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Abstract

This article develops a class of multivariate filters for extracting related signals from mul-

tiple nonstationary time series affected by noisy fluctuations. Many such applications are

possible for the statistical data available in various sciences. For instance, in the bivariate

case, the filters can be used for signal analysis where one series is of prime interest and is re-

lated to a second series with higher signal-content; the formulas show exactly how much weight

should be placed on the auxiliary data at different leads and lags. The multivariate class gen-

eralizes the widely used Butterworth class, which has the limitation of being applicable only

separately to each individual series, even in multivariate applications. The new filters provide

the same flexibility in design —with minimal complexity of form —as basic Butterworth filters.

In the multiple series case, there are similarly compact gain functions that now account for

inter-relationships among series. The filter parameters, which may have important effects on

conclusions based on the extracted signals, may be guided by the dataset at hand to help

ensure consistency with observed properties. An application to U.S. petroleum consumption

is presented, where more precise trends are estimated by making use of the related time series

of OPEC oil imports.

Keywords. Co-integration; Common Trends; Filters; Multivariate Models; Stochastic Trends;

Unobserved Components.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.
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1 Introduction

A great deal of the time series data encountered in the social and physical sciences has a stochastic

element, with unpredictable and erratic noise superimposed on underlying signals or regular move-

ments that represent the object of study. Filters can be applied to a time series, with weights

attached to observations at different leads and lags, to smooth out the data and estimate such sig-

nals by removing any noisy or extraneous components. The estimation of trends is a pervasive area

of interest and represents a key part of much research in the sciences, for instance being extensively

used in economics and climatology. Applications in economics include Dimitropoulos et al (2005),

Agnolucci (2010), Adeyemi et al (2010), Broadstock et al (2011), Hunt et al (2003); while trends in

climatological data were examined by Gallant et al (2014), Coumou et al (2013), and Visser et al

(2015, 2018).

In the literature on signal extraction theory and methodology, Wiener (1949) and Whittle (1963)

made substantial early contributions; the Wiener-Kolmogorov (WK) formula gives the asymptotic

form (for historical, or two-sided smoothing of doubly infinite series) of the relationship between

optimal signal estimation and component properties. Bell (1984) extended this formula to the im-

portant nonstationary case. Gómez (2001) and Harvey and Trimbur (2003) explored the connection

between unobserved components (UC) models, which decompose a series into latent processes such

as stochastic trends, and filtering methods that weight observed data at various leads and lags.

"Butterworth filters", so-called because they were introduced in Butterworth’s (1930) research

in electrical engineering, are commonly used to extract signals. Over the past several decades, But-

terworth filters have played a role in numerous applications in fields such as astronomy, economics,

medicine, atmospheric science, climatology, and oceanography. For some examples, see Gao et al

(2012), Avdeeva et al (2014), Gehring et al (2013), and Tauzin et al (2010). The popularity of

this class of filters owes to their combination of an effi cient representation and compact form in

the frequency domain, together with a flexibility in effects and gain properties that can be easily

and transparently controlled by the researcher. Gómez (2001) showed that Butterworth low-pass

filters are directly linked to standard UC models containing trend and noise components. Their

gain function, which shows how they affect the various component frequencies of an observed series,

allows for direct choice of cutoff frequency and sharpness as filter parameters.

Standard Butterworth filters are applied separately to each individual series. However, in

current practice and research, where available, related variables are often combined to attain more

informed assessments of a scientific phenomenon or regular dynamic. Further, most of the data

encountered in the social and physical sciences has a stochastic element, with the background noise

leading to uncertainty in the estimated signal, and many time series have nonstationary movements.

Hence, there is a need for extending Butterworth filters to the multivariate setup, in a way that
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1) the filters make effi cient use of series’ interrelationships, 2) the uncertainty associated with

the filtering is considered, and 3) the filters handle nonstationarity and inter-relationships among

nonstationary movements and among stationary parts.

To attain these objectives, this paper develops a generalized class of multivariate Butterworth

filters for isolating trends and other signals in related, multiple series. The filters have compact gain

functions like basic Butterworth filters, and they account for dynamic relationships across (possibly

nonstationary) series while overcoming limitations of the current methodology.

In previous work, to our knowledge the analysis of Butterworth filters and their application have

been conducted only for the univariate case. The multivariate generalizations of Butterworth filters

that we introduce make use of a (time series) model-based approach; generalizations of models such

as those in Harvey and Koopman (1997) are considered. A prime motivation for the multivariate

filters is to take advantage of correlations in the fluctuations of related variables; yet there is no

clear way to extend a Butterworth filter used in nonparametric fashion in this direction. By

analyzing the implicit statistical models, we can achieve the generalized filters, while at the same

time providing the means for 1) incorporating cross-correlations into the filter design, 2) assessing

the degree of uncertainty in target signal, 3) handling nonstationarity and special inter-relationships

among the trends, 4) taking consideration of consistency with data properties in designing filters,

and 5) adapting filters near series’endpoints.

Application of the methodology is presented for the statistical measurement of the trend in a

time series of U.S. petroleum consumption. The dynamic representations in terms of trend plus noise

models give an essential starting point for describing the behavior of the target consumption series

and the ancillary time series of petroleum imports from the OPEC cartel. The multivariate formulas

for the two-series case show the optimal combination of two series —with rather different properties

—in the formation and application of estimated bivariate low-pass filters. The bivariate case already

helps to give the main insights into the advances offered by multivariate relative to univariate filter

design. The enhancements, such as more effi cient use of data, inclusion of information about cross-

relationships, improvements in modelling performance, reduction in measured signal uncertainty

and signal growth rate uncertainty, are already illustrated in such applications. The bivariate

extension is useful for developing intuition about filter formation in terms of weighting observations

on a pair of time series and applying gain functions that include cross-relations.

While trends in Energy Consumption have been explored by numerous researchers — among

others, Dimitropoulos et al (2005) and Agnolucci (2010) —our analysis represents the first use of

OPEC imports data to improve on trend estimation for oil consumption. The OPEC imports

series is a natural candidate for bivariate signal estimation, since it is observed with substantially

less irregular movements than consumption and has trend movements that correlate with and lead
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the trend in consumption —a connection that is intuitive by virtue of OPEC’s role of supplying

the marginal barrel of oil. In detecting signals from these noisy datasets, we demonstrate the

improvement of signal estimates and modelling aspects when using bivariate time series models

as the basis of the signal estimation. The results for the estimated filters quantify the degree of

emphasis on imports —the high signal-content series —and the corresponding reduced weighting on

consumption itself, which can be expressed in either the time or frequency domains. The trend

differs importantly from the one measured with a simple reliance on consumption alone and can be

estimated with greater accuracy. A certain degree of emphasis falls on the series with richer signal

content, OPEC imports, in removing the transitory and high-frequency parts. These results have

implications for the modelling and assessment of trends in Oil Consumption more broadly, as the

stochastic trend model we employ could be directly incorporated into structural equations relating

Consumption to factors like product prices and income.

The filter introduced by Hodrick and Prescott (1997) has been popular in macroeconomic analy-

sis; multivariate extensions were proposed by Dermoune et. al (2009) and Poloni and Sbrana (2017).

Our filter class is more general along the two dimensions of trend order and allowance for slope

damping. Further, we produce generalized Butterworth filters that can be mapped into the original

intuitive form of the filters in terms of cutoff frequency and sharpness in the gain function.

The rest of the paper is arranged as follows. Section 2 reviews Butterworth filters and their

time domain representation that may be less familiar to many readers. In Section 3, a simulated

illustration is given to provide motivation for the general multivariate filters. Section 4 proceeds

to set out models for multiple related time series, from which the multivariate class of Butterworth

filters are derived. Then in Section 5, we apply the methodology to estimate the trend in petroleum

consumption using the related signal of market conditions given by OPEC oil imports. Section 6

gives concluding remarks.

2 Butterworth Filters and the statistical connection

This Section reviews Butterworth filters and briefly notes their connections with statistical models

expressed as unobserved components. This linkage was established in Gómez (2001) and Harvey

and Trimbur (2003). In this paper, we will make use of the Butterworth filter’s underlying models

to generalize this class to the multivariate setting; here, the model-filter connection becomes crucial

for providing guidance regarding the diverse set of possible generalizations and for making the best

possible use of series’relationships in pinpointing their low-frequency components. Section 4 below

introduces this generalized class of filters. The current Section reviews the univariate case.
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2.1 Butterworth filters - original forms

The existing Butterworth filters are typically defined in terms of their gain function, which shows

how different frequency components are attenuated when applying the filter. Letting λ denote

frequency in radians, the gain is expressed as

Blp
m(λ) =

1 +

(
sin(λ/2)

sin(λlp/2)

)2m−1 , (1)

where λlp is the frequency at which the gain equals one-half, and m is a positive integer denoting

the order, or index, of the filter. This form was originally presented in Butterworth (1930). The

low-pass filter aims to cut out frequencies beyond λlp, with the higher frequencies cut off more

sharply as m increases. The gain function shows how they remove noisy fluctuations in data by

cutting out higher frequencies, allowing researchers to focus on the more regular, low-frequency

signals.

The class of Butterworth low-pass filters provide flexibility in location of cutoff frequency and

sharpness of gain, and this flexibility, in addition to the simple form of the gain, has underpinned

their widespread use in statistical analysis. Formula (1) refers to the "Butterworth-sine" form,

which we will also refer to as the "standard" form, given its frequent appearance in the literature

and its connection with commonly used models of stochastic trends.

Another class, which has a closely related form, is the general "Butterworth-tangent" filter,

whose gain is

Btan
m (λ) =

1 +

(
tan(λ/2)

tan(λlp/2)

)2m−1 . (2)

This filter class, less frequently appearing in previous work, provides the same compactness of gain

function, and its time domain representation will be explored alongside the standard class in this

paper. We will also refer to this filter class as "canonical" Butterworth, given their close linkage with

the canonical decomposition of time series, as originally introduced in Tiao and Hillmer (1978) and

Hillmer and Tiao (1982). This decomposition is based on the fundamental and intuitive principle of

extracting as much noise as possible (hence maximizing the variance of the irregular/noise process).

Hence, the standard/sine and canonical/tangent classes of Butterworth filters provide some

complementarity in how trends and signals are pinpointed from fluctuating time series.

