions on the model parameters, which reflect reasonable expectations about economic cycle period-
icity and trend behavior and preserve the low-pass and band-pass filter’s usual shapes. In applications
in macroeconomics, these relaxed bounds tend to have little effect on performance diagnostics (indeed,
the model may actually perform better under the constraints).

In our more general framework, the defining characteristic of the band-pass is that they tend to con-
centrate on, or select out, mid-range frequencies, in the same way that low-pass filters are characterized
by a tendency to cut out higher frequencies. These definitions are rough and allow for a great deal of
flexibility in the particulars of the respective gain function; there is no assumption that a "pure" band-
pass filter merely allows frequency parts between two edges through without affecting their strengths or
amplitudes. Indeed, in the context of stochastic data in statistical applications, perfectly sharp gain
functions are the exception rather than the rule. Features such as time-varying cyclical amplitudes may
be studied directly. In economic applications, properties of the business cycle such as asymmetries in
expansions and recessions may be captured — even though the base model utilizes symmetric disturbances
— because the components condition on the data and reveal the data’s underlying properties.

The use of orders with n > 1 is crucial for providing a link with band-pass filters and for improving
models’ fit and performance. In much previous work, it has been assumed that n = 1, which has a
number of limitations, such as keeping noise in the estimated cycle and making it difficult to see cyclical

transitions.

6 Applications to US macroeconomic series

Quarterly data on U.S. real Gross Domestic Product and other national accounts indicators such as
Investment are taken from the Bureau of Economic Analysis for the period 1947Q1 to 2017Q4. These
series are chosen because they represent the primary indicator of economic activity for the U.S.; the
components of GDP behave differently from a dynamic perspective, and it is important to understand
the major components to fully understand the dynamics of overall GDP. In total 12 indicators are
considered.

Starting with the unrestricted case, model (1) is estimated with (13) of either the Butterworth or
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Balanced form for different orders n ranging up to eight; all parameters are free except for minimal
constraints, which represents the fully adaptive case. We compute the parameter estimates for each
model and series by Maximum Likelihood *. Given a feasible parameter vector, the likelihood function is
evaluated from the prediction error decomposition from the Kalman filter; see Harvey (1989). The values
of parameters are found by optimizing over the likelihood surface in each case. To do the calculations

for the results given below, programs were written in the Ox language (Doornik 2006).

6.1 Parameter Constraints

The period corresponding to the central frequency, that is 2w /\., is constrained to lie on an interval
from three and a half to eight years, ensuring that the cyclical component is reflective of business cycle
movements rather than a different type of dynamic such as seasonal cycles or persistent longer run
patterns. Correspondingly, the periodicity conditions help guarantee a band-pass profile for the resulting
cycle filter, meaning that the gain cuts out low frequencies sufficiently well (that is, falls to one-half by
some positive cutoff frequency as the origin is approached from the right — the mid-frequency region)
and likewise effectively removes the noisy part of a series’ fluctuations (that is, the gain dips to one-half
as the frequency increases from its intermediate to its maximum range).

There are two autoregressive-type parameters, that is ¢ for the trend-slope and p for the cycle. The
interval [0.95,1) is used for ¢ to ensure sufficient persistence in the slope, so as to give a regular growth
rate of the trend and a corresponding focus on low-frequency regions. Additionally, the interval (0,1)
is used for p to ascertain a well-formed cycle (in practice, the actual estimates of p seem to always lie
well within these bounds, and the occurrence of p very near either boundary indicates a problem with
the numerical optimization.)

Also, very loose constraints are placed on the trend disturbance variance, in order to ensure at least
slightly stochastic behavior in the trend and correspondingly minimal cutting out of very low-frequencies
by the band pass filters. The specific periodicity conditions and other constraints used are detailed in

Appendix A.

6.2 Parameter Estimates

Complete results on parameter estimates and diagnostics and fit measures are reported in Appendix D.

We start by discussing the results for real GDP that are given in the first table of the set of the 12 tables

4The difficulties associated with estimating the cyclical period for real GDP are discussed in Harvey and Trimbur

(2003). For a Bayesian solution to this problem, see Harvey, Trimbur, and van Dijk (2007).
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of D.1. The estimates show that the variance of the slope disturbance is relatively small but nonzero,
indicating clear stochastic variation in trend growth rates. The value of /0\2 (which denotes the Maximum
Likelihood Estimate of ¢7) for the Balanced model is less than half the value for the Butterworth model
when n = 1, thus illustrating differences in how the Balanced and Butterworth model accommodate
trend and cyclical movements. Also, 6'\2 decreases significantly in moving from first to second order. For
all n > 1 this variance parameter is increasing at a modest rate and remains on the order of 107¢. This
indicates how the trend becomes more stable, with the cycle accounting for more of the overall variation,
as the order increases. For real GDP, (3, can be interpreted as a growth rate of potential output. The
stationary slope’s mean [ is estimated to be 0.77, and hence long-run potential growth is about 3.1%.
For all orders and models, the coefficient ¢ is estimated to lie at the lower bound of 0.95; intuitively, this
means that any deviation in trend growth rate per annum from 3.1% is attenuated by nearly 20%, on
average, over the course of the following year.

As n increases, the variance of the irregular rises, with the biggest change occurring from n = 1
ton = 2. In table D.1, the g-ratio is defined as g.. = 0¢/(03, 4 02), where o7, is the unconditional
variance of the cycle. This ratio therefore represents the trend’s disturbance variance divided by the total
stationary components’ variance. The estimates of g.. decline considerably as the model changes from
first to second order cycles. The estimated value of the variance parameter o2 declines with increasing
n. For n = 1 the estimate of the damping parameter p of nearly 0.9 indicates a persistent cycle. The
value of p also declines for larger n. Given the resonance property of higher order cycles, where shocks
are increasingly reinforced within the system, a fixed value of p would lead to a more pronounced cycle
as the order increases; however, there is an off-set to this effect via smaller damping parameters for larger
n. For the frequency MLE for real GDP, the corresponding period is around four-and-a-half years for
n = 1 with the Balanced model and is about one year shorter for the Butterworth form.

For Investment, central periods from 20.1 to 31.8 are estimated for orders up to six. The values of
p are close to those for GDP for each n. There is also a similar pattern in the declines of the cycle and
irregular disturbance variances, though both /a\i and 3? are larger in magnitude for Investment, reflecting
the stronger cyclical properties and greater noise content of this primary sub-sector of GDP. The same
jump in o2 from n = 1 to 2 holds for Investment, with further increases that taper off as n approaches 8
(this pattern continues for even higher n than are shown in the tables). The long-run trend growth rate
of Investment is somewhat larger than that of GDP. The values of ¢, are considerably lower than for
GDP, conveying statistically the stronger cyclical content of Investment. The slope’s damping coefficient
is estimated again as 5 = 0.95 for all orders.

Various aspects of the pattern of parameter estimates for real GDP and Investment also hold for other
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series. Perhaps most notably, the irregular variance jumps in value from first to second order and then
continues to steadily increase for n > 2, implying that ever larger amounts of noise are removed from
the cycle, which as a result, becomes smoother as n rises. For all series except Inventory Investment,
the ratio g¢. is above 107 and supports the use of a stochastic model for the trend. The patterns of p
and o2 with respect to different n are rather similar across the different data series. Indeed, based on
our overall experience with quarterly macroeconomic series, having the values of p and o2 fall with n in
this manner is a regular feature shared by most series related to economic cycles. The decline in these
parameters at higher orders serves to mitigate some of the cycle’s rise in intensity with n that is related
to the resonance feature of the models.

In terms of periodicity, Xc is within the constraining interval in several cases and appears reflective
of business cycles for first and higher orders; for instance, for Exports, most of the central periods are
between 4 and 7 years. In other cases, the period estimate lies at the upper bound of 8 years. There
is sizeable variation across series in the estimated periods over the range of permissible orders. For the
general univariate filters and methodology developed here, the use of an upper bound on the period is a
valuable device to ensure the cycle remains separated from trend or other component types.

There are three points that may be noted in passing. First, the models and parameter values pertain
to the historical sample — they do not pertain to a specific episode such as the recent Great Recession,
which some have argued represent a different kind of cycle than the traditional business cycle, but
include many years of economic fluctuations. Second, the estimates are empirical and statistical and let
each individual series have its own particular kind of cycle that may be related to concepts like business,
housing, and financial cycles; the estimates rely on past behavior and are free of strong assumptions such
as those incorporated in debatable economic theories. Third, a central period of eight years carries with
it the possibility of actual cyclical episodes that last 12 or so years or even longer; the cycle spectrum
obtained for the MLEs of the parameters has power at lower frequencies indicating frequency parts whose
periodicity is longer than the central one. The power declines away from the cyclical mid-range but still

remains positive over a nontrivial range of frequencies.

6.3 Diagnostics and Fit

Several diagnostics are reported in table D.2. R% is the coefficient of determination with respect to
first differences, and @ is the equation standard error. @Q(P) is the Box-Ljung statistic based on the
first P residual autocorrelations. Three different values of P are used in reporting these statistics, and

in each case Q(P) should be compared with a x? distribution with P — 4 degrees of freedom. The
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Akaike Information Criterion (AIC) is defined by AIC = —2log L + 2k, where log L is the maximized
log-likelihood for each model/series combination, and k is the number of model parameters. Similarly,
the Schwarz Information Criterion (SIC) is computed as SIC = —2log L + (log T)k, where T is the
sample size. The AIC' and SIC are comparable across different cyclical orders because the process is
stationary for all n.

In the first table of the set in D.2, for real GDP, there is a large improvement in diagnostics and fit
measures in moving from first to second order. For the Balanced form, the Q(24) statistic decreases by
about 65%, while the R? measure increases around 28%; the AIC drops by more than 10. The overall
trough of the AIC occurs for the third order Butterworth model, which also marks the optimum order
and form for Q(24) and R%. The AIC increases by around 0.4 for the second best model, which is the
fourth order Butterworth, whereas the Q(24) and R statistics are little changed. Starting from n = 3,
further increases in cycle index lead to a very gradual worsening of diagnostics so that, for n = 8, the
AIC is a few units higher and the Q(24) and R?% are slightly less favorable than for third order. All
Q(24) and Q(32) statistics are insignificant at the 5% level for orders above one.

For Investment, the large advance in model performance for n = 2 from first order is also present.
Further, the diagnostics continue to improve as n increases so that in the Butterworth case, the R% is
about 20% higher for the 8th order compared to the 2nd order. Likewise, Q(24) is approximately 25%
lower, while the AIC decreases by over 7.0 in going from n = 2 to n = 8. The overall optimal performance
occurs for 7-th or 8-th order (the diagnostics give mixed implications), with order 6 performing nearly as
well. Hence, there are clear merits, in terms of model fit, in treating relatively high order specifications.
In contrasting the two model forms, the Balanced cycles exhibit superior fit compared to Butterworth
type for n = 1 and 2, whereas for higher orders, the two forms show an increasing tendency to converge
in their diagnostics. All Q-statistics lie below the 5% critical value for n > 3.

Nearly all series show improvements in fit measures in going from n = 1 to 2, which are often sizable.
The only exception appears to be Consumption of Services, which displays a very slight worsening in AIC
and SIC along with R% and which in any event has a rather weak cycle. For seven out of twelve series
the selected order is 2 or 3; for four series the preferred index is 7 or 8. Two of the high-order selections
are Investment series known to have very pronounced cycles. The other two consist of Consumption,
which is a highly aggregated series, as well as Exports, which depend on a large mix of foreign economies.

Overall, the smallest Q(24) statistics are obtained for Inventory Changes (in particular the 8th order
Balanced model), which is almost entirely dominated by cyclical movements. Similarly, small values of
Q(24) occur for real GDP, Investment, and Exports, with the corresponding p-values exceeding 0.1. Of

these four series with favorable Q-statistics, three have intermediate central periods that are estimated
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Figure 13: Investment with estimated trend for n = 6 with Balanced form.

within the restriction interval and plausible for business cycle fluctuations. Also for three out of these
four series with low serial correlation in residuals, whether the focus lies on Q(24), R%, or AIC doesn’t
affect conclusions about relative performance — all three point to the same form-order combination as
the best. Overall for all 12 series the model selection results appear very similar for SIC vs. AIC, and
the implications of R% comparisons matched nearly all of selections made based on AICs, whereas the

Q-statistics sometimes leads to different conclusions.

6.4 Smoothed Components and Filters

Figure 13 shows the (logged) series Real Investment along with the estimated trend (for the Balanced
model with n = 6, corresponding to the cycle given by the solid line in figure 16). The trend varies
smoothly throughout the sample period, undergoing modest changes in growth rate up to the Great
Recession. In the 2000’s the trend decelerates somewhat rapidly and reaches a nearly flat trajectory; in
the recovery period after the GR, the pace of growth again starts to increase so that, at the end of the
sample, the slope has almost reverted to its long-run value.

Figure 14 displays the estimated cycles for n = 1 and 2 with the balanced form. The use of the higher

order model is crucial to describe smoothly varying cyclical dynamics, which make the turning points
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Figure 14: Estimated cycle in Investment for n = 1 and 2 with Balanced form.
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Figure 15: Noise removed from Investment in estimating the cycle, shown along with the corresponding

Band Pass filter for n = 1 and 2.
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Figure 16: Estimated cycle in Investment for n = 2 and 6 with Balanced form.

transparent, and also to yield sizable advances in terms of diagnostics. In contrast, the first order model
gives a noisy estimated cycle that makes it difficult to see the main transitions and general evolution.
There are also differences in the message given by the cycle at times, such as the 2001-2 recession being
more shallow for the second order case. The GR stands out as being both very intense and long-lasting.
There are somewhat comparable cyclical episodes, in terms of peak-to-trough magnitude, earlier in the
sample period, but the combination of intensity and duration cause the GR to be partially absorbed as
a prolonged slowdown in trend. The functioning of the higher order processes becomes clear by looking
at the extracted noise and implied filters directly, as in figure 15. The first order pertains to n = 1 and
shows a small amount of noise being relegated to the irregular; the associated filter is a high-pass filter —
a detrending filter that does not descend at higher frequencies and that does not have the characteristic
shape of a band-pass filter. The second row shows the noise component and the implied filter for
n = 2; the gain function declines as the frequency increases beyond the mid-range and so has a malleable
band-pass shape.

There are also further enhancements to the smooth contour of the cycle for higher orders - figure 16
displays the extracted cyclical signals for n = 2 and 6. The peaks are more clearly defined for sixth
order, for instance in the early 60’s; there are also some discrepancies in what the cycle is signalling at

times, as in the 2001-2 recession, which is less intense for the higher order case. The phases of increase
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Figure 17: Estimated Band Pass filter for extracting cycle in Investment for n = 2 and 6 with Balanced

form.

appear smoother, for example the rise in the cycle into positive territory just before the decline at the
end of the sample. The differences in smoothness and overall path in the two cycles along with the
improvements in diagnostics make the n = 6 model an attractive choice (the number of parameters is the
same, as just the state space dimension increases, making estimation take longer — though still entirely
feasible given modern computational power in a typical PC). The extracted cycles in Investment for n
greater than six appear very similar, though there are still incremental changes, with the turning points
and evolution between peaks and troughs being clearer for the higher orders. This greater smoothness
is connected with how the implied filter generates a successful rendition of a band-pass that becomes
sharper for higher values of n; the gain function is shown in figure 17 for 2nd and 6th orders. The
higher order band pass effectively eliminates high-frequency movements, while the second order band
pass admits some noise and includes it in the estimated cycle. This illustrates an advantage of high
order models, whereby the objectives of using a band pass filter — to eliminate both trend and noise and
yield smooth signals of cyclical fluctuations — are realized more fully.

For highly cyclical series, there is some differentiation between the alternate forms of the cycle
model. Figures F.2 and F.3 in Appendix F show the estimated cycle and gain function for Residential
Investment for n = 8 for both Balanced and Butterworth models. The Butterworth cycle displays a
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larger amplitude, for instance, in the 90-91 downturn and the Great Recession, and the evolution around
the sample end-point is somewhat different. The gain function for the Balanced cycle cuts out more
low-frequency movements than the Butterworth version, which provides an illustration of the flexibility

afforded by the different model forms.

6.5 Ideal Filter Approximations: Parameters and Diagnostic Measures

Next, the selected 36 possible ideal filter approximations are applied to each of the time series considered.
For each of the orders n = 4,6, and 8, there are a dozen representations of the ideal filter, which are fit
to each series by maximizing the log-likelihood with respect to 3 and o? with filter parameters and ratios
held fixed at the values determined previously. The results are given in Appendix D entitled "Detailed
Tables of Empirical Results". Tables D3-4 pertain to n = 6, which is considered the benchmark
representation, while D5-6 reports results for n = 4, and D7-8 focus on n = 8. In each table in D3, the
first two columns indicate the g-ratios for each ideal filter representation; recall that g. is now defined as
0?/0? in line with the expression for the gain function of the generalized Butterworth filter in (3) that
is linked to the model’s variances. The last two columns display the MLEs; the results for real GDP
are shown in the first table.

The 8§ values show a consistent pattern of increasing as the g-ratios fall. Indeed there is a large
difference between the two boundary situations illustrated in figure 2, in that the irregular variance for
the low g case is more than double the value for the high ¢ case. This parallels the more effective
cutting out of high frequencies displayed in figure 3 by the gain function with low q. Two series with a
particularly large differential in noise variance are Residential Investment (third table, bottom of p.2 of
D3) and Government Expenditures (tenth table, top of p.6 of D3), for which the maximal 5> obtained
is over four times the minimal Eg. Therefore, from the perspective of how much irregular variation is
removed, it can make a significant difference how the ideal filter is represented, even after accounting
for filter index. To help assess the various possibilities, we now focus on the examination of model
estimation results to see which scenarios fit especially well or poorly among those considered.

Table set D4 displays the same diagnostic and fit statistics as before for the adaptive results (that is,
based on unrestricted MLESs), but now based on the parameter values in Table D3. For real GDP, the
Q-statistics are well beyond the 5% critical value, indicating decisive rejections from these models that
underlie ideal filter approximations. Further, the R% is negative, indicating that the models perform

worse than a random walk with drift. The results are in stark contrast to those for the adaptive models.
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There is a similar message for the other 11 series, with varying degrees of poor fit. Under no conditions
would such models be entertained from a statistical perspective. Nevertheless, there are differences
in how the 12 representations perform, and it is worthwhile to make comparisons to arrive at the best
possible ideal filter models when such a filter is very strongly desired.

For real GDP with n = 6, as shown in the first table in D4, the AIC reaches a minimum for the 6th
row representation in the table that has {GC,GH,XC} = { 0.0661, 0.0496, 0.455}, which also marks the
maximum R%. For this representation, the Ljung-Box statistic with P = 24 takes on a value of about
105 compared to its minimum of just under 90 that is attained for the first row approximation; these
statistics rise sharply toward the end of the table for the lowest g-ratio filters. For Investment with
n = 6, the second table in the set D4 shows that the AIC is minimum for the 6th representation for which
{GC,GH,XC} = { 0.03178 0.04081 0.4709}. Upon perusal of the set of results, it becomes clear that the
AIC minimization corresponds almost always to the maximization of R%. However, the minimization
of Q(P) frequently gives a different implication. Hence, we concentrate on the AIC and R% while
recognizing that Q)(P) has some complementary information useful for certain purposes. Focussing on
table set D4 for n = 6, the 8th row approximation ({g,,q,, A} = { 0.04946, 0.04589, 0.4611}) appears to
work the best, in terms of giving the best overall fit and avoiding extremely poor diagnostics when used
across the 12 series. This choice strikes a balance between the case of Residential Investment for which
the fourth row case is preferred and that of Inventory Investment where the last row gives the best result.
Since the ideal filter tool is designed for widespread use and diverse time series, these considerations are
important to bear in mind.

Tables D5 and D6 report results for the fourth order model. Table set D5 again focusses on the
unrestricted parameter MLEs while D6 contains diagnostics and fit measures. The major finding is
that the results again look extremely negative, with the models explaining less of the variation than a
random walk would, and with substantial serial correlation in the residuals. Doing the same exercise
as before, and comparing model selections across the 12 series, it appears that the 7th representation
with {@C,QK,XC} = { 0.05722, 0.174, 0.4146} works the best in terms of evading a drastically poor fit
and achieving a relatively decent fit (compared to other ideal filter models). Similarly, tables D7 and
D8 report results for eighth order, for which the representation in the 9th row, which has {qc, q., Xc} =
{0.05188, 0.01226, 0.4815}, is chosen.
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Figure 18: Estimated cycle in Investment (in logs) for the modelled ideal filter with n = 6, compared to

the BK filter output.

6.6 Comparison of Smoothed Components and Filters

Figure 18 displays the estimated cycle with the modelled ideal filter for n = 6 vs. the BK output. The
two series generally track each other; over the first half of the sample, there are very minor differences in
trajectory. In the second half, there are some discrepancies, which we now describe. First, the troughs
in the early 90’s and in 2001-2 have a different magnitude for the modelled vs. BK filter. Also, the
three different upswings between the mid-80’s and the early 2000’s have somewhat contrasting contours.
For example, the BK output and the modelled cycle appear non-synchronous during part of the upswing
starting around the mid-90’s. While the BK output flattens out beginning in late 2001, the model-based
estimates reach a trough around the end of 2002 (such pinpointing of transitions being useful for timing
turning points). Toward the end of the series, when the BK filter fails to show a clear direction, the
modelled cycle exhibits a peak followed by a lengthy contraction, with a possible trough in the cycle
starting to emerge in the last year of the sample. These differences are modest, but they do demonstrate
how the BK gain function — with its unstable ripples and fixed structure over time — gives a somewhat
different path for the estimated cycle than the modelled ideal filter.

The divergence between the adaptively measured cycle and the BK output (or ideal filtered cycle
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Figure 19: Estimated cycle in Investment (in logs) for the adaptively modelled case with n = 6, compared

to the BK filter output.
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Figure 20: Estimated Band Pass filter for extracting the cycle in Investment for n = 6 with Balanced

form, shown with ideal filter boundaries (dotted lines).
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from the modelling approach) is substantial for the Investment time series. Figure 19 shows the two
extracted cycles. Most notably, the amplitude of fluctuations is significantly greater for the modelled
cycle; this is particularly evident over the last half of the sample period. The recession of 1990-1 has
a deeper trough by nearly 5 percentage points whereas the peaks during 2001 and prior to the Great
Recession’s onset are about 6 percentage points higher than for the BK output. The modelled cycle
starts to move down during 2008 a few quarters before the BK filtered series, which may indicate more
timely turning point detection. All told, the peak-to-bottom distance is almost 15 percentage points
wider over the course of the Great Recession. During the last few years of the sample, a shallow trough
in the cycle arises (around the 0.0 mark), followed by the beginning of a slight turnaround.

