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Synthetic Microdata for Establishment Surveys
under Informative Sampling

Hang J. Kim1, Joerg Drechsler2, and Katherine J. Thompson3

Abstract

Many agencies are currently investigating whether releasing synthetic microdata could be a viable
dissemination strategy for highly sensitive data, such as business data, for which disclosure avoidance
regulations otherwise prohibit the release of public use microdata. However, existing methods assume
that the original data either cover the entire population or comprise a simple random sample from
this population, which limits the application of these methods in the context of survey data with
unequal survey weights. This paper discusses synthetic data generation under informative sampling.
To utilize the design information in the survey weights, we rely on the pseudo likelihood approach
when building a hierarchical Bayesian model to estimate the distribution of the finite population.
Then, synthetic populations are randomly drawn from the estimated finite population density. We
present the full conditional distributions of the Markov chain Monte Carlo algorithm for the posterior
inference with the pseudo likelihood function. Using simulation studies, we show that the suggested
synthetic data approach offers high utility for design-based and model-based analyses while offering
a high level of disclosure protection. We apply the proposed method to a subset of the 2012 U.S.
Economic Census and evaluate the results with utility metrics and disclosure avoidance metrics
under data attacker scenarios commonly used for business data.

Keywords: disclosure risk; full synthesis; pseudo likelihood; survey weight; synthetic population

1 Introduction

Institutions and researchers often require access to detailed microdata, in addition to aggregate

tabular data available to the public. Historically, agencies may selectively allow access to the real data
1Division of Statistics and Data Science, University of Cincinnati; and Center for Statistical Research & Methodology,

U.S. Census Bureau
2Institute for Employment Research, Nuremberg, Germany
3Economic Statistical Methods Division, U.S. Census Bureau

Disclaimer : Any views expressed here are those of the authors and not necessarily those of the U.S. Census Bureau.
The Census Bureau has reviewed this data product for unauthorized disclosure of confidential information and has
approved the disclosure avoidance practices applied.
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under strong security restrictions that respect mandated disclosure avoidance regulations. However,

such access is strictly regulated and may not be convenient for many data users. Consequently,

many programs produce public use microdata samples (PUMS), i.e., highly sanitized versions of real

data. PUMS are often a subsample of the full survey or census with sensitive items perturbed using

statistical disclosure limitation methods such as data swapping or response modification via random

noise (Calvino, 2017).

However, PUMS are rarely a viable option for business data collections. First, many of the variables

included in the business data are highly skewed, increasing the risk of re-identification for the largest

units. As the number of items provided by the data increases, the identification risk for these outlying

units in multiple dimensions sharply increases. Removing these units is not an option as these units

are indispensable for accurate tabulations. Second, high correlations between the variables in the

business data increase the attribute disclosure risks for some establishments. Third, sampling rates

in business surveys with many large establishments having sampling weights of one are much higher

than those typically found in household surveys. Thus, the inherent protection of most survey data –

stemming from the fact that a potential attacker typically does not know whether the target record

she is looking for is included in the sample – is substantially lower in the business survey data.

Fourth, more information about businesses is publicly available, especially since larger businesses are

often required by law to publish certain key statistics related to their economic activity and this

information can be used to identify the units in the data. Finally, the incentives for re-identification

are arguably higher, since other businesses will benefit from the knowledge gain if they successfully

identify a competitor and learn about its sensitive information. For all these reasons, the practice

of releasing PUMS for business data has been abandoned by the U.S. Census Bureau many years

ago and disseminating synthetic data (Rubin, 1993) might be the only option for providing easily

accessible data for general-purpose analyses. With the synthetic data approach, a model is fitted to

the original data and (repeated) draws from the model are released instead of the original data.
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To achieve a high level of utility, models used to generate the synthetic data should fulfill three

requirements: (a) they should retain the multivariate relationships between items for data users that

construct a regression or other micro-economic model, (b) they should enforce a predetermined set

of edits, logical constraints developed by subject matter experts to check the original data and to

ensure credibility in the output data, and (c) they should produce totals that closely correspond to

the official statistics derived from the input data. With the first two requirements in mind, synthetic

data approaches have been developed for government data: see, for example, Abowd et al. (2006),

Hawala (2008), and Hu et al. (2018a) for household data; and Kinney et al. (2011), Drechsler (2011),

and Kim et al. (2018) for business data. However, the existing methods assume that the source

data covers the entire population or is a simple random sample from this population, which limits

the application of these models in the context of survey data with unequal survey weights. Since

survey data are typically collected using complex sampling designs, the assumption is unrealistic

if the program is not a census and leads to biases in design based inferences, especially for finite

population totals or means.

Our research was originally motivated by the U.S. Economic Census. Typical of many business

surveys, the Economic Census comprises skewed multivariate populations that differ by sector and

often by industry within sector. It is a stratified probability sample: the measure of size is used for

stratification and many establishments are included with certainty, i.e., their probability of selection

is one, whereas others are sampled with varying probabilities. This stratified simple random sampling

is informative, i.e., the sampling distribution is not representative of the population distribution, so

the sample design cannot be ignorable in finite population inference (Sugden and Smith, 1984). The

informative sampling design can be partly addressed in data synthesis by including the measure

of size variable as an additional predictor and releasing synthetic samples with the original survey

weights. The motivation for including design variables is to make the sampling design ignorable when

estimating the model parameters (Pfeffermann, 1993; Berg et al., 2016). From a practical perspective,
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this synthetic sample approach is non-optimal for a variety of reasons such as the measure of size

variable being a potentially poor predictor of ancillary outcome variables, an unavailable measure of

size variable, or institutional restrictions on releasing survey weights imposed when unit-identifying

information may be encoded into the weights. Furthermore, as we show in our simulations, variance

estimates based on the synthetic sample will be biased, as the efficiency of the stratified sampling

design is not fully propagated during synthesis.

Thus, we propose a different strategy for incorporating sample design selection information into

the synthesizers. Similar to Dong et al. (2014), we assume that the available data are probability

samples selected using informative sampling designs. We introduce a method that generates synthetic

populations, incorporating the survey weights into the models. The underlying idea is based on the

pseudo likelihood approach (Godambe and Thompson, 1986; Pfeffermann, 1993; Fuller, 2009), which

entails incorporating the sampling weights into the likelihood function. We incorporate the pseudo

likelihood idea when building a hierarchical Bayesian model to estimate the distribution of the finite

population. Then, the fully synthetic populations are generated by drawing repeatedly from the

estimated finite population density. We derived the full conditional distributions of the Markov

chain Monte Carlo algorithm for the posterior inference with the pseudo likelihood function. The

inferential procedures for variance estimation with these synthetic populations and their validity are

illustrated as part of the simulation study.

We compare our synthetic population approach with two approaches for generating synthetic samples.

Generating synthetic populations instead of samples has several practical advantages: improved

privacy protection by removing confidential information encoded in the survey weights, facilitating

the use of standard statistical software for most analyses, and yielding simplified multiple imputation

variance estimators. Furthermore, encoding sample design attributes into the modelling process

improves the utility of the synthetic data for data users, increasing the similarity between the

marginal total and their original-data counterpart.
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The remainder of this paper is organized as follows. Section 2 presents our proposed model. Section

3 presents utility metrics and disclosure avoidance metrics under realistic data attacker scenarios in

business data release. We explore the proposed synthetic data generation methods in Section 4 via a

simulation study using a fictional population with characteristics common to establishment surveys

such as skewed marginal distributions and highly correlated covariates. We apply the proposed

methods to empirical data from selected industries in the 2012 U.S. Economic Census in Section 5,

and conclude with general observations, recommendations, and ideas for future research in Section 6.

2 Methodology

We start this section by reviewing the business data synthesis proposed by Kim et al. (2018), which

assumes the original data cover the entire finite population or they can be treated as a simple random

sample (using sampling with replacement) from this population. We then present our extensions to

account for informative sampling designs.