5



2.2 Time Domain Expressions for filters and implicit models

When a gain function —such as those noted above —is applied to a time series of observations yt,

the corresponding operation is to weight the observations according to

Blp
m(L)yt =

∑
j

wjyt−j (3)

which, using L to denote the lag operator (so that Lyt = yt−1), can be written as

Blp
m(L) =

∞∑
h=−∞

whL
h. (4)

The set of weights, the values of wh at different leads and lags, act to smooth out fluctuations in

the series. This produces a trend estimate whose weights are the inverse Fourier Transform of the

frequency response (which is equivalent to the gain for symmetric filters with real weights). For the

Butterworth filters, Blp
m(L) takes on compact expressions that are straightforward to derive, given

the original gain functions.

Beginning with the standard Butterworth gain, using basic trigonometric identities, it can be

shown that

Blp
m(λ) =

1

1 + 1
q
(2− 2 cosλ)m

, 0 ≤ λ ≤ π, (5)

with

q = [2 sin(λlp/2)]2m, 0 < λlp < π. (6)

Therefore, working back from the frequency domain to the time domain gives

Blp
m(L) =

1

1 + 1
q
[(1− L)(1− L−1)]m (7)

as the coinciding expression for the standard Butterworth filters.

Similarly, for the Butterworth tangent,

Btan
m (L) =

[(1 + L)(1 + L−1)]m

[(1 + L)(1 + L−1)]m + 1
q† [(1− L)(1− L−1)]m (8)

with

q† = [2 tan(λlp/2)]2m, 0 < λlp < π

The time and lag indices are doubly infinite in (4), and this asymptotic case pertains to the

exact, ideal gain functions in (1) and (2) and, correspondingly to the closed-form filter expressions

in (7) and (8).

Though Butterworth filters were originally introduced in the context of electrical engineering,

which involves deterministic and often band-delimited processes, since their introduction they have

6



increasingly been used in the context of statistical data consisting of stochastic movements, where

the goal is to remove noisy, predominantly random, fluctuations. Hence, it is intuitive that expres-

sions (1) and (2) relate to the extraction of a trend —from a process that includes both trend and

noise components. That is, when the observations yt comprise certain models for stochastic trend,

µt, and noise εt,

yt = µt + εt

a Butterworth filter is specifically designed to extract µt with the greatest accuracy (on average

when taken over repeated samples).

Indeed, the m−th order standard Butterworth filter gives the optimal way, in the sense of
Minimum Mean-Squared Error (MMSE), to filter the series when the trend follows

µm,t = (1− L)−mζt (9)

and εt is a serially uncorrelated process with mean zero, or simple White Noise denoted by εt ∼
WN(0, σ2ε )̇. This result was noted in Gomez (2001), who made use of the nonstationary formula

proven in Bell (1984). The class {µm,t} defines the most elementary nonstationary process for
each integration order. It includes the random walk and the "Smooth Trend" model as specific

cases. The "Smooth Trend" Model (STM), so called because it often produces visible smoothness

in the extracted trend, results from setting m = 2; in this case, µ2,t represents an I(2) process that

accounts for a time-varying slope.

In a similar way, the m−th order Butterworth tangent filter is the optimal estimator of the
following stochastic trend:

µ†m,t = (1 + L)m(1− L)−mζt

when µt is given by µ
†
m,t; see Gomez (2001).

This close connection between filtering and statistical modelling has been little studied with the

exception of works such as Gómez (2001) and Harvey and Trimbur (2003), though it represents an

invaluable tool for theory, methodology, and practice. The next Section provides some additional

motivation for model-based multivariate filtering by way of example.

3 Illustration of Multivariate Butterworth Filters

This Section gives a bivariate illustration to help motivate the use of more general multivariate

filters. Two noisy time series, yA,t and yB,t, are simulated with trends µA,t and µB,t, respectively,

that are closely related to each other. As shown in figure 1 by the solid black and dotted blue
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Figure 1: Two simulated noisy time series, yA,t and yB,t, shown along with their common trend µA,t
= µB,t.

lines, though their general levels tend to track each other, both yA,t and yB,t are observed with

high-frequency noise. The series were generated by the process: yA,t

yB,t

 =

 µA,t

µB,t

+

 εA,t

εB,t

 (10)

εA,t, εB,t ∼ WN(0, σ2ε), E[εA,sεB,t] = 0 for all s,t,

where εA,t and εB,t are the irregular movements, or noise, in yA,t and yB,t, respectively. The un-

correlatedness of the noise, an assumption that is relaxed in later Sections, simplifies the example

here. Also, εA,t, εB,t are assumed to be normally distributed and to have the same variance for both

series. The data were simulated for T = 200 observations, with starting values µA,0 = µB,0 = 10;

Figure 1 displays the middle 120 observations, which helps make the cross-relationships of the series

clearer.

The trends follow a STM, that is, are given by the bivariate extension of (9) with m = 2 : µA,t

µB,t

 =

 µA,t−1

µB,t−1

+

 βA,t−1

βB,t−1

 , (11)

 βA,t

βB,t

 =

 βA,t−1

βB,t−1

+

 ζA,t

ζB,t

 ,
ζA,t, ζB,t ∼ WN(0, σ2ζ), Corr[ζA,tζB,t] = νζ for all t, E[ζA,sζB,t] = 0 for all s,t with s 6= t,

8



so that the trend in series yA,t is incremented by βA,t−1 each period, and likewise for yB,t. Therefore,

βA,t and βB,t are slope processes that represent the rate of change in the trends; here, they are

assumed to be random walk processes driven by correlated white noise disturbances ζA,t and ζB,t
with the same variance. They are initialized as βA,0 = βB,0 = 0, so the trends have initial values

µA,1 = µB,1 = 10 for the first pair of observations at t = 1.

For this illustration, it was further assumed that perfect correlation holds, that is νζ = 1. As

the trends have a linear relationship with the coeffi cient set to unity and the intercept set to zero,

they can be expressed in terms of a single underlying trend (displayed in Figure 1 in red): yA,t

yB,t

 = ι2µt +

 εA,t

εB,t

 (12)

µt = µt−1 + βt−1

βt = βt−1 + ζt

ζt ∼ WN(0, σ2ζ),

where ι2 is a 2 x 1 column vector of ones. The processes yA,t and yB,t start out with a flat underlying

growth-rate that increases gradually over time, so that as indicated in figure 1, by t = 40 the trend

is increasing steadily.

Assume that a researcher working with the dataset {[yA,t,yB,t], t = 1, ..., T} wishes to measure
the trend in yA,t. As a first case, suppose that they have knowledge of the Data Generating Process

(DGP) for yA,t, that is the univariate form of the smooth trend plus noise model, given by

yA,t = µA,t + εA,t,

with trend defined as the first row of (11). Further, while they are assumed to also know the

values {σ2ε, σ
2
ζ}, they use univariate filters applied to yA,t and omit any information about yB,t in

the measurement of µA,t; this omission could result from being constrained to simple univariate

filters or from lack of knowledge about the relations between yA,t and yB,t.

Then, the optimal (asymptotic) filter for extracting µA,t is given by (7) withm = 2 and q = 10−3,

and the corresponding gain function has the form (1), where λlp = λ∗lp is found by solving (6) for λlp.

As illustrated in Figure 2, the gain function passes low frequencies and tapers off gradually to zero

at higher frequencies. Given the dataset, using this standard Butterworth filter and applying it to

yA,t to estimate µA,t yields the estimated trend indicated in Figure 4 (The standard Butterworth

and split gain Butterworth filters can be applied using Kalman filtering).

In extending the univariate filter to extract the trend in series A, a filter can be applied to each

series and the resulting output summed together. Therefore, as a second case, to obtain the estimate

µA,t, the researcher applies an "auto-filter" to the same series, yA,t, along with a "cross-filter" to
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Figure 2: Gain function of univariate low-pass filter of the Butterworth-sine class with m = 2 and

q = 10−3.

the other series, yB,t, and then sums their respective contributions. An especially simple bivariate

filter, and the one suggested by the symmetric properties and shared trend of the series, would

involve equivalent gains for each series, given by one-half the univariate gain in (1). This "splitting

of gains" is illustrated in figure 3, where each bivariate gain is given by the solid line, compared to

the standard univariate gain given by the dotted line. The resulting trend in this case is compared

to the univariate filter output and to the actual trend in figure 4.

The corresponding errors in these estimates are plotted in figure 5. Taking the simple average

of the squared trend estimation errors for the univariate filter (over the middle 120 observations, as

indicated in the figure, which helps abstract from near end-point effects) gives 0.000833, while the

split-gain approach yields an average squared-error of 0.000460, a 44.8% reduction. The estimate

of the square root of the Mean-Squared Error, or RMSE, based on the simulated sample falls 25.7%

going from the univariate (R̂MSE = 0.0289) to the to the bivariate (R̂MSE = 0.0214) strategy.

With knowledge of the close trend relationship and of shared trend-noise properties, the use

of symmetrically split-gain functions is intuitive here. In other cases of perfectly correlated, or

co-integrated trends, the same principle of gain splitting applies with more general patterns for

the coeffi cients for the auto- and cross-gains. More generally, |νη| ≤ 1, and trend and noise

characteristics vary across different time series; at the outset, it is unclear how, exactly, to construct

suitable multivariate filters to benefit from the combined information in multivariate datasets.
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Figure 3: Gain function of bivariate low-pass filter based on Butterworth-sine class, with m = 2 ,

q = 10−3, and νζ = 1. The gain applied to each series, prior to summing their output, is indicated

by the solid line. The univariate gain is displayed as the dotted line.

Actual Underlying Trend  for Middle 120 obs.
Est Trend from Series A for Middle 120 obs.
Est Trend from Both Series for Middle 120 obs.
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Figure 4: Trend estimates from the univariate filter applied to the series yA,t and from the bivariate filter

applied to both series yA,t and yB,t, compared to actual trend, shown for the middle 120 observations.
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Figure 5: Errors in the trend estimates for the univariate filter applied to the series yA,t and for the

bivariate filter applied to both series yA,t and yB,t, shown for the middle 120 observations.

Hence, the generalization of the Butterworth filters involves some non-obvious aspects to provide the

best statistical estimates of trends or correspondingly, the optimal elimination of high-frequencies,

when series are related in flexible ways, and the researcher aims to judiciously combine information

and reduce filtering error.