Figure 20 shows the estimated gain function for Investment with n = 6 (Balanced model) with
the ideal filter boundaries marked by dotted lines. The gain passes through substantially more lower
frequency movements below the left edge. The ideal filter remains fixed and fails to adapt to the stronger
cycle, which makes the cross-over point (which is where the gain falls to approximately 1/2) between
cycle spectrum and trend pseudo-spectrum occur at a lower frequency. The gain also admits somewhat
more high frequency parts than the ideal filter.

Appendix F shows results for Consumption of Services, an example for which the estimated cycle is

instead magnified by the BK filter,

7 Conclusions

The modelled representations of the ideal filter provide a solution to the Baxter-King filter’s unstable
gain profile, address the sample endpoint problem associated with the Baxter-King filter’s truncation,
and allow one to evaluate this filter’s implicit assumptions about trend-cycle relationships and to quantify
problems of mis-measurement that may occur when indiscriminately using such an ideal filter approxi-
mation. In certain situations, an ideal filter may be used with only moderate complications; however,
to know whether this is the case requires some extra effort or insight beyond the mere construction of
a gain function. Usually it will not be the case; for strongly cyclical series like Investment or for series
such as Consumption of Services that have a weaker cyclical part, even basic findings about cyclical
patterns can be adversely affected.

This paper advocates instead adaptive band pass filtering through spectral emulation as opposed
to gain emulation and considers methodology based on various unobserved components models. This

approach recognizes that frequency domain definitions such as Burns-Mitchell (1946) are intended for
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the cycle and are suggestive for its spectral shape. The entire premise of band-pass filtering is built
on implicit decomposition — hence the need to separate out the cycle from the observed time series,
by cutting out the low frequency parts linked to stochastic trend and the higher-frequency noise. It
is intuitive that the best filter for the task capitalizes on information about how the cyclical dynamics
relate to those of trend and noise. Here, we consider models that make the decomposition explicit and
use a modelling framework with several advantages.

As empirical evidence, we have examined twelve series drawn from U.S. national accounts data that
have diverse stochastic properties and analyzed them with respect to 36 possible ideal filter represen-
tations. The basic conclusion is that the ideal filter involves a pervasive mis-specification problem
whose severity varies across series. Even for a series like real GDP where the divergence of the gain
function (from the optimal one) happens to be more moderate and the resulting consequences less dire,
the models underpinning the ideal filter provide a poor statistical representation of the data. This
is problematic for forecasting and for designing policy or making economic decisions, which routinely
rely on having accurate portrayals of series’ dynamics and their trend path or cyclical position. Using
an adaptive band-pass provides the remedy via property-consistent extraction of cycles achieved in an

econometrically optimal manner.
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Supplement to Modelled approximations to the ideal filter

with application to GDP and its components

Thomas M. Trimbur* and Tucker S. McElroy

U.S. Census Bureau

December 7, 2018

Appendix A Adaptive Band-Pass filters: Practical Applica-
tion

This appendix discusses adaptive band-pass filtering of time series as implemented in the Ox computer
language. The motivation for the program is to provide a flexible and consistent function, that estimates
the cyclical component of a given sample of observations. The method is based on the broad class
of generalized Butterworth band pass filters. A perfectly sharp, or "ideal" gain is one possible shape
within this class, and we allow for approximations to this shape, though generally it is inadvisable to
use indiscriminately. In each case, the approach that the program follows is to choose the optimal
band-pass through model fitting and analysis, along with smoothness considerations. We impose a
rough band-pass profile, which in practice is quite flexible, as it simply means that the gain cuts out low
frequencies sufficiently well (e.g. falls to one-half by some cutoff frequency on the left as the origin is
approached and likewise dips to one-half on the right as the frequency increases to its maximum values

associated with the noisy part of a series’ fluctuations).

*Address: Center for Statistical Research and Methodology; U.S. Census Bureau; Washington DC 20233. Telephone:
(301) 763 6864. Email: Thomas.Trimbur@census.gov.



A.1 Method Summary

The model-based method helps ensure consistency by tailoring the band-pass to the dynamics of the
input series. The generalized Butterworth filters encompass a broad array of gain patterns, and the
program has conditions appropriate for the range of dynamics present in macroeconomic series. The
stochastic cycle models allow for a variety of time-varying dynamics. Generally, the shape of the model-
based band pass is reflective of the dynamic characteristics of the series. A band-pass that tapers off
gradually reflects in part the role of stochastic movements in the cycle. The maximum of the cycle
order is eight; this allows for very sharp gains. Intermediate values of n, for instance four to six, may
be appealing in many applications, as this correspond to relatively well-formed band-pass filters and

underlying cycles with smooth dynamics.

A.2 Estimation and restrictions

The adaptive approach is implemented in a way that makes the minimal necessary restrictions, in a
classical framework, to generate a representative band-pass for the input series. The parameters are
kept within certain bounds to preserve the characteristic shape of the low pass and band pass.

Specifically, there is an interval of permissible values for the frequency to ensure sensible business
cycle periods. To be appropriate for economic applications, the program constrains the central
business cycle period, 27/, to lie between two and eight years. This ensures the band pass lies in the
appropriate region in the frequency domain. If \. is estimated without constraint, a plausible cycle or
an appropriately shaped band-pass may not be obtained. The program is easily modified to estimate
stochastic cycles of different periodicity ranges, suitable for data outside economics, by changing the
central frequency interval.

Estimation of parameters is by maximum likelihood. The value of m is two; this value is associated
with smooth trend estimates and is appealing for low-pass filtering. Excessive sharpness in the low-pass
is not necessarily desirable, and high orders m do not correspond to plausible trend models as they
generate unreasonable forecast paths. The cyclical index n is in part selected from one to eight on the
basis of a modified information criterion.

Signal-noise ratios, such as ¢ = ag / (Ui + 0%), measure the relative variation of trend and stationary
parts. Intervals are used for the signal-noise ratios, which impact the filter shapes, to make sure the
estimated trend and cycle series fit with basic intuition. The trend, for instance, should have smoothness

properties as well as some degree of adaptivity, and this is reflected in the form of the low-pass, that



tapers off in the appropriate way at higher frequencies in the continuum.

In seeking to estimate a workable decomposition, the program attains a value of ¢ such that 1075 <
q < 1. This covers a broad range of relative variation. Though ¢ will naturally vary among series, for
ratios above one the trend is absorbing too much of the variation in the series. The trend is approaching
the point of being deterministic for ¢ < 107°, and a well-formed low-pass filter is not ensured. In
bounding g at 1075, the gain function clearly displays the characteristic removal of the lowest frequencies.
For all practical purposes, values of ¢ near the lower bound yield a close approximation to a deterministic
trend - any lower value of ¢ would produce very similar observed patterns of variation in the trend.
Further, deterministic trends are less reasonable for economic data that are subject to extensive sources
of stochastic variation; at least some adaptability in the trend is desirable. For small samples especially,
obtaining a ¢ of zero is likely due to the finite-series properties of the Maximum Likelihood Estimator
of the trend shock variance.

In frequentist treatments, the shape of finite sample likelihood surfaces may sometimes make it
difficult to obtain suitable parameter values through unrestricted estimation. This issue can be highly
relevant for unobserved components models. As a computationally more costly alternative, a Bayesian
approach could provide one route to solving this problem. Here, we retain a classical framework and

impose loose and reasonable constraints.

A.3 Implementation

The program executes model-fitting, filter design. and analysis of filter output. The appropriate
finite sample filters are obtained and the end-point adjustments are done optimally through either the
Kalman smoothing algorithm or the matrix formula method. One aspect of interest is the analysis of
gain functions which the program shows graphically. In the adaptive method, the different shapes of
band-pass suitable for diverse time series may be compared in an objective fashion. = The procedure
leads to the choice of the optimal band-pass through model estimation and an emphasis on a well-formed
band-pass and smooth cycle. The "ideal" filter is approximated with cyclical indices n = 4,6, and 8.

Note that if the use of a band-pass filter seems inappropriate for a given series, then the resulting
output will reflect this. For instance, if the series appears to follow a trend-only process, then the
program would give highly diluted output from a greatly dampened band-pass filter. This contrasts
with an automated procedure such as the Hodrick-Prescott filter or Baxter-King band-pass option where

a nonsense "cycle" would be computed from white noise or trend-only input series.
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Figure B.1: Close-up showing a low-frequency part — the left-side tail — of gain functions for different ideal
filter approximations with n = 6,both with p = 0.8, ¢ = 0.97. For the solid curve {QC,GH,XC} = {0.0124,
0.0322, 0.4910}, while for the dotted curve, {qg,quc} = {2.524, 0.279, 0.398}.

Appendix B The Ideal Filter: Modelled version

This Appendix contains further details regarding the approximations used for an ideal gain. For n = 6
figure B.1 displays the gain functions at the low end of the spectrum for {qc,quc} = {2.524, 0.279,
0.398} as the dotted line and for {7, q,, A} = {0.0124, 0.0322, 0.4910} as the solid line. The very small
deviation differs from the noticeable divergence at the higher frequencies ostensible in figure 3.

Figure B.2 shows the two extreme cases of ideal filter approximations for n = 4, that is, for the solid
curve {qc, ., A} = {0.007957, 0.111, 0.4785}, while for the dotted curve, {g,,q,, A} = {0.7635, 0.4276,
0.3421}. Figure B.3 displays the right tail, where a larger difference between the two extremes can be
seen compared to the sixth order case. The divergence at the low end of the spectrum is indicated in
B.4; now there is a clearer distinction between the two curves relative to sixth order. Overall, the fourth
order case provides a looser approximation to the ideal filter. From the standpoint of gain emulation,
this represents a minus, but from the viewpoint of modelling and adaptive filtering, this is neutral and
other considerations hold more importance. The plots for the eighth order case (not shown for brevity)
show a similar pattern, albeit with a reduced discrepancy between the two extreme cases.

Now, take the sixth order case with the preferred parameter settings; these values are selected as
indicated in the text, by fitting the ideal filter models to a set of U.S. macroeconomic series and examining
model diagnostics. Hence, the parameters are {g,,q,, A} = { 0.05722, 0.174, 0.4146}. For the

corresponding filter, figure B.5 shows the observation weights when viewed over the range of lags and
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Figure B.2: Gain functions for different ideal filter approximations with n = 4,both with p = 0.8, ¢ =
0.97. For the solid curve {q,,q,, A} = {0.007957, 0.111, 0.4785}, while for the dotted curve, 19,4, At =
{0.7635, 0.4276, 0.3421}.
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Figure B.3: High-frequency part of gain functions for different ideal filter approximations with n = 4,both
with p = 0.8, ¢ = 0.97. For the solid curve {@gaquc} = {0.007957, 0.111, 0.4785}, while for the dotted
curve, {q¢, G, A} = {0.7635, 0.4276, 0.3421}.
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Figure B.4: Low-frequency part of gain functions for different ideal filter approximations with n = 4,both
with p = 0.8, ¢ = 0.97. For the solid curve {GC,QN,XC} = {0.007957, 0.111, 0.4785}, while for the dotted
curve, {q¢, G, A} = {0.7635, 0.4276, 0.3421}.
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leads from the time point of estimation. Such weighting patterns give a direct picture of what the filters
are essentially doing. Figure B.5 shows how the modelled filter places slightly less emphasis on the
current and immediately adjacent observations. A bigger difference arises at lags seven and eight, where
the model weights are negative, while the BK weights are nearly zero. The modelled filter compensates

for this reduced weighting at lower lags by having the weights increase at lag ten and beyond.

Appendix C The ideal filter and nonstationarity in the fre-
quency domain

Given its convenience and compact expressions, the frequency domain' is often used in the analysis of
cyclical movements in economic data. The spectrum gives the decomposition of its variability into
oscillations with different frequencies. The gain function of a filter gives a visible summary of its effects;
it shows the impact on the amplitudes of different frequency parts when applying the filter. As
employed here, the defining characteristic of the band-pass filter is a general concentration in its gain
over mid-range frequencies. (In the same way, low-pass filters are characterized by a tendency to cut out
higher frequencies.) The absolute sharpness of the ideal filter is not required and, in fact, will rarely
be appropriate for economic time series subject to both stochastic cyclical and trend (and perhaps also
noise). Later we will assess the impact of the way, in which the BK filter emulates this filter in a finite
sample, on the actual, realized gain. For now, we use the hypothetical limit of the ideal filter to explain
the distortions in the simple illustrations above.

Assume that we apply the pure ideal filter to a stationary data process of interest. Then the gain
shown in figure C.1 is directly applied to the process. For a white noise process, taking the gain-squared
times the original spectrum, gives an adjusted, or output spectrum proportional to the same block shape
as in figure C.1. From this illustration we can understand the spurious creation of the cycle in the
white noise example above. The absence of a cycle in the process y; = p,+ £, means that the optimal
gain for extracting it is simply zero. Correspondingly, the model estimation gives a conclusion of nearly
white noise observations, so that the modelling-estimation-filtering sequence successfully handles this

situation. In contrast, applying a fixed band pass filter to white noise generates a process, whose power

'Indeed, some of the very early work on the subject by Burns-Mitchell employed a definition of a frequency interval for
business cycle fluctuations as discussed below. Here, we use a broader definition of cyclical components and account for

their stochastic character and interaction with trend or noise in the series of interest.
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Figure C.1: Gain of ideal filter applicable to a stationary process.

over the restricted band of intermediate frequencies means that its oscillations will mimic those of the
business cycle variety.

Most economic data are nonstationary, and several authors have considered potential pitfalls when
filtering nonstationary series. This question was originally addressed in Harvey and Jaeger (1993) for
the HP filter and Murray (2003) for the BK filter. In the following, I discuss how the source of error
in band-pass filtering depends on the presence of additional components, apart from the component of
interest, and that such inherent distortions occur regardless of the stationarity each extra component.

It might seem that there are special implications of applying a band-pass filter in the nonstationary
case given the dichotomy between stationary and nonstationary dynamics. For the HP filter, Harvey
and Jaeger (1993) considered the filtering of nonstationary series and argued that the presence of non-
stationarity leads to an artificial spectral maximum, or spurious cyclical behavior. The basis for the
argument is that the gain function applied to the (appropriately differenced) stationary series peaks at
certain frequency, determined by how the gain is altered to account for the differencing. The same line
of reasoning would apply to the ideal filter, and indeed Murray (2003) places special emphasis on the
nonstationarity or presence of trend in the input series.

Consider a component given by 6;(L);,/(1 — L)@;(L). When an ideal gain function is applied, as
long as there is a cancellation in the (1-L), we can view the equivalent operation of applying a modified
gain to the underlying stationary process 0;(L);,/@;(L). If we assume that that ideal filter is given by
a limiting filter in the Generalized Butterworth class with order m at least one, then such a cancellation
is guaranteed to occur. The modified gain, displayed in figure C.2, rises toward lower frequencies and

then falls off suddenly. Depending on the spectrum of 6;(L)¢; ;/¢;(L), the operation therefore induces
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Figure C.2: Gain of ideal filter applicable to the stationary process underlying an integrated of order

one process.

some cyclical behavior with frequencies concentrated at the low end. Rather than hinging on the
nonstationarity, this effect actually depends on the presence of the extra component and its spectrum or
pseudo-spectrum. That is, the pseudospectrum of a stochastic trend has power at mid-range frequencies
— this being the key — which the band-pass filter draws.

The simplest stochastic trend is the random walk. It has a pseudospectrum of f(A\) = 27 (1—cos\)™!,
and when a band-pass filter is applied, the mid-range of this spectrum is selected out. The square root of
the resulting spectrum has the same shape as the altered gain in figure C.2. Therefore, the contribution
to the output occurs because a random walk contains some frequency components at intermediate points
in the spectrum. As long as the resulting spectrum exists, then the band-pass filter would send through
a component whose spectrum resembles figure C.2.

The smooth trend, an 1(2) process, often produces an attractive signal that tracks gradual, long-run
movements. Figure C.3 shows the gain function applied to the underlying stationary process after
differencing twice; it has the shape of the square root of the pseudospectrum of the smooth trend, or
integrated random walk, which has a more pronounced rise toward lower frequencies. Here, as before,
the key aspect of nonstationarity is that it requires a certain condition, that the filter cancels out the
differencing operator of the process; in the frequency domain, this is identical to annihilation of the
infinite spectrum at zero. Apart from this needed cancellation, the essence of the error just involves the
presence of extra components that have share frequency parts with the cycle.

In the case of a trend, the gain function applied to the stationarized trend process could just as

well be viewed as the original band-pass applied to the trend pseudospectrum, which rises toward lower
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Figure C.3: Gain of ideal filter applicable to the stationary process underlying an integrated of order

two process.

frequencies. Then, the additional component contributes to the filtered process. If one replaces the
I(d) process by a stationary AR(1) process with coefficient near unity, the spectrum of the output
would have a similar contribution. Instead of the order of integration, the key to the problem lies
in the spectrum of the extra component, which shares frequencies with the cycle. So the presence of
additional components, apart from the component of interest, is paramount regardless of whether each
extra component is stationary or nonstationary.

The motivation for using band-pass filters is a frequency-based concept: in the context of economic
time series, the presence of a peak in the spectrum at some intermediate periodicity, with most of their
spectral power in a surrounding interval, defines cyclical fluctuations. Since the evolution in the overall
business cycle tend to dominate these fluctuations, in macroeconomics a more specific definition that
focusses on business cycle frequencies has often been used in previous work. Here we work with the
more general definition, recognizing that recurring and persistent episodes of advance or decline may, for
a given aggregate, arise from factors other than changes in the underlying state of the business cycle.
Correspondingly, here we use "band-pass filter" to denote a general and flexible kind of filter compared to
the ideal filter, for instance (or any fixed filter, for that matter). Requiring only a general concentration
over a neighborhood of medium-term periodicity still allows for a gain that falls off continuously at high-
and low- frequency extremes; such curvature is crucial for time series with frequency overlap between
components, as occurs for the stochastic trend and cyclical parts in economic data.

In contrast to a stationary process, for which the spectrum has a finite value at the zero frequency

(so no question arises about the existence of the spectral output), the spectral power of a nonstationary

10



component rises indefinitely as the frequency approaches zero. Nevertheless, when the product of the
squared gain function and the pseudospectrum has a finite limit at A\ = 0, we can still work with
the pseudospectrum itself. Given the dichotomy between stationary and nonstationary dynamics, it
may seem, at first, that there are special implications and very distinct conditions in the presence
of nonstationarity; actually, however, the occurrence of distortions when applying a band-pass filter
to a nonstationary process arise from the same basic source as those for a stationary input process.
The technical requirement for existence of the output is that the filter factors as F(L) = h(L)(1 —
L)?, so application of the filter gives a cancellation of the (1 — L)¢ factor in the time domain. With
this mathematical condition satisfied, rather than having to consider the adjusted filter applied to a
differenced component, we can effectively analyze F'(L) applied directly to the observed time series.
Working with the process’s pseudospectrum and the original gain is conceptually simpler and gives a

clearer interpretation of filter formation and effects.

Appendix D Tables of Empirical Results

The attached Appendix D file contains the full set of empirical results relating to parameter estimates
and diagnostics for the adaptive filter, with models fully fitted to series. Additionally, results on the

ideal filter fits and diagnostics are presented for the four cycle indices 4, 6, and 8.

Appendix E Stochastic Cycle Models

The first form is referred to as the "Balanced" model, as there are symmetric assumptions on the shock

vectors. In particular, the balanced nth-order stochastic cycle 1, ,, for positive integer n, is defined by

n,t?

(T CoS A\, sin A, V141 Ky
=0 ’ + (E.1)
(U —sinA. cos . (UM Ky
wz’,t oS A sin A ¢z‘,t—1 1/%‘—1,t—1 .
=p + , 1=2,...,1n
* : * *
1/%',1& —sin A, cos A wi,tfl ¢i71,t71

where ky, kj ~ WN(0,02) are uncorrelated.
The term balanced refers to the symmetry in its equations. For the balanced form, analytical ex-

pressions are available for the time and frequency domain properties, as set out in Trimbur (2006). The
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expression for the power spectrum is

Jo,(Aip, Ae) = (E.2)

n

n . n n .
Do (=1)k P cos Ao(j — k) cos A(j — k)
j=0k=0 J k

L (1 + 4p?cos? A, + p* — 4p(1 + p?) cos A\, cos A + 2p? cos 20)"

and the spectral density is

hy, (Xip, Ae) = (1/03) [y, (s p, Ac) (E.3)
where the cycle variance is
2
n=1 [ n—1 4
> P
i=0 i

2 E4
T4 (1— p2y2n1 (E-4)
yt:ﬂm,t+¢n,t+6t7 , &t NWN(O,O'?), t= 1,...,T (E5)

where W N denotes ‘white noise’, a serially uncorrelated process with mean zero and constant variance.

The Butterworth form of the n—th order stochastic cycle 1, , is given by

P, _, cos A,  sin. (A n kit (E.6)
Wf,t —sin A, cos A\, witfl 0
. cosA.  sin . it i—
w7t —p 77Z)7t 1 + 77Z} 1t , 2':2,...,71
q/,zt —sin A, cos A\, ¢:,t—1 0

where k; ~ WN(0,62). For (E.6), the symmetry in the shock vectors no longer holds. The advantage
of such a form is that it allows for compact gain functions when optimal filters/estimators are formed
from an overall model.

For both (E.1) and (E.6), 27/, is a central period of oscillation, and p is a damping parameter. The
parameter p satisfies 0 < p < 1, while 0 < A, < 7. As (E.1) and (E.6) have pairs of complex conjugate
roots petc with modulus p, 1, is stationary if |p| < 1. The models guarantee a peaked spectral shape,
with a certain width, centered around A.. For n = 1, the shocks to 1, , are random, but for n > 1, the

disturbances to v, , are periodic; this leads to a reinforcement of the cycle at the frequency A.. The
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interpretation of the damping factor p changes with n, so that different values of p are appropriate for

different orders.

Appendix F Additional Graphs of Empirical Results

In moving from high to very high orders, there are further increases in the sharpness of the estimated
band-pass filter’s gain function. This finding is illustrated in figure F.1, which shows results for n = 6
vs. n = 12 for Investment. This results in a slight increase in the amount of noise removed from the

cycle.
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Figure F.1: Estimated Band Pass filter for extracting cycle in Investment (in logs) for n = 6 and n = 12

with Balanced form.

