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Direct Proof of Exact Sample Allocation Optimality with Cost Constraints

Tommy Wright
U.S. Bureau of the Census

Abstract
We provide an elementary derivation of Kadane’s dynamic sampling plan by first directly finding

the sample allocation that minimizes a decomposed weighted objective function. We then prove
that the sample allocation also minimizes the sampling variance.

The plan is most appropriate in the context of sampling sequentially from a stratified population
where sampling costs vary among the strata. It specifies from which stratum to take the next sample
unit which reduces variance by the largest amount per unit cost. Whenever sampling stops, the
realized allocation minimizes the sampling variance for the cost C∗ at that point, as well as for
any cost and allocation that costs less than C∗. It’s a form of adaptive sampling, and our proof
provides complete insight into why Kadane’s plan works.

KEY WORDS: Exact optimal allocation; Fixed budget; Stratification.

1. INTRODUCTION

Assume a finite population of N units is stratified into H disjoint strata where Nh is the
known number of units in stratum h, for h = 1, ..., H. Note that N = N1 + · · ·+ NH .

General Setup: Let Yhj be the fixed unknown value of interest for the jth unit in stratum

h: Ȳh =
( Nh∑

j=1

Yhj

)
/Nh, and S2

h =
( Nh∑

j=1

(Yhj − Ȳh)
2
)
/(Nh − 1). See the following visual.

Stratum 1 Stratum 2 · · · Stratum h · · · Stratum H

N1, Ȳ1, S
2
1 N2, Ȳ2, S

2
2 Nh, Ȳh, S2

h NH , ȲH , S2
H

The unknown population total TY is

TY =
H∑

h=1

Nh∑
j=1

Yhj =
H∑

h=1

NhȲh. (1)

To estimate TY under the classical design-based approach, select a stratified random sam-
ple of n units where nh sample units provide the sample mean ȳh for stratum h. Note that

n = n1+· · ·+nH and that nh ≥ 1 for all h. A natural unbiased estimator for TY =
H∑

h=1

NhȲh is

T̂Y =
H∑

h=1

Nhȳh (2)

with sampling variance (unweighted sum of stratum sampling variances)

V ar(T̂Y ) =
H∑

h−1

V ar(Nhȳh) =
H∑

h=1

N2
h

(
Nh − nh

Nh

)
S2

h

nh

. (3)

For a fixed cost (budget) structure,
C =

H∑
h=1

chnh (4)

where C is the overall fixed budget, and ch is the measurement cost per sample unit from
stratum h, we find the optimal n and the optimal sample allocation (n1, ..., nH) of n that

will minimize V ar(T̂Y ), where n =
H∑

h=1

nh.
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2. OPTIMAL SAMPLE ALLOCATION WITH FIXED BUDGET

Using Lagrange multiplier to minimize V ar(T̂Y ) in (3) subject to the constraint in (4),
we can show that the optimal n is

n = (C)

H∑
i=1

NiSi√
ci

H∑
h=1

NhSh

√
ch

(5)

and the optimal allocation (n1, ..., nH) of n is

nh = (C)

NhSh√
ch

H∑
h=1

NhSh

√
ch

(6)

for h = 1, ..., H. The known result in (6) is appealing because it is consistent with reasonable
criteria. That is, nh is directly proportional to Nh and Sh, while it is inversely proportional
to
√

ch. The result in (6) is also a generalization of the well-known Neyman allocation
(Tschuprow, 1923; Neyman, 1934) where all ch are equal. Generally, each nh in (6) needs to
be rounded to an integer. With this rounding, optimality is placed in doubt. In Section 4,
we present an exact optimal allocation algorithm that never requires rounding.

3. KADANE’S OPTIMAL DYNAMIC SAMPLING PLAN

Kadane (2005) defines a dynamic sampling plan among strata as a “...permutation of
sampled items specifying which stratum is to receive the next item to be included in the
sample. An optimal plan has the property of achieving minimum variance for its cost, when-
ever it is truncated”. Where the allocation to stratum h is increased from mh − 1 to mh, he
presents the following sampling plan and shows that it is an optimal plan: “...start with the

allocation of one sampled item to each stratum, then order allocations by
N2

hS2
h

(mh − 1)mhch

,

highest first (breaking ties arbitrarily)...(sampling eventually stops).” However, the origin of
his sampling plan can be clarified. An elementary derivation follows: introduce an objective
function (7); decompose it (8) to immediately reveal Kadane’s plan; and prove its optimality
in Section 6.