Finally, as a third case, suppose the researcher, in pursuit of greater smoothness in the estimated

signal, applies a more stringent gain function to eliminate additional frequency components away

from the low-end. This gain function, based on an order m = 4 Butterworth-sine filter with q set

to q̃ = 5× 10−9, is displayed in Figure 6 as the dotted line; the cutoff frequency is well below that

for the optimal filter, and additionally the gain is sharper, or more block-like. Now, the average

squared estimation error is 0.00099698, which is more than twice the value of 0.000460 obtained for

the adaptive case. Hence, the pursuit of smoothness in the extracted trend should be moderated

by consideration of the dynamic properties of the series.

4 Multivariate Butterworth filters

In this Section, we derive explicit expressions for the multivariate generalization of Butterworth

low-pass filters based on the classes of m-th order trends, of both standard and canonical form.

The Section provides the general formulation involving a N -dimensional time series, where N is

any positive integer, and also discusses more flexible trend structures. This treatment constitutes
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Figure 6: Gain functions of univariate low-pass filters of the Butterworth-sine class, first for m = 2

and q = 10−3 and second, for m = 4 and q = q̃ = 5× 10−9. Note the range of the x-axis is [0,1], not

[0,π] as in figure 3.

the multivariate generalization of the Butterworth sine and tangent filters, whose univariate forms

are reviewed in Gómez (2001) and Harvey and Trimbur (2003).

4.1 Models of related and Common Trends

Multivariate models capture the crucial aspect that related series undergo similar movements, and

accounting for these cross-relationships can help give a better description of the fluctuations seen

by each series. Models with related trends, where the underlying permanent shocks are correlated,

allow us to establish links between series in their long-run behavior. This Section describes the

general class of stochastic trend models for multiple time series, used to develop corresponding

signal extraction filters by making use of the theory in McElroy and Trimbur (2015).

Let N denote the number of series in the dataset. Define the vector process yt = (y
(1)
t , ..., y

(N)
t )′

as the observed series at time t. Then the univariate trend-noise form directly generalizes to the

following multivariate model:

yt= µt + εt, εt ∼ WN(0,Σε), t = 1, ..., T (13)

where µt = (µ
(1)
t , ..., µ

(N)
t )′ is a stochastic trend vector and εt = (ε

(1)
t , ..., ε

(N)
t )′ a vector of irregulars,

both taken at time t.
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Analogously to (9), in the multivariate case, the m− th order standard trend is given by

µi,t = µi,t−1 + µi−1,t−1, i = 2, ...,m (14)

µ1,t = µ1,t−1 + ζt, ζt ∼ NID(0,Σζ),

so that at time t, the trend µm,t is subject to a vector of slopes µm−1,t−1 that are themselves

integrated processes form = 2 and higher. The core disturbance vector is specified by its covariance

matrix Σξ, which is an N × N positive semi-definite matrix. The relations among the trends

are reflected in the cross-correlations implied by Σζ . For m = 1, only the equation for µ1,t is

defined, giving a multivariate random walk as the stochastic trend. Many datasets can already

be reasonably modeled with a once- or twice-integrated trend. Using m > 2 can also sometimes

give viable specifications, and can help track steady variation in rate of change or in acceleration;

such higher order trends give rise to sharper low-pass filters —which can produce attractive signal

contours when applied to time series data, and this case should not necessarily be ruled out a priori.

For reduced rank Σζ , the trend vector may be expressed as

µm,t = Θµ†m,t + f(µ1,0,µ2,0, ...,µm−1,0; t) (15)

µ†i,t = µ†i,t−1 + µ†i−1,t−1, i = 2, ...,m

µ†1,t = µ†1,t−1 + ζ†1,t, ζt ∼ NID(0,Σζ†),

where Θ is an N × K matrix, with K < N . For the length-N vector f(µ1,0,µ2,0, ...,µm−1,0; t),

the first K positions consist of zeroes , while the remaining N −K elements contain deterministic

polynomials in t, whose coeffi cients depend on the initial conditions for the trend process (including

both the trend itself and any lower order processes used in defining the trend when m > 1). For

identification, the elements of the load matrix Θ are constrained to satisfy Θjk = 0 for k > j, and

Θjj = 1 for j = 1, ..., K. The long-run movements then depend on the smaller set of processes,

arranged in theK-element vector µ†t and driven by disturbance ζ
†
t with diagonal (K×K) covariance

matrix, Σζ†. For these identifying conditions on Θ and Σζ†, the "common trends" in µ
†
t have the

interpretation of distinct or elemental long-term patterns that are "pure" in the sense of being

completely unrelated to each other. McElroy (2017) also discusses common components, where Θ

is linked to the lower Cholesky factor of the trend innovation covariance matrix.

The co-integrated or common trend form has been extensively studied in the literature. Typi-

cally, in a given statistical application with an unknown data generating process, it is best to start

with the open formulation in (14) and to entertain the possibility of common trends depending

on the initial results. Where appropriate, the common trend form makes the model more par-

simonious, which can lead to better parameter estimates and may improve its descriptive ability.

Additionally, it entails an elegant structure in the multivariate filter, as in the illustration of the
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symmetric splitting of the gain function for the simulated example of the previous Section. The

possibility of common slopes, that is the m > 1 case, has been less considered in empirical work,

which has mostly focused on the I(1) case; there can be additional complexity in formal hypothesis

testing for m > 1 compared to m = 1. At the same time, it is straightforward to evaluate statistical

fit and diagnostic measures, such as those based on residual serial correlation, for the related ver-

sus common trends cases. Additionally, for multivariate filtering or signal detection applications,

significant emphasis should be placed on considerations like extracted trend contour, implied gain

functions, function-of-signal properties, and uncertainty in signal measurement.

4.2 Damped growth models

The above models give a straightforward and logical means to define multivariate generalizations

of Butterworth filters and allow us to handle either related or common trends. At the same time,

it is worthwhile to have models/filters capable of delivering smooth trends and signals with smooth

growth rates, within a domain of I(1) forms. Here, we consider such models. A relatively sharp

cutoffcan still be attained in the low-pass filter; such behavior is made possible with a slope damping

formula, applied recursively as shown in this sub-Section.

The m− th order damped trend is given by

µm,t = µm,t−1 + µm−1,t−1, (16)

µi,t = diag(φ)µi,t−1 + µi−1,t−1, i = 2, ...,m− 1

µ1,t = diag(φ)µ1,t−1 + ζt, ζt ∼ NID(0,Σζ),

where µm−1,t is an N ×1 vector of slopes and Ση and Σξ are N ×N positive semi-definite matrices.

The coeffi cient vector φ has all elements between zero and one. Often, all the φ′ks have been set

to unity, which gives the usual local linear trend. A more flexible trend results from allowing for

values less than unity; such a damped slope was used in Trimbur (2010) to describe the tendency

for a series to have its growth rate flatten out as the horizon extends. In this paper, we use the

damped slope to allow for possible limits in the rates of sustained increases or decreases over time.

The extra flexibility in the stochastic trend specification permits them to remain based on I(1)

specifications. This gives a modification to the Butterworth gain; the univariate form is

Blp
m(λ) =

1

1 + 1
qζ

(2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−1
, 0 ≤ λ ≤ π,

To see where the gain equals one-half, we must solve

qζ = (2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−1 (17)
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for λ such that 0 ≤ λ ≤ π. The solution λ1/2 is in general a function of m, qζ , and φ. If we let

z = cosλ, then the equation becomes

(2− 2z)(1 + φ2 − 2φz)m−1 − qζ = 0

and the solution for z is given by the roots of an m−th degree of polynomial. These roots can be
found numerically, though there is no analytical formula available. Values between -1 and 1 give

λ1/2 as the arc-cosine. Compared to the standard Butterworth, there is no compact expression for

the gain in terms of λ1/2.

However, the following proposition notes a useful approximation when φ is close to one, which

will often be the case, as it gives rise to a relatively smooth trend.

Proposition 1 For φ ≈ 1, the cutoff frequency, at which the gain equals one-half, is approximately

λ1/2 = 2 arcsin(2−1/2[qζ/r(m,φ)]1/2m) (18)

where r(m,φ) = 1 + (m− 1)(−1 + φ)

In general, the low-pass filter does not completely annihilate the highest frequencies, though it

may come very close. The minimal value occurs at λ = π and equals

Blp
m(π) = [1 + 4q−1ζ (1 + φ2 − 2φ)m−1]−1

This may be seen by considering the difference

Blp
m(λ)−Blp

m(π) =
4(1 + φ)2m−2 − (2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−1

[qζ + 4(1 + φ)2m−2][1 + (2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−1/qζ ]

This quantity is non-negative for all λ and equals zero at λ = π. Therefore, the low-pass filter’s

gain function decays to a value that is very small but nonzero at λ = π; this minimal value decreases

with m and qζ .

A canonical trend form can be obtained by replacing ζt by ζt + ζt−1 in (16) and analogously

µi−1,t−1 by µi−1,t + µi−1,t−1.

4.3 Adaptive matrix Filters for nonstationary time series

McElroy and Trimbur (2015) show that the Wiener-Kolmogorov formula generalizes to nonstation-

ary vector processes, using pseudo-ACGF’s in place of stationary ACGF’s. Therefore, the optimal

filter for extracting the trend from a doubly infinite series that follows (13) is

LP (L) = Gµ(L)[Gµ(L) +Gε(L)]−1. (19)
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Now for related trends that have uniform nonstationary operators across series, the pseudo-

ACGF of the trend is

Gµ(L) = fµ(L)Σζ

for some scalar factor fµ(L) ; the matrix ACGF of the irregular is Σε, so the filters take the form:

LP (L) = Σζfµ(L)[Σζfµ(L) + Σε]
−1

= Σζ [Σζ + [fµ(L)]−1Σε]
−1

= [(Σζ + [fµ(L)]−1Σε)Σ
−1
ζ ]−1,

which can be written as

LP (L) = [IN + [fµ(L)]−1ΣεΣ
−1
ζ ]−1. (20)

We will consider (13), where the signal of interest is st = µm,t for all t, with uniform differencing

operator δs(L) = (1− L)m required to make the process white noise (In general, we consider the

more flexible case where δs(L) = (1− φL)m−1(1− L), but here use the basic form with φ = 1 for

simplicity). For the m-th order trend, fµ(L) = 1/[(1− L)(1− L−1)]m is the pseudo-ACGF.
Now letQ be defined as ΣζΣ

−1
ε , which will be the multivariate generalization of the scalar signal-

noise ratio q. Since Σε is assumed invertible, Q always exists, even when Σζ is non-invertible. Then

from (20), it follows that when Σζ is invertible,

LP (L) =
(
IN + [(1− L)(1− L−1)]mQ−1

)−1
. (21)

Formula (21) is a generalization of equation (7) for the univariate Butterworth filters with the scalar

signal-noise ratio q replaced by a matrix Q. As such, (21) will not exist when Σζ is non-invertible

because Q−1 is not well-defined. In the following, we assume that Σζ is invertible, which is the

related trends case. The non-invertible case —with common trends —is treated in Appendix E and

proceeds by re-expressing formula (21) in a way that does not involve Σ−1ζ or Q−1. Here, we focus

on the invertible related trends case, as the mathematics are simpler; the generalization to common

trends is done in a similar manner. Note that in the special case that there is no cross-series

correlation in either signal or noise, then Σζ and Σε are diagonal matrices, and Q is a diagonal

matrix consisting of signal-to-noise ratios for each of the component series.