The extracted cycles for Residential Investment for n = 8 are displayed for both Balanced and
Butterworth models in figure F.2. This illustrates how the two different forms can have different
implications for the extracted cycle, as the amplitude of fluctuations are larger for the Butterworth
forms. The larger amplitude is reflected in figure F.3 by greater inclusion of the lower-frequency portion

of the cyclical frequency range. This example involves a highly cyclical series that also has substantial
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Figure F.2: Estimated cycle in Residential Investment (in logs) for n = 8 with Balanced and Butterworth

forms.
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Figure F.3: Estimated Band Pass filter for extracting cycle in Residential Investment (in logs) for n =

8 with Balanced and Butterworth forms.
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variability in the direction of its stochastic trend. In many cases, the differences between Balanced and

Butterworth forms appear more subtle in practice.
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Figure F.4: Estimated Trend in Consumption of Services for n = 6 with adaptive modelled filter,

compared to the BK filter.

Figures F.4 and F.5 show the resulting trend and cycle for Consumption of Services, an example with
a relatively muted cyclical component; the trend is shown over the second half of the sample period to
help distinguish it from the observed series. In this example, the trend growth dominates short-term
movements, and the estimated cycle is overstated by the BK filter and modelled ideal filter. Hence,
the BK filter artificially enhances the cyclical movements and gives a falsely amplified signal. The
end-of-series estimates, which are unavailable with the BK procedure, reveal a continued down-turn in
the cycle.

Figure F.6 displays the associated gain function for Consumption of Services. The estimated gain
cuts out significant frequency parts around the left boundary of BK’s ideal filter. The gain does not rise
until a higher frequency within the band is reached, and the peak of the band-pass is well below 0.9. In
contrast to Baxter and King’s targeted filter, there is no requirement on the gain being unity or close to
unity at its maximum, as that depends on the power spectrum of the cycle and how it relates to trend

and noise (pseudo-)spectra.
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Figure F.5: Estimated Cycle in Consumption of Services for n = 6 with adaptive modelled filter,

compared to the BK filter.
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Figure F.6: Estimated Band Pass filter for extracting cycle in Consumption of Services for n = 6 with

Balanced form, shown with ideal filter boundaries (dotted lines).
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-Results for time series data taken from BEA: RealGDP and components

Univariate Models.
Model Type for Observations: Trend + Cycle + Irreg
Trend Model: Damped (Order 2) in Standard Form
The cycle is an n-th order stochastic cycle, as in Harvey-Trimbur (2003).
The cycle's model form is either Butterworth ('BW') or Balanced ('Bal').

Results for Series: 'Real GDP'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'RealGDP’

Cycle Model ZetaVar Epsvar Q_Zeta BetaMean Phi KappaVar Rho Period
Butterworth (Order 1) 5.426e-006 1.219e-008 0.0445 0.007326 0.95 4.341e-005 0.8903 14.09
Balanced (Order 1) 2.294e-006 2.229e-008 0.01029 0.007623 0.95 4.557e-005 0.892 17.51
Butterworth (Order 2) 9.009e-007 7.817e-006 0.001992 0.007737 0.95 4.186e-005 0.7443 32
Balanced (Order 2) 8.98e-007 8.426e-006 0.001969 0.007735 0.95 3.477e-005 0.7145 32
Butterworth (Order 3) 9.043e-007 1.182e-005 0.001977 ©0.007724 0.95 2.6e-005 0.6009 32
Balanced (Order 3) 1.016e-006 1.223e-005 0.002448 0.007723 0.95 2.034e-005 0.5832 32
Butterworth (Order 4) 9.548e-007 1.317e-005 0.002185 0.00772 0.95 1.894e-005 0.5019 32
Balanced (Order 4) 1.109e-006 1.351e-005 0.002864 0.007715 0.95 1.407e-005 0.494 32
Butterworth (Order 5) 1.004e-006 1.38e-005 0.002396 0.007718 0.95 1.508e-005 0.4313 32
Balanced (Order 5) 1.179e-006 1.409e-005 0.003191 0.007708 0.95 1.069e-005 0.4298 32
Butterworth (Order 6) 1.045e-006 1.415e-005 0.002575 0.007716 0.95 1.266e-005 0.3788 32
Balanced (Order 6) 1.232e-006 1.442e-005 0.003444 0.007703 0.95 8.612e-006 0.3814 32
Butterworth (Order 7) 1.078e-006 1.437e-005 0.002725 0.007709 0.95 1.102e-005 0.3381 32
Balanced (Order 7) 1.271e-006 1.461e-005 0.003637 0.007698 0.95 7.223e-006 0.3434 32
Butterworth (Order 8) 1.106e-006 1.452e-005 0.00285 0.007709 0.95 9.836e-006 0.3055 32
Balanced (Order 8) 1.302e-006 1.475e-005 0.003794 0.007695 0.95 6.23e-006 0.3127 32



Results for Series: 'Real Investment'.
Data Transformation: Logarithmic transform.

Sample period: 1947-1 to 2017-4.
Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Reallnv’

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 6.937e-006 6.529e-007 0.001062 0.009161 0.95 0.001835 ©0.9124 24.78
Balanced (Order 1) 6.256e-006 7.065e-007 ©.0008853 0.009267 0.95 0.001572 0.8818 20.14
Butterworth (Order 2) 2.32e-006 ©.0003089 0.0002309 0.009161 0.95 0.001111 ©.7225 30.11
Balanced (Order 2) 3.363e-006 ©0.0003591 ©0.0003709 0.008971 0.95 0.000737 ©.7055  23.59
Butterworth (Order 3) 2.419e-006 0.0004379 0.0002415 0.009161 0.95 0.0005897 0.6187 24.39
Balanced (Order 3) 2.632e-006 ©.0004488 0.0002685 0.008918 0.95 0.0004269 0.5923 26.64
Butterworth (Order 4) 2.404e-006 0.0004765 0.0002399 0.009161 0.95 0.0003753 ©.5424 21.78
Balanced (Order 4) 2.395e-006 0.000478 0.000238 0.008909 0.95 0.0002918 ©0.5104 29.05
Butterworth (Order 5) 2.384e-006 0.0004923 0.000238 0.009161 0.95 0.0002682 ©0.4831 20.18
Balanced (Order 5) 2.295e-006 ©.0004908 0.0002257 ©.008908 0.95 0.0002211 0.4484 31.19
Butterworth (Order 6) 2.369e-006 ©.0005001 ©0.0002366 ©0.009161 0.95 0.0002071 0.4356 19.05
Balanced (Order 6) 2.312e-006 ©.0004984 0.0002287 ©.008905 0.95 0.0001707 0.4021 31.83
Butterworth (Order 7) 2.356e-006 ©0.0005045 ©0.0002356 0.009161 0.95 0.0001689 ©0.3966 18.21
Balanced (Order 7) 2.35e-006 ©0.0005032 0.0002342 0.008905 0.95 0.0001361 0.3655 32
Butterworth (Order 8) 2.347e-006 ©0.0005071 0.0002347 0.009161 0.95 0.0001433 0.364 17.56
Balanced (Order 8) 2.393e-006 0.0005062 0.0002404 0.008902 0.95 0.000112 0.3355 32



Results for Series: 'Real Residential Investment'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'ResInv’

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 0.0002916 2.534e-007 0.115 ©0.005758 0.95 0.0008608 ©0.8969 14
Balanced (Order 1) 0.0002261 3.556e-007 0.06359 0.006705 0.95 0.0007869 0.8824 14
Butterworth (Order 2) 1.142e-005 7.849e-005 0.0005913 0.005758 0.95 0.001275 0.7903 32
Balanced (Order 2) 7.981e-006 0.0001026 ©0.0003678 ©0.005247 0.95 0.001017 0.7612 32
Butterworth (Order 3) 7.195e-006 0.0002016 ©0.0003329 ©0.005758 0.95 0.0007501 0.6539 32
Balanced (Order 3) 1.22e-005 0.0002124 0.000645 0.005537 0.95 0.000561 0.6275 32
Butterworth (Order 4) 7.767e-006 0.0002418 ©0.0003702 ©.005758 0.95 0.0005134 0.5527 32
Balanced (Order 4) 1.784e-005 0.0002462 0.001072 ©0.005813 0.95 0.0003726 ©0.5319 32
Butterworth (Order 5) 9.546e-006 ©0.0002588 ©0.0004827 ©0.005758 0.95 0.0003914 0.4771 32
Balanced (Order 5) 2.263e-005 0.0002606 0.001486 ©0.005972 0.95 0.0002758 0.4624 32
Butterworth (Order 6) 1.187e-005 0.0002673 ©0.0006378 ©.005758 0.95 0.0003202 0.419 32
Balanced (Order 6) 2.676e-005 0.0002677 0.001876 ©.006068 0.95 0.0002188 0.4095 32
Butterworth (Order 7) 1.413e-005 0.0002721 ©0.0008002 ©0.005758 0.95 0.0002739 0.3735 32
Balanced (Order 7) 3.041e-005 0.0002717 0.002242 0.006131 0.95 0.000182 0.3677 32
Butterworth (Order 8) 1.617e-005 0.000275 0.0009554 ©0.005758 0.95 0.000242 0.3369 32
Balanced (Order 8) 3.365e-005 0.0002741 0.002584 0.006174 0.95 0.0001564 0.3339 32



Results for Series: 'Real Non-Residential Investment'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'NonRes_Inv'

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 4.918e-005 8.841e-008 0.05562 0.01015 0.95 0.000249 0.9178 15.19
Balanced (Order 1) 1.213e-005 2.209e-007 0.005489 0.009647 0.95 0.0002934 0.9312 20.89
Butterworth (Order 2) 3.556e-006 3.683e-005 0.0008979 0.01015 0.95 0.0002803 0.781 32
Balanced (Order 2) 3.287e-006 4.201e-005 0.0007934 0.01001 0.95 0.000226 ©0.7475 32
Butterworth (Order 3) 3.319e-006 6.676e-005 0.0008165 0.01015 0.95 0.0001651 0.6373 32
Balanced (Order 3) 4.112e-006 7.007e-005 0.001118 0.009925 0.95 0.0001241 0.6164 32
Butterworth (Order 4) 3.619e-006 7.695e-005 0.0009319 0.01015 0.95 0.0001146 ©0.5363 32
Balanced (Order 4) 4.86e€-006 7.939e-005 0.001438 0.009864 0.95 8.17e-005 0.5257 32
Butterworth (Order 5) 3.947e-006 8.171e-005 0.001061 0.01015 0.95 8.759e-005 0.4639 32
Balanced (Order 5) 5.463e-006 8.359e-005 0.001711 0.00982 0.95 5.955e-005 0.4599 32
Butterworth (Order 6) 4.232e-006 8.435e-005 0.001178 0.01015 0.95 7.108e-005 0.4096 32
Balanced (Order 6) 5.946e-006 8.585e-005 0.001937 0.009786 0.95 4.633e-005 0.4099 32
Butterworth (Order 7) 4.474e-006 8.6e-005 0.001278 0.01015 0.95 6.01e-005 0.3671 32
Balanced (Order 7) 6.336e-006 8.72e-005 0.002126 0.00976 0.95 3.769e-005 0.3703 32
Butterworth (Order 8) 4.677e-006 8.71e-005 0.001365 0.01015 0.95 5.234e-005 0.333 32
Balanced (Order 8) 6.659e-006 8.809e-005 0.002285 0.00974 0.95 3.169e-005 ©0.3382 32



Results for Series: 'Change in Inventories (As Percentage of Total Investment) '. Sample period: 1947-1 to 2017-4.
Data Transformation: No transform. Original series used in estimation.
Table of Maximum likelihood estimates of parameters for Series: 'DPct_Inven'
Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 1.283e-008 0.000159 le-005-7.618e-005 0.95 0.0006088 ©0.7678 18.42
Balanced (Order 1) 1.296e-008 0.0002229 le-005-5.808e-005 0.95 0.0004249 0.7772 14.73
Butterworth (Order 2) 1.311e-008 0.0003474 le-005-7.618e-005 0.95 0.0002442 0.6628 15.46
Balanced (Order 2) 1.317e-008 0.000364 le-005-6.124e-005 0.95 0.0001405 0.6387 14.49
Butterworth (Order 3) 1.323e-008 0.000383 le-005-7.618e-005 0.95 0.0001318 0.5893 14
Balanced (Order 3) 1.321e-008 0.0003871 le-005-6.247e-005 0.95 6.914e-005 ©0.5468 14.4
Butterworth (Order 4) 1.367e-008 ©0.0003981 le-005-7.618e-005 0.95 8.248e-005 0.523 14
Balanced (Order 4) 1.322e-008 0.000394 1le-005-6.306e-005 0.95 4.089e-005 0.4814 14.36
Butterworth (Order 5) 1.4e-008 0.000399 1le-005-7.618e-005 0.95 7.545e-005 0.4378 14
Balanced (Order 5) 1.322e-008 ©0.0003968 le-005-6.341e-005 0.95 2.7e-005 ©.4319 14.33
Butterworth (Order 6) 1.406e-008 0.0003947 1le-005-7.618e-005 0.95 8.441e-005 0.3579 14
Balanced (Order 6) 1.322e-008 ©0.0003982 le-005-6.363e-005 0.95 1.922e-005 ©0.3927 14.31
Butterworth (Order 7) 1.405e-008 ©0.0003926 le-005-7.618e-005 0.95 8.895e-005 0.3042 14
Balanced (Order 7) 1.322e-008 0.000399 le-005-6.381e-005 0.95 1.442e-005 0.3608 14.3
Butterworth (Order 8) 1.403e-008 0.0003916 le-005-7.618e-005 0.95 9.041e-005 0.2662 14
Balanced (Order 8) 1.322e-008 0.0003994 1le-005-6.392e-005 0.95 1.128e-005 0.3341 14.3



Results for Series: 'Real Consumption'.
Data Transformation: Logarithmic transform.

Sample period: 1947-1 to 2017-4.
Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Cons'

Cycle Model Zetavar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 1.451e-006 6.734e-006 0.01096 ©0.008118 0.95 3.147e-005 ©0.9262 21.88
Balanced (Order 1) 1.391e-006 8.554e-006 0.009708 ©0.008142 0.95 2.418e-005 ©0.9058 19.66
Butterworth (Order 2) 9.33e-007 1.464e-005 0.00431 0.008118 0.95 1.418e-005 ©.7963  28.29
Balanced (Order 2) 1.01e-006 1.534e-005 0.005059 0.008141 0.95 8.454e-006 0.7634 23.5
Butterworth (Order 3) 7.776e-007 1.614e-005 0.002768 ©0.008118 0.95 7.601e-006 0.6733 32
Balanced (Order 3) 8.368e-007 1.633e-005 0.003281 0.008131 0.95 5.3e-006 ©0.6506 32
Butterworth (Order 4) 7.716e-007 1.664e-005 0.002701 ©0.008118 0.95 4.601e-006 0.5825 32
Balanced (Order 4) 8.684e-007 1.679e-005 0.003544 0.008133 0.95 2.857e-006 ©0.5726 32
Butterworth (Order 5) 7.807e-007 1.686e-005 0.002769 ©0.008118 0.95 3.133e-006 0.5139 32
Balanced (Order 5) 8.9e-007 1.702e-005 0.003732 0.008133 0.95 1.721e-006 ©0.5147 32
Butterworth (Order 6) 7.919e-007 1.698e-005 0.002859 0.008118 0.95 2.302e-006 0.4606 32
Balanced (Order 6) 9.08e-007 1.716e-005 0.003888 0.008134 0.95 1.125e-006 ©0.4692 32
Butterworth (Order 7) 8.023e-007 1.707e-005 0.002944 0.008118 0.95 1.784e-006 0.418 32
Balanced (Order 7) 9.205e-007 1.725e-005 0.004001 0.008132 0.95 7.782e-007 0.4325 32
Butterworth (Order 8) 8.115e-007 1.712e-005 0.003021 0.008118 0.95 1.438e-006 ©0.3832 32
Balanced (Order 8) 9.317e-007 1.732e-005 0.004094 0.008133 0.95 5.628e-007 0.4021 32



Results for Series: 'Real Consumption of Durables"'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'ConsDur'’

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 7.678e-006 0.0001485 0.002469 0.01281 0.95 0.000805 0.9105 32
Balanced (Order 1) 5.073e-006 0.0001629 0.001274 ©.01298 0.95 0.0007434 0.8974 32
Butterworth (Order 2) 5.341e-006 ©0.0003653 0.001348 0.01281 0.95 0.0003204 0.752 32
Balanced (Order 2) 4.971e-006 0.0003746 0.001206 0.013 0.95 0.0002549 0.7278 32
Butterworth (Order 3) 4.179e-006 0.0004089 0.0009523 0.01281 0.95 0.0001693 0.6343 32
Balanced (Order 3) 5.856e-006 0.0004124 0.001531 0.01308 0.95 0.0001268 0.61 32
Butterworth (Order 4) 4.069e-006 0.0004251 ©0.0009202 0.01281 0.95 0.0001056 0.5473 32
Balanced (Order 4) 6.451e-006 0.000426 0.001772 0.01312 0.95 7.572e-005 0.5293 32
Butterworth (Order 5) 4.359e-006 ©0.0004323 0.001012 0.01281 0.95 7.477e-005 0.4799 32
Balanced (Order 5) 6.848e-006 0.0004328 0.001943 0.01314 0.95 5.034e-005 0.4703 32
Butterworth (Order 6) 4.685e-006 0.0004362 0.001119 0.01281 0.95 5.74e-005 0.4273 32
Balanced (Order 6) 7.131e-006 0.0004369 0.002069 0.01316 0.95 3.597e-005 0.4248 32
Butterworth (Order 7) 4.959e-006 ©0.0004387 0.001213 0.01281 0.95 4.632e-005 0.3856 32
Balanced (Order 7) 7.325e-006 0.0004397 0.002158 0.01317 0.95 2.702e-005 0.3884 32
Butterworth (Order 8) 5.181e-006 ©0.0004405 0.001291 0.01281 0.95 3.878e-005 0.3517 32
Balanced (Order 8) 7.472e-006 0.0004418 0.002226 ©0.01318 0.95 2.104e-005 0.3587 32



Results for Series: 'Real Consumption of Non-Durables'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Cons_NonDur'

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 7.05e-007 1.81e-006 0.004201 0.006105 0.95 4.435e-005 0.9129 32
Balanced (Order 1) 7.053e-007 4.03e-006 0.003991 0.006138 0.95 3.632e-005 0.8886 27.04
Butterworth (Order 2) 6.341e-007 1.458e-005 0.003142 0.006105 0.95 1.69e-005 0.7502 32
Balanced (Order 2) 6.32e-007 1.498e-005 0.00311 ©0.00614 0.95 1.374e-005 0.7208 32
Butterworth (Order 3) 6.463e-007 1.668e-005 0.0032 0.006105 0.95 9.809e-006 0.6114 32
Balanced (Order 3) 7.153e-007 1.691e-005 0.003915 0.006137 0.95 7.482e-006 ©0.5933 32
Butterworth (Order 4) 6.797e-007 1.729e-005 0.00353 0.006105 0.95 6.983e-006 0.5121 32
Balanced (Order 4) 7.772e-007 1.744e-005 0.004578 0.006136 0.95 5.101e-006 0.5031 32
Butterworth (Order 5) 7.131e-007 1.754e-005 0.003863 0.006105 0.95 5.495e-006 0.4407 32
Balanced (Order 5) 8.194e-007 1.762e-005 0.005052 0.006135 0.95 3.88e-006 0.4376 32
Butterworth (Order 6) 7.393e-007 1.768e-005 0.004137 0©.006105 0.95 4.588e-006 0.3873 32
Balanced (Order 6) 8.491e-007 1.772e-005 0.005396 0.006136 0.95 3.134e-006 ©0.3882 32
Butterworth (Order 7) 7.562e-007 1.774e-005 0.004326 0.006105 0.95 3.975e-006 0.346 32
Balanced (Order 7) 8.724e-007 1.776e-005 0.005671 ©0.00613 0.95 2.637e-006 ©0.3492 32
Butterworth (Order 8) 7.725e-007 1.78e-005 0.0045 0.006105 0.95 3.513e-006 ©0.3132 32
Balanced (Order 8) 8.896e-007 1.779e-005 0.005884 0.006137 0.95 2.277e-006 ©0.3179 32



Results for Series: 'Real Consumption of Services'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Cons_Serv'

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 8.237e-007 5.028e-009 0.01638 ©0.008333 0.95 1.382e-005 ©0.9156 23.96
Balanced (Order 1) 7.074e-007 6.062e-009 0.01167 ©0.008176 ©.9557 1.29e-005 ©0.8872  23.57
Butterworth (Order 2) 7.766e-007 2.279e-006 0.01214 0.008333 0.9524 9.689e-006 0.6665 32
Balanced (Order 2) 8.207e-007 2.393e-006 0.01358 ©0.008181 ©.9507 8.429e-006 ©0.6407 32
Butterworth (Order 3) 8.916e-007 3.221e-006 0.01594 0.008333 0.95 6.619e-006 0.5109 32
Balanced (Order 3) 9.388e-007 3.311e-006 0.01834 0.008164 0.95 5.578e-006 ©0.4986 32
Butterworth (Order 4) 9.435e-007 3.587e-006 0.01825 0.008333 0.95 5.224e-006 0.4161 32
Balanced (Order 4) 1.004e-006 3.685e-006 0.02133 0.008153 0.95 4.243e-006 0.4116 32
Butterworth (Order 5) 9.848e-007 3.771e-006 0.02009 0.008333 0.95 4.441e-006 0.3515 32
Balanced (Order 5) 1.054e-006 3.857e-006 0.02367 0.008147 0.95 3.524e-006 0.3507 32
Butterworth (Order 6) 1.008e-006 3.888e-006 0.02127 ©0.008333 0.95 3.929e-006 ©0.3052 32
Balanced (Order 6) 1.092e-006 3.952e-006 0.02562 ©0.008133 0.95 3.095e-006 ©0.3049 32
Butterworth (Order 7) 1.03e-006 3.961e-006 0.02241 0.008333 0.95 3.574e-006 0.2695 32
Balanced (Order 7) 1.109e-006 4.045e-006 0.02657 ©0.008139 0.95 2.707e-006 0.2728 32
Butterworth (Order 8) 1.044e-006 4.015e-006 0.02319 0.008333 0.95 3.312e-006 0.2417 32
Balanced (Order 8) 1.129e-006 4.089e-006 0.02769 0.008136 0.95 2.491e-006 0.2451 32