Before reviewing the methodology, we need to introduce some notation. Let Y N be a N × p matrix

comprising p variables from a finite population of size N . Y n = {y1, . . . ,yn} denotes a probability

sample of size n drawn from Y N , where yi, i = 1, . . . , n, is a (p + 1) × 1 vector containing the p

variables for unit i and a survey weight wi, the reciprocal of the inclusion probability, which accounts

for the sampling design. We assume that every unit in Y N satisfies a set of predetermined edits, i.e.,

that all values in Y N are placed within a feasible region Y formed by the edits. For example, the

feasible region for the ratio of annual payroll to first quarter payroll will be bounded at the lower

end by one and should be bounded at the upper end by some constant value that is larger than

four. In reality, this delimited set of population values may not be the true values. For example,

the population data may contain units whose observations legitimately fall outside the ratio edits,

such as new businesses with exceptionally high start-up costs or failed businesses with exceptionally

low profit margins. However, for modeling synthetic data, it is reasonable to generate values that
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conform with the edits, and to further assume that the units in Y N are free from measurement or

reporting errors. In practice, this may equate to using an edited and imputed dataset as input data.

Hereafter, we refer to this consistent set of population values as the true values.

2.1 Methodology for simple random samples

The Dirichlet process (DP) Gaussian mixture model proposed for data synthesis in Kim et al. (2018)

is a flexible tool for modeling irregularly shaped joint distributions subject to edits. The likelihood

for the data under this model is written by f(Y n|Θ) =
∏n
i=1 f(yi|Θ) with

f(yi|Θ) = c1(Y,Θ)
K∑
k=1

ηkN(log yi;µk,Σk)I(yi ∈ Y) (1)

for i = 1, . . . , n, where Θ = {(µk,Σk, ηk) : k = 1, . . . ,K} denotes the model parameters of the

K mixture components, N(x;µ,Σ) denotes the density of the normal distribution evaluated at

x, ηk is the weight of the k-th mixture component, I(·) is an indicator function which equals one

if the statement is true and is zero otherwise, and c(Y,Θ) is a normalizing constant such that

c1(Y,Θ)−1 =
∫
x∈Y

∑K
k=1 ηkN(logx;µk,Σk)dx. Note that the log transformation is generally not

required for Gaussian mixture modeling, but our applications use the log transformation to help

account for the skewness of our data. Introducing membership indicators zn = (z1, . . . , zn), Equation

(1) can be expressed by the following conditional distributions:

f(Y n|{µk,Σk}, zn) =

n∏
i=1

c2(Y,µzi ,Σzi) N(log yi;µzi ,Σzi)I(yi ∈ Y), (2)

f(zn|{ηk}) =

n∏
i=1

η
I(zi=1)
1 · · · ηI(zi=K)

K , (3)
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where c2(Y,µ,Σ)−1 =
∫
x∈Y N(logx;µ,Σ)dx. The stick-breaking representation of a truncated DP

(Sethuraman 1994; Ishwaran and James 2001) is assumed as a flexible prior distribution for {ηk},

ηk = νk

k−1∏
g=1

(1− νg) for k = 2, . . . ,K, η1 = ν1, (4)

f(νk|α) ∼ Beta(1, α) for k = 1, . . . ,K − 1, νK = 1, (5)

f(α) ∼ Gamma(aα, bα), (6)

where the prior mean of the DP concentration parameter α is aα/bα.

Given Y n, the synthetic sample Ỹ n = {ỹ1, . . . , ỹn} is generated from the posterior predictive

distribution f(ỹi|Θ,Y N ) = c1(Y, {Θ′k})
∑K

k=1 η
′
k N(log ỹi;µ

′
k,Σ

′
k)I(ỹi ∈ Y) where η′k (and similarly

µ′k and Σ′k) denotes a random draw from the posterior distribution of ηk given Y n, i.e., f(ηk|Y n).

This sampling step to draw synthetic values is embedded in a Markov chain Monte Carlo (MCMC)

algorithm whose other steps update the model parameters in Equations (2)–(6) (see Kim et al., 2018,

for details).

It is often challenging to calculate the normalizing constant c2(Y,µ,Σ) and evaluate the truncated

normal distribution whose support Y is complex due to the edits. To avoid these calculations, the

model uses a data augmentation step (Meng and Zaslavsky, 2002; O’Malley and Zaslavsky, 2008; Kim

et al., 2014), which assumes that there is a hypothetical sample Y naug = (y1, . . . ,yn,yn+1, . . . ,ynaug)

of unknown size naug such that yi ∈ Y if 1 ≤ i ≤ n and yi /∈ Y if n+ 1 ≤ i ≤ naug. As in O’Malley

and Zaslavsky (2008) and Kim et al. (2014), we assume the likelihood of the augmented sample

and the conditional distribution of its size as f(Y naug |Θ) =
∏naug
i=1

∑K
k=1 ηk N(log yi;µk,Σk) and

f(naug − n|n,Θ,Y) ∼ NegativeBinomial
(
n, 1− c1(Y,Θ)−1

)
. This technique allows us to draw µk

and Σk from the closed form of the unconstrained multivariate normal distribution. By adopting

the sampling method of O’Malley and Zaslavsky (2008), we do not need to evaluate the value of

c2(Y,µ,Σ) when running the MCMC procedure.
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2.2 Extensions to account for informative sampling designs

Notice that the mixture model for the sampling distribution in Equation (1) does not account

for an informative sampling design. With simple random sampling, the distribution of yi in the

sample as specified in (1) is similar to the population distribution of yi, and the sampling design

is ignorable with respect to model-fitting and inference (Sugden and Smith, 1984). With complex

sample designs such as stratified sampling or sampling with probability proportional to size, the

design is informative, i.e., the distribution of yi in the sample will differ from that in the population.

The conditions under which the sampling design is ignorable are fairly restrictive and can often

be difficult to validate (Pfeffermann, 1993). Ignorability requires analytical models incorporate

design variables, which are available for all units in the population and were used to construct the

probability sample; examples include stratum indicators in stratified sampling or measures of size

in probability proportional to size sampling. Under the stratified simple random sampling without

replacement design considered in this paper, strata boundaries are fixed, and sampling rates are

constant within stratum h and different between strata, i.e., πhi = nh/Nh for all i ∈ h. This sampling

design is conditionally ignorable for model-based inference when all design variables are included in

the model (Sugden and Smith, 1984; Pfeffermann, 1993).

To reflect the informative sampling design, we propose a strategy that incorporates the survey

weights when generating the synthetic data. This idea builds on the pseudo likelihood approach

(Godambe and Thompson, 1986; Pfeffermann, 1993; Fuller, 2009) which assumes a superpopulation

model L(Θ;Y N ) =
∏N
i=1 f(yi|Θ) with unknown parameters Θ. If we would have census data Y N ,

the maximum likelihood estimator of Θ is calculated by solving U(Θ) =
∑N

i=1 u(yi; Θ) = 0 where the

estimating function is u(yi; Θ) = d log f(yi; Θk)/dΘ. When only the sample data Y n are available,

we solve the estimating equation Û(Θ) =
∑n

i=1wi u(yi; Θ) = 0 to obtain a consistent estimator Θ̂.

This pseudo likelihood approach originally motivated from a superpopulation model perspective can

be similarly used in Bayesian modeling or inference. Let i∗ be a pseudo population unit which is
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close to a unsampled unit in the population and is represented by unit i included in the sample.

Then, we define the following pseudo likelihood function:

L(Θ;Y ps) =
n∏
i=1

f(yi|Θ)f(y∗i |Θ)wi−1 (7)

where a real value wi ≥ 1 is the survey weight of the sampled unit i, f(y∗i |Θ) = f(yi|Θ) if y∗i = yi

and zero otherwise for i such that wi > 1, and f(y∗i |Θ)0 is defined as one. Note that Equation

(7) is not a legitimate joint density because its integral is not one, but it is served as a likelihood

function of the finite population parameter Θ, approximated based on sample data {y1, . . . ,yn}

under informative sampling. In other words, Equation (7) is used to approximately estimate the

finite population parameters given the sample data rather than describing the exact joint density of

the sampled units {y1, . . . ,yn} and the pseudo units {y∗1, . . . ,y∗n} whose probabilistic characteristics

as random variables are not precisely defined. When deriving the full conditional densities of model

parameters for the fixed values of yi, Equation (7) is simply proportional to f(yi|Θ)wi , but we define

it in this form to emphasize that y∗i is not a real random variable rather a hypothetical unit and

its integral is not equal to one. We adopt this idea in the synthetic population generation with

the DP Gaussian mixture model. Under the pseudo likelihood framework, the Bayesian model

estimates the posterior distribution of Θ approximately capturing the distribution of the finite

population. For example, a mean vector of a mixture component µk is estimated using a weighted

mean
∑
{i:zi=k}wiyi/

∑
{i:zi=k}wi rather than a simple mean, and a mixture weight ηk is estimated

by using a weighed quantity,
∑
{i:zi=k}wizi. The impact of the pseudo likelihood will be discussed

in detail in the derivation of the full posterior distributions described below.