In the frequency domain, the frequency response for the filter in (19) may be expressed through

the spectra:

LP (λ) = Fµ(λ)[Fµ(λ) + Fε(λ)]−1, (22)

where Fµ(λ) = Gµ(e−iλ). Let fµ(λ) denote the univariate trend’s pseudo-spectrum for a unit

variance disturbance. With homogenous operators the trend pseudo-spectrum is proportional to a
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constant density fµ(λ) = 1/(2− 2 cosλ)m, and we can write

LP (λ) =
(
IN + [2− 2 cosλ]mQ−1

)−1
=

(
IN + r(λ)Q−1

)−1
,

where r(λ) = (2− 2 cosλ)m.

We seek a formulation that has the same kind of expression as the original Butterworth sine

filter —in terms of a cutoff frequency where the gain equals one-half —that was given in (1), but

now using a vector of cutoff frequencies. Now let

Q−1 = V ΛV −1

be the eigen-decomposition of Q−1, with eigen-vectors given by the columns of the matrix V and

eigen-values given by the entries of the diagonal matrix Λ. The case of no cross-series correlation

corresponds to V = IN .

In general, the filter’s gain is

LP (λ) =
(
IN + r(λ)V ΛV −1

)−1
=

(
V V −1 + r(λ)V Λ V −1

)−1
.

=
(
V [V −1 + r(λ)Λ V −1]

)−1
= [V −1 + r(λ)Λ V −1]−1V −1

= [(IN + r(λ)Λ) V −1]−1V −1,

which has the form

LP (λ) = V (IN + r(λ)Λ)−1 V −1. (23)

One possible extension of the cutofffrequency concept to the multivariate case could heuristically

be handled by setting LP (λ) equal to 1/2 times the identity matrix (denoted by IN for dimension

N), in which case

V
(
IN + r(λ1/2)Λ

)−1
V −1 = (1/2)IN

for some λ1/2. Right-multiplying both sides by V and then left-multiplying by V −1 yields

(
IN + r(λ1/2)Λ

)−1
= (1/2)IN ,

which implies

IN = r(λ1/2)Λ.
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The existence of a solution would mean that the eigenvalues in the diagonal of Λ are all identical,

so that Q−1 is a multiple of IN . This only occurs in the very specific case that Σζ and Σε are

proportional.

Instead, we need a more general context. Suppose that a multivariate process {Xt} is filtered
to produce output {Yt}, that is Yt = LP (L)Xt. The spectral representation of the input process is

Xt =
∫ π

−π
eiλt dZ(λ)

where Z(λ) is a vector-valued orthogonal increments process that indicates the differential (random)

amplitude weighting the frequency component eiλt . The increment dZ(λ) is in general complex-

valued, though taking the integral from −π to π, symmetrically about the origin, results in a
cancellation of the imaginary part. The corresponding representation of the output process is

Yt =
∫ π

−π
eiλt V (IN + r(λ)Λ)−1 V −1 dZ(λ).

We can re-express these time series in terms of a rotated increments process, which is defined

as Z?(λ) = V −1 Z(λ):

Xt =
∫ π

−π
eiλt V dZ?(λ)

Yt =
∫ π

−π
eiλt V (IN + r(λ)Λ)−1 dZ?(λ).

The jth (1 ≤ j ≤ N) input and output series follow univariate orthogonal increment processes

given by

Xt,j = e′j

∫ π

−π
eiλtV dZ?(λ)

Yt,j = e′j

∫ π

−π
eiλtV (IN + r(λ)Λ)−1 dZ?(λ)

for ej defined as a column vector with a one in the j−th position and zeroes elsewhere.
Another possible extension of the cutoff frequency idea could come from imposing that the jth

output has half the amplitude or content of the jth input, or

e′j V (IN + r(λ)Λ)−1 =
1

2
e′j V

for a total of N equations. However, such a system will not in general have a solution. The above

equation implies

(IN + r(λ)Λ)−1V
′
ej =

1

2
V

′
ej,

since (IN + r(λ)Λ)−1
′

= (IN + r(λ)Λ)−1. This requires that the vector V ′ ej be an eigen-vector of

(IN + r(λ)Λ)−1 with eigen-value 1/2. However, since the matrix (IN + r(λ)Λ)−1 is diagonal, the
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only eigen-vectors in this case are unit vectors. Hence, the existence of solutions requires that V ′ ej
is a unit vector for all j, which solely holds for the special case of V being a permutation matrix.

This means that we cannot in general set the auto-gain equal to 1/2 for every multivariate filter

applied to a vector process.

To generalize the cutoff frequency notion, we therefore impose a less stringent condition: for

each 1 ≤ j ≤ N , we find λ1/2,j such that the output has half the frequency content of the input

when only the j−th process is incremented, that is

dZ?(λ) = dz?(λ)ej = ejdz
?(λ),

where dz?(λ) is a scalar orthogonal increments process. This corresponds to a hypothetical impulse

whereby only series component j passes through the filter. The equation for the amplitudes of

frequency parts becomes

e′jV
(
IN + r(λ1/2,j) Λ

)−1
ej =

1

2
e′j V ej. (24)

There are N such equations. Further, λ1/2,j is allowed to vary over j; now collect the cutoff

frequencies into a vector λ1/2 = (λ(1/2),1, λ(1/2),2, ..., λ(1/2),N). The N equations reduce to scalar

equations:

Vj,j
(
1 + r(λ1/2,j) Λj,j

)−1
=

1

2
Vj,j , j = 1, ..., N.

Each equation is solved by setting r(λ1/2,j)Λj,j = 1, or r(λ1/2,j) = 1/Λjj, i.e., set the reciprocals

of the eigen-values of Q−1 equal to (2− 2 cos(λj))
m and solve for λj.

The corresponding inverse eigenvalues can be seen as fundamental signal-noise ratios for the

multivariate filter. That is, define

qζ,j = 1/Λjj.

Then the solutions have the form

qζ,j = (2− 2 cos(λ1/2,j))
m.

If we define

λ1/2,j = 2 arcsin(2−1/2qζ,j
(1/2m)), (25)

then

r(λ) Λj,j = [sin(λ/2)/ sin(λ(1/2),j/2)]2m.

Let S(λ) be a diagonal matrix of dimensionN xN with entry j, j given by [sin(λ/2)/ sin(λ(1/2),j/2)]2m

for all 1 ≤ j ≤ N . Since S(λ)j,j = r(λ)Λjj, the filter’s gain is expressed as

LP (λ) = V (IN + S(λ))−1V −1. (26)
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4.4 Bivariate Filters with correlated Signals

The parameter estimates for each series —the computed variances of driving disturbances —may

improve when combined with shared parameters such as cross-series correlations. This more ex-

tensive information then becomes available in forming the signal extraction filters and enhances the

filters’compatibility with series’dynamic properties. It also enables the researcher to more effec-

tively pinpoint underlying signals in noisy series, as evidenced by a narrowing of confidence bands

around smoothed trends. This enhancement is illustrated below in bivariate extraction of trends

in oil consumption and imports time series. Application might feature a target series paired with

another related series with stronger signal or a situation where two time series with comparable

signal content are combined.

Now consider the bivariate case, labelling the series A and B. Therefore, the covariance matrices

have the form:

Σζ =

 σ2ζ,A σζ,AB

σζ,AB σ2ζ,B

 , Σε =

 σ2ε,A σε,AB

σε,AB σ2ε,B

 .
Here, we can analytically compute the eigenvalues of the Signal-Noise Ratio matrix. First,

Q = ΣζΣ
−1
ε = (σ2ε,Aσ

2
ε,B − σ2ε,AB)−1

 σ2ζ,Aσ
2
ε,B − σζ,ABσε,AB σ2ε,Aσζ,AB − σ2ζ,Aσε,AB

σ2ε,Bσζ,AB − σ2ζ,Bσε,AB σ2ζ,Bσ
2
ε,A − σζ,ABσε,AB

 .
Denoting the elements of Q by

Q =

 a b

c d

 ,
the equation for the eigenvalues becomes

∣∣∣∣∣∣ λj − a b

c λj − d

∣∣∣∣∣∣ = 0

or

λ2j − trace(Q)λj + det(Q) = 0

so that the solution is

λj = (1/2)trace(Q)λj ±
√

(1/4)[trace(Q)]2 − det(Q) = 0.

Then in the case of contemporaneous trend relationships, the frequency response has all real

elements, so the gain is the absolute value. Express the bivariate gain function as
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G(λ) =

 GA(λ) GAB(λ)

GBA(λ) GB(λ)

 ,
where GA is the gain applied to series A to estimate the component in A, and GAB(λ) is the cross-

gain from B to A, that is, the gain applied to series B to estimate the component in series A. Let

νζ,AB = σζ,AB/(σζ,Aσζ,B) equal the correlation between ζA,t and ζB,t, and likewise for the irregular.

Proposition 2 The elements of the gain matrix for the bivariate Butterworth filter are given by

GA(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Aσ

2
ε,B − νζ,ABνε,ABσζ,Aσζ,Bσε,Aσε,B]

GAB(λ) = h(λ)[−σ2ζ,Aνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,A]

GBA(λ) = h(λ)[−σ2ζ,Bνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,B]

GB(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Bσ

2
ε,A − νζ,ABνε,ABσζ,Aσζ,Bσε,Aσε,B]

where

h(λ) = [fµ(λ)/R(λ)] = 1/[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + (1− ν2ε,AB)σ2ε,Aσ

2
ε,B/fµ(λ) + (σ2ε,Aσ

2
ζ,B + σ2ζ,Aσ

2
ε,B)

−2νε,ABνζ,ABσε,Aσε,Bσζ,Aσζ,B].