Results for Series: 'Real Government Expenditures'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Gov'

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 3.672e-005 2.175e-008 0.1688 0.006368 0.95 8.043e-005 0.8848 14
Balanced (Order 1) 3.215e-005 2.871e-008 0.112 0.0064 0.95 7.363e-005 0.8623 14
Butterworth (Order 2) 8.971e-006 1.682e-005 0.005852 0.006368 0.95 9.134e-005 0.8016 32
Balanced (Order 2) 8.859e-006 1.846e-005 0.005506 ©0.006902 0.95 7.275e-005 0.7637 32
Butterworth (Order 3) 1.003e-005 2.69e-005 0.006706 ©0.006368 0.95 4.946e-005 0.6579 32
Balanced (Order 3) 1.123e-005 2.801e-005 0.008615 0.006844 0.95 3.541e-005 0.6336 32
Butterworth (Order 4) 1.076e-005 3.074e-005 0.007466 ©0.006368 0.95 3.056e-005 0.5636 32
Balanced (Order 4) 1.296e-005 3.145e-005 0.01116 ©0.006794 0.95 1.987e-005 0.5499 32
Butterworth (Order 5) 1.124e-005 3.266e-005 0.007995 ©0.006368 0.95 2.067e-005 0.4973 32
Balanced (Order 5) 1.401e-005 3.314e-005 0.01275 0.006766 0.95 1.217e-005 0.4921 32
Butterworth (Order 6) 1.157e-005 3.378e-005 0.008363 ©0.006368 0.95 1.495e-005 0.4471 32
Balanced (Order 6) 1.463e-005 3.411e-005 0.01368 0.006751 0.95 7.962e-006 ©0.4488 32
Butterworth (Order 7) 1.182e-005 3.446e-005 0.008651 0.006368 0.95 1.14e-005 0.4072 32
Balanced (Order 7) 1.508e-005 3.469e-005 0.01434 0.006741 0.95 5.518e-006 0.414 32
Butterworth (Order 8) 1.204e-005 3.493e-005 0.008901 0.006368 0.95 9.046e-006 0.3744 32
Balanced (Order 8) 1.54e-005 3.508e-005 0.01482 0.006734 0.95 4.008e-006 0.385 32



Results for Series: 'Real Exports'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Exports'’

Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 1.861e-005 0.0002625 0.006549 0.009363 0.95 0.0008012 0.9032 20.51
Balanced (Order 1) 1.484e-005 0.0002909 0.004406 ©0.009638 0.95 0.0006816 ©.8823 20.08
Butterworth (Order 2) 1.053e-005 0.0004704 0.002368 0.01012 0.95 0.0003931 0.7539 27.45
Balanced (Order 2) 1.086e-005 0.0004854 0.002515 0.01008 0.95 0.0002756 ©.7223  24.89
Butterworth (Order 3) 9.728e-006 ©0.0005159 0.00199 0.01025 0.95 0.0002186 0.6306  27.37
Balanced (Order 3) 9.958e-006 ©0.0005198 0.002096 0.01021 0.95 0.0001653 0.6058 30.29
Butterworth (Order 4) 9.563e-006 0.0005304 0.001921 0.01028 0.95 0.0001436 0.5415 26.84
Balanced (Order 4) 9.979e-006 0.0005331 0.002103 0.01021 0.95 0.0001048 ©.5254 31.96
Butterworth (Order 5) 9.536e-006 ©.0005366 0.001911 0.01028 0.95 0.0001051 0.4745 26.61
Balanced (Order 5) 1.015e-005 ©0.0005396 0.002176 0.01019 0.95 7.023e-005 0.4675 32
Butterworth (Order 6) 9.548e-006 ©.0005399 0.001918 ©0.01028 0.95 8.283e-005 0.422 26.74
Balanced (Order 6) 1.029e-005 0.0005431 0.002235 0.01017 0.95 5.048e-005 0.4225 32
Butterworth (Order 7) 9.573e-006 0.0005419 0.001929 0.01028 0.95 6.868e-005 0.3796  27.23
Balanced (Order 7) 1.039e-005 0.0005453 0.002279 0.01016 0.95 3.821e-005 0.3864 32
Butterworth (Order 8) 9.599e-006 0.0005431 0.00194 0.01126 0.95 5.917e-005 0.3443  28.22
Balanced (Order 8) 1.046e-005 ©0.0005468 0.002312 0.01015 0.95 3.005e-005 0.3566 32



Results for Series: 'Real Imports'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Maximum likelihood estimates of parameters for Series: 'Imports’
Cycle Model ZetaVvar Epsvar Q_Zeta BetaMean Phi KappaVvar Rho Period
Butterworth (Order 1) 5.136e-006 3.728e-007 0.001378 0.01396 0.95 0.001225 0.879 32
Balanced (Order 1) 4.387e-006 4.232e-007 0.001037 0.01392 0.95 0.001166 ©0.8512 32
Butterworth (Order 2) 4.648e-006 0.0002796 0.001115 0.01396 0.95 0.0006417 0.6584 32
Balanced (Order 2) 4.767e-006 0.0002909 0.00116 ©0.01389 0.95 0.0005541 0.6408 32
Butterworth (Order 3) 4.617e-006 ©0.0003585 0.001097 0.01396 0.95 0.0004037 0.5334 32
Balanced (Order 3) 4.974e-006 0.0003682 0.00124 ©0.01388 0.95 0.0003265 0.5273 32
Butterworth (Order 4) 4.686e-006 ©0.0003877 0.001124 0.01396 0.95 0.0002949 0.4496 32
Balanced (Order 4) 5.11e-006 0.000397 0.001294 0.01388 0.95 0.0002229 0.4519 32
Butterworth (Order 5) 4.76e-006 0.0004022 0.001153 0.01396 0.95 0.0002339 0.3896 32
Balanced (Order 5) 5.201e-006 0.0004111 0.001331 0.01387 0.95 0.000166 ©0.3973 32
Butterworth (Order 6) 4.821e-006 ©0.0004106 0.001178 0.01396 0.95 0.0001954 0.3445 32
Balanced (Order 6) 5.27e-006 ©0.0004192 0.001359 0.01387 0.95 0.0001311 0.3555 32
Butterworth (Order 7) 4.873e-006 0.0004161 0.001199 0.01396 0.95 0.000169 0.3091 32
Balanced (Order 7) 5.319e-006 0.0004244 0.00138 0.01387 0.95 0.0001079 0.3223 32
Butterworth (Order 8) 4.917e-006 ©0.0004199 0.001216 ©0.01396 0.95 0.00015 0.2806 32
Balanced (Order 8) 5.358e-006 0.0004279 0.001396 0.01387 0.95 9.149e-005 ©0.2952 32
Note: The Model Type for Observations 'Standard (Order m) + Irregular' indicates an Unobserved Components model with Standar

»d m-th order Stochastic Trend plus a White Noise Irregular.
'Canonical' indicates a Canonical Stochastic Trend.
'ZetaVar' is the variance of the core Trend disturbance.

»EpsVar, the Signal-Noise ratio.

'BetaMean' is the Mean of the slope [AR(1)] at the

»Phi is damping coefficient of the Slope.

"EpsVar' is the variance of the Irregular. 'Q_Zeta' equals ZetaVar/

core of the Trend and is only applicable to models with |Phi| < 1, where






Results for time series data taken from BEA: RealGDP and components

Univariate Models.
Model Type for Observations: Trend + Cycle + Irreg
Trend Model: Damped (Order 2) in Standard Form
The cycle is an n-th order stochastic cycle, as in Harvey-Trimbur (2003).
The cycle's model form is either Butterworth ('BW') or Balanced ('Bal').

Results for Series: 'Real GDP'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'RealGDP’

Butterworth (n = 1) 7.271 27.68 35.68 0.00888 -1853.79 -1779.40 0.106
Balanced (n = 1) 6.396 31.36 38.32 0.00881 -1858.43 -1784.05 0.12
Butterworth (n = 2) 2.373 16.98 25.09 0.00865 -1869.31 -1794.93 0.152
Balanced (n = 2) 2.259 16.66 24.53 0.00864 -1869.53 -1795.14 0.153
Butterworth (n = 3) 2.593 15.88 22.75 0.00863 -1870.13 -1795.75 0.155
Balanced (n = 3) 2.956 16.3 23.02 0.00864 -1869.53 -1795.15 0.153
Butterworth (n = 4) 3.307 16.28 22.78 0.00864 -1869.74 -1795.35 0.154
Balanced (n = 4) 3.96 17.11 23.41 0.00865 -1868.76 -1794.37 0.151
Butterworth (n = 5) 3.858 16.76 23.11 0.00865 -1869.24 -1794.86 0.152
Balanced (n = 5) 4.676 17.82 23.92 0.00866 -1868.06 -1793.68 0.149
Butterworth (n = 6) 4.266 17.17 23.43 0.00865 -1868.82 -1794.44 0.151
Balanced (n = 6) 5.176 18.37 24.35 0.00867 -1867.52 -1793.13 0.147

Butterworth (n = 7)
Balanced (n = 7)
Butterworth (n = 8)
Balanced (n = 8)



Results for Series: 'Real Investment'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Reallnv'’

Butterworth (n = 1) 29.3 56.78 69.91 0.0469 -911.91 -837.53 0.0484
Balanced (n = 1) 16.74 41.31 51.68 0.0464 -917.83 -843.45 0.0681
Butterworth (n = 2) 8.906 22.57 31.51 0.0454 -931.08 -856.69 0.111
Balanced (n = 2) 6.902 20.18 28.67 0.0453 -932.15 -857.76 0.114

Butterworth (n = 3) 5.621 17.57 25.7 0.045 -935.36 -860.98 0.124
Balanced (n = 3) 5.333 17.24 25.3 0.045 -935.59 -861.21 0.125
Butterworth (n = 4) 4.789 16.25 24.12 0.0449 -936.97 -862.59 0.129
Balanced (n = 4) 4.801 16.36 24.27 0.0449 -936.92 -862.53 0.129
Butterworth (n = 5) 4.515 15.89 23.66 0.0448 -937.66 -863.28 0.131
Balanced (n = 5) 4.568 16.04 23.89 0.0448 -937.54 -863.15 0.131
Butterworth (n = 6) 4.393 15.79 23.52 0.0448 -938.00 -863.61 0.132
Balanced (n = 6) 4.428 15.89 23.68 0.0448 -937.87 -863.49 0.132
Butterworth (n = 7) 4.325 15.77 23.49 0.0448 -938.18 -863.79 0.133
Balanced (n = 7) 4.35 15.84 23.58 0.0448 -938.06 -863.68 0.133
Butterworth (n = 8) 4.281 15.78 23.49 0.0448 -938.28 -863.90 0.133
Balanced (n = 8) 4.308 15.83 23.54 0.0448 -938.17 -863.79 0.133



Results for Series: 'Real Residential Investment'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'ResInv'’

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R*2_d
Butterworth (n = 1) 17.05 44.17 51.53 ©0.0434 -954.93 -880.54 0.2
Balanced (n = 1) 11.6  39.41 45.62 ©.0431 -959.82 -885.43 0.214
Butterworth (n = 2) 5.633 26.17 35.53 0.0415 -981.93 -907.55 0.272
Balanced (n = 2) 5.728 25.79 34.54 0.0414 -982.62 -908.24 0.274
Butterworth (n = 3) 7.708  26.13 34.6 0.0414 -982.24 -907.86 ©0.273
Balanced (n = 3) 8.23  26.97 36.3 ©0.0416 -980.15 -905.76 ©.267
Butterworth (n = 4) 9.642 27.72 36.18 ©.0415 -980.83 -906.45 ©.269
Balanced (n = 4) 10.19  29.5 38.92 ©0.0418 -977.78 -903.39  0.261
Butterworth (n = 5) 10.84 29.11 37.78 0.0416 -979.41 -905.03 ©0.266
Balanced (n = 5) 11.37 31.53 40.78 ©0.0419 -976.08 -901.69  ©.257
Butterworth (n = 6) 11.51 30.16 39.01 ©0.0417 -978.26 -903.88 ©0.262
Balanced (n = 6) 12.08 32.99 42.82  0.042 -974.86 -900.48 ©0.254

Butterworth (n = 7) 11.93 30.99 39.91 0.0418 -977.37 -902.98 0.26
Balanced (n = 7) 12.52 34.04 42.83 0.042 -973.98 -899.60 0.251
Butterworth (n = 8) 12.23 31.66 40.6 0.0418 -976.66 -902.28 0.258
Balanced (n = 8) 12.79 34.79 43.37 0.0421 -973.31 -898.93 0.25



Results for Series: 'Real Non-Residential Investment'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'NonRes_Inv'

Butterworth (n = 1) 17.13 34.86 46.8 0.0219 -1342.34 -1267.96 0.154
Balanced (n = 1) 16.86 35.22 45.66 0.0217 -1347.93 -1273.55 0.17
Butterworth (n = 2) 14.99 26.39 40.68 0.0212 -1362.53 -1288.15 0.211
Balanced (n = 2) 15.87 27.3 41.49 0.0212 -1362.20 -1287.82 0.21
Butterworth (n = 3) 20.73 32.52 46.48 0.0213 -1358.63 -1284.25 0.2
Balanced (n = 3) 22.12 34.61 48.65 0.0214 -1356.61 -1282.23 0.195
Butterworth (n = 4) 23.54 35.77 49.53 0.0214 -1355.81 -1281.42 0.192
Balanced (n = 4) 25.28 38.67 52.52 0.0215 -1352.96 -1278.58 0.184
Butterworth (n = 5) 25.11 37.74 51.38 0.0215 -1353.89 -1279.51 0.187
Balanced (n = 5) 27.02 41.07 54.78 0.0216 -1350.64 -1276.26 0.178
Butterworth (n = 6) 26.11 39.08 52.63 0.0215 -1352.53 -1278.15 0.183
Balanced (n = 6) 28.08 42.61 56.22 0.0217 -1349.08 -1274.70 0.173

Butterworth (n = 7) 26.8 40.04 53.54 (%]
Balanced (n = 7) 28.79 43.68 57.19 0

Butterworth (n = 8) 27.31 40.77 54.23 0.0216 -1350.76 -1276.37 0.178
Balanced (n = 8) 29.28 44.44 57.89 0



Results for Series: 'Change in Inventories (As Percentage of Total Investment) '. Sample period: 1947-1 to 2017-4.
Data Transformation: No transform. Original series used in estimation.
Table of Diagnostics for Series: 'DPct_Inven'

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R™2_d
Butterworth (n = 1) 11.81 18.41 29.38 0.0294 -1175.24 -1100.86 0.2
Balanced (n = 1) 10.54 16.3 26.96 ©0.0293 -1176.92 -1102.53 0.204
Butterworth (n = 2) 9.378 14.47 24.91 0.0292 -1179.37 -1104.98 0.211
Balanced (n = 2) 9.012 13.91 24.21 0.0291 -1179.94 -1105.55 0.213
Butterworth (n = 3) 8.687 13.34 23.53 ©0.0291 -1180.85 -1106.46 0.215
Balanced (n = 3) 8.496 13.22 23.34 ©0.0291 -1180.91 -1106.53 0.215
Butterworth (n = 4) 9.488 14.27 24.78 0.0291 -1180.63 -1106.25 0.214
Balanced (n = 4) 8.242 12.91 22.93 0.0291 -1181.37 -1106.98 0.217
Butterworth (n = 5) 10.63 15.72 26.54 0.0292 -1179.56 -1105.17 0.211
Balanced (n = 5) 8.093 12.74 22.69 ©0.0291 -1181.62 -1107.24 0.217
Butterworth (n = 6) 11.34 16.69 27.64 0.0292 -1178.78 -1104.39 0.209
Balanced (n = 6) 7.997 12.63 22.54 ©0.0291 -1181.79 -1107.41 0.218
Butterworth (n = 7) 11.72 17.19 28.2 ©0.0292 -1178.37 -1103.99 0.207
Balanced (n = 7) 7.93 12.56 22.44 0.0291 -1181.90 -1107.52 0.218
Butterworth (n = 8) 11.94 17.46 28.5 ©0.0293 -1178.15 -1103.76 0.207
Balanced (n = 8) 7.882 12.51  22.37 0.029 -1181.99 -1107.60 0.218



Results for Series: 'Real Consumption'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Cons'

Butterworth (n = 1) 27.57 42.57 47.13 0.00785 -1923.81 -1849.43 0.0557
Balanced (n = 1) 24.2 40.79 44.4 0.00781 -1926.48 -1852.10 0.0644
Butterworth (n = 2) 18.56 32.18 36.33 0.00769 -1935.32 -1860.93 0.0929
Balanced (n = 2) 17.36 31.03 35.07 0.00768 -1936.54 -1862.15 0.0969
Butterworth (n = 3) 16.44 28.8 32.78 ©0.00765 -1938.80 -1864.42 0.104
Balanced (n = 3) 16.29 28.53 32.57 ©0.00765 -1939.00 -1864.62 0.104
Butterworth (n = 4) 15.99 27.69 31.74 ©.00763 -1939.86 -1865.47 0.107
Balanced (n = 4) 16.17 27.73 31.85 0.00763 -1939.75 -1865.37 0.107
Butterworth (n = 5) 15.94 27.3 31.41 0.00763 -1940.22 -1865.83 0.108
Balanced (n = 5) 16.34 27.58 31.78 ©.00763 -1939.93 -1865.54 0.108
Butterworth (n = 6) 15.99 27.17 31.32 0.00763 -1940.34 -1865.96 0.109
Balanced (n = 6) 16.57 27.62 31.89 0.00763 -1939.93 -1865.54 0.108
Butterworth (n = 7) 16.06 27.12 31.32 0.00763 -1940.38 -1866.00 0.109
Balanced (n = 7) 16.77 27.72 32.05 0.00763 -1939.87 -1865.49 0.108
Butterworth (n = 8) 16.14 27.12 31.35 ©.00763 -1940.38 -1866.00 0.109
Balanced (n = 8) 16.95 27.84 32.22 0.00763 -1939.80 -1865.42 0.107



Results for Series: 'Real Consumption of Durables"'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'ConsDur'’

Butterworth (n = 1) 12.34 28.63 33.86 0.0358 -1065.41 -991.03-0.00145
Balanced (n = 1) 11.13 28.15 33.27 0.0357 -1067.06 -992.68 0.0042
Butterworth (n = 2) 8.012 24.53 29.13 0.0354 -1071.05 -996.67 0.0183
Balanced (n = 2) 7.987 24.64 29.16 0.0354 -1071.24 -996.86 0.0189
Butterworth (n = 3) 8.972 24.77 28.94 0.0354 -1071.95 -997.56 0.0214
Balanced (n = 3) 9.579 25.05 29.17 0.0354 -1071.10 -996.71 0.0185
Butterworth (n = 4) 10.03 25.52 29.48 0.0354 -1071.79 -997.40 0.0209
Balanced (n = 4) 10.88 25.87 29.78 0.0355 -1070.55 -996.17 0.0167
Butterworth (n = 5) 10.75 26.03 29.89 0.0354 -1071.45 -997.07 0.0198
Balanced (n = 5) 11.79 26.56 30.35 0.0355 -1070.07 -995.68 0.0151
Butterworth (n = 6) 11.25 26.39 30.19 0.0354 -1071.13 -996.75 0.0187
Balanced (n = 6) 12.44 27.1 30.81 0.0355 -1069.68 -995.29 0.0138

Butterworth (n = 7) 11.63 26.67 30.43
Balanced (n = 7) 12.92 27.53 31.19
Butterworth (n = 8) 11.92 26.9 30.63
Balanced (n = 8) 13.3 27.88 31.49



Results for Series: 'Real Consumption of Non-Durables'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Cons_NonDur'

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R*2_d
Butterworth (n = 1) 15.7 21.93 33.95 ©.00772 -1933.67 -1859.29 0.00908
Balanced (n = 1) 14.46 21.33  33.46 ©0.00771 -1934.69 -1860.31 0.0127
Butterworth (n = 2) 16.2 22.61 34.75 ©.0077 -1935.44 -1861.05 0.0154
Balanced (n = 2) 16.62 23.85 35.29 ©0.0077 -1935.25 -1860.87 0.0147
Butterworth (n = 3) 18.49  24.5 37.02 ©0.00771 -1934.07 -1859.69 ©.0103
Balanced (n = 3) 19.25 25.37 37.97 ©.00772 -1933.27 -1858.88 0.00803
Butterworth (n = 4) 19.49 25.32 37.97 ©.00773 -1933.07 -1858.69 0.00724
Balanced (n = 4) 20.39 26.31 38.95 ©0.00774 -1931.93 -1857.55 0.00313
Butterworth (n = 5) 20.03 25.74 38.42 ©.00774 -1932.40 -1858.02 0.00492
Balanced (n = 5) 20.95 26.71 39.3 ©.00775 -1931.10 -1856.710.000456
Butterworth (n = 6) 20.35 25.99 38.66 ©.00774 -1931.93 -1857.55 0.00306
Balanced (n = 6) 21.27 26.91 39.45 ©0.00776 -1930.54 -1856.15-0.00189
Butterworth (n = 7) 20.58 26.17 38.83 ©0.00775 -1931.59 -1857.20 0.00197
Balanced (n = 7) 21.47 27.02 39.5 0.00777 -1930.15 -1855.76-0.00298
Butterworth (n = 8) 20.76 26.32 38.98 ©0.00775 -1931.32 -1856.94 0.00114
Balanced (n = 8) 21.61 27.09 39.52 ©.00777 -1929.86 -1855.47-0.00389



Results for Series: 'Real Consumption of Services'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Cons_Serv'

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R*2_d
Butterworth (n = 1) 12.57 27.49 29.93 ©0.0045 -2239.10 -2164.72 ©.218
Balanced (n = 1) 11.45 26.28 28.45 0.00449 -2239.78 -2165.48 0.219
Butterworth (n = 2) 9.934 24.44 25.84 0.00449 -2239.70 -2165.32 0.219
Balanced (n = 2) 10.06 24.67 26.11 ©.0045 -2239.46 -2165.08 0.218

Butterworth (n = 3) 11.34 26.66 28.2
Balanced (n = 3) 11.64 27.33 28.9
Butterworth (n = 4) 12.26 28.12 29.75
Balanced (n = 4) 12.69 28.97 30.67
Butterworth (n = 5) 12.86 29.08 30.78
Balanced (n = 5) 13.39 30.02 31.8
Butterworth (n = 6) 13.3 29.75 31.49
Balanced (n = 6) 13.84 30.71 32.55