4. EXACT OPTIMAL ALLOCATION Algorithm V (FIXED BUDGET)

It is required that nh ≥ 1 for h = 1, ..., H. As a result, C, the overall given available

budget, must be at least
H∑

h=1

ch. That is, C must permit at least one sample unit from each

stratum. Our overall cost constraint remains the fixed budget as given in (4).

Without loss of generality, assume that
N1S1√

c1

≥ · · · ≥ NHSH√
cH

. For mathematical conve-

nience (see Remark 1), the desire is to determine the allocation (n1, ..., nH) that minimizes
the weighted sum of stratum sampling variances

V arW (T̂Y ) =
H∑

h=1

V ar(Nhȳh)
1

ch

=
H∑

h=1

N2
h

(
Nh − nh

Nh

)
S2

h

nh

1

ch

(7)
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subject to the cost constraint (4). Note that V ar(Nhȳh)
1

ch

is the sampling variance of Nhȳh

per unit cost for stratum h. Determining the allocation to minimize V arW (T̂Y ) subject to
(4), we note that V arW (T̂Y ) can be decomposed in a way similar to V ar(T̂Y ) in Wright (2016,
2017). This decomposition in (8) is key to the exact optimal allocation Algorithm V, where
H∑

h=1

Nh(Nh − 1)S2
h

1

ch

is the (cost) weighted sum of stratum sampling variances V arW (T̂Y )

when nh = 1 for each h.

V arW (T̂Y ) =
H∑

h=1

Nh(Nh − 1)S2
h

1
ch

−N2
1 S2

1/c1

1 · 2
− N2

1 S2
1/c1

2 · 3
− N2

1 S2
1/c1

3 · 4
− · · · − N2

1 S2
1/c1

(n1 − 1)(n1)
...

−N2
hS2

h/ch

1 · 2
− N2

hS2
h/ch

2 · 3
− N2

hS2
h/ch

3 · 4
− · · · − N2

hS2
h/ch

(nh − 1)(nh)
...

−N2
HS2

H/cH

1 · 2
− N2

HS2
H/cH

2 · 3
− N2

HS2
H/cH

3 · 4
− · · · − N2

HS2
H/cH

(nH − 1)(nH)

(8)

Clearly, (8) will be minimized, (4) will be satisfied, and each stratum will have at least
one sample unit if we use the following algorithm, clarified by Remark 1.

EXACT OPTIMAL ALLOCATION Algorithm V (Fixed Budget C)
Step 1: First, note 1 unit is to be selected for the sample from each stratum.
Step 2: For additional sample units, compute the array of priority values:

Stratum 1
(N1S1/

√
c1)√

1 · 2
(N1S1/

√
c1)√

2 · 3
(N1S1/

√
c1)√

3 · 4
· · ·

...

Stratum h
(NhSh/

√
ch)√

1 · 2
(NhSh/

√
ch)√

2 · 3
(NhSh/

√
ch)√

3 · 4
· · ·

...

Stratum H
(NHSH/

√
cH)√

1 · 2
(NHSH/

√
cH)√

2 · 3
(NHSH/

√
cH)√

3 · 4
· · ·

(9)

Step 3: Select the largest priority value from the array that has not already been picked; associate
it with its stratum; and increase that stratum sample size by 1 if the new cost including this 1 new

sample unit is
H∑

h=1

chnh ≤ C. Otherwise (i.e.,
H∑

h=1

chnh > C), stop without increasing the sample

size by 1 for the associated stratum; cost of sample when we stop is C∗ =
H∑

h=1

chnh.

Step 4: Go to Step 3.