This shows that the two cross-gains have the same parametric form in terms of λ with different

coeffi cients. Their ratio is

GAB(λ)/GBA(λ) = (−σ2ζ,Aνε,ABσε,Aσε,B+νζ,ABσζ,Aσζ,Bσ
2
ε,A)/(−σ2ζ,Bνε,ABσε,Aσε,B+νζ,ABσζ,Aσζ,Bσ

2
ε,B)

and so depends on all the variance and correlation parameters. Hence the contribution to signal

A coming from filtering series B has a cross-gain that is a coeffi cient times a certain function of

frequency, while the contribution to signal B from filtering series A is a different coeffi cient times

the same quantity. For the special case σε,AB = 0, the ratio is just σ2ε,A/σ
2
ε,B and so depends only

on the irregular variances independent of the trend disturbance’s covariance matrix. Therefore, the

cross-gains are equal when the irregulars are uncorrelated and σ2ε,A = σ2ε,B, regardless of the values

of νζ,AB, σζ,A, and σζ,B.

If, in addition νζ,AB is near one (but not exactly one), then away from the zero frequency,

GA(λ)/GB(λ) = qζ,A/qζ,B; at very low frequences the gains de-couple and both GA(λ) and GB(λ)
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go to unity. In this case,

GA(λ) = h(λ)[σ2ζ,Aσ
2
ε,B]

GAB(λ) = h(λ)[−σ2ζ,Aνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,A]

GBA(λ) = h(λ)[−σ2ζ,Bνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,B]

GB(λ) = h(λ)[σ2ζ,Bσ
2
ε,A].

We can interpret the gain matrix as operating on the orthogonal increments, or Cramer rep-

resentation. In general, the spectrum of the output is quadratic in G(λ) and the cross-elements

commingle with the full matrix spectrum of the input.

5 Extracting the trend-signal in petroleum consumption

In this application, interest centers on the trend in U.S. consumption of petroleum products, a key

signal in several respects, given the direct share of overall consumption that petroleum demand

represents and its indication of near-term economic activity. (Petroleum has a crucial role as an

input and intermediate product in the industrial sector, and influences overall energy costs for

consumer and industry.) There are also political dimensions to US oil consumption related to

reliance on foreign oil and to conservation policies. However, the oil consumption time series is

rather noisy, as indicated by the black line in Figure 7, making it diffi cult to ascertain the primary

movements. The blue line represents an estimated trend from a statistical perspective, as explained

below. Smoother trends may also be produced by higher order models, as in Figures 8 and 9; these

have merit when the goal is to better track the long-run evolution. The red lines indicate uncertainty

bounds, which can be expected to include the true value of the trend about 68% of the time. Clearly,

any strategy for improving the trend estimate or its associated uncertainty is desirable.

Here, we use a second variable suggested by economic reasoning to inform the extracted trend

in U.S. petroleum consumption and reduce the uncertainty connected with its measurement. In a

bivariate analysis, we present gain patterns for different low-pass filter constructions, whereby both

series are filtered with a certain weight function on the observations. There are various benefits to

utilizing a secondary series in our trend assessment. First, when the trends in target and auxiliary

series are cross-correlated, we can attain improved model performance and parameter estimates

for both series. Second, richer information in the form of shared parameters becomes available,

for instance the correlation between trend disturbances in the two series. Third, we can use their

empirical relationships to improve the trend estimates in both series. When the supporting series

also has high relative signal content —as in the following application —the formulas discussed earlier
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show how, in exact mathematical terms, to make the most effi cient use of the series in enhancing

the quality and precision of trend estimates in the target.

Specifically, the secondary series measures oil imports to the U.S. from the Organization of

Petroleum Exporting Countries (OPEC). This imports series captures the marginal barrels of oil

purchased as "last resort", following the more secure domestic and non-OPEC sources. Decisions

on trade with the cartel, whose members include many politically unsettled nations, are often

made on the margin and represent excess demand for oil. In this sense, imports from OPEC are

indicative of existing economic conditions in petroleum markets and the strength of underlying

demand, suggesting that they may help pin-point the trend in overall consumption. This intuitive

reasoning is confirmed by the statistical analysis of the data that follows.

5.1 Data

The time series data are monthly Total U.S. Consumption of Petroleum Products, Industrial Sector,

and U.S. Petroleum Imports from OPEC countries, measured in Thousands of Barrels per Day. The

data are taken from the Department of Energy, and the sample period is January 1973 to February

2018. All models and filters are applied to the logarithms of each series.

The original data are clearly seasonal. For example, the seasonality shows up strongly in the

residual serial correlations for models fitted with only trend and noise. However, the data are

available to the public only as unadjusted data; there is no offi cial seasonal adjustment conducted.

Therefore, prior to our trend-noise analysis, we seasonally adjusted each series via a model-based

approach, as detailed in an Appendix. All calculations were carried out using programs written

in the Ox language of Doornik (2013) designed for statistical and econometric applications. The

programs made use of the SSfPack package of state space and Kalman filter functions that is

described in Koopman et. al (2008).

5.2 Univariate Results with Standard Forms

For the standard univariate case, model (13) was fitted along with (16) using a minimum value

for φ of 0.95. Parameter estimates are reported in Table 1 for orders m from 1 to 5. The table

indicates the core slope disturbance variance σ2ζ (the level disturbance when m = 1) along with the

irregular variance σ2ε . As the order increases, σ2ζ decreases regularly while σ
2
ε rises. The gains in

the irregular variance with m mean that additional noise is increasingly removed from the trend,

which therefore becomes progressively smoother. The incremental growth in σ2ε tapers off as the

order advances, and once the trend order reaches around 4 or 5, further increases in m produce
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little change in the trend’s shape. The signal-noise ratio defined as qζ = σ2ζ/σ
2
ε is a scale invariant

measure that, for a given order, represents the relative variation in signal process versus irregular

movements. Within each component structure such a ratio can be used to compare dynamics across

series that have different scales.
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Figure 7: Estimated trend in Petroleum Consumption for univariate first-order standard model.

The estimates for qζ reported in Table 1 decline steadily asm ranges from 1 to 5, with substantial

reductions for each increment in order. The value of qζ for m = 5 is about 2 x 10−9 times the value

for the first order case. Results are shown only up tom = 5 partly because in the bivariate case, the

numerical optimization of the Log-Likelihood function is infeasible for orders above 5 (due to very

small values of σ2ζ combined with the high dimensionality of the state space) and partly because

such higher orders yield very little difference in the visible trend compared to the fifth order model.

Therefore, to be comparable to the bivariate tables, the univariate results are shown up to fifth

order but no larger. In Table 1, β indicates the measured constant drift for the random walk plus

drift trend or, for all m larger than one, the unconditional mean of the slope process underpinning

the trend (which itself has the form of an order m − 1 process). The damping coeffi cient φ is

shown in the last column of the table; for all orders above one the coeffi cient is well-defined, and

the estimates go to the minimum permissible value in each case.

The application of the signal extraction formulas, given the estimated parameters, yields the

consumption trend shown in Figure 7 for first order. The trend meanders throughout the sample, its

general level evolving slowly over the sample period; it also undergoes frequent changes in direction

and small adjustments on a quarterly basis. Such an adaptive level might be intuitive to the extent

that underlying consumption is affected by various factors that are constantly changing and that
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Figure 8: Estimated trend in Petroleum Consumption for univariate second-order standard model.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 1: Maximum likelihood estimates of parameters for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend     ZetaVar      EpsVar      Q_Zeta    BetaMean     Phi

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)   0.0003322   0.0009667      0.3436    0.000109     N/A

Standard (Order 2)   6.33e­006    0.001361     0.00465   0.0001502    0.95

Standard (Order 3)  5.588e­008    0.001531   3.65e­005   0.0006025    0.95

Standard (Order 4)  2.355e­010    0.001671  1.409e­007 ­0.0002134    0.95

Standard (Order 5)  1.079e­012     0.00175  6.167e­010 ­0.001894    0.95

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note:  The Model Type for Observations 'Standard (Order m) + Irregular' indicates an Unobserved
Components model with Standard m­th order Stochastic Trend plus a White Noise Irregular.

'Canonical' indicates a Canonical Stochastic Trend.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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may have permanent effects. Likewise, the resulting trends are shown in Figure 8 for second order

and in Figure 9 for fifth order. The increased smoothness of these higher order cases better clarifies

the primary changes in level over the sample period. Such trends may be appealing, as there

seems to be less of a response to temporary patterns. The estimated signal for m = 5 provides an

even smoother trajectory than the second order cases and makes it easy to see the most important

changes in the level of consumption over time-scales of a decade or more. Thus, in Figure 9, the

declines in the mid-70s and early 80s show up very clearly, as do the long periods of increase during

the mid- to late-80s, the 90s, and around the mid-2000s.
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Figure 9: Estimated trend in Petroleum Consumption for univariate fifth order standard model.

The corresponding gain functions are shown in figure 10; they show directly how the higher

frequency parts are more effectively cut out when the order is increased. The gain for the m = 1

case decays far more gradually than that of the fifth order case. From the standpoint of evaluating

low-pass filters according to their ability to remove the high end of the spectrum, the higher orders

may be seen as desirable. However, from another perspective, with stochastic components that have

spectral overlap, flexibility in the gain such as that of the first order model arises quite naturally and

may be a positive attribute; this produces a level that adapts more quickly to change. Depending on

the application, it might become beneficial to employ a broader interpretation of low pass filtering

that accomodates gain functions with slow descent. The higher order cases that produce shapes

more like the standard low-pass filters allow one to focus better on the most essential evolution in

the level over the entire sample period. In parallel with the gain’s ability for noise removal, the

estimated trend curves start to converge as the order reaches around 5 or so. Higher orders such

as m = 8 (which was feasible to estimate in the univariate case) yield very little visible differences
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Figure 10: Estimated gain function for extracting the trend in Petroleum Consumption for univari-

ate standard models of first, second, and fifth order.

in the trend from a fifth order specification.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 2: Estimated Trend and RMSE values for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend  Trend­Mid  RMSE­Mid  RMSE­Pct  Trend­End RMSE­End  RMSE­Pct

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)      8.447    0.0165   0.1952%     8.4686    0.0206    0.243%

Standard (Order 2)      8.443    0.0113   0.1336% 8.4665    0.0195    0.230%

Standard (Order 3)      8.435    0.0096   0.1139%     8.4699    0.0193    0.227%

Standard (Order 4)      8.434    0.0086   0.1018%     8.4705    0.0187    0.221%

Standard (Order 5)      8.435    0.0080   0.0951% 8.4698    0.0186    0.219%

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note: Trend estimates around the sample mid­point and sample end­point along with Root­Mean­Square­
Errors (RMSEs) are indicated in the table above.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Figures 7, 8, and 9 also show confidence bands around the trend estimates, constructed by

adding or subtracting the Root-Mean Square Error (RMSE), conditional on the parameter values
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being set to the Maximum Likelihood Estimates. (In making comparisons across different orders,

it should be borne in mind that the size of the bands conditions on the particular order being the

correct one in each case.) It appears that, away from end-points, confidence intervals narrow as

order increases. For larger m the uncertainty tends to rise as the estimation point approaches the

end of the series.