Butterworth (n = 7) 13.59 30.23 32.01 0.00453 -2235.48 -2161.09 0.208
Balanced (n = 7) 14.2 31.23 33.13 0.00453 -2234.66 -2160.27 0.206
Butterworth (n = 8) 13.83 30.6 32.41 0.00453 -2235.18 -2160.80 0.207
Balanced (n = 8) 14.44 31.6 33.53 0.00453 -2234.35 -2159.96 0.205



Results for Series: 'Real Government Expenditures'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Butterworth (n = 1) 13.75 26.82 32.6
Balanced (n = 1) 12.01 25.44  31.43
Butterworth (n = 2) 14.14 20.43  26.65
Balanced (n = 2) 14.15 20.66 26.85

Butterworth (n = 3) 15.3 23.11 29.29 0.0136 -1612.81 -1538.42 0.323
Balanced (n = 3) 15.43 24.13 30.39 0.0136 -1611.88 -1537.50 0.321
Butterworth (n = 4) 16.73 25.18 31.27 0.0136 -1611.41 -1537.03 0.32
Balanced (n = 4) 16.64 26.43 32.54 0.0137 -1610.15 -1535.77 0.317
Butterworth (n = 5) 17.67 26.42 32.47 0.0136 -1610.50 -1536.12 0.318
Balanced (n = 5) 17.41 27.64 33.66 0.0137 -1609.17 -1534.79 0.315
Butterworth (n = 6) 18.24 27.17 33.2 0.0137 -1609.90 -1535.51 0.316
Balanced (n = 6) 17.87 28.28 34.25 0.0137 -1608.59 -1534.21 0.313
Butterworth (n = 7) 18.59 27.63 33.65 0.0137 -1609.48 -1535.10 0.315
Balanced (n = 7) 18.13 28.62 34.57 0.0137 -1608.23 -1533.85 0.312
Butterworth (n = 8) 18.81 27.93 33.94 0.0137 -1609.19 -1534.81 0.315
Balanced (n = 8) 18.28 28.81 34.73 0.0137 -1608.00 -1533.61 0.312



Results for Series: 'Real Exports'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Exports'

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R*2_d
Butterworth (n = 1) 10.61 28.95 36.01 ©.0408 -990.73 -916.34 ©0.0201
Balanced (n = 1) 9.747 27.59 33.99 ©.0407 -992.27 -917.89 0.0247
Butterworth (n = 2) 6.839  23.4 27.73 ©0.0404 -996.26 -921.88 0.0382
Balanced (n = 2) 6.339 22.96 27.24 ©0.0404 -996.75 -922.37 ©0.0396
Butterworth (n = 3) 5.583 21.87 25.59 0.0403 -997.71 -923.33 0.0431
Balanced (n = 3) 5.475 21.77  25.5 ©.0403 -997.88 -923.50 ©0.0433
Butterworth (n = 4) 5.133 21.29 24.81 0.0403 -998.23 -923.84 0.0448
Balanced (n = 4) 5.052 21.29 24.86 ©0.0403 -998.30 -923.92 0.0448

Butterworth (n = 5) 4

Balanced (n = 5) 4.863 21.1  24.61
Butterworth (n = 6) 4

Balanced (n = 6) 4
Butterworth (n = 7) 4

Balanced (n = 7) 4,732 21.01 24.45
Butterworth (n = 8) 4

Balanced (n = 8) 4



Results for Series: 'Real Imports'. Sample period: 1947-1 to 2017-4.
Data Transformation: Logarithmic transform. Logged series used in estimation.

Table of Diagnostics for Series: 'Imports'’

Cycle Model Q(8) Q(16) Q(24) Eq SE AIC SIC R*2_d
Butterworth (n = 1) 7.553  34.82 43.31 0.0378 -1034.45 -960.07 0.00236
Balanced (n = 1) 7.097 34.28 42.37 ©0.0378 -1035.17 -960.79 0.00479
Butterworth (n = 2) 5.047 29.56 38.17 ©0.0377 -1036.49 -962.10 0.00957
Balanced (n = 2) 5.031 29.33 38.08 0.0377 -1036.36 -961.98 0.00916

Butterworth (n = 3) 5.238 27.95 36.89 0
Balanced (n = 3) 5.298 27.93 37.19 ©
Butterworth (n = 4) 5.439 27.39 36.6 0.0377 -1036.42 -962.03 0.00941
Balanced (n = 4) 5.57 27.47 37.08 @
Butterworth (n = 5) 5
Balanced (n = 5) 5.771  27.29 37.15
Butterworth (n = 6) 5
Balanced (n = 6) 5
Butterworth (n = 7) 5 .0377 -1035.94 -961.56 0.00786
Balanced (n = 7) 6.028 27.19 37.36 .0377 -1035.37 -960.98 0.00591
Butterworth (n = 8) 5 .0377 -1035.84 -961.46 0.00754
Balanced (n = 8) 6 .0377 -1035.26 -960.88 0.00554
Note: AIC = -2*LoglL_Max +2*k, where k is number of parameters. SIC = -2*LoglL_Max +2*log(T)*k for series length T.
R"2 x is the coeff. of determination relative to simple benchmark, a RW (with fixed seasonal dummies for seasonal data.
Specifically, R"2_x = 1-PEV(model)/PEV(benchmark), where PEV is the Prediction Error Variance (in KF steady state).






Table Set D3- Maximum Likelihood Estimates for BEA data

table contains parameter estimates for various representations of the ideal filter all of order 6
Results are given for 12 different parameter combinations.
Filter class: Generalized Butterworth Band Pass (index n set to 0)

Underlying Model Type for Observations:
Underlying Trend Model: Damped (Order 2) in Standard Form
The underlying cycle model is an n-th order stochastic cycle of the Butterworth ('BW') form.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Gross Domestic Product'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 8.919e-006 0.007918
0.7504 0.1244 0.4197 1.215e-005 0.007933
0.3793 0.08929 0.4197 1.361e-005 0.008005
0.1213 0.05927 0.4416 1.549e-005 0.008075
0.08806 0.05388 0.4484 1.606e-005 0.008108
0.06612 0.0496 0.4546 1.668e-005 0.008111
0.05506 0.04725 0.4587 1.712e-005 0.008117
0.04946 0.04589 0.4611 1.742e-005 0.008126
0.04376 0.04441 0.4638 1.783e-005 0.008133
0.03178 0.04081 0.4709 1.897e-005 0.00815
0.01551 0.03396 0.487 2.319e-005 0.008173
0.01242 0.0322 0.4911 2.506e-005 0.008182



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0002664 0.006834
0.7504 0.1244 0.4197 0.0003471 0.007252
0.3793 0.08929 0.4197 0.0003814 0.007733
0.1213 0.05927 0.4416 0.0004189 0.008415
0.08806 0.05388 0.4484 0.0004285 0.008583
0.06612 0.0496 0.4546 0.0004381 0.008722
0.05506 0.04725 0.4587 0.0004447 0.008805
0.04946 0.04589 0.4611 0.000449 0.008854
0.04376 0.04441 0.4638 0.0004544 0.008907
0.03178 0.04081 0.4709 0.0004707 0.009035
0.01551 0.03396 0.487 0.0005272 0.009283
0.01242 0.0322 0.4911 0.0005515 0.009356

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Residential Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0001766 0.002671
0.7504 0.1244 0.4197 0.0002497 0.004141
0.3793 0.08929 0.4197 0.0002853 0.005513
0.1213 0.05927 0.4416 0.0003457 0.005965
0.08806 0.05388 0.4484 0.0003692 0.006106
0.06612 0.0496 0.4546 0.0003953 0.006318
0.05506 0.04725 0.4587 0.0004154 0.006406
0.04946 0.04589 0.4611 0.0004288 0.006466
0.04376 0.04441 0.4638 0.0004457 0.006511
0.03178 0.04081 0.4709 0.0004997 0.006626
0.01551 0.03396 0.487 0.0006961 0.006858
0.01242 0.0322 0.4911 0.0007823 0.006922



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Non-Residential Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 5.302e-005 0.008887
0.7504 0.1244 0.4197 7.386e-005 0.008882
0.3793 0.08929 0.4197 8.368e-005 0.009233
0.1213 0.05927 0.4416 9.775e-005 0.009579
0.08806 0.05388 0.4484 0.0001025 0.009669
0.06612 0.0496 0.4546 0.0001077 0.009746
0.05506 0.04725 0.4587 0.0001116 0.009795
0.04946 0.04589 0.4611 0.0001142 0.009822
0.04376 0.04441 0.4638 0.0001174 0.009852
0.03178 0.04081 0.4709 0.0001276 0.009931
0.01551 0.03396 0.487 0.0001641 0.01009
0.01242 0.0322 0.4911 0.00018 0.01015

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Inventory Change'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0001996 -7.619e-005
0.7504 0.1244 0.4197 0.0002515 -7.685e-005
0.3793 0.08929 0.4197 0.0002715 -7.621e-005
0.1213 0.05927 0.4416 0.0002887 -8.162e-005
0.08806 0.05388 0.4484 0.0002915 -0.0002211
0.06612 0.0496 0.4546 0.0002935 -0.0001912
0.05506 0.04725 0.4587 0.0002946 -0.0001697
0.04946 0.04589 0.4611 0.0002952 -0.0001613
0.04376 0.04441 0.4638 0.0002958 -0.0001492
0.03178 0.04081 0.4709 0.0002975 -0.000119
0.01551 0.03396 0.487 0.0003014 -5.85e-005
0.01242 0.0322 0.4911 0.000303 -4.225e-005



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 8.441e-006 0.008694
0.7504 0.1244 0.4197 1.067e-005 0.008512
0.3793 0.08929 0.4197 1.158e-005 0.008422
0.1213 0.05927 0.4416 1.281e-005 0.00831
0.08806 0.05388 0.4484 1.321e-005 0.008287
0.06612 0.0496 0.4546 1.364e-005 0.008269
0.05506 0.04725 0.4587 1.397e-005 0.008258
0.04946 0.04589 0.4611 1.419e-005 0.008253
0.04376 0.04441 0.4638 1.444e-005 0.008247
0.03178 0.04081 0.4709 1.529e-005 0.008231
0.01551 0.03396 0.487 1.835e-005 0.008204
0.01242 0.0322 0.4911 1.973e-005 0.008197

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Durables'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0002123 0.01313
0.7504 0.1244 0.4197 0.0002725 0.01311
0.3793 0.08929 0.4197 0.0002966 0.01312
0.1213 0.05927 0.4416 0.0003224 0.01311
0.08806 0.05388 0.4484 0.0003287 0.0131
0.06612 0.0496 0.4546 0.0003349 0.01309
0.05506 0.04725 0.4587 0.0003393 0.01308
0.04946 0.04589 0.4611 0.0003421 0.01308
0.04376 0.04441 0.4638 0.0003454 0.01307
0.03178 0.04081 0.4709 0.0003559 0.01306
0.01551 0.03396 0.487 0.0003922 0.01303
0.01242 0.0322 0.4911 0.0004082 0.01303



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Non-Durables'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 8.98e-006 0.006856
0.7504 0.1244 0.4197 1.18e-005 0.006643
0.3793 0.08929 0.4197 1.301e-005 0.006558
0.1213 0.05927 0.4416 1.441e-005 0.006406
0.08806 0.05388 0.4484 1.479e-005 0.006373
0.06612 0.0496 0.4546 1.521e-005 0.006347
0.05506 0.04725 0.4587 1.546e-005 0.00633
0.04946 0.04589 0.4611 1.564e-005 0.006325
0.04376 0.04441 0.4638 1.586e-005 0.006316
0.03178 0.04081 0.4709 1.656e-005 0.006295
0.01551 0.03396 0.487 1.901e-005 0.006259
0.01242 0.0322 0.4911 2.009e-005 0.00625

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Services'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 2.479e-006 0.009002
0.7504 0.1244 0.4197 3.308e-006 0.00874
0.3793 0.08929 0.4197 3.674e-006 0.008662
0.1213 0.05927 0.4416 4.183e-006 0.008555
0.08806 0.05388 0.4484 4.345e-006 0.008526
0.06612 0.0496 0.4546 4.566e-006 0.008523
0.05506 0.04725 0.4587 4.678e-006 0.008496
0.04946 0.04589 0.4611 4.774e-006 0.008494
0.04376 0.04441 0.4638 4.892e-006 0.008492
0.03178 0.04081 0.4709 5.39e-006 0.008474
0.01551 0.03396 0.487 6.602e-006 0.008462
0.01242 0.0322 0.4911 7.284e-006 0.008455



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Government Expenditures'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 1.901e-005 0.008715
0.7504 0.1244 0.4197 2.581e-005 0.008622
0.3793 0.08929 0.4197 2.911e-005 0.008595
0.1213 0.05927 0.4416 3.55e-005 0.008587
0.08806 0.05388 0.4484 3.825e-005 0.008586
0.06612 0.0496 0.4546 4.141e-005 0.008591
0.05506 0.04725 0.4587 4.387e-005 0.008588
0.04946 0.04589 0.4611 4.554e-005 0.008588
0.04376 0.04441 0.4638 4.764e-005 0.008586
0.03178 0.04081 0.4709 5.439e-005 0.008581
0.01551 0.03396 0.487 7.952e-005 0.008553
0.01242 0.0322 0.4911 9.083e-005 0.008529

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Exports'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0002678 0.009679
0.7504 0.1244 0.4197 0.0003368 0.009507
0.3793 0.08929 0.4197 0.0003634 0.009747
0.1213 0.05927 0.4416 0.0003906 0.009874
0.08806 0.05388 0.4484 0.000397 0.009918
0.06612 0.0496 0.4546 0.0004031 0.009962
0.05506 0.04725 0.4587 0.0004073 0.009992
0.04946 0.04589 0.4611 0.00041 0.01001
0.04376 0.04441 0.4638 0.0004133 0.01003
0.03178 0.04081 0.4709 0.0004234 0.01009
0.01551 0.03396 0.487 0.0004576 0.01023
0.01242 0.0322 0.4911 0.0004724 0.01029



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Imports'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

2.524 0.2788 0.3975 0.0002227 0.01819
0.7504 0.1244 0.4197 0.0002896 0.01593
0.3793 0.08929 0.4197 0.0003163 0.01521
0.1213 0.05927 0.4416 0.0003436 0.0146
0.08806 0.05388 0.4484 0.0003502 0.01448
0.06612 0.0496 0.4546 0.0003564 0.01442
0.05506 0.04725 0.4587 0.0003607 0.01439
0.04946 0.04589 0.4611 0.0003634 0.01437
0.04376 0.04441 0.4638 0.0003668 0.01435
0.03178 0.04081 0.4709 0.0003771 0.01431
0.01551 0.03396 0.487 0.0004125 0.01425
0.01242 0.0322 0.4911 0.0004276 0.01424

Note: 'ZetaVar' is the variance of the core Trend disturbance. 'EpsVar' is the variance of the Irregular. 'Q Zeta' equals

ZeetaVar/EpsVar, the Trend's Signal-Noise ratio.
'BetaMean' is the Mean of the slope [AR(1)] at the core of the Trend and is only applicable to models with |Phi| < 1, where Phi is
the Pdamping coefficient of the Slope.
'KappaVar' is the variance of the core Cycle disturbance. 'Q Kappa' equals KappaVar/EpsVar, the Cycle's Signal-Noise ratio. .
3
'Rho' is the damping rate of shocks to the Cycle. Lambda C is the cycle's central frequency.



Table Set D4 - These tables contain fit statistics and diagnostics are reported for various representations
of the ideal filter given by 12 different parameter combinations.
Filter class: Generalized Butterworth Band Pass (index n set to 6)

Extension to allow for Damped Trend is incorporated.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal-Filter Diagnostics for Series: 'Gross Domestic Product'

Q Zeta Q Kappa Lambda C Q(lo) Q(24) Q(32) Eg SE AIC SIC R*2 d
2.524 0.2788 0.3975 81.84 88.98 109.1 0.0138 -1597.76 -1523.38 -1.14
0.7504 0.1244 0.4197 94.53 100.7 121.4 0.0128 -1637.59 -1563.21 -0.865
0.3793 0.08929 0.4197 100.4 106.2 126.9 0.0124 -1656.00 -1581.62 -0.748
0.1213 0.05927 0.4416 96.33 104 123.5 0.0119 -1678.61 -1604.22 -0.613
0.08806 0.05388 0.4484 92.96 102.6 121.4 0.0119 -1681.97 =-1607.59 -0.592
0.06612 0.0496 0.4546 90.57 103.1 121.3 0.0118 -1683.27 -1608.89 -0.585
0.05506 0.04725 0.4587 90.09 105.4 123.1 0118 -1682.88 -1608.50 -0.586
0.04946 0.04589 0.4611 90.46 107.7 125.2 0.0118 -1682.24 -1607.86 -0.59
0.04376 0.04441 0.4638 91.68 111.6 128.9 0.0119 -1681.05 -1606.67 -0.599
0.03178 0.04081 0.4709 100.6 130.1 146.8 0.012 -1675.38 -1600.99 -0.628
0.01551 0.03396 0.487 172.6 243.1 260.1 0.0126 -1645.76 -1571.38 -0.806
0.01242 0.0322 0.4911 213.4 303.1 321.6 0.0129 -1631.76 -1557.38 -0.896



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 83.73 92.32 103.7 0.0752 -636.57 -562.18 -1.44
0.7504 0.1244 0.4197 78.93 87.84 98.66 0.0686 -688.83 -614.45 -1.03
0.3793 0.08929 0.4197 78.27 87.39 97.69 0.0657 -712.83 -638.45 -0.867
0.1213 0.05927 0.4416 73.82 83.22 93.01 0.062 -745.35 -670.97 -0.663
0.08806 0.05388 0.4484 71.06 80.69 90.4 0.0612 -752.68 -678.30 -0.62
0.06612 0.0496 0.4546 68.19 78.2 87.89 0.0606 -758.35 -683.97 -0.588
0.05506 0.04725 0.4587 66.35 76.76 86.48 0.0603 -761.24 -686.86 -0.571
0.04946 0.04589 0.4611 65.33 76.04 85.81 0.0601 -762.75 -688.36 -0.562
0.04376 0.04441 0.4638 64.31 75.44 85.28 0.06 -764.20 -689.82 -0.554
0.03178 0.04081 0.4709 62.89 75.7 85.87 0.0597 -766.55 -692.17 -0.54
0.01551 0.03396 0.487 77.13 98.85 111.2 0.0602 -761.56 -687.18 -0.566
0.01242 0.0322 0.4911 89.53 116 129.3 0.0607 -756.94 -682.56 -0.591

Table of Ideal-Filter Diagnostics for Series: 'Residential Investment'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 96.27 105.7 110.2 0.0612 -753.11 -678.72 -0.587
0.7504 0.1244 0.4197 105.9 115.5 119.5 0.0581 -782.08 -707.69 -0.433
0.3793 0.08929 0.4197 106 117.1 121.1 0.0568 -794.68 -720.29 -0.37
0.1213 0.05927 0.4416 100.2 122.4 127.8 0.0563 -799.69 -725.31 -0.346
0.08806 0.05388 0.4484 105.7 136.2 142.7 0.0568 -795.01 -720.63 -0.368
0.06612 0.0496 0.4546 119 160.7 169 0.0576 -787.46 -713.08 -0.404
0.05506 0.04725 0.4587 133.6 184.7 194.5 0.0583 -780.60 -706.21 -0.438
0.04946 0.04589 0.4611 144.8 202.6 213.4 0.0587 -775.84 -701.46 -0.462
0.04376 0.04441 0.4638 160.5 226.7 238.9 0.0594 -769.66 -695.27 -0.494
0.03178 0.04081 0.4709 217 310.8 327.3 0.0615 -749.66 -675.27 -0.603
0.01551 0.03396 0.487 433.8 616.9 646.9 0.0692 -682.92 -608.54 -1.03
0.01242 0.0322 0.4911 515.3 730.5 763.9 0.0722 -658.02 -583.63 -1.21



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 113.3 139 143.4 0.0335 -1093.41 -1019.02 -0.98
0.7504 0.1244 0.4197 125.9 147.1 151.8 0.0316 -1126.73 -1052.35 -0.761
0.3793 0.08929 0.4197 132.7 152.3 157.5 0.0308 -1142.10 -1067.72 -0.669
0.1213 0.05927 0.4416 127.2 147 152.5 0.03 -1157.19 -1082.80 -0.581
0.08806 0.05388 0.4484 125 146.4 152 0.0299 -1157.43 -1083.05 -0.579
0.06612 0.0496 0.4546 125.5 149.8 155.5 0.03 -1155.34 -1080.96 -0.59
0.05506 0.04725 0.4587 128.2 155.5 161.2 0.0302 -1152.49 -1078.11 -0.606
0.04946 0.04589 0.4611 131.2 160.5 166.3 0.0303 -1150.28 -1075.90 -0.618
0.04376 0.04441 0.4638 136 168.3 174.2 0.0305 -1147.18 -1072.80 -0.636
0.03178 0.04081 0.4709 157.8 200.9 207.2 0.0311 -1136.02 -1061.64 -0.7
0.01551 0.03396 0.487 276.9 364.1 372.5 0.0336 -1091.85 -1017.47 -0.985
0.01242 0.0322 0.4911 332.2 438.9 447.9 0.0347 -1073.73 -999.35 -1.12

Table of Ideal-Filter Diagnostics for Series: 'Inventory Change'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 98.17 112.8 121.4 0.0651 -718.27 -643.88 -2.92
0.7504 0.1244 0.4197 84.35 97.25 106.3 0.0584 -780.03 -705.65 -2.15
0.3793 0.08929 0.4197 80.24 92.49 101.8 0.0555 -808.98 -734.59 -1.85
0.1213 0.05927 0.4416 78.42 90.03 99.46 0.0515 -850.67 -776.29 -1.46
0.08806 0.05388 0.4484 78.04 89.53 98.96 0.0505 -861.77 -787.38 -1.36
0.06612 0.0496 0.4546 77.63 89 98.43 0.0496 -871.69 =797.30 -1.28
0.05506 0.04725 0.4587 77.32 88.62 98.04 0.0491 -877.82 -803.44 -1.23
0.04946 0.04589 0.4611 77.1 88.36 97.78 0.0487 -881.47 -807.09 -1.2
0.04376 0.04441 0.4638 76.83 88.05 97.45 0.0484 -885.62 -811.23 -1.17
0.03178 0.04081 0.4709 75.95 87.05 96.42 0.0475 -896.37 -821.99 -1.09
0.01551 0.03396 0.487 72.82 83.66 92.93 0.0455 -919.78 -845.40 -0.918
0.01242 0.0322 0.4911 71.52 82.3 91.55 0.045 -926.44 -852.05 -0.873