Remark 1: As noted,
H∑

h=1

Nh(Nh− 1)S2
h

1

ch

in (8) is the value of V arW (T̂Y ) when nh = 1 for

all h. In fact, this sum is the largest possible value for V arW (T̂Y ). Each of the other rows of
(8) corresponds to one of the H strata and shows how V arW (T̂Y ) decreases with additional
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increases in overall sample size. In particular, when the sample size for the hth stratum is

“increased” from mh−1 to mh, the associated V ar(Nhȳh)
1

ch

for the hth stratum “decreases”

by

V ar(Nhȳmh−1)

ch

− V ar(Nhȳmh
)

ch

=
(N2

hS2
h/ch)

(mh − 1)(mh)
=

 (NhSh/
√

ch)√
(mh − 1)(mh)

2

, (10)

where ȳmh−1 (ȳmh
) is a sample mean based on mh − 1 (mh) sample units from stratum h.

The result in (10) is also the amount by which V arW (T̂Y ) “decreases” (see (8)). The quantity
in (10) is the reduction in V arW (T̂Y ) per unit cost by picking a unit for the sample from
stratum h bringing that stratum’s sample size to nh. At each step in Algorithm V, we pick
a unit from among the strata which reduces V arW (T̂Y ) by the largest amount per unit cost
at that point in the sequence of determining the final sample sizes n1, ..., nH , which is very
reasonable and desirable.

The objective function in (7), the decomposition in (8), and the cost constraint in (4)
provide a complete mathematical framework and insight that lead directly to Algorithm V.

5. EXAMPLES

Example of Optimal Allocation Using Lagrange Multiplier: Assume a stratified population
of N = 149 units with parameters:

h Nh Sh ch
NhSh√

ch

1 61 6 $4 183
2 41 4 $1 164

3 47 10 $9
470
3

From (5) with fixed budget C = $55, optimal overall sample size is:

n = (C)

H∑
i=1

NiSi√
ci

H∑
h=1

NhSh

√
ch

= 12.0128 ≈ 12;

optimal sample allocation from (6) is (n1, n2, n3) = (4.3647, 3.9115, 3.7366); associated sam-
pling variance is V ar(T̂Y ) = 89, 132.8183; and the cost is (4)(4.3647)+(1)(3.9115)+(9)(3.7366) =
54.9997 ≈ $55. So the optimal allocation uses the entire budget $55.

The optimal sample allocation just obtained does not give integers, and we must round.
Rounding to nearest integers (n1, n2, n3) = (4, 4, 4); the associated sampling variance is
V ar(T̂Y ) = 87, 886; but the cost (4)(4)+(1)(4)+(9)(4) =$56 exceeds $55, the fixed budget.

Example of Algorithm V: We assume the same population of N = 149 and parameters
as given above and begin with Array 0 and obtain Array I.

h ch
NhSh√

ch

1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

1√
5 · 6

1√
6 · 7

1√
7 · 8

· · ·

1 $4 183 129.40 74.71 52.83 40.92 33.41 28.24 24.45 · · ·
2 $1 164 115.97 66.95 47.34 36.67 29.94 25.31 21.92 · · ·
3 $9

470
3

110.78 63.96 45.23 35.03 28.60 24.17 20.94 · · ·

Array 0: Array of Priority Values for Algorithm V.
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Proceeding through Array 0 according to Algorithm V, the amount of the budget being
spent accumulates as shown in parentheses in Array I as we sequentially pick the largest
priority values (first 129.40; next 115.97; then 110.78;...; and finally 47.34 - all given in
bold), resulting in final allocation (n1, n2, n3) = (4, 4, 3). Note that we use only C∗ = $47 of
the fixed budget C = $55. Along the way applying Algorithm V, we note the V ar(T̂Y ) for the
allocations in brackets [ ] for the allocation up to that point. The double brackets [[ ]] give
the weighted sum of stratum sampling variances (7) for the allocation up to that point. Note
further that the final allocation gives a sampling variance of the allocation up to that point
of V ar(T̂Y ) = 106, 294. Specifically, we describe the first set of entries in Array I as follows:

(i) 129.40 = priority value obtained by 183 × (
1√
1 · 2

); (ii) (2, 1, 1) = (n1, n2, n3) gives the

allocation for n = 4 after the first largest priority value 129.40 (stratum 1) is picked; (iii)