This pattern is reflected in Table 2, which reports trend estimate values and their RMSE, in

addition to the percentage of the estimate that the RMSE represents, around the mid-point of the

sample (Jan 1994) and at the end-point (Feb 2018). The mid-series confidence bands decrease in

size with increasing order, with the biggest reduction occurring when the order goes from one to

two; for m = 5 the RMSE is roughly one-half that for m = 1. As can be seen in Figures 7 to 9,

the uncertainty in trend estimate grows in moving from mid-series to near the end-point; according

to Table 2, for m = 3 the RMSE roughly doubles from middle to end of sample.

Slope High, m = 2
Smoothed Slope, m = 2

Slope Low, m = 2
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Slope High, m = 2
Smoothed Slope, m = 2

Slope Low, m = 2

Figure 11: Estimated slope of signal in Petroleum Consumption for univariate second-order standard

model, along with 67% confidence bands.

Model fit and diagnostic statistics are shown in an Appendix. R2D is the coeffi cient of deter-

mination relative to first differences, which is analogous to the usual regression R2 that applies to

stationary data. The quantity σ̂ is the equation standard error. Q(P ) is the Box-Ljung statistic

composed of P residual autocorrelations. Three different values of P are considered for these statis-

tics; Q(P ) should be compared with a χ2 distribution with P − 2 degrees of freedom. The Akaike

Information Criterion (AIC) is AIC = −2 log L̂ + 2k, where log L̂ is the maximized log-likelihood

for each specification, with k the number of model parameters. Likewise, the Schwarz Information

Criterion (SIC) is SIC = −2 log L̂ + (log T )k, where T is the sample size. The Q(P ) values rise
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Figure 12: Estimated slope of signal in Petroleum Consumption for univariate fifth-order standard

model, along with 67% confidence bands.

appreciably with increasing order, while the coeffi cient of fit R2D fall. Q(36) increases modestly

from 114 to around 124 in moving from first to second order, and then jumps to about 240 for

m = 5. If one has a desire for smoothness, then the second order model may represent a suitable

compromise between pure model fit and regularity of trend. Further discussion is contained in an

Appendix.

The slope, or systematic rate of change in the signal, undergoes time variation for m = 2 and

higher; the estimated slope series can provide useful information about the contour of a series’

historical evolution and its near end-point direction. The second order case is displayed in Figure

11, while the fifth order slope is plotted in Figure 12; the 67% confidence bands are indicated as

well. Similarly to the smoother path of the trend itself, the slope for m = 5 appears far more fluid

and stable than for m = 2. Superposition of the two slopes reveals that the fifth order slope tends

to pass through the swings in the second order one. Further, the confidence bands in figure 12 are

substantially reduced in size relative to those in Figure 11 (again these depend on the model being

correct.)
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­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 3: Maximum likelihood estimates of parameters for Series: 'Oil Imports from OPEC'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend     ZetaVar      EpsVar      Q_Zeta    BetaMean     Phi

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)    0.005363    0.000566       9.475   0.0001263     N/A

Standard (Order 2)    0.001029    0.002862      0.3596   0.0007004    0.95

Standard (Order 3)  2.989e­006    0.006475   0.0004617 ­0.00284    0.95

Standard (Order 4)  9.215e­008    0.006846  1.346e­005 ­0.007782    0.95

Standard (Order 5)  2.982e­009    0.007089  4.207e­007     0.01029    0.95

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

See notes to table 1.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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Figure 13: Estimated trend in Crude Oil Imports from OPEC for univariate second-order standard

model.

As shown in Table 3, the estimated q values for the time series of OPEC imports are substantially

higher than those for consumption; this comparison of ratios gives a statistical description of the

greater "signal content" in imports and indicates possibilities for enhancing the targeted signal in

consumption. As shown in Figure 13, the series is somewhat noisy but mainly undergoes highly

persistent movements. Most of its variation appears to be accounted for by the stochastic trend,
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shown in blue. The temporary noise that represents fluctuations around the trend is easily seen to

be of smaller relative range than for the consumption series.

5.3 Univariate Results with Canonical Forms

We also estimated the canonical models discussed earlier. Tables of results are contained in Ap-

pendix A. The trend disturbance variance is substantially smaller for the canonical compared to

the standard case, owing to reinforcement by the MA part of the process. The irregular variance

is larger for the canonical version for orders 1; for higher orders the standard model’s irregular has

about the same variance. The damping coeffi cient again goes to the boundary value of 0.95 for

orders 2 and higher. As shown in Figures B.3 and B.4 in the Appendix, which focus on sub-samples

for visibility, the canonical trend is somewhat smoother as it mitigates some of shorter-term gyra-

tions in the standard trend. For higher orders, the differences in the two trends are negligible. The

gains for the first order case are displayed in Figure B.5; the augmented smoothness in the canonical

trend is connected with the greater removal of high frequencies apparent in its gain function.

5.4 Bivariate Modelling

For the bivariate model, the parameter estimates for oil consumption are shown in Table 4; the

variance of the trend disturbance increases noticeably compared to the univariate model. We may

interpret this result as indicating that the bivariate model with correlated trend disturbances helps

to "draw out" additional systematic variation in consumption; a more variable trend comes from

linking it to the highly flexible OPEC imports trend. The estimated cross-correlations are reported

in Table 5. The trend’s correlation parameter rises sharply from first to second order to about 0.94,

and then ranges from 0.84 to 0.98 for higher orders. The tight link between trends is combined

with more or less unrelated movements in the irregular. In comparing Table A.1, which contains

diagnostics for the univariate standard case, with Table A.2 that pertains to the bivariate extension,

we see a substantial improvement in the Q-statistics and a moderate increase in the coeffi cient of

determination relative to first differences.

The RMSEs of the trend estimates are presented in Table 5; these values are mostly lower

than the ones reported in Table 2. The differences are not large, because the trend is assessed as

being more variable in the bivariate case. In terms of trend estimation, it is important to note the

alteration in individual variance parameter from univariate to bivariate, and a coherent comparison

involving the bivariate trend’s degree of uncertainty requires taking this change into account. Other

factors being the same, a larger trend shock variance has a positive impact on MSE in moving to

the bivariate case, but such an increase is not necessarily undesirable; it is a by-product of a more
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­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 4: Maximum likelihood estimates of parameters, Series A: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend     ZetaVar      EpsVar      Q_Zeta    BetaMean     Phi

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)   0.0003384    0.000976      0.3468   0.0001347     N/A

Standard (Order 2)  3.695e­005    0.001277     0.02893   0.0003773    0.95

Standard (Order 3)  1.031e­007     0.00152  6.782e­005 0.0004989    0.95

Standard (Order 4)  1.918e­009    0.001613  1.189e­006 ­0.001045    0.95

Standard (Order 5)  2.784e­011    0.001692  1.645e­008 ­0.0007123    0.95

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

See notes to table 1.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 5: Shared STSM Model parameters

Bivariate Models,  Series A: Petrol_Cons_Ind_SA.     Series B: Oil_Imports_OPEC_SA_LagOne.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Model Type for Observations   ZetaCorr    EpsCorr

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1) + Irregular     0.5428 ­0.5055

Standard (Order 2) + Irregular     0.9472 ­0.1447

Standard (Order 3) + Irregular     0.8425     0.1059

Standard (Order 4) + Irregular     0.9561      0.114

Standard (Order 5) + Irregular     0.9832     0.1326

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note: ZetaCorr represents the correlation between trend disturbances, while EpsCorr represents the
irregular correlation.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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flexible trend that improves the statistical fit of the model.

To assess the pure impact of the bivariate linkages, we can control for the individual variance

parameter and isolate the adjustment in MSE coming from the non-zero correlations across series.

This is achieved by considering a univariate specification with variances set to the bivariate model

estimates. Such a specification yields the estimated trend values and uncertainty measures shown

in Table 7. It can be seen that there are significant reductions in uncertainty coming from the

bivariate relations; for instance, the MSE decreases by over 35% for the second order case.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 6: Estimated Trend and RMSE values for Series A: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend  Trend­Mid  RMSE­Mid  RMSE­Pct  Trend­End  RMSE­End  RMSE­Pct

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)      8.445    0.0155   0.1835%     8.4654    0.0196    0.231%

Standard (Order 2)      8.443    0.0111   0.1320%     8.4620    0.0188    0.222%

Standard (Order 3) 8.433    0.0093   0.1108%     8.4568    0.0186    0.220%

Standard (Order 4)      8.433    0.0085   0.1010%     8.4523    0.0185    0.219%

Standard (Order 5)      8.434    0.0080   0.0952%     8.4525    0.0186    0.220%

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

The bivariate gain function away from the end-points is shown in Figure 14. The trend in

consumption is estimated by applying a relatively sharp low-pass filter to its own series, in addition

to a cross-filter focussed on an intermediate span of frequencies being applied to the imports series.

As noted above, the two cross-filters have gains that are proportional to each other, and since

the irregular correlation is relatively small, the coeffi cient of proportionality is about equal to

the irregular variance ratio. The auto-gain for OPEC imports admits considerably more of the

medium-frequency region of the spectrum than that of the consumption series. The auto-gain

for consumption is relatively low since the bivariate filter is relying on the ancillary series for an

important share of the input.