To complete the Bayesian model, we assume the following prior distributions, most of which are
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standard conjugate priors adopted for computational efficiency:

f(µk|Σk) ∼ N
(
µ0,

1

h0
Σk

)
, k = 1, . . . ,K, (8)

f(Σk|Φ) ∼ InverseWishart(ζ0,Φ), (9)

where Φ is a diagonal matrix with diagonal components φj , which follow f(φj) ∼ Gamma(aφ , bφ)

for j = 1, . . . , p. We set all hyperparameters to standard values recommended in the literature:

aα = bα = aφ = bφ = 0.25, ζ0 = p − 1, µ = 0, and h0 = 1. We refer readers to Dunson and

Xing (2009) and Kim et al. (2014) for motivation and interpretation of the selected hyperparameter

values; the choices had negligible impacts on the model fitting in our simulation study and the

application to the Economic Census where the sample size is moderate to large. To implement data

augmentation under this pseudo likelihood framework, we have the augmented sample Y naug , a

stacked vector comprising the observed sample Y n and the auxiliary units {yn+1, . . . ,ynaug}, and

wnaug = {w1, . . . , wn, wn+1 , . . . , wnaug} such that wi = 1 for i ≥ n+ 1, i.e., the hypothetical survey

weights for the auxiliary units are one.

To generate synthetic populations based on the pseudo likelihood approach for the DP Gaussian

mixture model, we can use a Gibbs sampler consisting of the MCMC steps described below. The

derivation of the full conditional distributions for Steps 1, 2 and 5 are provided in Section 2.2.1.

Steps 3 and 4 are identical to the MCMC steps for the standard DP stick-breaking representation.

The posterior distributions illustrate how the pseudo likelihood function works. In Step 1, each

yi is weighted using its survey weight wi to estimate the center and the spread of the mixture

component µzi and Σzi to which the unit belongs. In Step 2, the DP stick is divided with the length

proportional to Nk =
∑naug

i=1 I(zi = k) wi rather than nk =
∑naug

i=1 I(zi = k), so the mixture weight

ηk is determined by the estimated population size of the mixture component, Nk, not by the sample

size in the component, nk. Step 6 is the same as in Kim et al. (2014) except the survey weight of
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one is additionally recorded in Step (iii). To generate m synthetic populations, we incorporate an

extra step every T/m iterations, where T is chosen large enough to ensure independence between

the draws (see details below).

After running tburn iterations for burn-in, we run the MCMC algorithm for T iterations.

Step 1. For each k = 1, . . . ,K, update Σk and µk by drawing from

f(Σk| · · · ) ∼ InverseWishart (ζk,Φk) and f(µk|Σk, · · · ) ∼ N (µ∗k,Σ
∗
k)

where Nk =
∑naug

i=1 I(zi = k) wi, sk =
∑naug

i=1 I(zi = k)wi log yi, T k =
∑naug

i=1 I(zi =

k)wi(log yi−sk/Nk)(log yi−sk/Nk)>, ζk = ζ0+Nk, Φk = Φ+T k+(Nkh0)/(Nk+h0)(sk/Nk−

µ0)(sk/Nk − µ0)
>, µ∗k = (sk + h0µ0)/(Nk + h0) and Σ∗k = Σk/(Nk + h0).

Step 2. Draw νk from f(νk| · · · ) ∼ Beta(1 +Nk, α+
∑K

m=k+1Nm) for k = 1, . . . ,K−1 and set νK = 1.

Then, η1 = ν1 and ηk = νk
∏k−1
m=1(1− νm) for k = 2, . . . ,K.

Step 3. Draw α from f(α| · · · ) ∼ Gamma(aα +K − 1, bα − log ηK).

Step 4. For j = 1, . . . , p, draw φj from f(φj | · · · ) ∼ Gamma(aφ + Kζ0/2, bφ +
∑K

k=1 σ
−2
k,j/2) where

σ−2k,j is the j-th diagonal element of Σ−1k .

Step 5. For each i = 1, . . . , n, draw zi from f(zi| · · · ) ∼ Categorical(η′i1, . . . , η
′
iK) where η′ik =

ηk N (log yi;µk,Σk) /{
∑K

g=1 ηg N
(
log yi;µg,Σg

)
}.

Step 6. Sample the auxiliary values for data augmentation. Let cpass = cfail = 0.

(a) Draw z′ from the categorical distribution, f(z′|η) = η
I(z′=1)
1 · · · ηI(z

′=K)
K .

(b) Draw y′ from f(y′|z′, {µk,Σk}) ∼ N(µz′ ,Σz′).

(c) If y′ ∈ Y, let cpass = cpass + 1 .

If y′ /∈ Y, let cfail = cfail + 1, yn+cfail = y′, zn+cfail = z′, and wn+cfail = 1.

11



Repeat the process until cpass = n (or cfail = n).

Synthesis. To draw m synthetic populations {Ỹ (1)
N , · · · , Ỹ (m)

N }, we implement the following steps every

T/m iteration. Let csynt = 0.

(a) Draw z′ from the categorical distribution, f(z′|η) = η
I(z′=1)
1 · · · ηI(zi=K)

K .

(b) Draw y′ from f(y′|z′, {µk,Σk}) ∼ N(µz′ ,Σz′).

(c) If y′ ∈ Y, let csynt = csynt + 1, ỹcsynt = y′.

Repeat the process until csynt = N .

2.2.1 Derivations of steps 1, 2 and 5 of the MCMC algorithm

Step 1

By extending the pseudo likelihood to utilize the membership indicator, we have

n∏
i=1

f(yi|Θ)f(y∗i |Θ)wi−1 =
n∏
i=1

∫
f(yi, zi|Θ)dzi f(y∗i , z

∗
i |Θ)wi−1 (10)

where f(y∗i , z
∗
i |Θ) = f(yi, zi|Θ) if (y∗i , z

∗
i ) = (yi, zi) and zero elsewhere for all i such that wi > 1,

and f(y∗i , z
∗
i |Θ)0 is defined as one.

The full conditional density of µk and Σk is proportional to L(Θ;Y ps), f(µk|Σk) and f(Σk|Φ);

and evaluated with all other unknowns fixed. Because the pseudo likelihood equation in (10)

contains f(y∗i , z
∗
i |Θ), the full conditional density of µk and Σk has a positive density only when

(y∗i , z
∗
i ) = (yi, zi) for all i whose wi is greater than one.
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Then, for the k-th mixture component, the full conditional density of µk and Σk is written by

f(µk,Σk| · · · ) = f(µk,Σk|Φ, {yi(= y∗i ), zi(= z∗i ), wi : i = 1, . . . , naug})

∝

∏
i∈Ak

|Σk|−wi/2 exp

{
−1

2
wi(log yi − µk)>Σ−1(log yi − µk)

}
· |Σk|−1/2 exp

{
−1

2
(µk − µ0)

>h0Σ
−1(µk − µ0)

}
(µk − µ∗k)

>Σ∗−1k (µk − µ∗k)

· |Σk|−(ζ0+p+1)/2 exp

{
−1

2
tr(ΦΣk)

}
.

where Ak is the index set of all units i = 1, . . . , naug such that zi = k,

Nk =
∑
i∈Ak

wi, Sk =
∑
i∈Ak

wi log yi, T k =
∑
i∈Ak

wi

(
log yi −

Sk
Nk

)(
log yi −

Sk
Nk

)>

µ∗k =
Nk

Sk
Nk

+ h0µ0

Nk + h0
, and Σ∗k =

1

Nk + h0
Σk.