$18 = the cost of the sample allocation (2,1,1); (iv) V ar(T̂Y ) =
3∑

h=1

V ar(Nhȳh) = 307, 222

for the sample allocation (2,1,1); and (v) V arW (T̂Y ) =
3∑

h=1

V ar(Nhȳh)
1

ch

= 66,458 for the

sample allocation (2,1,1).

h ch
NhSh√

ch

1√
1 · 2

1√
2 · 3

1√
3 · 4

1√
4 · 5

nh

1 $4 183 129.40 74.71 52.83 40.92 4
(2, 1, 1) (3, 2, 2) (4, 3, 3)
($18) ($32) ($46)

[307, 222] [160, 998] [108, 535]
[[66, 458]] [[35, 156]] [[23, 792]]

2 $1 164 115.97 66.95 47.34 36.67 4
(2, 2, 1) (3, 3, 2) (4, 4, 3)
($19) ($33) ($47)

[293, 774] [156, 515] [106, 294]
[[53, 009]] [[30, 673]] [[21, 551]]

3 $9
470
3

110.78 63.96 45.23 35.03 3

(2, 2, 2) (3, 3, 3)
($28) ($42)

[183, 324] [119, 698]
[[40, 738]] [[26, 583]]

Array I: Application of Algorithm V; Final (n1, n2, n3) = (4, 4, 3), where n = 1, costs C∗ = $47.

Remark 2: By design, the allocation (n1, ..., nH) of n =
H∑

h=1

nh that is observed when we

stop and associated with C∗ =
H∑

h=1

chnh minimizes V arW (T̂Y ) the weighted sum of stratum

sampling variances subject to C∗ which does not exceed C.
It’s worth noting that Algorithm V is exactly the optimal dynamic sampling plan given

by Kadane (2005). While Kadane’s sampling plan is motivated by a practical problem in
auditing different types of units where sampling costs vary, the framework from which his
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plan originates can be clarified. In this paper, we introduce the objective function V arW (T̂Y )
and derive directly from it an allocation of the sample size n with a fixed budget constraint
that minimizes V arW (T̂Y ). We do this by decomposing V arW (T̂Y ), and as an immediate
result, we see how to sequentially allocate the sample while staying within budget C. When
we reach the point where taking one more sample unit from one of the strata would cause
us to exceed the budget, we stop and do not take one more unit for the sample. With the
allocation when we stop with cost C∗ (≤ C), we get exactly the dynamic sampling plan of
Kadane. We prove this explicitly in our Theorem and Remark 4.

The following Theorem that is a simplified and clarified result is similar to the main result

in Kadane (2005). We show that the allocation (n1, ..., nH) of n =
H∑

h=1

nh that is observed

and associated with C∗ =
H∑

h=1

chnc also minimizes V ar(T̂Y ) the unweighted sum of stratum

sampling variances over all other allocations that cost less than or equal to C∗.

Remark 3: Selecting the largest priority values
NhSh/

√
ch√

(mh − 1)mh

sequentially in Algorithm V

is equivalent to picking sequentially the largest squared priority values
N2

hS2
h/ch

(mh − 1)mh

(see (9)).

Because these largest priority values (also largest squared priority values) are all positive,
there is a positive real number k such that

N2
hS2

h/ch

(mh − 1)mh

≥ k

for all priority values that are selected to obtain C∗ =
H∑

h=1

chnh.

6. THE MAIN RESULT

Theorem: For fixed budget C, let E1 be the subset of largest priority values in the array
of Algorithm V such that for some k ∈ R+

(i)
N2

hS2
h/ch

(mh − 1)mh

≥ k for each priority value in E1;

(ii)
N2

hS2
h/ch

(mh − 1)mh

< k for each priority value in Ec
1, the complement of E1;

(iii)
∑
E1

ch +
H∑

h=1

ch = C∗ where C∗ is as defined in Algorithm V.

Let E2 be another subset of priority values in the array of Algorithm V such that CE2 ≤ C∗,
where CE2 is the cost of a sample corresponding to E2. Keep in mind that CE2 includes the
total cost of one unit from each stratum as well as for the additional units included as a
result of picking some priority values from the array. Then
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∑
E1

N2
hS2

h

(mh − 1)mh

≥
∑
E2

N2
hS2

h

(mh − 1)mh

. (11)

Proof: It is enough to show

∑
E1

N2
hS2

h

(mh − 1)mh

−
∑
E2

N2
hS2

h

(mh − 1)mh

≥ 0.