In the above illustration, just one additional series is used to attain a substantial decrease in

uncertainty. Its key attributes are that its trend is highly correlated with the target’s, its irregular is

roughly uncorrelated, and it has a high signal-noise ratio. Here, we have used the simplest possible

model that keeps the I(1) feature across specifications; other features such as ARMA sampling

errors, stochastic cycles, or other components could be incorporated as well.
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­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table 7: Estimated Trend and RMSE values for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend  Trend­Mid  RMSE­Mid  RMSE­Pct  Trend­End  RMSE­End  RMSE­Pct

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)      8.447    0.0166   0.1966%     8.4687    0.0207    0.245%

Standard (Order 2)      8.448    0.0139   0.1640%     8.4648    0.0232    0.274%

Standard (Order 3)      8.437    0.0101   0.1198%     8.4690    0.0203    0.240%

Standard (Order 4)      8.434    0.0097   0.1155%     8.4694    0.0217    0.256%

Standard (Order 5)      8.432    0.0095   0.1124%     8.4696    0.0228    0.269%

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note: See notes to table 2. Here, trend estimates and RMSEs are reported for parameter values set
to those in table 4.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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Figure 14: Bivariate Gain function for dataset on Petroleum Consumption and OPEC imports.
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6 Conclusions

A vast range of examples has appeared in scientific literature where researchers have used methods

for estimating regular components in series subject to noisy fluctuations. Butterworth filters are one

of the most commonly used classes for this purpose. The key limitations that this paper aims to

remedy are their restriction to single-series cases and their application as ad hoc filters. Scientists

often work with multivariate datasets consisting of observations on related variables; making the

best use of such data can improve accuracy and reduce error in detecting signals. Also, since key

interpretations and conclusions about research findings can depend importantly on how the data’s

regularities are measured, it is essential to use a consistent measurement approach supported by

evidence.

This paper provides multivariate generalizations of the class of Butterworth filters by way of

their rigorous basis in statistical modelling. Previous work has used Butterworth and related filters

to eliminate noise in diverse applications, yet only univariate cases have been considered, with

the filters designed without reference to the data’s properties. Even in multivariate applications,

Butterworth filters have been used only in univariate fashion.

We develop formulas for the multivariate low-pass filters by proceeding from the model-based

representation of existing Butterworth filters, originally revealed in the economic statistics literature.

In the frequency domain, the multivariate filters have gain functions with similarly flexible shapes

in terms of cutoff location and sharpness and include cross-gain elements that show exactly how

a measurement of a target signal is informed by other, related series. The multivariate filters can

yield more refined signals by combining the information in related series. Through estimation or

calibration of model parameters, the filter design respects the empirical interrelationships across

series, in particular the co-movements in systematic versus non-systematic fluctuations.

These features are illustrated by the use of OPEC oil imports to help gauge the trend in oil

consumption. There are numerous possible applications in future work that may include time series

in fields such as oceanography, climatology, and astronomy —in situations where standard univariate

filters are being used for related series, the methodology used may be expanded to the multivariate

filters. In applications with greater numbers of series, we might achieve even greater gains in signal

accuracy when using series with the three key properties of correlated trend, uncorrelated irregular,

and signalling ability.
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Appendix A Tables of Estimation Results

The values of Q(P ) are beyond the critical values for 1 or 5 percent levels of significance for the

consumption series; this stems mainly from the third order autocorrelation being non-zero. We

experimented with extensions of the model, such as versions with a negative-coeffi cient AR(1) that

absorbs very high frequency movements, that offer some reduction in residual serial correlation.

It appears that more expansive forms of models, such as those with stochastic cycle or ARMA

process components, could be used to produce more satisfying values of Q(P) statistics; however,

such explorations would deviate from the main goals of the current paper. Here we focus on

the standard trend plus irregular models, as these are the natural starting point and the basis for

connections with Butterworth filters that pave the way for multivariate generalization, which has

not yet been provided in the literature to date.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table A1: Diagnostics for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend    Q(12)   Q(24)   Q(36)    Eq SE       AIC       SIC   R^2_d

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)    45.47   96.31   127.9   0.0415 ­1885.37 ­1885.37  0.2451

Standard (Order 2)      108   163.4     198   0.0435 ­1833.53 ­1833.53  0.1727

Standard (Order 3)    132.5   193.9   222.1    0.045 ­1794.72 ­1794.72  0.1146

Standard (Order 4)    149.3   245.9   267.4    0.046 ­1769.77 ­1769.77 0.07392

Standard (Order 5)    164.1   284.1     304   0.0467 ­1753.53 ­1753.53 0.04556

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note:  AIC = ­2*LogL_Max +2*k, where k is number of parameters. SIC = ­2*LogL_Max +2*log(T)*k for
series length T. R^2_x is the coeff. of determination relative to simple benchmark, a RW (with
fixed seasonal dummies for seasonal data. Specifically, R^2_x = 1­PEV(model)/PEV(benchmark), where
PEV is the Prediction Error Variance (in KF steady state).

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

For the OPEC imports series, the fit appears best for the first order case, and the diagnostics

worsens for higher orders. The Q-statistics suggest serial correlation in the residuals, which could

possibly be addressed by using serially correlated components in addition to the trend and noise

components. However, our focus here is on the signal extraction and filtering problem in the

1



mlutivariate setting, and on making connections with Butterworth filters. The main issues are

clearest for the simple trend-noise specifications.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table A.2: Diagnostics for Series A: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend    Q(12)   Q(24) Q(36)    Eq SE       AIC       SIC   R^2_d

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Standard (Order 1)    37.77   85.01     114  0.04099 ­3071.91 ­2881.48   0.264

Standard (Order 2)    60.28   101.6   124.4  0.04279 ­2881.27 ­2690.84   0.198

Standard (Order 3)    129.8   184.6     208  0.04458 ­2720.14 ­2529.71   0.129

Standard (Order 4)    134.8   200.9   219.2  0.04549 ­2640.58 ­2450.15  0.0933

Standard (Order 5)    141.6   219.3   239.6  0.04632 ­2563.23 ­2372.80  0.0603

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note: See notes to table A.1.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table A.3: Maximum likelihood estimates of parameters for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend     ZetaVar      EpsVar      Q_Zeta    BetaMean     Phi

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Canonical (Order 1)  8.305e­005     0.00105     0.07912    0.000109     N/A

Canonical (Order 2)  1.574e­006    0.001366    0.001153   0.0001206    0.95

Canonical (Order 3)  1.332e­008    0.001529  8.713e­006   0.0003239    0.95

Canonical (Order 4)  5.731e­011    0.001666   3.44e­008 ­0.0009026    0.95

Canonical (Order 5)  2.458e­013    0.001746  1.407e­010 ­0.003382    0.95

Note: See note to table 1.  Zeta now refers to the trend disturbance for the canonical trend model.
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­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table A.4: Estimated Trend and RMSE values for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend  Trend­Mid  RMSE­Mid  RMSE­Pct  Trend­End  RMSE­End  RMSE­Pct

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Canonical (Order 1)      8.447    0.0152   0.1797%     8.4690    0.0203    0.239%

Canonical (Order 2)      8.443    0.0112   0.1328%     8.4665    0.0195    0.230%

Canonical (Order 3)      8.435    0.0096   0.1142%     8.4698    0.0193    0.228%

Canonical (Order 4)      8.433    0.0087   0.1028%     8.4705    0.0189    0.224%

Canonical (Order 5)      8.435    0.0081   0.0961%     8.4696    0.0188 0.222%

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Note: See notes to table 2.

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Table A.5: Diagnostics for Series: 'Petrol_Cons_Ind_SA'

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Trend    Q(12)   Q(24)   Q(36)    Eq SE       AIC       SIC   R^2_d

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Canonical (Order 1)    45.47   96.31   127.9   0.0415 ­1896.43 ­1896.43  0.2451

Canonical (Order 2)    108.8   164.6   200.6   0.0435 ­1845.42 ­1845.42   0.172

Canonical (Order 3)    132.1   196.6     227    0.045 ­1807.75 ­1807.75  0.1135

Canonical (Order 4)    148.9   249.2   273.7   0.0461 ­1781.69 ­1781.69 0.06969

Canonical (Order 5)    163.9   288.5   309.6   0.0468 ­1765.41 ­1765.41 0.04044

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
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Appendix B Additional Figures
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Figure B.1: Estimated trend in Petroleum Consumption for univariate eighth and tenth order

standard model.
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Figure B.2: Estimated slope of signal in Petroleum Consumption for univariate second- and fifth-

order standard models.
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Trend Double Slope m = 5

1975 1980 1985 1990 1995 2000 2005 2010 2015

­0.00075

­0.00050

­0.00025

0.00000

0.00025

0.00050

0.00075

0.00100
Trend Double Slope m = 3
Trend Double Slope m = 5

Figure B.3: Estimate rate of change of slope of signal in Petroleum Consumption for univariate

third- and fifth-order standard models.
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Figure B.4: Estimated trend in Petroleum Consumption for standard and canonical specificiations,

based on univariate first-order models.
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Figure B.5: Estimated trend in Petroleum Consumption for univariate first-order standard and

canonical models for sample period from January 1986 to December 1991.

Appendix C Model-based seasonal adjustment of petroleum-

related time series

The original data on U.S. Petroleum Consumption (seasonally unadjusted and in logarithms) are

shown in figure C.1. For the application, this data series was seasonally adjusted via a model-based

approach. In particular, univariate models of the form

yt = µt + γt + εt, (C.1)

were used, where the model for the stochastic seasonal component γt is specified as:

γt =
∑[s/2]

j=1 γj,t, (C.2)

γj,t+1 = γj,t cosλj + γ∗j,t sinλj + ωj,t,

γ∗j,t+1 = γj,t cosλj − γ∗j,t sinλj + ω∗j,t,

ωj,t, ω
∗
j,t ∼ i.i.d. N(0, σ2ω).

This specification starts with a Fourier decomposition and then makes each component cycle sto-

chastic. The seasonal frequencies (nonstationary) stochastic cycles are given by

λj = 2πj/s, j = 1, ..., s/2− 1,

λj = π, j = s/2.

6



Series: PetrolCons_Ind

1975 1980 1985 1990 1995 2000 2005 2010 2015

6.3

6.4

6.5

6.6

6.7

6.8 Series: PetrolCons_Ind

Figure C.1: Time Series of U.S. Petroleum Consumption (Industrial Sector), Non-Seasonally-

Adjusted and in logarithms.

Given the constant variance σ2ω for all j, the model (C.2) is referred to as TRIG-1. This contrasts

with a more general model proposed by Harvey (1989), in which Var(ωj,t) is distinct for each

j = 1, ..., s/2 (called "TRIG-6"). Here we focus on the TRIG-1 model, which is more parsimonious.

The white noise disturbances ηt, ζt, ωj,t, and ω
∗
j,t are assumed uncorrelated with one another across

all time points, and also with the irregular.