The terms inside the exponents can be rewritten as∑
i∈Ak

wi(log yi − µk)>Σ−1k (log yi − µk) + (µk − µ0)
>h0Σ

−1
k (µk − µ0)

=
∑
i∈Ak

wi(log yi − Sk/Nk)
>Σ−1k (log yi − Sk/Nk) + (µk − µ∗k)

>Σ∗−1k (µk − µ∗k)

−

(
Nk

Sk
Nk

+ h0µ0

Nk + h0

)>
(Nk + h0)Σ

−1
k

Nk
Sk
Nk

+ h0µ0

Nk + h0
+

(
Sk
Nk

)>
NkΣ

−1
k

(
Sk
Nk

)
+ µ>0 h0Σ

−1
k µ0

= (µk − µ∗k)
>Σ∗−1k (µk − µ∗k) +

∑
i∈Ak

wi(log yi − Sk/Nk)
>Σ−1k (log yi − Sk/Nk)

+
Nkh0
Nk + h0

(Sk/Nk − µ0)
>Σ−1k (Sk/Nk − µ0).
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Therefore,

f(µk,Σk| · · · ) ∝ |Σ|−1/2 exp

{
−1

2
(µk − µ∗k)

>Σ∗−1k (µk − µ∗k)
}

· |Σ|−(ζ0+Nk+p+1)/2 exp

[
−1

2
tr

{
Φ + T k +

Nkh0
Nk + h0

(
Sk
Nk
− µ0

)>( Sk
Nk
− µ0

)}
Σ−1k

]

where T k =
∑
i∈Ak

wi

(
log yi −

Sk
Nk

)>(
log yi −

Sk
Nk

,

)

and the first term is the kernel of a normal distribution and the second term is that of the inverse-

Wishart distribution.

Therefore, f(µk,Σk| · · · ) = f(µk|Σk, · · · )f(Σk| · · · ) where

f(Σk| · · · ) ∼ InverseWishart

(
ζ0 +Nk,Φ + T k +

Nkh0
Nk + h0

(
Sk
Nk
− µ0

)(
Sk
Nk
− µ0

)>)

f(µk|Σk, · · · ) ∼ N (µ∗k,Σ
∗
k)

Step 2

Similarly to Step 1, the full conditional density of {νk} has a positive density when zi = z∗i for all i.

Therefore,

f(ν1, . . . , νK−1| · · · ) = f(ν1, . . . , νK−1|α, {zi(= z∗i ), wi : i = 1, . . . , naug})

∝
naug∏
i=1

η
wiI(zi=1)
1 · · · ηwiI(zi=K)

K

K−1∏
k=1

(1− νk)α−1
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∝ ν
∑
{i:zi=1} wi

1 (1− ν1)
∑K

g=2

∑
{i:zi=g} wi ν

∑
{i:zi=2} wi

2 (1− ν2)
∑K

g=3

∑
{i:zi=g} wi

· · · ν
∑
{i:zi=K−1} wi

K−1 (1− νK−1)
∑
{i:zi=K} wi

K−1∏
k=1

(1− νk)α−1

∝
K−1∏
k=1

ν

∑
{i:zi=k} wi

k (1− νk)α+
∑K

g=k+1

∑
{i:zi=g} wi−1

Therefore, for k = 1, . . . ,K − 1,

f(νk| · · · ) ∼ Beta

1 +Nk, α+

K∑
g=k+1

Ng

 where Nk =
∑
{i:zi=k}

wi.

Step 5

Because the pseudo likelihood has a positive density when zi = z∗i for all units i whose wi is greater

than one, we need to update zi and z∗i simultaneously. To do this, we draw zi from its full conditional

density f(zi| · · · ) = f(zi|yi,Θ,η) ∝ f(yi|zi)f(zi|η) which is written by

Pr(zi = k| · · · ) =
ηk N(yi;µk,Σk)∑K
g=1 ηg N(yi;µg,Σg)

.

Then, the value of z∗i is automatically updated by z∗i = zi.

2.3 Variance estimation for multiply imputed synthetic datasets

Similar to multiple imputation for nonresponse, the release of multiple synthetic datasets enables

the analyst to properly account for the extra uncertainty from the synthesis process. In this section

we review the inferential procedures for the different synthesis approaches.

Let θ be a parameter of interest, such as a population mean, total, or correlation coefficient,

and θ̂(l) be its estimate constructed from the l-th synthetic data, l = 1, . . . ,m. For synthetic
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samples {Ỹ (1)
n , . . . , Ỹ

(m)
n }, the following quantities are required for inference: θ̂ =

∑m
l=1 θ̂

(l)/m,

bm =
∑m

l=1(θ̂
(l) − θ̂)2/(m − 1), and ūm =

∑m
l=1 u

(l)/m where θ̂(l) is an estimate given the l-th

synthetic sample and u(l) denotes the estimate for the sampling variance of θ̂(l). For synthetic

populations {Ỹ (1)
N , . . . , Ỹ

(m)
N }, the sampling variance is zero, i.e., u(l) = 0. Hence the required

quantities are θ̂ =
∑m

l=1 θ̂
(l)/m and the between-variance Bm =

∑m
l=1(θ̂

(l) − θ̂)2/(m− 1) where θ̂(l)

is an estimate given the l-th synthetic population. Independent of the synthesis strategy, the final

point estimate for θ is always θ̂. However, the estimator for the variance will differ as we review

below.

2.3.1 Partial synthesis

With partial synthesis as proposed by Little (1993), only some of the variables from the original

data are replaced with synthetic values, i.e., the synthetic data are generated from the conditional

predictive distribution given some observed values, f(ỹi,a|yi,−a,Θ) where index a denotes the set

of synthesized variables, −a denotes the variables that remain unchanged, and Θ contains the

parameters governing the distribution of f(yi,a|yi,−a,Θ). Statistical agencies can release {ỹi,a} only

or {ỹi,a,yi,−a} if yi,−a is considered safe to be released. For partially synthetic samples, Reiter

(2003) suggested estimating the variance of θ̂ as

V̂part =
1

m
bm + ūm. (11)

Inference of θ is made using a t-distribution with degrees of freedom νp = (m− 1){1 + ūm/(bm/m)}2.

2.3.2 Full synthesis

The fully synthetic data approach as proposed by Rubin (1993) is closely related to the idea of

multiple imputation for nonresponse. All records not included in the original sample are treated as

missing data, which are multiply imputed to generate synthetic populations. Simple random samples
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from these populations are generated in the second step to be released to the public. To illustrate,

we assume the original data comprises a sample of size n from a population of size N (Drechsler,

2011).

If some variables XN for the whole population are available in data synthesis, the synthetic datasets

can be generated in two steps. First, construct m imputed populations by multiply imputing the

unsampled units ỸN−n independently from the posterior predictive distribution f(YN−n|XN , Yn)

given the sampled units Yn and XN . Second, take a simple random sample from each imputed

population and release them to the public. For these fully synthetic samples, Raghunathan et al.

(2003) suggested estimating the variance as

V̂full =

(
1 +

1

m

)
bm − ūm. (12)

If no X variables are available as in our case, the synthetic data can be generated by drawing

from the unconditional predictive distribution, f(ỸN−n|Yn) =
∫
f(ỸN−n|Θ)f(Θ|Yn)dΘ. In this case,

the variance estimator in (12) is biased if all records in YN (i.e., not only YN−n but also Yn) are

synthesized, but the bias will be negligible if the sampling rate of the original data is small; see

Drechsler (2018) for further discussion. We note that an alternative variance estimator for fully

synthetic data has been proposed by Raab et al. (2017). This estimator, which can be applied if no X

variable has been used and all records have been synthesized, only depends on ūm. This is attractive

since it allows to estimate the variance even if only one synthetic copy has been released. However,

it is not clear how to apply this estimator if the synthetic data comprise the entire population as in

our case since ūm should be zero in such a situation. For more discussion regarding the advantages

and disadvantages of the different variance estimators for fully synthetic data, we refer the reader to

Drechsler (2018).