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 132 136.6 145.9 0.0134 -1613.43 -1539.04 -1.74
0.7504 0.1244 0.4197 108.3 113.5 124.1 0.012 -1674.55 -1600.17 -1.21
0.3793 0.08929 0.4197 100.1 106 118 0.0115 -1701.74 -1627.35 -1.01
0.1213 0.05927 0.4416 85.78 93.34 106.2 0.0108 -1732.30 -1657.92 -0.802
0.08806 0.05388 0.4484 81.04 89.65 102.5 0.0107 -1737.34 -1662.96 -0.77
0.06612 0.0496 0.4546 77.35 87.53 100.3 0.0107 -1740.13 -1665.75 =-0.752
0.05506 0.04725 0.4587 75.81 87.48 100.2 0.0107 -1740.69 -1666.30 -0.749
0.04946 0.04589 0.4611 75.4 88.18 100.9 0.0107 -1740.64 -1666.26 -0.749
0.04376 0.04441 0.4638 75.55 89.85 102.5 0.0107 -1740.13 -1665.75 =-0.751
0.03178 0.04081 0.4709 80.43 100.4 113 0.0108 -1736.38 =-1662.00 =-0.773
0.01551 0.03396 0.487 134.7 180.8 194.5 0.0112 -1711.85 -1637.46 -0.931
0.01242 0.0322 0.4911 168.3 227.4 242.5 0.0115 -1699.51 -1625.12 -1.02

Table of Ideal-Filter Diagnostics for Series: 'Consumption of Durables'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 103.5 113.2 131.1 0.0671 -700.78 -626.40 -2.52
0.7504 0.1244 0.4197 96.26 103.4 119 0.0607 -757.30 -682.92 -1.88
0.3793 0.08929 0.4197 96.52 102.9 117.9 0.058 -784.02 -709.63 -1.63
0.1213 0.05927 0.4416 93.27 99.49 113.9 0.0544 -819.50 -745.12 -1.31
0.08806 0.05388 0.4484 90.49 97 111.3 0.0536 -827.72 -753.34 -1.25
0.06612 0.0496 0.4546 87.25 94.28 108.4 0.053 -834.32 -759.93 -1.19
0.05506 0.04725 0.4587 84.88 92.45 106.5 0.0527 -837.85 -763.47 -1.17
0.04946 0.04589 0.4611 83.41 91.4 105.5 0.0525 -839.78 -765.40 -1.15
0.04376 0.04441 0.4638 81.72 90.3 104.3 0.0523 -841.75 -767.37 -1.14
0.03178 0.04081 0.4709 77.56 88.49 102.5 0.0519 -845.65 =771.27 -1.11
0.01551 0.03396 0.487 77.52 101.3 116.1 0.0519 -845.31 -770.93 -1.11
0.01242 0.0322 0.4911 83.57 114.9 130.5 0.0522 -842.05 -767.67 -1.13



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 92.42 110.4 125.9 0.0138 -1595.92 -1521.54 -2.17
0.7504 0.1244 0.4197 87.04 107.3 124.5 0.0126 -1645.85 ~-1571.46 -1.66
0.3793 0.08929 0.4197 88.45 110.7 129.7 0.0121 -1668.90 -1594.51 -1.45
0.1213 0.05927 0.4416 85.66 108.6 128.9 0.0115 -1699.02 -1624.64 -1.2
0.08806 0.05388 0.4484 83.05 105.8 126 0.0114 -1705.34 -1630.95 -1.15
0.06612 0.0496 0.4546 80.37 103 123.1 0.0113 -1709.89 -1635.51 -1.12
0.05506 0.04725 0.4587 78.71 101.3 121.3 0.0112 -1711.93 -1637.55 -1.1
0.04946 0.04589 0.4611 77.89 100.5 120.4 0.0112 -1712.88 -1638.50 -1.09
0.04376 0.04441 0.4638 77.16 99.97 119.7 0.0112 -1713.64 -1639.26 -1.09
0.03178 0.04081 0.4709 77.22 101.3 120.8 0.0112 -1713.87 -1639.438 -1.08
0.01551 0.03396 0.487 101.4 137 156.1 0.0114 -1701.98 -1627.59 -1.17
0.01242 0.0322 0.4911 120.2 163.4 183.1 0.0116 -1694.28 -1619.90 -1.23

Table of Ideal-Filter Diagnostics for Series: 'Consumption of Services'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 105.5 110.8 119.4 0.00725 -1960.21 -1885.82 -1.03
0.7504 0.1244 0.4197 101.3 107.8 117.3 0.00669 -2005.51 -1931.13 -0.732
0.3793 0.08929 0.4197 95.11 101.6 111.7 0.00645 -2026.40 -1952.02 -0.609
0.1213 0.05927 0.4416 81.2 88.35 98.06 0.0062 -2049.28 -1974.90 -0.486
0.08806 0.05388 0.4484 77.5 85.2 94.44 0.00616 -2051.68 -1977.29 -0.469
0.06612 0.0496 0.4546 76.06 84.58 93.25 0.00619 -2051.63 -1977.24 -0.48
0.05506 0.04725 0.4587 76.98 86.26 94.49 0.00618 -2050.12 -1975.73 -0.478
0.04946 0.04589 0.4611 78.48 88.31 96.26 0.0062 -2048.73 -1974.35 -0.486
0.04376 0.04441 0.4638 81.31 91.89 99.5 0.00622 -2046.59 -1972.21 -0.497
0.03178 0.04081 0.4709 96.18 109.4 116 0.00639 -2037.88 -1963.50 -0.578
0.01551 0.03396 0.487 191.1 215.2 219.6 0.00673 =-1999.26 -1924.87 -0.754
0.01242 0.0322 0.4911 241.9 270.6 274.5 0.00697 -1981.77 -1907.39 -0.88



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 85.26 95.83 107.7 0.0201 -1383.64 -1309.25 -0.477
0.7504 0.1244 0.4197 75.69 86.07 95.57 0.0187 -1424.34 -1349.96 -0.28
0.3793 0.08929 0.4197 67.02 78.45 87.45 0.0182 -1440.97 -1366.58 -0.207
0.1213 0.05927 0.4416 69.08 97.31 107.1 0.0181 -1443.80 -1369.42 -0.194
0.08806 0.05388 0.4484 85.75 127.1 137.7 0.0183 -1436.52 -1362.13 -0.225
0.06612 0.0496 0.4546 113.8 172.6 184.2 0.0186 -1425.89 -1351.51 -0.272
0.05506 0.04725 0.4587 140.1 213.4 225.9 0.0189 -1416.68 -1342.30 -0.313
0.04946 0.04589 0.4611 159 242.2 255.3 0.0191 -1410.43 -1336.05 ~-0.343
0.04376 0.04441 0.4638 184 279.7 293.6 0.0194 -1402.44 -1328.05 -0.381
0.03178 0.04081 0.4709 266.8 401.5 417.7 0.0203 -1377.21 -1302.83 -0.508
0.01551 0.03396 0.487 533.8 782.8 806.2 0.0234 -1296.96 -1222.58 -1
0.01242 0.0322 0.4911 625.4 912.3 938.9 0.0246 -1267.21 -1192.82 -1.22

Table of Ideal-Filter Diagnostics for Series: 'Exports'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 125.5 135.3 153.9 0.0754 -635.07 -560.69 -2.34
0.7504 0.1244 0.4197 104.8 111.9 128.6 0.0675 -697.33 -622.95 -1.68
0.3793 0.08929 0.4197 97.51 103.8 119.4 0.0642 -726.49 -652.11 -1.42
0.1213 0.05927 0.4416 88.11 94.45 108.8 0.0599 -765.18 -690.80 -1.11
0.08806 0.05388 0.4484 84.65 91.45 105.5 0.0589 -774.33 -699.94 -1.04
0.06612 0.0496 0.4546 81.04 88.52 102.2 0.0581 -781.87 -707.48 -0.988
0.05506 0.04725 0.4587 78.52 86.64 100.1 0.0577 -786.09 -711.70 -0.958
0.04946 0.04589 0.4611 76.97 85.55 98.92 0.0574 -788.46 -714.07 -0.941
0.04376 0.04441 0.4638 75.16 84.37 97.59 0.0572 -790.97 -716.59 -0.924
0.03178 0.04081 0.4709 70.47 81.99 94 .84 0.0566 -796.53 -722.15 -0.885
0.01551 0.03396 0.487 65.54 88.21 100.6 0.0561 -801.69 -727.31 -0.849
0.01242 0.0322 0.4911 68.06 96.58 109 0.0561 -800.74 -726.36 -0.854



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d

2.524 0.2788 0.3975 111.3 126.2 133.2 0.0687 -687.31 -612.92 -2.3
0.7504 0.1244 0.4197 102.8 121.4 130.7 0.0626 -740.09 -665.71 -1.74
0.3793 0.08929 0.4197 100.1 120.6 131.3 0.0599 -765.78 -691.40 -1.5
0.1213 0.05927 0.4416 94.73 117.2 128.9 0.0562 -801.39 -727.00 -1.2
0.08806 0.05388 0.4484 91.85 114.8 126.5 0.0553 -809.85 -735.46 -1.14
0.06612 0.0496 0.4546 88.62 112 123.6 0.0547 -816.74 -742.35 -1.08
0.05506 0.04725 0.4587 86.31 110.1 121.6 0.0543 -820.52 -746.13 -1.06
0.04946 0.04589 0.4611 84.86 108.9 120.4 0.0541 -822.60 -748.22 -1.04
0.04376 0.04441 0.4638 83.17 107.6 119 0.0539 -824.77 -750.38 -1.03
0.03178 0.04081 0.4709 78.82 104.6 115.7 0.0534 -829.28 -754.89 -0.992
0.01551 0.03396 0.487 75.61 108.6 119 0.0532 -831.00 -756.61 -0.978
0.01242 0.0322 0.4911 79.07 116.3 126.3 0.0534 -828.72 -754.33 -0.991

Note: AIC = -2*LogL Max +2*k, where k is number of parameters. SIC = -2*LogL Max +2*log(T)*k for series length T.

R*2 x is the coeff. of determination relative to simple benchmark, a RW (with fixed seasonal dummies for seasonal data.
Specifically, R"2 x = 1-PEV(model)/PEV (benchmark), where PEV is the Prediction Error Variance (in KF steady state).



Table Set D5- Maximum Likelihood Estimates for BEA data

This table contains parameter estimates for various representations of the ideal filter all of order 4
Results are given for 12 different parameter combinations.

Filter class: Generalized Butterworth Band Pass (index n set to 4)

Underlying Model Type for Observations:
Underlying Trend Model: Damped (Order 2) in Standard Form
The underlying cycle model is an n-th order stochastic cycle of the Butterworth ('BW') form.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Gross Domestic Product'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 1.245e-005 0.007446
0.4521 0.3325 0.3537 1.372e-005 0.007524
0.3074 0.2849 0.3636 1.452e-005 0.007592
0.2231 0.2547 0.3725 1.512e-005 0.007644
0.1647 0.2316 0.3813 1.565e-005 0.007696
0.1097 0.2064 0.3937 1.643e-005 0.007755
0.05722 0.1749 0.4146 1.797e-005 0.00785
0.03301 0.1536 0.4326 1.996e-005 0.007917
0.02225 0.1402 0.4456 2.208e-005 0.007959
0.01424 0.1266 0.4602 2.556e-005 0.008001
0.01179 0.1213 0.4662 2.749e-005 0.008017
0.007957 0.111 0.4785 3.267e-005 0.008045



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.0003635 0.004666
0.4521 0.3325 0.3537 0.0003948 0.00543
0.3074 0.2849 0.3636 0.0004136 0.005984
0.223 0.2547 0.3725 0.000427 0.006419
0.1647 0.2316 0.3813 0.0004382 0.006795
0.1097 0.2064 0.3937 0.0004521 0.007258
0.05722 0.1749 0.4146 0.0004762 0.007873
0.03301 0.1536 0.4326 0.0005048 0.008284
0.02225 0.1402 0.4456 0.0005344 0.008537
0.01424 0.1266 0.4602 0.0005821 0.008766
0.01179 0.1213 0.4662 0.0006084 0.008854
0.007957 0.111 0.4785 0.0006777 0.009022
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Residential Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.0002689 0.004295
0.4521 0.3325 0.3537 0.0003017 0.004933
0.3074 0.2849 0.3636 0.0003233 0.005368
0.2231 0.2547 0.3725 0.0003414 0.00564
0.1647 0.2316 0.3813 0.0003593 0.005759
0.1097 0.2064 0.3937 0.0003867 0.006142
0.05722 0.1749 0.4146 0.0004492 0.006473
0.03301 0.1536 0.4326 0.0005368 0.006674
0.02225 0.1402 0.4456 0.0006323 0.006772
0.01424 0.1266 0.4602 0.0007899 0.006873
0.01179 0.1213 0.4662 0.0008774 0.006909
0.007957 0.1111 0.4785 0.00111 0.006972



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Non-Residential Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 7.45e-005 0.008208
0.4521 0.3325 0.3537 8.27e-005 0.0084
0.3074 0.2849 0.3636 8.811e-005 0.008553
0.223 0.2547 0.3725 9.239e-005 0.008677
0.1647 0.2316 0.3813 9.647e-005 0.008791
0.1097 0.2064 0.3937 0.0001025 0.008936
0.05722 0.1749 0.4146 0.0001154 0.00915
0.03301 0.1536 0.4326 0.0001328 0.009314
0.02225 0.1402 0.4456 0.0001515 0.009425
0.01424 0.1266 0.4602 0.0001821 0.009546
0.01179 0.1213 0.4662 0.000199 0.009594
0.007957 0.1111 0.4785 0.000244 0.009698
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Inventory Change'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.0002528 -7.628e-005
0.4521 0.3325 0.3537 0.0002699 -0.0007604
0.3074 0.2849 0.3636 0.0002794 -7.635e-005
0.223 0.2547 0.3725 0.0002857 -7.651e-005
0.1647 0.2316 0.3813 0.0002904 -8.28e-005
0.1097 0.2064 0.3937 0.0002952 -7.677e-005
0.05722 0.1749 0.4146 0.0003006 -7.646e-005
0.03301 0.1536 0.4326 0.0003041 -8.587e-005
0.02225 0.1402 0.4456 0.0003066 -7.645e-005
0.01424 0.1266 0.4602 0.0003098 -0.0002603
0.01179 0.1213 0.4662 0.0003114 -8.01e-005
0.007957 0.111 0.4785 0.0003155 -0.0001488



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 1.073e-005 0.008459
0.4521 0.3325 0.3537 1.154e-005 0.008379
0.3074 0.2849 0.3636 1.198e-005 0.008343
0.2231 0.2547 0.3725 1.236e-005 0.008325
0.1647 0.2316 0.3813 1.266e-005 0.008287
0.1097 0.2064 0.3937 1.318e-005 0.008275
0.05722 0.1749 0.4146 1.418e-005 0.008226
0.03301 0.1536 0.4326 1.556e-005 0.008202
0.02225 0.1402 0.4456 1.706e-005 0.008191
0.01424 0.1266 0.4602 1.952e-005 0.008181
0.01179 0.1213 0.4662 2.088e-005 0.008179
0.007957 0.1111 0.4785 2.454e-005 0.008172
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Durables'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.0002685 0.01374
0.4521 0.3325 0.3537 0.000288 0.0137
0.3074 0.2849 0.3636 0.0002996 0.01366
0.2231 0.2547 0.3725 0.0003078 0.01365
0.1647 0.2316 0.3813 0.0003147 0.0136
0.1097 0.2064 0.3937 0.0003233 0.01354
0.05722 0.1749 0.4146 0.0003384 0.01346
0.03301 0.1536 0.4326 0.0003561 0.0134
0.02225 0.1402 0.4456 0.0003743 0.01335
0.01424 0.1266 0.4602 0.0004037 0.01331
0.01179 0.1213 0.4662 0.0004199 0.01329
0.007957 0.1111 0.4785 0.0004632 0.01325



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Non-Durables'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 1.175e-005 0.006687
0.4521 0.3325 0.3537 1.289e-005 0.006684
0.3074 0.2849 0.3636 1.334e-005 0.006505
0.223 0.2547 0.3725 1.376e-005 0.006447
0.1647 0.2316 0.3813 1.422e-005 0.006403
0.1097 0.2064 0.3937 1.464e-005 0.006345
0.05722 0.1749 0.4146 1.557e-005 0.006281
0.03301 0.1536 0.4326 1.672e-005 0.006246
0.02225 0.1402 0.4456 1.793e-005 0.006227
0.01424 0.1266 0.4602 1.989e-005 0.006203
0.01179 0.1213 0.4662 2.102e-005 0.006199
0.007957 0.111 0.4785 2.393e-005 0.006188
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Services'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 3.468e-006 0.008488
0.4521 0.3325 0.3537 3.801e-006 0.008443
0.3074 0.2849 0.3636 3.985e-006 0.008509
0.2231 0.2547 0.3725 4.178e-006 0.008361
0.1647 0.2316 0.3813 4.366e-006 0.008456
0.1097 0.2064 0.3937 4.529e-006 0.008371
0.05722 0.1749 0.4146 4.994e-006 0.00835
0.03301 0.1536 0.4326 5.539%e-006 0.008356
0.02225 0.1402 0.4456 6.276e-006 0.008358
0.01424 0.1266 0.4602 7.387e-006 0.008366
0.01179 0.1213 0.4662 8.018e-006 0.008368
0.007957 0.1111 0.4785 9.706e-006 0.008372



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Government Expenditures'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 2.719e-005 0.007974
0.4521 0.3325 0.3537 3.027e-005 0.007972
0.3074 0.2849 0.3636 3.248e-005 0.007993
0.2231 0.2547 0.3725 3.442e-005 0.008022
0.1647 0.2316 0.3813 3.644e-005 0.008042
0.1097 0.2064 0.3937 3.975e-005 0.00809
0.05722 0.1749 0.4146 4.77e-005 0.008166
0.03301 0.1536 0.4326 5.908e-005 0.008226
0.02225 0.1402 0.4456 7.164e-005 0.008262
0.01424 0.1266 0.4602 9.255e-005 0.008293
0.01179 0.1213 0.4662 0.0001043 0.008301
0.007957 0.1111 0.4785 0.0001359 0.008309
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Exports'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.0003385 0.009777
0.4521 0.3325 0.3537 0.0003613 0.009626
0.3074 0.2849 0.3636 0.0003745 0.009515
0.2231 0.2547 0.3725 0.0003837 0.009466
0.1647 0.2316 0.3813 0.0003912 0.009424
0.1097 0.2064 0.3937 0.0004004 0.009398
0.05722 0.1749 0.4146 0.0004156 0.009412
0.03301 0.1536 0.4326 0.0004328 0.009472
0.02225 0.1402 0.4456 0.0004502 0.009536
0.01424 0.1266 0.4602 0.0004781 0.009628
0.01179 0.1213 0.4662 0.0004935 0.009671
0.007957 0.111 0.4785 0.0005341 0.009775



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Imports'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.7635 0.4276 0.3421 0.000293 0.01368
0.4521 0.3325 0.3537 0.000316 0.01348
0.3074 0.2849 0.3636 0.0003293 0.01341
0.2231 0.2547 0.3725 0.0003387 0.01344
0.1647 0.2316 0.3813 0.0003462 0.01347
0.1097 0.2064 0.3937 0.0003555 0.01353
0.05722 0.1749 0.4146 0.0003708 0.01365
0.03301 0.1536 0.4326 0.0003882 0.01374
0.02225 0.1402 0.4456 0.0004058 0.01381
0.01424 0.1266 0.4602 0.0004343 0.01387
0.01179 0.1213 0.4662 0.0004499 0.0139
0.007957 0.111 0.4785 0.0004914 0.01394
Note: 'ZetaVar' is the variance of the core Trend disturbance. 'EpsVar' is the variance of the Irregular. 'Q Zeta' equals Ze

ptaVar/EpsVar, the Trend's Signal-Noise ratio.

'BetaMean' is the Mean of the slope [AR(1)] at the core of the Trend and is only applicable to models with |Phi| < 1, where
»Phi is damping coefficient of the Slope.

'KappaVar' is the variance of the core Cycle disturbance. 'Q Kappa' equals KappaVar/EpsVar, the Cycle's Signal-Noise ratio.

'Rho' is the damping rate of shocks to the Cycle. Lambda C is the cycle's central frequency.