The extracted seasonal component, denoted by γ̂t, is indicated in Figure C.2. The seasonally

adjusted estimates are then given by yt − γ̂t,

Appendix D Proof of Propositions

Proposition 1 For φ ≈ 1, the cutoff frequency, at which the gain equals one-half, is approximately

λ1/2 = 2 arcsin(2−1/2[qζ/r(m,φ)]1/2m), (D.1)

where r(m,φ) = 1 + (m− 1)(−1 + φ).

Proof.

We seek approximate solutions for φ ≈ 1. Consider the function
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Figure C.2: Extracted Seasonal component in U.S. Petroleum Consumption (Industrial Sector).

f(φ) = (2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−1.

In the vicinity of φ = 1 (with φ strictly less than one), with suffi cient regularity conditions on

f(φ),

f(φ) = f(1) + f
′
(1)[φ− 1].

Furthermore,

f
′
(φ) = (m− 1)(2− 2 cosλ)(1 + φ2 − 2φ cosλ)m−2 (2φ− 2 cosλ) ,

so that

f
′
(1) = (m− 1)(2− 2 cosλ)m.

Now,

f(φ) ≈ (2− 2 cosλ)m + (m− 1)(2− 2 cosλ)m[φ− 1]

f(φ) ≈ [1 + (m− 1)(φ− 1)](2− 2 cosλ)m

Let r(m,φ) = [1 + (m− 1)(φ− 1)]. Then

qζ = r(m,φ)(2− 2 cosλ)m,

or, using the cosine-addition formula for cos(λ/2 + λ/2),
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qζ = r(m,φ)[4 sin2(λ/2)]m.

Solving this equation for λ yields (D.1).

Proposition 2 The elements of the gain matrix for the bivariate Butterworth filter are given by

GA(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Aσ

2
ε,B − νζ,ABνε,ABσζ,Aσζ,Bσε,Aσε,B]

GAB(λ) = h(λ)[−σ2ζ,Aνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,A]

GBA(λ) = h(λ)[−σ2ζ,Bνε,ABσε,Aσε,B + νζ,ABσζ,Aσζ,Bσ
2
ε,B]

GB(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Bσ

2
ε,A − νζ,ABνε,ABσζ,Aσζ,Bσε,Aσε,B]

where

h(λ) = [fµ(λ)/R(λ)] = 1/[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + (1− ν2ε,AB)σ2ε,Aσ

2
ε,B/fµ(λ) + (σ2ε,Aσ

2
ζ,B + σ2ζ,Aσ

2
ε,B)

−2νε,ABνζ,ABσε,Aσε,Bσζ,Aσζ,B]

Proof.

[Σζfµ(λ) + Σε] =

[
σ2ζ,Afµ(λ) + σ2ε,A σζ,ABfµ(λ) + σε,AB

σζ,ABfµ(λ) + σε,AB σ2ζ,Bfµ(λ) + σ2ε,B

]
Then we seek the inverse of the above matrix.

[Σζfµ(λ) + Σε]
−1 = [1/R(λ)]

[
σ2ζ,Bfµ(λ) + σ2ε,B −σζ,ABfµ(λ)− σε,AB
−σζ,ABfµ(λ)− σε,AB σ2ζ,Afµ(λ) + σ2ε,A

]
Computing the determinant, or the multiplier’s reciprocal, gives the expression

R(λ) = (1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,B[fµ(λ)]2 + (1− ν2ε,AB)σ2ε,Aσ

2
ε,B + (σ2ε,Aσ

2
ζ,B + σ2ζ,Aσ

2
ε,B)fµ(λ)

−2νε,ABνζ,ABσε,Aσε,Bσζ,Aσζ,Bfµ(λ),

so the gain matrix is

Σζfµ(λ)[Σζfµ(λ) + Σε]
−1 = [fµ(λ)/R(λ)]Σζ

[
σ2ζ,Bfµ(λ) + σ2ε,B −σζ,ABfµ(λ)− σε,AB
−σζ,ABfµ(λ)− σε,AB σ2ζ,Afµ(λ) + σ2ε,A

]
.
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Let

h(λ) = [fµ(λ)/R(λ)] = 1/[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + (1− ν2ε,AB)σ2ε,Aσ

2
ε,B/fµ(λ) + (σ2ε,Aσ

2
ζ,B + σ2ζ,Aσ

2
ε,B)

−2νε,ABνζ,ABσε,Aσε,Bσζ,Aσζ,B]

so that

Σζfµ(λ)[Σζfµ(λ)+Σε]
−1 = h(λ)

[
σ2ζ,A σζ,AB

σζ,AB σ2ζ,B

][
σ2ζ,Bfµ(λ) + σ2ε,B −σζ,ABfµ(λ)− σε,AB
−σζ,ABfµ(λ)− σε,AB σ2ζ,Afµ(λ) + σ2ε,A

]
.

So, the elements of the gain matrix are

element 1,1 : σ2ζ,A(σ2ζ,Bfµ(λ) + σ2ε,B) + σζ,AB(−σζ,ABfµ(λ)− σε,AB) =

σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Aσ

2
ε,B − (σζ,AB)2fµ(λ)− σζ,ABσε,AB

GA(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Aσ

2
ε,B − σζ,ABσε,AB]

element 1,2: σ2ζ,A(−σζ,ABfµ(λ)− σε,AB) + σζ,AB(σ2ζ,Afµ(λ) + σ2ε,A) =

−σ2ζ,Aσζ,ABfµ(λ)− σ2ζ,Aσε,AB + σζ,ABσ
2
ζ,Afµ(λ) + σζ,ABσ

2
ε,A

GAB(λ) = h(λ)[−σ2ζ,Aσε,AB + σζ,ABσ
2
ε,A]

element 2,1 : σ2ζ,B(−σζ,ABfµ(λ)− σε,AB) + σζ,AB(σ2ζ,Bfµ(λ) + σ2ε,B) =

−σ2ζ,Bσζ,ABfµ(λ)− σ2ζ,Bσε,AB + σζ,ABσ
2
ζ,Bfµ(λ) + σζ,ABσ

2
ε,B

GBA(λ) = h(λ)[−σ2ζ,Bσε,AB + σζ,ABσ
2
ε,B]

element 2,2 : σζ,AB(−σζ,ABfµ(λ)− σε,AB) + σ2ζ,B(σ2ζ,Afµ(λ) + σ2ε,A) =

σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Bσ

2
ε,A − (σζ,AB)2fµ(λ)− σζ,ABσε,AB

GB(λ) = h(λ)[(1− ν2ζ,AB)σ2ζ,Aσ
2
ζ,Bfµ(λ) + σ2ζ,Bσ

2
ε,A − σζ,ABσε,AB]

Appendix E Filter Formula in general case

When there are common trends, or co-integration, Σζ is of reduced rank; to handle this possibility

a strategy is needed to guarantee the existence of the multivariate WK filter. First, we re-express
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the filter formula to be in terms of Q rather than Q−1.

LP (L) = QQ−1
(
IN + [(1− L)(1− L−1)]mQ−1

)−1
. (E.1)

LP (L) = Q[
(
IN + [(1− L)(1− L−1)]mQ−1

)
Q]
−1
. (E.2)

LP (L) = Q[Q+ [(1− L)(1− L−1)]mQ−1Q)]
−1
. (E.3)

LP (L) = Q[Q+ [(1− L)(1− L−1)]mIN ]
−1
. (E.4)

The frequency response is

LP (λ) = Q(Q+ r(λ)IN)−1. (E.5)

Now let

Q = V ΛV −1

be the eigen-decomposition ofQ. Therefore, now the decomposition is made ofQ rather thanQ−1.

Furthermore, since Q is the product of two symmetric matrices, one of which is positive definite

(Σ−1ε ), its eigenvalues are real and non-negative. (Indeed, ifA andB are symmetric matrices andA is

invertible, then the symmetric square root A1/2 exists and is invertible, and hence det{λ IN−AB} =

det{λ IN−A1/2BA1/2}, showing that the eigenvalues of AB and A1/2BA1/2 are the same; the latter

is symmetric, and hence has real non-negative eigenvalues.)

The filter can be written as

LP (L) = Q(Q+ [(1− L)(1− L−1)]mIN)
−1
.

= V ΛV −1(V ΛV −1+h(L)IN)−1.

= V Λ [(V ΛV −1+h(L)IN)V ]−1.

= V Λ [(V ΛV −1V + h(L)V ]−1.

= V Λ [(V Λ +h(L)V ]−1.

= V Λ [V (Λ +h(L)IN)]−1.

= V Λ [(Λ +h(L)IN ]−1V −1.

where h(L) = [(1− L)(1− L−1)]m.
The corresponding form of the frequency response is

LP (λ) = V Λ(Λ + r(λ)IN)−1 V −1. (E.6)

For {Xt} and {Yt} stationary N -variate processes related via Yt = LP(L)Xt, the spectral

representation of the filter output is now

Yt =

∫ π

−π
eiλt V Λ (Λ + r(λ) IN)−1 V −1 dZ(λ),
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Yt =

∫ π

−π
eiλt V Λ (Λ + r(λ) IN)−1 dZ?(λ),

The demand that the jth output has half the frequency content of the jth input has the form:

e′j V Λ (Λ + r(λ) IN)−1 =
1

2
e′j V.

Taking the transpose,

(Λ + r(λ) IN)−1
′
Λ

′
V ′ej =

1

2
V ′ej,

which because Λ is diagonal,

[(Λ + r(λ) IN)−1Λ ]V ′ej =
1

2
V ′ej,

meaning that V ′ej would be an eigen-vector of (Λ + r(λ) IN)−1Λ with eigen-value 1/2; however,

since the matrix is diagonal, the only eigen-vectors are actually unit vectors. Hence, the system

has no solution unless V is a permutation matrix.

However, as for the related trends case, we can allow for solving a less demanding problem: for

each 1 ≤ j ≤ N , we seek a λj such that output has half the frequency content of the input when

the increment process equals ej (corresponding to an impulse), i.e.,

1

2
e′j V ej = e′j V Λ (Λ + r(λj) IN)−1 ej.

This is solved as r(λj) = Λjj, i.e., set the eigen-values of Q equal to (2− 2 cos(λj))
m and solve for

λj.

In the case that Q is invertible (if and only if Σζ is invertible), then we can rewrite the filter in

the earlier form where S(λ) is diagonal now with jjth entry given by r(λ)/Λjj.
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