When generating synthetic populations following the procedures in Section 2.2, we un-complex the

sampling process. Thus, the uncertainty introduced by the sampling process is already reflected in
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the spread between the synthetic populations. The variance estimator for synthetic populations is

introduced by Raghunathan et al. (2003, Section 4.1) as

V̂pop =

(
1 +

1

m

)
Bm. (13)

In the equation, the quantity Bm/m estimates the uncertainty introduced by releasing a finite

number m of synthetic datasets. In a hypothetical scenario where an infinite number of synthetic

populations are released, i.e., m→∞, the uncertainty in estimating B∞ – measured by Bm/m –

disappears, and the model uncertainty in the predictive distribution is measured by B∞.

3 Evaluation Criteria: Analytical Validity and Disclosure Risk

Any disclosure limitation method needs to strike a balance between preserving analytical validity

and offering a sufficient level of data protection. In this section, we review the criteria that we use

to evaluate our proposed methods along these two dimensions.

3.1 Analytical validity criteria

Given that the synthetic data are proposed as an alternative to PUMS, we put forward a general-

purpose view of synthetic data utility. Most synthetic data evaluations in the literature (Hu et al.,

2018b; Kim et al., 2018; Snoke et al., 2018) assume that the typical data user is primarily interested

in modeling and assessing relationships between variables. This is certainly true of the economists

and other academic researchers that request access to the U.S. Census microdata. However, valid

design-based inferences for finite population totals are equally important, when it comes to business

data. Since most establishment surveys are designed to measure economic activity, main users such

as government policymakers, individual businesses, trade associations, and economic development

agencies want to estimate the finite population parameters to understand the current state of
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different economic sectors and to make informed decisions. Furthermore, ratios of industry totals

provide useful and important insights into the current economy. For example, in industries where

the majority of establishments operate year-round, the ratio of annual payroll to 1st quarter payroll

should be approximately four. Consequently, smaller values of the industry-average ratios would

be indicative of economic decline over the year within the industry, whereas larger ratios would

be indicative of economic growth. Large ratios of total sales to total payroll can be indicative of

industry growth, occasionally booms. Another example is that wage per employee ratios are used in

both economic and demographic analyses to assess labor conditions within industries. Under this

broader view of synthetic data designed to reach a larger class of potential data users, we look at

two dimensions of analytical validity: the analytical completeness of the data in terms of accurate

estimates for the marginal totals, which would in turn provide accurate ratios, and the analytical

validity when modeling multivariate relationships between the variables included in the data. For the

former, we compare estimated totals based on the synthetic data to their input data counterparts.

For the latter, we compare regression parameters from various regression models.

3.2 Disclosure risk criteria

The literature on risk measures for fully synthetic datasets is sparse. Re-identification experiments

such as those considered in Drechsler and Reiter (2008) and Reiter and Mitra (2009) are not

meaningful for this context since all records are drawn from a model, breaking the link between

original and synthetic records. Reiter et al. (2014) propose some risk measures for fully synthetic

data, however the computational requirement is so demanding that the measures are difficult to

compute in realistic applications such as the ones we consider in this paper.

With many economic data collections, it may not be difficult to identify the largest units in certain

industries in the dataset using the attributes available and some common knowledge of the industry.

Indeed, excluding these units would severely bias the totals. That said, their reported attributes
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are not always publicly available and in fact are often protected by mandate, e.g., Title 13. Hence,

risks related to attribute disclosure are typically more relevant than risks of re-identification. Thus,

we focus on a simple measure of attribute disclosure, which is well established in the business data

context: the distance between the true value for some sensitive attribute of the largest unit in the

original database and the estimate a potential attacker, possibly with background knowledge, might

obtain from the synthetic data.

Obviously, concerns about privacy protection are not restricted to the largest units. However, the

smaller businesses tend to report similar values especially when rounding is employed, so that

the individual businesses are less identifiable than their larger counterparts, especially in a survey

sampling context.

To define our measure of attribute disclosure, we need to introduce some notation. Let Lj be the

largest value in the input data for item (attribute) j and let L̂j be the attacker’s estimate for this

value defined below. We use the absolute relative difference ARDj = |L̂j − Lj |/Lj for each item as

the measure of disclosure risk. We consider two attacker scenarios:

Scenario 1: A data attacker has access to the synthetic data only. In this case, we assume the

attacker would use the average of the largest values from each of the multiple synthetic data

sets, i.e., L̂j =
∑m

l=1 maxi(ỹ
(l)
ij )/m, where ỹ(l)ij represents the j-th item for unit i in the l-th

synthetic dataset.

Scenario 2: The attacker knows that he is the second largest unit in the database and uses the

synthetic data to bound the value for the largest establishment. Let Sj be the true value of

the second largest unit in the original input data, T̂j be the estimated population total for

item j obtained from the synthetic data, and L̂j = T̂j − Sj be the attacker’s estimate of the

largest value. The approach can easily be extended to allow for collaborators. Let Cj be the

sum of the true values provided by the collaborator businesses. The estimate will then be

L̂j = T̂j − Sj − Cj . This scenario is consistent with the p-percent rule often used by federal
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statistical agencies to assess disclosure risk in magnitude tables (see FCSM, 2005, Chapter IV).

These metrics are limited to univariate analyses. One could imagine that an attacker has advanced

knowledge of an atypical unit, for example, a small or medium sized business with an unusually

high wage-to-employee ratio for a specific industry, which is at higher risk of attribute disclosure.

However, we emphasize that whether the data are perfectly protected to be released is not the goal

of this paper to establish. The focus is on evaluating the relative performance of different synthesis

strategies using risk measures that are illustrative of the high level of protection offered through

data synthesis.

3.3 Evaluating synthetic data approaches

If the calculated values of the suggested analytical validity measure and disclosure risk measures are

similar in a comparative study, the following discussion points should be additionally considered.

First, with partially synthetic data re-identificaion is still possible, i.e., a record in the synthetic

data is identified as a real population unit, which will typically also lead to an increase in the risk of

attribute disclosure. As pointed out above, re-identification risk is not meaningful in fully synthetic

data because all records in the synthetic data are drawn from a model, breaking the link between

original units and synthetic units. Therefore, if the calculated values of the suggested analytical

validity and disclosure risk measures are similar for fully and partially synthetic data, the fully

synthetic datasets should be arguably preferred. Second, there are some studies suggesting that the

release of the original survey weights itself may increase the disclosure risk (for example, Willenborg

and De Waal, 1996; Fienberg, 2010; Cox et al., 2011). In this spirit, an agency may prefer the

release of synthetic populations over the release of synthetic samples with original survey weights

attached. Lastly, synthetic populations can be favored over synthetic samples in terms of users’

convenience. With synthetic samples with the original survey weights, the users need to estimate

the sampling variance accounting for the complex sampling design used for the original data, which
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may or may not be easy in practice. However, the release of the synthetic populations facilitates the

use of standard statistical software for most analyses since only the between-variance in the analysis

outcomes for the multiple populations needs to be calculated.

4 Simulation Study

We conduct a repeated simulation study to assess the statistical properties of the synthetic data

models discussed in Section 2. The simulation consists of four steps: (a) generating a finite population

with distributional properties commonly found in business data, (b) drawing random samples from

this population using a stratified design representative of sampling designs typically employed in

business data contexts, (c) synthesizing the data using different strategies discussed below, and (d)

evaluating the synthesized data in terms of their analytical validity and disclosure protection. Steps

(b)–(d) are repeated 400 times to enable us to assess the validity of the obtained inferences. In the

following, we discuss each step in more detail.

4.1 Step 1: Generating the population

The simulated population has N=100,000 records of yi, each record consisting of four survey variables

yi,surv = (y1, y2, y3, y4) and a measure of size variable si. We assume the survey variables yi,surv

follow a truncated normal mixture distribution with K∗ = 3 components on the log scale under edit

constraints whose distribution is written by

f(yi,surv|{µ∗k,Σ∗k}, z∗i ) = c2(Y,µ∗z∗i ,Σ
∗
z∗i

) N(log yi;µz∗i ,Σz∗i
)I(yi ∈ Y)

f(z∗i ) ∼ Categorical(η∗1, · · · , η∗K∗).

The star symbols in the parameters emphasize that these simulation values do not necessarily exactly

match to the parameter estimates in Section 2.2 because the synthetic model assumes a Dirichlet
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process mixture model, while this simulation data assumes a finite number of normal mixture

components. We generate the simulated population Y N by integrating over the following steps:

Start with i = 1.