Note that E1 = (E1 ∩ E2) ∪ (E1 ∩ Ec
2) and E2 = (E2 ∩ E1) ∪ (E2 ∩ Ec

1). Now

∑
E1

N2
hS2

h

(mh − 1)mh

−
∑
E2

N2
hS2

h

(mh − 1)mh

=
∑

E1∩E2

N2
hS2

h

(mh − 1)mh

+
∑

E1∩Ec
2

N2
hS2

h

(mh − 1)mh

−
∑

E2∩E1

N2
hS2

h

(mh − 1)mh

−
∑

E2∩Ec
1

N2
hS2

h

(mh − 1)mh

=
∑

E1∩Ec
2

N2
hS2

h

(mh − 1)mh

−
∑

E2∩Ec
1

N2
hS2

h

(mh − 1)mh

(12)
By assumption (i), for all priority values in E1 and hence for all priority values in E1∩Ec

2,∑
E1∩Ec

2

N2
hS2

h

(mh − 1)mh

≥ k
∑

E1∩Ec
2

ch. (13)

By assumption (ii), for all priority values in Ec
1 and hence for all priority values in E2∩Ec

1,∑
E2∩Ec

1

N2
hS2

h

(mh − 1)mh

< k
∑

E2∩Ec
1

ch (14)

So from (12), (13), and (14), we have

∑
E1

N2
hS2

h

(mh − 1)mh
−

∑
E2

N2
hS2

h

(mh − 1)mh
=

∑
E1∩Ec

2

N2
hS2

h

(mh − 1)mh
−

∑
E2∩Ec

1

N2
hS2

h

(mh − 1)mh

≥ k

( ∑
E1∩Ec

2

ch −
∑

E2∩Ec
1

ch

)

= k

( ∑
E1∩Ec

2

ch +
∑

E1∩E2

ch −
∑

E2∩E1

ch −
∑

E2∩Ec
1

ch

)

= k

( ∑
E1

ch −
∑
E2

ch

)

= k

([ ∑
E1

ch +
H∑

h=1

ch

]
−

[∑
E2

ch +
H∑

h=1

ch

])

= k(C∗ − CE2) ≥ 0
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Thus the Theorem has been shown.

Remark 4: From the decompositions (Wright, 2016, 2017) of V ar(T̂h), and of V ar(T̂Y ),

V ar(T̂Y ) =
H∑

h=1

V ar(T̂h) =
H∑

h=1

Nh(Nh − 1)S2
h −

∑
E1

N2
hS2

h

(mh − 1)mh

where E1 is the set of priority values (and associated allocation (n1, ..., nH)) leading to

C∗ =
H∑

h=1

chnh. Thus by showing that ∑
E1

N2
hS2

h

(mh − 1)mh

is maximized in (11) of the Theorem, we have that Algorithm V which stops at C∗ with
allocation (n1, ..., nH) not only minimizes the weighted sum of stratum sampling variances,
but it also minimizes V ar(T̂Y ), the unweighted sum of stratum sampling variances, for any
allocation whose associated cost does not exceed C∗.

Remark 5: Of course, one could use the ch values to increase the overall sample size n
and move C∗ closer to C. For example, in Array I of Section 5, one could take 2 additional
sample units from stratum 1 and increase the overall cost to C∗ = $47 + $8 = $55 (= C).
The action would also decrease V ar(T̂Y ) as well as V arW (T̂Y ), but we would no longer
have the guarantee of optimality for the realized cost provided by the Theorem. Continuing
with the example, this new allocation (6,4,3) has V ar(T̂Y ) = 95, 131.33. But the allocation
(4,2,4) which costs $54 has V ar(T̂Y ) = 94, 610, and the allocation (4,3,4) which costs $55 has
V ar(T̂Y ) = 90, 127.33. Hence we can not use the Theorem to guarantee minimum sampling
variance stopping with (6,4,3).
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