Table Set D6 - These tables contain fit statistics and diagnostics are reported for various representations
of the ideal filter given by 12 different parameter combinations.
Filter class: Generalized Butterworth Band Pass (index n set to 4)

Extension to allow for Damped Trend is incorporated.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal-Filter Diagnostics for Series: 'Gross Domestic Product'

Q Zeta Q Kappa Lambda C Q(lo) Q(24) Q(32) Eg SE AIC SIC R*2 d
0.7635 0.4276 0.3421 63.7 69.39 88.51 0.0103 -1768.35 =-1693.97 -0.198
0.4521 0.3325 0.3537 65.26 70.71 89.77 0.0101 -1779.03 -1704.65 -0.154
0.3074 0.2849 0.3636 65.36 70.82 89.67 0.00997 -1785.87 -1711.49 -0.127
0.2231 0.2547 0.3725 64.55 70.22 88.75 0.00988 -1790.82 -1716.44 -0.106
0.1647 0.2316 0.3813 63.12 69.25 87.35 0.0098 -1794.69 -1720.31 -0.0898
0.1097 0.2064 0.3937 60.82 68.28 85.55 0.00975 -1798.16 =-1723.78 -0.0775
0.05722 0.1749 0.414¢6 61.78 74.71 90.03 0.00976 -1797.34 -1722.96 -0.0808
0.03301 0.1536 0.4326 80.5 104.5 117.8 0.00994 -1787.08 =-1712.70 -0.12
0.02225 0.1402 0.445¢6 116.1 154.3 166.1 0.0102 -1772.19 -1697.81 -0.18
0.01424 0.1266 0.4602 189.7 252.1 262.8 0.0107 -1746.19 -1671.80 -0.293
0.01179 0.1213 0.4662 232.8 308.3 318.9 0.0109 -1732.05 ~-1657.66 -0.358
0.007957 0.111 0.4785 343.6 451.1 462.4 0.0116 -1696.71 -1622.33 -0.538



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 54.57 63.8 73 0.0556 -813.43 -739.05 -0.335
0.4521 0.3325 0.3537 52.55 62.03 70.78 0.0541 -828.17 -753.79 -0.267
0.3074 0.2849 0.3636 51.44 61.04 69.54 0.0532 -837.95 -763.57 -0.224
0.2231 0.2547 0.3725 50.41 60.04 68.39 0.0525 -845.52 -771.14 -0.192
0.1647 0.2316 0.3813 49.16 58.79 67.04 0.0519 -852.20 -777.82 -0.164
0.1097 0.2064 0.3937 46.97 56.6 64.79 0.0511 -860.25 -785.87 -0.131
0.05722 0.1749 0.4146 43.13 53.05 61.5 0.0503 -869.89 -795.51 -0.0922
0.03301 0.1536 0.4326 43.69 55.01 64.37 0.05 -872.81 -798.43 -0.0803
0.02225 0.1402 0.4456 51.68 65.56 76.38 0.0502 -870.39 -796.00 -0.0891
0.01424 0.1266 0.4602 76.55 96.15 109.9 0.051 -861.60 -787.22 -0.123
0.01179 0.1213 0.4662 94.45 117.7 133.2 0.0515 -855.64 -781.26 -0.146
0.007957 0.111 0.4785 149.2 182.8 202.8 0.053 -838.63 -764.25 -0.216
Table of Ideal-Filter Diagnostics for Series: 'Residential Investment'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 66.59 75.54 80.18 0.0478 -898.84 -824.46 0.0321
0.4521 0.3325 0.3537 66.13 76.04 80.87 0.0473 -904.71 -830.33 0.0507
0.3074 0.2849 0.3636 64.75 75.97 80.94 0.047 -907.68 -833.30 0.0621
0.2231 0.2547 0.3725 63.5 76.53 81.66 0.0469 -908.86 -834.47 0.0658
0.1647 0.2316 0.3813 63.35 79.1 84.5 0.047 -908.42 -834.03 0.0643
0.1097 0.2064 0.3937 68.07 90.04 96.24 0.0473 -904.47 -830.09 0.0517
0.05722 0.1749 0.4146 106.1 149.2 158.9 0.0488 -886.37 -811.98-0.00998
0.03301 0.1536 0.4326 195.8 274.1 290.5 0.0515 -855.43 -781.05 =-0.126
0.02225 0.1402 0.4456 304.6 420 443 .6 0.0546 -822.76 -748.37 -0.263
0.01424 0.1266 0.4602 468.2 635.4 668.4 0.0594 -775.21 -700.83 -0.494
0.01179 0.1213 0.4662 546 736.9 773.9 0.0618 -752.01 -677.62 -0.621
0.007957 0.1111 0.4785 711.8 952.3 996 0.0679 -699.02 -624.64 -0.953



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 93.79 111.5 116.5 0.0252 -1262.00 -1187.62 -0.114
0.4521 0.3325 0.3537 94.92 111.1 116.4 0.0248 -1270.59 -1196.20 -0.081
0.3074 0.2849 0.3636 94.5 109.9 115.3 0.0246 -1275.61 -1201.23 -0.0619
0.2231 0.2547 0.3725 93.26 108.3 113.8 0.0244 -1278.73 -1204.34 -0.0503
0.1647 0.2316 0.3813 91.72 106.8 112.3 0.0243 -1280.47 -1206.09 -0.0437
0.1097 0.2064 0.3937 90.7 106.8 112.3 0.0243 -1280.30 -1205.91 -0.0441
0.05722 0.1749 0.4146 102.6 125 130.7 0.0247 -1271.05 =-1196.67 -0.0781
0.03301 0.1536 0.4326 147.4 183.7 190.3 0.0256 -1250.74 -1176.35 -0.158
0.02225 0.1402 0.4456 213.5 267 275 0.0267 -1227.12 -1152.73 -0.258
0.01424 0.1266 0.4602 328.5 409.8 419.8 0.0285 -1190.44 -1116.06 -0.431
0.01179 0.1213 0.4662 388.9 484.1 495 0.0295 -1171.79 -1097.40 -0.528
0.007957 0.1111 0.4785 528.7 655.6 667.9 0.0318 -1127.72 -1053.33 -0.784
Table of Ideal-Filter Diagnostics for Series: 'Inventory Change'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 74.04 87.24 96.14 0.0463 -916.14 -841.76 -0.989
0.4521 0.3325 0.3537 70.08 82.8 91.81 0.0448 -935.92 -861.53 -0.856
0.3074 0.2849 0.3636 68.42 80.89 89.97 0.0437 -949.01 -874.63 -0.772
0.2231 0.2547 0.3725 67.55 79.85 88.98 0.0429 -959.28 -884.89 -0.709
0.1647 0.2316 0.3813 66.97 79.15 88.33 0.0422 -968.63 -894.25 -0.653
0.1097 0.2064 0.3937 66.39 78.42 87.64 0.0413 -980.85 -906.47 -0.583
0.05722 0.1749 0.4146 65.36 77.18 86.42 0.0399 -1000.12 -925.73 -0.477
0.03301 0.1536 0.4326 63.93 75.55 84.78 0.0388 -1016.25 -941.87 -0.395
0.02225 0.1402 0.4456 62.36 73.82 83.02 0.038 -1027.64 -953.25 -0.339
0.01424 0.1266 0.4602 59.9 71.16 80.31 0.0372 -1040.08 -965.70 -0.28
0.01179 0.1213 0.4662 58.63 69.81 78.94 0.0368 -1045.13 -970.74 -0.257
0.007957 0.111 0.4785 55.61 66.63 75.71 0.0362 -1054.98 -980.60 -0.214



Table of Ideal-Filter Diagnostics for Series: 'Consumption'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 92.98 98.04 109 0.00954 -1810.54 -1736.16 -0.396
0.4521 0.3325 0.3537 84.5 89.92 101.7 0.00926 -1829.00 -1754.62 -0.313
0.3074 0.2849 0.3636 79.17 84.87 97.17 0.00906 -1840.26 -1765.88 -0.256
0.2231 0.2547 0.3725 74.87 80.84 93.4 0.00893 -1848.19 -1773.80 -0.223
0.1647 0.2316 0.3813 70.72 77 89.69 0.00882 -1854.43 -1780.05 -0.192
0.1097 0.2064 0.3937 65.13 72.07 84.7 0.00873 -1860.63 -1786.25 -0.169
0.05722 0.1749 0.4146 59.12 68.71 80.76 0.00867 -1863.80 -1789.41 -0.153
0.03301 0.1536 0.4326 66.67 82.26 93.52 0.00878 -1857.12 -1782.73 -0.18
0.02225 0.1402 0.4456 89.54 113.5 124.3 0.00897 -1845.07 -1770.68 -0.232
0.01424 0.1266 0.4602 144.6 184.2 194.9 0.00933 -1822.49 -1748.10 -0.334
0.01179 0.1213 0.4662 179.4 227.9 238.8 0.00954 -1809.81 -1735.43 -0.394
0.007957 0.1111 0.4785 274.3 345.4 357.8 0.0101 -1777.42 -1703.03 -0.561
Table of Ideal-Filter Diagnostics for Series: 'Consumption of Durables'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 84.1 91.26 107.1 0.0478 -899.16 -824.78 -0.782
0.4521 0.3325 0.3537 81.93 88.41 103.6 0.0462 -917.43 -843.05 -0.671
0.3074 0.2849 0.3636 80.71 86.86 101.7 0.0453 -929.24 -854.85 -0.603
0.2231 0.2547 0.3725 79.5 85.47 100.1 0.0446 -938.15 -863.77 -0.553
0.1647 0.2316 0.3813 77.95 83.86 98.23 0.044 -945.87 -871.49 -0.511
0.1097 0.2064 0.3937 75.02 81.01 95.08 0.0433 -955.10 -880.72 -0.462
0.05722 0.1749 0.4146 68.2 75.11 88.61 0.0424 -966.58 -892.19 -0.403
0.03301 0.1536 0.4326 62.34 71.83 84.76 0.042 -971.56 -897.18 -0.378
0.02225 0.1402 0.4456 61.57 75.16 87.72 0.042 -971.15 -896.77 -0.379
0.01424 0.1266 0.4602 70.67 93.03 105.4 0.0424 -965.20 -890.82 -0.408
0.01179 0.1213 0.4662 79.9 107.9 120.4 0.0428 -960.58 -886.19 -0.43
0.007957 0.1111 0.4785 113.9 158.4 171.9 0.0439 -946.38 -872.00 -0.503



Table of Ideal-Filter Diagnostics for Series: 'Consumption of Non-Durables'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 78.07 98.01 115.3 0.00999 -1784.65 -1710.27 -0.659
0.4521 0.3325 0.3537 77.38 98.2 116.7 0.00978 -1800.22 -1725.84 -0.591
0.3074 0.2849 0.3636 76.99 98.26 117.5 0.00955 -1810.24 -1735.86 -0.518
0.2231 0.2547 0.3725 76.23 97.67 117.3 0.00942 -1817.68 -1743.29 -0.477
0.1647 0.2316 0.3813 74.95 96.35 116.2 0.00935 -1823.94 -1749.56 -0.453
0.1097 0.2064 0.3937 72.28 93.37 113.3 0.0092 -1831.01 ~-1756.62 -0.409
0.05722 0.1749 0.4146 66.94 87.29 106.7 0.00909 -1837.87 -1763.49 -0.373
0.03301 0.1536 0.4326 66.67 87.51 105.9 0.0091 -1837.10 =-1762.72 -0.376
0.02225 0.1402 0.4456 75.5 98.96 116.5 0.00919 -1831.09 =-1756.71 -0.405
0.01424 0.1266 0.4602 104.1 135.2 151.9 0.00942 -1817.10 -1742.72 -0.476
0.01179 0.1213 0.4662 124.8 161.2 177.7 0.00957 -1808.53 -1734.15 -0.523
0.007957 0.111 0.4785 187.5 240 256.9 0.00997 -1785.26 -1710.87 -0.652
Table of Ideal-Filter Diagnostics for Series: 'Consumption of Services'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 76.74 80.49 89.3 0.00543 -2129.47 -2055.09 -0.139
0.4521 0.3325 0.3537 72.2 76.08 85.03 0.00531 -2142.29 -2067.91 -0.091
0.3074 0.2849 0.3636 68.42 72.41 81.38 0.00522 -2150.25 -2075.87 -0.0549
0.2231 0.2547 0.3725 64.86 68.97 77.86 0.00519 -2155.79 -2081.40 -0.043
0.1647 0.2316 0.3813 61.22 65.52 74.26 0.00518 -2159.86 -2085.48 -0.0373
0.1097 0.2064 0.3937 56.59 61.33 69.68 0.00512 -2163.12 -2088.73 -0.0134
0.05722 0.1749 0.4146 55.88 62.3 69.59 0.00515 -2160.41 -2086.03 -0.0245
0.03301 0.1536 0.4326 76.61 86.39 92.34 0.00524 -2146.84 -2072.46 -0.0604
0.02225 0.1402 0.4456 116.5 130.4 135.2 0.00544 -2128.52 -2054.14 -0.144
0.01424 0.1266 0.4602 197.8 218.5 222.1 0.00574 -2097.56 =-2023.18 -0.274
0.01179 0.1213 0.4662 245 269.2 272.3 0.00591 -2081.02 -2006.64 -0.351
0.007957 0.1111 0.4785 365.3 397.2 399.6 0.00635 -2040.21 -1965.82 -0.558



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 51.96 61.08 69.7 0.0152 -1547.13 -1472.74 0.154
0.4521 0.3325 0.3537 46.24 56.27 64.42 0.015 -1554.99 -1480.61 0.177
0.3074 0.2849 0.3636 42.99 54.82 62.82 0.0149 -1558.00 -1483.61 0.186
0.2231 0.2547 0.3725 42.3 56.96 64.99 0.0149 -1558.21 -1483.83 0.186
0.1647 0.2316 0.3813 45.26 64.42 72.59 0.015 -1556.00 -1481.61 0.18
0.1097 0.2064 0.3937 59.68 89.22 97.8 0.0152 -1548.33 -1473.94 0.158
0.05722 0.1749 0.4146 130.2 193.3 203.3 0.0159 -1521.10 -1446.71 0.0731
0.03301 0.1536 0.4326 260 373.7 385.8 0.0171 -1479.94 -1405.56 -0.0713
0.02225 0.1402 0.4456 395.2 557.5 571.7 0.0184 -1439.10 -1364.72 -0.237
0.01424 0.1266 0.4602 575.9 800.2 817.3 0.0203 -1382.01 -1307.63 -0.512
0.01179 0.1213 0.4662 655.4 906.4 924.9 0.0213 -1354.77 -1280.38 -0.665
0.007957 0.1111 0.4785 815.2 1119 1141 0.0238 -1293.36 -1218.98 -1.07
Table of Ideal-Filter Diagnostics for Series: 'Exports'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 92.66 99.7 116.3 0.0536 -833.58 -759.20 -0.691
0.4521 0.3325 0.3537 85.29 91.64 107.5 0.0518 -853.33 -778.95 -0.577
0.3074 0.2849 0.3636 81.05 87.12 102.5 0.0506 -866.11 -791.72 -0.508
0.2231 0.2547 0.3725 77.9 83.88 98.96 0.0498 -875.80 -801.41 -0.457
0.1647 0.2316 0.3813 74.98 81.01 95.79 0.049 -884.27 -809.89 -0.414
0.1097 0.2064 0.3937 70.81 77.13 91.52 0.0481 -894.63 -820.24 -0.363
0.05722 0.1749 0.4146 62.85 70.54 84.21 0.047 -908.46 -834.08 -0.297
0.03301 0.1536 0.4326 55.64 66.18 79.11 0.0463 -916.38 -842.00 -0.26
0.02225 0.1402 0.4456 52.36 66.81 79.16 0.0461 -918.88 -844.50 -0.248
0.01424 0.1266 0.4602 55.13 77.23 88.97 0.0462 -917.28 -842.89 -0.255
0.01179 0.1213 0.4662 60.04 86.8 98.35 0.0464 -914.87 -840.49 -0.265
0.007957 0.111 0.4785 81.12 121.1 132.4 0.0471 -906.06 -831.67 -0.304



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.7635 0.4276 0.3421 82.89 98.74 106.9 0.0499 -874.39 -800.00 -0.737
0.4521 0.3325 0.3537 79.16 96.04 105.1 0.0484 -891.26 -816.87 -0.637
0.3074 0.2849 0.3636 76.99 94.49 104.1 0.0475 -902.46 -828.08 -0.573
0.2231 0.2547 0.3725 75.2 93.13 103.1 0.0468 -911.13 -836.75 -0.526
0.1647 0.2316 0.3813 73.33 91.61 101.9 0.0461 -918.81 -844.43 -0.485
0.1097 0.2064 0.3937 70.28 88.99 99.48 0.0454 -928.26 -853.88 -0.436
0.05722 0.1749 0.4146 63.81 83.43 94.03 0.0444 -940.72 -866.34 -0.373
0.03301 0.1536 0.4326 58.25 79.51 90.06 0.0438 -947.18 -872.80 -0.341
0.02225 0.1402 0.4456 57.06 80.78 91.31 0.0437 -948.26 -873.88 -0.335
0.01424 0.1266 0.4602 64.04 93.03 103.7 0.044 -944.52 -870.14 -0.352
0.01179 0.1213 0.4662 71.56 104 114.7 0.0443 -941.02 -866.64 -0.368
0.007957 0.111 0.4785 99.97 142.4 153.5 0.0452 -929.59 -855.21 -0.424
Note: AIC = -2*LogL Max +2*k, where k is number of parameters. SIC = -2*LogL Max +2*log(T)*k for series length T.

R*2 x is the coeff. of determination relative to simple benchmark, a RW (with fixed seasonal dummies for seasonal data.
Specifically, R"2 x = 1-PEV(model)/PEV (benchmark), where PEV is the Prediction Error Variance (in KF steady state).



This table contains parameter estimates for various representations of the ideal filter all of order 8
Results are given for 12 different parameter combinations.
Filter class: Generalized Butterworth Band Pass (index n set to 8)

Underlying Model Type for Observations:
Underlying Trend Model: Damped (Order 2) in Standard Form
The underlying cycle model is an n-th order stochastic cycle of the Butterworth ('BW') form.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Gross Domestic Product'

Q Zeta Q Kappa Lambda C EpsVar BetaMean

0.8716 0.0375 0.4415 1.191e-005 0.008187

0.5935 0.03031 0.4455 1.276e-005 0.008196

0.4445 0.02627 0.4489 1.332e-005 0.008204

0.3383 0.02324 0.4523 1.38e-005 0.008211

0.245 0.02037 0.4568 1.433e-005 0.008221

0.1618 0.0175 0.463 1.495e-005 0.00823

0.1005 0.01495 0.4705 1.571e-005 0.00824
0.07047 0.01341 0.4764 1.638e-005 0.008252
0.05188 0.01226 0.4815 1.713e-005 0.008251
0.03447 0.01092 0.4885 1.837e-005 0.008255
0.02497 0.009992 0.494 1.974e-005 0.008256
0.01839 0.009199 0.4992 2.147e-005 0.008255



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.0003396 0.009068
0.5935 0.03031 0.4455 0.0003596 0.009148
0.4445 0.02627 0.4489 0.0003725 0.009201
0.3383 0.02324 0.4523 0.000383 0.009262
0.245 0.02037 0.4568 0.0003938 0.009336
0.1618 0.01749 0.463 0.0004059 0.009432
0.1005 0.01495 0.4705 0.0004188 0.009538
0.07047 0.01341 0.4764 0.000429 0.009616
0.05188 0.01226 0.4815 0.0004392 0.009677
0.03447 0.01092 0.4885 0.0004563 0.009757
0.02497 0.009992 0.494 0.0004742 0.009815
0.01839 0.009199 0.4992 0.0004961 0.009865
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Residential Investment'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.0002384 0.005008
0.5935 0.03031 0.4455 0.0002583 0.005361
0.4445 0.02627 0.4489 0.0002722 0.005612
0.3383 0.02324 0.4523 0.0002848 0.005796
0.245 0.02037 0.4568 0.0002997 0.006052
0.1618 0.0175 0.463 0.0003201 0.006335
0.1005 0.01495 0.4705 0.000349 0.006594
0.07047 0.01341 0.4764 0.0003776 0.00676
0.05188 0.01226 0.4815 0.00040098 0.006888
0.03447 0.01092 0.4885 0.0004687 0.007028
0.02497 0.009992 0.494 0.0005333 0.007125
0.01839 0.009199 0.4992 0.0006145 0.007202



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Non-Residential Investment'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 7.249e-005 0.00948
0.5935 0.03031 0.4455 7.82e-005 0.009582
0.4445 0.02627 0.4489 8.206e-005 0.009686
0.3383 0.02324 0.4523 8.544e-005 0.009758
0.245 0.02037 0.4568 8.919e-005 0.009862
0.1618 0.0175 0.463 9.394e-005 0.009995
0.1005 0.01495 0.4705 9.999e-005 0.01013
0.07047 0.01341 0.4764 0.0001055 0.01024
0.05188 0.01226 0.4815 0.0001116 0.01031
0.03447 0.01092 0.4885 0.0001224 0.01041
0.02497 0.009992 0.494 0.000134 0.01048
0.01839 0.009199 0.4992 0.0001486 0.01054
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Inventory Change'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.0002473 -7.615e-005
0.5935 0.03031 0.4455 0.0002595 -7.614e-005
0.4445 0.02627 0.4489 0.0002671 -7.614e-005
0.3383 0.02324 0.4523 0.000273 -7.613e-005
0.245 0.02037 0.4568 0.0002787 -7.613e-005
0.1618 0.0175 0.463 0.0002842 -7.636e-006
0.1005 0.01495 0.4705 0.0002888 -7.608e-005
0.07047 0.01341 0.4764 0.0002912 -7.678e-006
0.05188 0.01226 0.4815 0.000293 -7.697e-006
0.03447 0.01092 0.4885 0.000295 -7.579e-005
0.02497 0.009992 0.494 0.0002965 -7.651e-006
0.01839 0.009199 0.4992 0.000298 -7.632e-006



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption'

0.8716 0.0375 .051e-005 0.008425

0 1
0.5935 0.03031 0.4455 1.106e-005 0.00839
0.4445 0.02627 0.4489 1.143e-005 0.008364
0.3383 0.02324 0.4523 1.174e-005 0.008342
0.245 0.02037 0.4568 1.208e-005 0.008321
0.1618 0.0175 0.463 1.25e-005 0.008291
0.1005 0.01495 0.4705 1.303e-005 0.008267
0.07047 0.01341 0.4764 1.35e-005 0.00825
0.05188 0.01226 0.4815 1.403e-005 0.008237
0.03447 0.01092 0.4885 1.496e-005 0.008221
0.02497 0.009992 0.494 1.596e-005 0.008212
0.01839 0.009199 0.4992 1.723e-005 0.008202
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Durables'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.00027 0.01276
0.5935 0.03031 0.4455 0.000285 0.01278
0.4445 0.02627 0.4489 0.0002945 0.01279
0.3383 0.02324 0.4523 0.0003023 0.0128
0.245 0.02037 0.4568 0.0003102 0.01282
0.1618 0.01749 0.463 0.0003189 0.01284
0.1005 0.01495 0.4705 0.000328 0.01287
0.07047 0.01341 0.4764 0.0003351 0.01288
0.05188 0.01226 0.4815 0.0003421 0.0129
0.03447 0.01092 0.4885 0.0003538 0.01291
0.02497 0.009992 0.494 0.000366 0.01292
0.01839 0.009199 0.4992 0.000381 0.01292



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Non-Durables'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 1.16e-005 0.006538
0.5935 0.03031 0.4455 1.234e-005 0.006507
0.4445 0.02627 0.4489 1.28e-005 0.00648
0.3383 0.02324 0.4523 1.319e-005 0.006457
0.245 0.02037 0.4568 1.36e-005 0.006428
0.1618 0.01749 0.463 1.408e-005 0.006398
0.1005 0.01495 0.4705 1.461e-005 0.006363
0.07047 0.01341 0.4764 1.505e-005 0.006343
0.05188 0.01226 0.4815 1.549e-005 0.006326
0.03447 0.01092 0.4885 1.626e-005 0.006306
0.02497 0.009992 0.494 1.708e-005 0.006291
0.01839 0.009199 0.4992 1.809e-005 0.00628
Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Consumption of Services'
Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 3.165e-006 0.008824
0.5935 0.03031 0.4455 3.372e-006 0.00879
0.4445 0.02627 0.4489 3.508e-006 0.008728
0.3383 0.02324 0.4523 3.624e-006 0.008697
0.245 0.02037 0.4568 3.756e-006 0.008662
0.1618 0.0175 0.463 3.905e-006 0.00862
0.1005 0.01495 0.4705 4.161e-006 0.008585
0.07047 0.01341 0.4764 4.356e-006 0.00856
0.05188 0.01226 0.4815 4.582e-006 0.00854
0.03447 0.01092 0.4885 4.999e-006 0.008519
0.02497 0.009992 0.494 5.451e-006 0.008507
0.01839 0.009199 0.4992 6.031e-006 0.008494



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Government Expenditures'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 2.473e-005 0.009022
0.5935 0.03031 0.4455 2.65e-005 0.008965
0.4445 0.02627 0.4489 2.776e-005 0.008926
0.3383 0.02324 0.4523 2.894e-005 0.008888

0.245 0.02037 0.4568 3.04e-005 0.008835
0.1618 0.01749 0.463 3.254e-005 0.008787
0.1005 0.01495 0.4705 3.581e-005 0.008724
0.07047 0.01341 0.4764 3.916e-005 0.008678
0.05188 0.01226 0.4815 4.303e-005 0.008638
0.03447 0.01092 0.4885 5.021e-005 0.008579
0.02497 0.009992 0.494 5.817e-005 0.008534
0.01839 0.009199 0.4992 6.831e-005 0.008482

Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Exports'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.0003318 0.009258
0.5935 0.03031 0.4455 0.0003482 0.009387
0.4445 0.02627 0.4489 0.0003585 0.009487
0.3383 0.02324 0.4523 0.0003668 0.009594

0.245 0.02037 0.4568 0.0003751 0.009722
0.1618 0.0175 0.463 0.0003843 0.009883
0.1005 0.01495 0.4705 0.0003937 0.01006
0.07047 0.01341 0.4764 0.0004008 0.01018
0.05188 0.01226 0.4815 0.0004078 0.01028
0.03447 0.01092 0.4885 0.0004192 0.0104
0.02497 0.009992 0.494 0.0004309 0.0105
0.01839 0.009199 0.4992 0.0004451 0.01059



Table of Ideal Filter-Maximum likelihood estimates of parameters for Series: 'Imports'

Q Zeta Q Kappa Lambda C EpsVar BetaMean
0.8716 0.0375 0.4415 0.0002832 0.01731
0.5935 0.03031 0.4455 0.0002995 0.0167
0.4445 0.02627 0.4489 0.0003096 0.01629
0.3383 0.02324 0.4523 0.0003181 0.01598

0.245 0.02037 0.4568 0.0003264 0.01566
0.1618 0.0175 0.463 0.0003355 0.01534
0.1005 0.01495 0.4705 0.000345 0.01505
0.07047 0.01341 0.4764 0.000352 0.0149
0.05188 0.01226 0.4815 0.0003589 0.01479
0.03447 0.01092 0.4885 0.0003704 0.01467
0.02497 0.009992 0.494 0.0003822 0.01459
0.01839 0.009199 0.4992 0.0003967 0.01453

Note: 'ZetaVar' is the variance of the core Trend disturbance. 'EpsVar' is the variance of the Irregular. 'Q Zeta' equals Ze

ptaVar/EpsVar, the Trend's Signal-Noise ratio.