1. Generate z∗i from Categorical(η∗1, η∗2, η∗3) where the simulation mixture weights are set as

(η∗1, η
∗
2, η
∗
3) = (0.25, 0.6, 0.15).

2. Draw log ỹ from N(µz∗i ,Σz∗i
) where the simulation parameters used are µ1 = (2, 2, 3, 2)>,µ2 =

(6, 5, 6, 6)>,µ3 = (8, 7, 9, 10)>, and

Σ1 =



2.0 1.3 0.8 0.8

1.3 1.0 0.6 0.7

0.8 0.6 1.0 0.8

0.8 0.7 0.8 1.0


, Σ2 =



1.5 −0.3 0.5 0.8

−0.3 1.5 0.57 0.7

0.5 0.57 1.2 0.64

0.8 0.7 0.64 1.0


, and Σ3 =



2.0 1.3 0.9 1.5

1.3 1.2 0.5 0.7

0.9 0.5 0.7 0.6

1.5 0.7 0.6 1.7


.

3. Check if ỹ ∈ Y, i.e., it satisfies the ratio edits assumed as

y1/y2 y1/y3 y1/y4 y2/y3 y2/y4 y3/y4

Lower bound 0.367 0.082 0.007 0.006 0.007 0.007

Upper bound 148.41 20.09 148.41 2.72 148.41 148.41

If ỹ satisfies all ratio edits, let yi = ỹ and let i = i+ 1. Otherwise, go to Step 2 and draw ỹ

again.

4. Repeat Steps 2 and 3 until i ≤ N .

Figure 1 shows the bivariate distributions for all survey variables where the solid lines indicate ratio

edits imposed when generating the true population as well as at the synthesis stage. the imposed

ratio edits, the model parameters for generating the survey variables, and the measure of size variable.
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Figure 1: Bivariate distributions of the simulated population displayed in the log scale. The solid
lines indicate ratio edits.

Table 1: Correlation coefficients in the simulated population.
Y1 Y2 Y3 Y4

Y1 1.00 0.76 0.66 0.80
Y2 0.76 1.00 0.62 0.58
Y3 0.66 0.62 1.00 0.62
Y4 0.80 0.58 0.62 1.00

The ratio edits Yj/Yj′ ≤ Ujj′ , i.e., log Yj ≤ logUjj′ + log Yj′ on the log scale, are satisfied by all

units in the simulated population for all j 6= j′.

Table 1 presents the correlations between the survey variables. This simulated population resembles

a typical economic population, with highly skewed marginal distributions and strong association

among variables.

24



4.2 Step 2: Drawing random samples from the population

Economic surveys are often designed to produce reliable estimates of population totals, and stratified

sampling designs are commonly applied to improve the efficiency of the estimates and ensure sufficient

sample sizes in subdomains of interest.

In this simulation study, the measure of size variables were randomly generated by si = exp(qi) + εi

where qi ∼ N(log yi1, 1) and εi ∼ N(0, (log yi1 −minj yj1)
2/10000). The table below shows the five

number summary of the simulated measure of size variables.

Min. 1st Q. Median Mean 3rd Q. Max.

0.007 52.9 346.8 2972.2 1399.0 2376532.0

We assume that the measure of size variable is only used for the sampling design and would not be

released to the public. We employ stratified simple random sampling without replacement, using

Neyman allocation, which is typical of many business surveys. Following the survey design principles

outlined in Smith (2013, Chapter 5, pp. 165–201), the Neyman allocation minimizes the overall

sample size for a fixed coefficient of variation on the measure of size variable, using the same variable

for stratification and allocation. With skewed populations, a small number of units will account for

a large proportion of the population total. To minimize bias in the estimated total, the largest cases

are included in the sample with certainty, i.e., their probability of selection equals one.

For the simulation, the certainty strata boundary was determined with the Lavallée-Hidiroglou

stratification algorithm (Lavallée and Hidiroglou, 1988) and noncertainty stratum boundaries were

determined via the cum-root-f rule (Dalenius and Hodges Jr, 1959). Setting the target coefficient of

variation for the measure of size variable s to 0.02 and assuming Neyman allocation (equal costs per

unit) yielded a sampling design comprising five strata and a fixed sample size of n = 6, 300. Table 2

presents the sampling fractions (nh/Nh) and the realized sample sizes (nh) by stratum.

This stratified design is typical of economic surveys: it includes large establishments with certainty

(stratum 1), it samples medium sized establishments with high sampling rates (stratum 2), and
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Table 2: Stratum sizes and sampling rates for the simulation study.
Stratum 1 2 3 4 5
nh 1410 476 109 286 4019

nh/Nh 1.000 0.235 0.062 0.061 0.045

it samples the remaining cases with very low sampling rates (strata 3 through 5). Note that the

sampled establishments with the largest survey weights will contribute proportionally little to the

overall tabulated totals, typical of business survey designs (Thompson and Oliver, 2012).

4.3 Step 3: Synthesizing the data

We evaluate three synthesis methods: our proposed synthetic population method (denoted by PopSyn

hereafter) introduced in Section 2.2 and two synthetic sample methods based on the likelihood

function in Equation (1), one which completely ignores the sampling design (denoted by SampleSyn1

hereafter) and the other using the measure of size variable as an additional predictor (denoted by

SampleSyn2 hereafter).

SampleSyn1 is the original DP Gaussian mixture synthesis model of Kim et al. (2018), which only uses

the survey variables, i.e., Y n = {yi,surv : i = 1, . . . , n}. This method draws the multiple synthetic

samples Ỹ
(l)

n = {ỹ(l)1 , ỹ
(l)
2 , · · · , ỹ

(l)
n }, l = 1, . . . ,m, independently from the posterior predictive

distribution f(ỹi|Y n) =
∫
f(ỹi|Θ)f(Θ|Y n)dΘ. Since this method does not reflect any sampling

information, f(Θ|Y n) estimates the model parameters of the joint distribution of the sampled units,

rather than that of the population units.

SampleSyn2 implements the methodology of Kim et al. (2018) including the design variable si

in addition to the survey variables, i.e., Y n = {(yi,surv, si) : i = 1, . . . , n}. The motivation for

including the design variable is to make the sampling design ignorable when estimating the model

parameters (Pfeffermann, 1993; Berg et al., 2016). After fitting the Gaussian mixture model in (1) to

{yi = (yi,surv, si) : i = 1, . . . , n}, partially synthetic samples for the survey variables are drawn from

the conditional posterior predictive distribution given the design variable, f(ỹi,surv|si,Θ)f(Θ|Y n).
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This synthesis strategy assumes that the agency would disseminate the synthetic survey variables

together with original design weights, which are still valid given that the data were generated

conditional on the original measure of size variable si.

For PopSyn, we use the suggested method described in Section 2.2 to generate synthetic populations

of size N = 100,000. For each synthesis method we create m = 10 synthetic datasets by drawing

every 200th iteration of a MCMC chain after a burn-in period of 2,000 iterations. Using trace

plots and autocorrelation plots, we confirmed that the burn-in period is sufficiently long to ensure

convergence to the stationary distribution and the draws from the chains are sufficiently far apart to

ensure independence between the multiple synthetic datasets.

4.4 Step 4: Evaluating the analytical validity and the risk of disclosure

As discussed in Section 3.1, we evaluate two dimensions of analytical validity. First, for the design-

based measure of economic activity, we estimate the population totals for all survey variables included

in the simulation study. Second, as an example of an econometric model, we look at the regression

coefficients in the following linear regression model:

log Y1 = β0 + β1 log Y2 + β2 log Y3 + β3 log Y4 + ε.

Regardless of any assumptions related to the distribution of the random error ε, we can compare the

least square estimate computed from each synthetic dataset.

Two questions arise in this context: (i) Should the design weights be used when estimating the

regression coefficients in the linear regression model? (ii) How should we estimate the variance of

the estimated totals?

Starting with the first question, we compute the weighted least square estimate (WLS) for the

synthetic samples (SampleSyn1 and SampleSyn2), whereas the ordinary least square estimate (OLS)

is used for the synthetic populations. Note, however, that the SampleSyn1 approach, implicitly
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assuming simple random sampling, has constant weights for all synthesized units, leading to identical

results for WLS and OLS.

The answer to the second question depends on the synthesis strategy. The outputs of SampleSyn1

are not associated with the original survey weights, so the estimate for the sampling variance u(l) for

the l-th synthetic data set is computed assuming simple random sampling. Because the synthetic

units in this approach do not match with any original units or original survey weights, the outputs

are considered as fully synthetic samples and Equation (12) is used for variance estimation. Since the

outputs of SampleSyn2 are partially synthetic samples where the original measure of size variables

si are linked to the synthetic survey variables ỹi,surv, we use the variance estimation equation in

(11) when estimating variances based on SampleSyn2. For this design, the sampling design has to

be taken into account when computing the within variance ūm. Note that stratum indicators are

typically not released due to confidentiality concerns under currently employed data access regimes.

Because we cannot anticipate whether this would change if synthetic data would be released instead,

we consider two alternative design-based variance estimators for u(l) for SampleSyn2. If stratum

indicators can be included in the partially synthetic samples along with the design weights, the

stratified sampling design-based variance estimator for a total V̂ (t̂)str =
∑

h(1− nh/Nh)N2
hs

2
h/nh

calculated from the l-th synthetic sample can be used for u(l), where nh and Nh are the within-strata

sample and population sizes, respectively, and s2h is the sample-based within-strata variance. This

estimator appropriately accounts for finite-population sampling and differing strata means. However,

if such design information is deemed sensitive, then the more conservative Hansen-Hurwitz variance

estimator V̂ (t̂)HH = 1/n
∑

i(wiyi − ŷ)2 can be used, where n =
∑

h nh and ŷ =
∑

iwiyi calculated

from each synthetic sample. These two variance estimators represent best and worst-case scenarios for

inference. We note that other design-based variance estimators could be used if the strata indicators

are deemed sensitive. For example, surveys could provide design-effects for selected items (Kish and

Frankel, 1974), generalized variance functions (Valliant, 1987), or more aggregated standard error
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computation units that allow replicate variance estimation for a stratified sample, e.g., U.S. Census

Bureau (2006). If these strategies would be employed, we would expect the inferential properties

of the totals to lie somewhere between the two scenarios. For the fully synthetic populations from

PopSyn, we can simply use the variance equation in (13). As the variance of the estimated total

only depends on the variance between the synthetic datasets Bm, the analyst no longer needs to

worry about the original sampling design.

For the risk evaluations we compute the absolute relative difference measure under Scenarios 1 and

2 discussed in Section 3.2. As pointed out above, the whole process of sampling from the population,

generating three different versions of synthetic data, and evaluating the generated data is repeated

400 times.

4.5 Results

4.5.1 Analytical validity

Table 3 contains the results for the estimated totals. In the table, θ denotes the true population

totals, while θ̂ denotes their estimates from the different synthetic datasets. Summarizing over 400

repeated simulations, Table 3 presents the empirical mean E(θ̂), the empirical variance V(θ̂), the

mean squared error MSE(θ̂), and the empirical mean of the variance estimates E{V̂(θ̂)} for each

synthesis design.

The results from Table 3 can be summarized as follows. First, the synthetic generator implemented

with SampleSyn1 (originally proposed by Kim et al., 2018) results in extremely positively biased

estimates of the population totals, since it fails to incorporate informative sampling design features.

Second, incorporating the survey design features in the synthesis models yields estimates of the

population totals for synthetic samples (SampleSyn2) and synthetic populations (PopSyn) that

are within 4% of the corresponding population totals for all variables. A possible source of the

deviation in SampleSyn2 is the relatively limited design information contained in the measure of size
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Table 3: Inference for population totals based on the different synthesis strategies (unit: 106 for point
estimates and 1012 for MSE and variance estimates). For SampleSyn2, E{V̂(θ̂)}str computes the
within-variance u(l) using the variance estimate appropriate for stratified simple random sampling
without replacement, while E{V̂(θ̂)}HH uses the Hansen-Hurwitz variance estimator.

Y1 Y2 Y3 Y4

Simulation Population θ 177.9 44.7 220.9 716.8

SampleSyn1

E(θ̂) 1445.3 218.6 1008.6 5819.9
MSE(θ̂) 1838487.3 32096.1 717691.3 34985282.8
V(θ̂) 232893.9 1885.6 97514.8 8967013.0

E{V̂(θ̂)} 18187.9 148.2 5986.0 570918.9

SampleSyn2

E(θ̂) 184.0 46.1 223.0 745.3
MSE(θ̂) 68.3 9.1 68.2 1550.0
V(θ̂) 31.1 7.2 64.2 739.7

E{V̂(θ̂)}str 12.7 1.3 34.5 599.2
E{V̂(θ̂)}HH 21.6 1.6 43.3 849.7

PopSyn

E(θ̂) 178.7 46.6 228.1 685.0
MSE(θ̂) 35.8 8.2 111.3 1598.9
V(θ̂) 35.3 4.8 60.7 588.4

E{V̂(θ̂)} 46.5 5.4 53.2 569.8

variable compared to the stratum indicator which contains the full design information used in the

stratified sampling. The deviation in PopSyn can be explained by the fact that the pseudo likelihood

function is an approximation to the true population likelihood. Third, SampleSyn2 consistently

underestimates the variances for all variables, while the variance estimates for PopSyn are close to

their expected values.

The substantial underestimation of the true variance for SampleSyn2 can be explained if we note that

the synthesis model only partially accounts for the sampling design. Including the measure of size

variable si in the synthesis model helps correct the bias in the point estimates, since the sampling

design becomes less informative once we condition on si. However, the synthesis model does not

exploit the efficiency gains from stratified sampling, i.e., the synthesis models still assume that the

original sample was generated using simple random sampling. Hence, the uncertainty introduced at

the synthesis stage is larger than if the sampling design were properly reflected. As a consequence,
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the variance estimate, which assumes full efficiency both at the sampling as well as at the synthesis

stage, underestimates the true variance of the point estimates with the synthetic data. To overcome

this problem, separate synthesis models would have to be run in each stratum, which typically is

prohibitive due to small sample sizes within strata. Reiter et al. (2006) studied a similar problem in

the context of multiple imputation inference under complex sampling designs. They suggested two

alternatives to ensure approximately valid inferences: including stratum indicators in the imputation

model or using hierarchical models with strata defining the second level of the model. Both options

are difficult to implement for the Gaussian mixture synthesis model, which assumes that all variables

are continuous.

Table 4 presents the results for the linear regression model. In this table, θ = βj for j = 1, 2, 3, 4 are

the regression coefficients for the simulated population and θ̂ denotes their estimates for the three

synthesis strategies. Because the analysis model is mis-specified (the true data generating process is

built on a normal mixture model, not a multivariate normal distribution or a linear model), we do not

report results regarding the estimated variances from the synthetic data, since the variance estimates

for the regression coefficients would be biased even for the original input data Y n. However, we still

think that this type of evaluation is important, since it mimics a scenario typically encountered in

practice. The analysis model will rarely match the data generating process exactly, but the results

from the synthetic data should nevertheless be close to the results from the original data.

The results in Table 4 can be summarized as follows. Entirely disregarding the design information in

SampleSyn1 results in biased estimates for all parameters. For β1, the estimate even has a wrong

sign. PopSyn results in smallest mean squared errors for three of the four parameters, while the

measure for β2 is smallest for SampleSyn2. However, the differences between the two methods are

generally small.
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Table 4: (Weighted) least square estimates of E(log Y1) = β0 + β1 log Y2 + β2 log Y3 + β3 log Y4 for
the different synthesis approaches (unit: 10−2 for MSE).

β0 β1 β2 β3

Population θ 0.91 -0.08 0.19 0.69

SampleSyn1 E(θ̂) 0.80 0.03 0.22 0.60
MSE(θ̂) 1.29 1.12 0.15 0.89

SampleSyn2 E(θ̂) 0.88 -0.06 0.19 0.68
MSE(θ̂) 0.32 0.24 0.03 0.24

PopSyn E(θ̂) 0.90 -0.11 0.22 0.69
MSE(θ̂) 0.28 0.14 0.10 0.04

Table 5: Quartiles of absolute relative differences, ARD= |L̂ − L|/L, across the 400 repeated
simulations assuming that an attacker has access to the synthetic data only. Larger values of the
absolute relative difference (ARD) measure indicate higher levels of protection.