'BetaMean' is the Mean of the slope [AR(1)] at the core of the Trend and is only applicable to models with |Phi| < 1, where
»Phi is damping coefficient of the Slope.

'KappaVar' is the variance of the core Cycle disturbance. 'Q Kappa' equals KappaVar/EpsVar, the Cycle's Signal-Noise ratio.

'Rho' is the damping rate of shocks to the Cycle. Lambda C is the cycle's central frequency.



Table Set D8 - These tables contain fit statistics and diagnostics are reported for various representations
of the ideal filter given by 12 different parameter combinations.
Filter class: Generalized Butterworth Band Pass (index n set to 8)

Extension to allow for Damped Trend is incorporated.

Results for time series taken from Bureau of Economic Analysis (GDP data)
All series logged, except 'Inventory Change' which is percent of Investment.

Table of Ideal-Filter Diagnostics for Series: 'Gross Domestic Product'

Q Zeta Q Kappa Lambda C Q(lo) Q(24) Q(32) Eg SE AIC SIC R*2 d
0.8716 0.0375 0.4415 106.5 112.3 132.9 0.0163 -1494.44 -1420.05 -2
0.5935 0.03031 0.4455 112.2 117.7 138.5 0.0159 -1506.55 -1432.16 -1.88
0.4445 0.02627 0.4489 115.4 120.8 141.6 0.0157 -1515.16 -1440.78 -1.79
0.3383 0.02324 0.4523 117.3 122.7 143.5 0.0155 -1522.85 -1448.47 -1.72
0.245 0.02037 0.4568 117.9 123.5 144.2 0.0152 -1531.32 -1456.94 -1.63

0.1618 0.0175 0.463 116.1 122.4 142.7 0.015 -1540.93 -1466.55 -1.55
0.1005 0.01495 0.4705 110. 119.2 139.1 0148 -1549.43 -1475.04 -1.47
.07047 0.01341 0.4764 106. 117.6 137.2 0147 -1553.18 -1478.80 -1.43
6 139 0146 -1554.00 -1479.61 -1.43

.02497 0.009992 0.494 119.
.01839 0.009199 0.4992 145.

9
0 2
0.05188 0.01226 0.4815 103.5 119.
0.03447 0.01092 0.4885 106.5
0 5
0 8



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 85.81 93.73 103.5 0.0869 -546.24 -471.85 -2.26
0.5935 0.03031 0.4455 86.23 94.16 103.7 0.0846 -561.72 -487.34 -2.09
0.4445 0.02627 0.4489 86.54 94 .46 103.9 0.0829 -572.67 -498.28 -1.97
0.3383 0.02324 0.4523 86.62 94.53 103.8 0.0815 -582.48 -508.10 -1.87
0.245 0.02037 0.4568 86.25 94.14 103.2 0.0799 -593.49 -519.11 -1.76
0.1618 0.01749 0.463 84.77 92.67 101.6 0.0781 -606.70 -532.32 -1.64
0.1005 0.01495 0.4705 81.43 89.48 98.22 0.0762 -620.36 -545.97 -1.51
0.07047 0.01341 0.4764 77.83 86.22 94.87 0.075 -629.14 -554.75 -1.43
0.05188 0.01226 0.4815 74.25 83.24 91.84 0.0742 -635.44 -561.06 -1.38
0.03447 0.01092 0.4885 69.81 80.42 89.08 0.0733 -641.40 -567.02 -1.33
0.02497 0.009992 0.494 68.2 81.23 90.09 0.0731 -643.50 -569.12 -1.31
0.01839 0.009199 0.4992 70.39 87.2 96.44 0.0731 -642.81 -568.42 -1.31
Table of Ideal-Filter Diagnostics for Series: 'Residential Investment'
Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 118.1 126 130 0.0728 -646.36 -571.98 -1.25
0.5935 0.03031 0.4455 120.4 128.4 132.4 0.0717 -655.38 -580.99 -1.18
0.4445 0.02627 0.4489 120.5 129 132.9 0.0709 -661.41 -587.03 -1.13
0.3383 0.02324 0.4523 119.3 128.6 132.6 0.0703 -666.33 -591.94 -1.09
0.245 0.02037 0.4568 116.7 127.6 131.7 0.0697 -670.85 -596.47 -1.06
0.1618 0.0175 0.463 112.7 127.4 131.9 0.0693 -673.89 -599.50 -1.04
0.1005 0.01495 0.4705 112 135.6 141.2 0.0696 -671.90 -597.52 -1.05
0.07047 0.01341 0.4764 120.4 156 163.1 0.0704 -665.26 -590.88 -1.1
0.05188 0.01226 0.4815 139.4 191 200.1 0.0716 -655.05 -580.67 -1.17
0.03447 0.01092 0.4885 190.8 274.2 287.4 0.0743 -633.80 -559.42 -1.34
0.02497 0.009992 0.494 258 376.4 393.9 0.0775 -610.28 -535.89 -1.54
0.01839 0.009199 0.4992 345 504.6 527 0.0814 -582.24 -507.86 -1.81



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 141.2 168.1 173.9 0.0401 -983.30 -908.92 -1.84
0.5935 0.03031 0.4455 147.1 173.5 179.6 0.0394 -993.53 -919.14 -1.74
0.4445 0.02627 0.4489 150.4 176.4 182.8 0.0389 -1000.73 -926.34 -1.67
0.3383 0.02324 0.4523 152.3 177.9 184.6 0.0385 -1007.05 -932.67 -1.61

0.245 0.02037 0.4568 152.6 177.9 184.9 0.038 -1013.80 -939.42 -1.55
0.1618 0.0175 0.463 150 175.3 182.5 0.0376 -1020.88 -946.49 -1.48
0.1005 0.01495 0.4705 144.5 170.6 178 0.0372 -1025.72 -951.33 -1.44
0.07047 0.01341 0.4764 140.9 169.2 176.8 0.0372 -1026.02 -951.64 -1.44
0.05188 0.01226 0.4815 141.2 173.5 181.3 0.0374 -1023.22 -948.84 -1.46
0.03447 0.01092 0.4885 152.8 195.5 203.8 0.038 -1013.90 -939.52 -1.54
0.02497 0.009992 0.494 177.1 234 242.9 0.0388 -1001.16 -926.77 -1.66
0.01839 0.009199 0.4992 217.7 294.3 304.2 0.04 -984.07 -909.69 -1.82

Table of Ideal-Filter Diagnostics for Series: 'Inventory Change'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 87.32 98.96 107.2 0.0742 -636.02 -561.64 -4.09
0.5935 0.03031 0.4455 85.16 96.43 104.8 0.0718 -654.05 -579.67 -3.78
0.4445 0.02627 0.4489 84.11 95.16 103.5 0.0702 -666.82 -592.43 -3.57
0.3383 0.02324 0.4523 83.46 94.31 102.7 0.0688 -678.32 -603.94 -3.39

0.245 0.02037 0.4568 82.96 93.62 102.1 0.0672 -691.40 -617.01 -3.19
0.1618 0.0175 0.463 82.57 93.01 101.5 0.0653 -707.58 -633.20 -2.95
0.1005 0.01495 0.4705 82.2 92.44 101 0.0633 -725.62 -651.23 -2.71
0.07047 0.01341 0.4764 81.87 91.98 100.5 0.0618 -738.79 -664.41 -2.54
0.05188 0.01226 0.4815 81.48 91.48 99.95 0.0606 -750.04 -675.65 -2.4
0.03447 0.01092 0.4885 80.71 90.58 99.01 0.059 -764.87 -690.49 -2.22
0.02497 0.009992 0.494 79.83 89.61 98 0.0578 -776.38 -702.00 -2.09
0.01839 0.009199 0.4992 78.72 88.44 96.78 0.0567 -787.08 -712.69 -1.97



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 118.7 123.8 134.4 0.0153 -1529.91 -1455.53 -2.58
0.5935 0.03031 0.4455 115.3 120.8 132.1 0.0148 -1546.99 -1472.60 -2.37
0.4445 0.02627 0.4489 113 118.9 130.6 0.0145 -1558.66 -1484.28 -2.23
0.3383 0.02324 0.4523 110.8 117.1 129.2 0.0143 -1568.78 -1494.40 -2.12

0.245 0.02037 0.4568 107.9 114.5 127.1 0.014 -1579.63 -1505.24 -2
0.1618 0.0175 0.463 103.1 110.4 123.4 0.0137 -1591.71 -1517.32 -1.88
0.1005 0.01495 0.4705 96.2 104.8 118 0.0134 -1602.54 -1528.16 -1.77
0.07047 0.01341 0.4764 90.83 101.3 114.5 0.0133 -1607.91 -1533.53 -1.71
0.05188 0.01226 0.4815 87.35 100.5 113.9 0.0133 -1610.17 -1535.78 -1.69
0.03447 0.01092 0.4885 87.95 107.7 121.4 0.0133 -1608.76 -1534.38 -1.7
0.02497 0.009992 0.494 97.01 125.6 140 0.0134 -1603.25 -1528.86 -1.75
0.01839 0.009199 0.4992 117.2 158.6 174.2 0.0136 -1593.69 -1519.31 -1.85

Table of Ideal-Filter Diagnostics for Series: 'Consumption of Durables'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 101.4 109.2 125 0.0775 -611.15 -536.77 -3.69
0.5935 0.03031 0.4455 102.1 109.4 125 0.0753 -627.55 -553.17 -3.43
0.4445 0.02627 0.4489 102.8 109.8 125.2 0.0738 -639.13 -564.74 -3.25
0.3383 0.02324 0.4523 103.3 110.1 125.4 0.0724 -649.48 -575.10 -3.1

0.245 0.02037 0.4568 103.3 110 125.2 0.0709 -661.09 -586.71 -2.93
0.1618 0.01749 0.463 102.3 109 124 0.0692 -675.02 -600.64 -2.74
0.1005 0.01495 0.4705 99.2 106.1 121.1 0.0674 -689.55 -615.17 -2.55
0.07047 0.01341 0.4764 95.5 102.9 117.8 0.0663 -699.09 -624.70 -2.43
0.05188 0.01226 0.4815 91.46 99.81 114.7 0.0654 -706.18 -631.79 -2.35
0.03447 0.01092 0.4885 85.53 96.35 111.4 0.0646 -713.44 -639.06 -2.26
0.02497 0.009992 0.494 81.66 96.2 111.6 0.0642 -716.82 -642.44 -2.22
0.01839 0.009199 0.4992 80.44 100.9 117 0.0641 -717.56 -643.17 -2.21



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 92.23 112.6 130.4 0.0161 -1501.67 -1427.29 -3.29
0.5935 0.03031 0.4455 93.31 114.7 133.3 0.0157 -1516.27 -1441.88 -3.08
0.4445 0.02627 0.4489 94.18 116.2 135.4 0.0154 -1526.56 -1452.17 -2.93
0.3383 0.02324 0.4523 94.75 117.2 137 0.0151 -1535.75 -1461.36 -2.81

0.245 0.02037 0.4568 94.83 117.7 137.9 0.0149 -1545.98 -1471.60 -2.67
0.1618 0.01749 0.463 93.67 116.6 137.3 0.0145 -1558.08 -1483.70 -2.52
0.1005 0.01495 0.4705 90.39 113.1 133.9 0.0142 -1570.14 -1495.76 -2.37
0.07047 0.01341 0.4764 86.88 109.2 130.1 0.014 -1577.38 -1503.00 -2.28
0.05188 0.01226 0.4815 83.72 106.1 126.8 0.0139 -1582.01 -1507.62 -2.23
0.03447 0.01092 0.4885 81.22 104.8 125.3 0.0138 -1585.05 -1510.67 -2.19
0.02497 0.009992 0.494 83.24 109.7 130.3 0.0139 -1584.17 -1509.79 -2.2
0.01839 0.009199 0.4992 91.62 123.7 144.5 0.014 -1579.98 -1505.59 -2.24

Table of Ideal-Filter Diagnostics for Series: 'Consumption of Services'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 105.1 114.5 123.4 0.00839 -1869.37 -1794.99 -1.72
0.5935 0.03031 0.4455 103.6 113.4 122.6 0.00819 -1883.25 -1808.86 -1.59
0.4445 0.02627 0.4489 101.9 112 121.4 0.00805 -1892.86 -1818.48 -1.51
0.3383 0.02324 0.4523 99.92 110.2 119.7 0.00793 -1901.20 -1826.81 -1.43

0.245 0.02037 0.4568 96.87 107.3 116.9 0.00781 -1910.00 -1835.62 -1.36
0.1618 0.0175 0.463 92.05 102.9 112.2 0.00766 -1919.32 -1844.94 -1.27
0.1005 0.01495 0.4705 86.29 97.69 106.4 0.00759 -1926.36 -1851.98 -1.23
0.07047 0.01341 0.4764 83.8 96.03 104.1 0.00756 =-1928.15 -1853.77 -1.21
0.05188 0.01226 0.4815 85.34 98.75 106.1 0.00757 -1926.59 -1852.20 -1.22
0.03447 0.01092 0.4885 98.26 114.4 120.5 0.00768 -1918.83 -1844.45 -1.28
0.02497 0.009992 0.494 123 142.5 147.8 0.00783 -1907.19 -1832.81 -1.37
0.01839 0.009199 0.4992 163.5 187.6 192.1 0.00806 -1890.93 -1816.54 -1.51



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 88.3 98.13 108.1 0.0234 -1287.64 -1213.26 -1.01
0.5935 0.03031 0.4455 84.62 94 .58 104.1 0.023 =-1299.75 -1225.37 -0.93
0.4445 0.02627 0.4489 81.28 91.69 101.1 0.0226 -1307.46 -1233.07 -0.878
0.3383 0.02324 0.4523 77.92 89.26 98.55 0.0224 -1313.39 -1239.00 -0.839

0.245 0.02037 0.4568 74.35 87.82 97.17 0.0222 -1318.38 -1243.99 -0.807
0.1618 0.01749 0.463 72.79 91.83 101.6 0.0221 -1320.80 -1246.42 -0.79
0.1005 0.01495 0.4705 82.58 115.2 126 0.0223 -1316.35 -1241.97 -0.818
0.07047 0.01341 0.4764 106.2 157.1 169.4 0.0227 -1306.64 -1232.26 -0.881
0.05188 0.01226 0.4815 144.2 218.8 232.9 0.0232 -1292.95 -1218.57 =-0.973
0.03447 0.01092 0.4885 228.3 348.3 365.7 0.0243 -1265.99 -1191.61 -1.17
0.02497 0.009992 0.494 324 490.7 511.6 0.0256 -1237.28 -1162.89 -1.4
0.01839 0.009199 0.4992 436 654.5 679.2 0.0271 -1203.92 -1129.54 -1.7

Table of Ideal-Filter Diagnostics for Series: 'Exports'

Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 111.3 118.2 135.4 0.0859 -552.83 -478.45 -3.34
0.5935 0.03031 0.4455 107.7 114 130.6 0.0832 -570.88 -496.50 -3.07
0.4445 0.02627 0.4489 105.5 111.6 127.8 0.0814 -583.52 -509.13 -2.89
0.3383 0.02324 0.4523 103.7 109.5 125.4 0.0798 -594.75 -520.37 -2.74

0.245 0.02037 0.4568 101.6 107.3 122.8 0.078 -607.26 -532.87 -2.58
0.1618 0.0175 0.463 98.58 104.4 119.4 0.076 -622.22 -547.84 -2.39
0.1005 0.01495 0.4705 94.23 100.4 114.9 0.0739 -637.89 -563.51 -2.21
0.07047 0.01341 0.4764 90.1 97 111.1 0.0725 -648.39 -574.00 -2.09
0.05188 0.01226 0.4815 85.91 93.87 107.6 0.0714 -656.46 -582.08 -2
0.03447 0.01092 0.4885 79.75 90.19 103.4 0.0703 -665.42 -591.04 -1.91
0.02497 0.009992 0.494 75.21 89.01 102 0.0696 -670.58 -596.20 -1.85
0.01839 0.009199 0.4992 72.39 91.16 104 0.0693 -673.50 -599.12 -1.82



Q Zeta Q Kappa Lambda C Q(le) Q(24) Q(32) Eg SE AIC SIC R"2 d
0.8716 0.0375 0.4415 109.1 126.5 135.7 0.0794 -597.62 -523.24 -3.39
0.5935 0.03031 0.4455 109 127.4 137.4 0.0772 -613.49 -539.11 -3.16
0.4445 0.02627 0.4489 109 128 138.6 0.0756 -624.83 -550.44 -2.99
0.3383 0.02324 0.4523 108.8 128.3 139.4 0.0743 -635.06 -560.67 -2.85

0.245 0.02037 0.4568 108.2 128.3 139.7 0.0728 -646.60 -572.22 -2.7
0.1618 0.0175 0.463 106.7 127.3 139 0.071 -660.59 -586.20 -2.52
0.1005 0.01495 0.4705 103.4 124.6 136.4 0.0692 -675.32 -600.94 -2.34
0.07047 0.01341 0.4764 99.8 121.5 133.2 0.0679 -685.13 -610.75 -2.22
0.05188 0.01226 0.4815 95.91 118.3 129.8 0.067 -692.55 -618.17 -2.14
0.03447 0.01092 0.4885 90.02 114 125.1 0.0661 -700.44 -626.05 -2.05
0.02497 0.009992 0.494 85.69 112 122.6 0.0656 -704.50 -630.11 -2
0.01839 0.009199 0.4992 83.19 113 123.1 0.0654 -706.08 -631.70 -1.98

Note: AIC = -2*LogL Max +2*k, where k is number of parameters. SIC = -2*LogL Max +2*log(T)*k for series length T.

R*2 x is the coeff. of determination relative to simple benchmark, a RW (with fixed seasonal dummies for seasonal data.
Specifically, R"2 x = 1-PEV(model)/PEV (benchmark), where PEV is the Prediction Error Variance (in KF steady state).



	RRS2019-01_title.pdf
	CycleSig-Econ_Core__2018-12-7.pdf
	CycleSig-Econ_Supp__2018-12-7.pdf
	Appendix D - Ideal Cycle.pdf
	Table-Set-D1 and D2--ParamEstimates and Diagnostics__UnDST+Cyc-AH
	Table-D1--ParamEstimates__UnDST+Cyc-AH
	Table-D2--BasicDiagnostics__UnDST+Cyc-AH

	Table-Set-D3 to D8--IdealFilter_ParamEstimates and Diagnostics_MultiN6_UnDST+Cyc-AP-Ideal_MultiN6
	Table-Set-D3--IdealFilter_ParamEstimates_MultiN6_UnDST+Cyc-AP-Ideal_MultiN6
	Table-Set-D4--IdealFilter_Diagnostics_MultiN6_UnDST+Cyc-AP-Ideal_MultiN6
	Table-Set-D5--IdealFilter_ParamEstimates_MultiN4_UnDST+Cyc-AP-Ideal_MultiN4
	Table-Set-D6--IdealFilter_Diagnostics_MultiN4_UnDST+Cyc-AP-Ideal_MultiN4
	Table-Set-D7--IdealFilter-ParamEstimates--CycleOrderN8--AP-Ideal_MultiN8
	Table-Set-D8--IdealFilter_Diagnostics_MultiN8_UnDST+Cyc-AP-Ideal_MultiN8