Y1 Y2 Y3 Y4

SampleSyn1
Q1 1.77 0.40 1.72 0.81

Median 2.13 0.54 1.96 1.01
Q3 2.70 0.74 2.35 1.34

SampleSyn2
Q1 0.30 0.04 1.03 0.11

Median 0.41 0.08 1.16 0.21
Q3 0.62 0.13 1.33 0.31

PopSyn
Q1 0.69 1.73 8.87 0.18

Median 2.21 5.59 17.77 0.60
Q3 4.16 12.43 28.35 2.30

Simulation Truth (unit: 1000) L 621.8 91.7 152.7 2318.2

4.5.2 Disclosure risks

Table 5 compares the disclosure risks of the synthesis approaches under Scenario 1 (described in

Section 3.2) assuming that an attacker has access to the synthetic data only. Note that larger values

of the absolute relative difference (ARD) measure indicate higher levels of protection. The table

shows that the ARD values are always lowest for the SampleSyn2 approach, while the PopSyn

approach typically results in the largest values; only the first quartiles of Y1 and Y4 and the median

of Y4 are largest for SampleSyn1.
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We also compute ARDs under Scenario 2 assuming that the attacker has access to the synthetic

data and the second largest value of the studied item. This scenario results in extremely high values

of ARD for all methods and variables. For example, the minimum value of ARD for Y1 is greater

than 250, i.e., the difference between the largest value and its estimate is 250 times bigger than the

largest value. With our simulated data, which does not contain any extremely large establishments

accounting for more than, say 50%, of the population total, this attacker strategy is not threatening.

However, we acknowledge that risks from this approach could be higher in practice, if the attacker

can stratify the data by other known attributes such as industry.

Combining the analytical validity results and the risk measures in a risk-utility framework, we note

that although SampleSyn1 outperforms SampleSyn2 in terms of data protection, the price for this

extra protection seems not justified due to the unacceptably low levels of analytical validity (as

shown in Table 3). On the other hand, PopSyn performs at least as well as and often better than

SampleSyn2 from a utility perspective while offering substantially improved data protection, at least

based on the ARD measure. Therefore, we can conclude that PopSyn should be preferred over the

other two methods, especially if we keep in mind that it will also simplify the analysis task since the

sampling design information no longer needs to be taken into account.

5 Empirical Study

5.1 Background

In this section, we apply the SampleSyn1, SampleSyn2, and PopSyn generators to empirical data

from the 2012 Economic Census. The synthetic data are generated from the Economic Census final

data – edited and imputed in the production stage – from three different industries, each representing

a different economic sector and highlighting different features of the census universe.

The Economic Census is the U.S. Government’s official five-year measure of American business
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and the economy. The Economic Census is not a complete census of establishments. For the

2012 collection, the majority of the sectors employed stratified systematic samples: all multi-unit

enterprises and large single-unit establishments were included in the sample with certainty in strata

defined by 6- or 8-digit NAICS industry and state depending on the industry; and the remaining

single-unit establishments were sampled, under the restriction that survey weights never exceed 20.

The manufacturing and mining sectors employed cut-off samples for the 2012 Economic Census, the

construction sector employed a stratified PPS sample (Pareto sampling), and the wholesale trade

sector included all establishments with certainty (census). The Economic Census collects a core set

of general statistics items from each establishment. Examples include total receipts or shipments

(“Sales”), annual payroll (“AnnPay”), and the number of employees in the first quarter (“Emp1Q”).

With the exception of the construction sector, all trade areas construct a complete universe of general

statistics values by using administrative data in place of respondent data for unsampled units. In

addition, the Economic Census collects industry-specific information such as the revenue obtained

from product sales. The sector and industry specific items are estimated from the sampled units.

Table 6 presents key features of our input data. Establishments in the studied transportation industry

(488330) tend to be homogeneous in terms of the frame measure of size, regardless of geographic

location. In contrast, the establishments in the studied insurance industry (524210) and the services

industry (544110) vary in size and hence have the wider range of weights. The services industry

establishments are either taxable or tax-exempt, with operating expenses (“OperExp”) collected from

the tax-exempt establishments. The editing and imputation parameters for the transportation and

insurance industries used in the production stage are developed at the national industry level. In

the services industry, the taxable and tax-exempt establishments are further split into two separate

domains, resulting in 4 imputation cells total for the editing and imputation. In this particular

service industry, there was insufficient data in one imputation cell for modeling, and these data were

dropped from the modeling and analysis.

34



Table 6: Input data in the empirical study. The study variables are Annual Payroll, 1st Quarter
Payroll, 1st Quarter Employment, Sales/Receipts, and Operating Expenses. †Editing/imputation
performed separately for taxable and tax-exempt establishments (two categories per establishment
type). ‡Operating expenses are collected from tax-exempt only establishments (one imputation cell).

Industry (sector label) 488330 524210 544110
Sector Transportation Insurance Services

Description Navigational services Insurance agencies
Offices of lawyers

to shipping and brokers
Total sampled units 545 29,682 37,670

Proportion of certainty units 0.64 0.51 0.51
Range of survey weights 1.00 – 1.50 1.00 – 10.00 1.00 – 20.00

Number of imputation cells 1 1 3†

Study variables
Annual Payroll x x x
1st Quarter Payroll x x x
1st Quarter Employment x x x
Sales/Receipts x x x
Operating Expenses – – x‡

Unfortunately, the original frame values of sampling measure of size were not available in our historic

files. Instead, we created an artificial size variable for the SampleSyn2 applications as the geometric

mean of annual payroll and sales. This is a crude approximation of the actual frame measure of size

and is loosely patterned after methods used by annual business surveys at the Census Bureau, which

create a hybrid measure of size for each unit on the frame.

To create input data for the data synthesis of this application study, we constructed probability

samples from the complete collection by dropping all unsampled units. See Figure 2 for the depiction

of the input data creation process. The upper table represents the (complete) census data where all

units from the frame are included. There is no solicitation of units that were not selected in the

sampling process (denoted “Not Sampled”); the four core variables are imputed with administrative

data. Other variables (denoted as Other*) may be solicited from sampled units or will be imputed

using some form of industry regression model for unsampled units. The lower table depicts the input

data used to generate the synthetic data for this application study and comprises only sampled units

that were in business for the calendar year (2012). The Economic Census final data have undergone

35



all production edits and contain imputed values. A few units in each industry were dropped (less

than 1% per industry) if the final data did not satisfy all applicable ratio edits. This could occur

in selected cases when an analyst verified that the reported data were correct and bypassed the

edits. The operating expenses variable is included in the synthetic data generators for the services

industry, as it is included in an explicit ratio edit and therefore provides important bounding for

other associated variables. However, the results for operating expenses are omitted in the subsequent

sections, as they do not exhibit different patterns from other variables in the industry.

In the analyses below, we treat the Horvitz-Thompson estimates from the input data as the truth.

These estimates are not equivalent to their corresponding published totals. Besides dropping the

unsampled units, we restricted the input data to full-year reporters, establishments that were in

business for the entire calendar year. We use the production ratio edits employed by the 2012

Economic Census in our synthesis models, which are designed for the full-year reporters. We included

an additional set of imputation-cell level range edits on annual payroll, 1st quarter employment, and

sales, obtaining the upper limits from the maximum value of each item in the input data, multiplied

by a small growth factor. The range edits, not used in production, help prevent the generators

from creating impossibly large values, e.g., a synthetic unit-level value of sales larger than the gross

domestic product.

This empirical analysis is not necessarily a good representation of Economic Census processing.

However, it is an excellent representation of conditions for synthesizing economic data from a sample

survey. By modeling synthetic data from the final data used for tabulation, we hope to produce

datasets that will have similar properties in both model-based and design-based inferences as the

original data without the associated disclosure risks. For many areas of research and analysis, this

will be sufficient if the synthetic distributions are not overly distorted. For others, the synthetic data

will be sufficient for testing programs, and researchers can request special access to the program

microdata or a validation server if it exists.
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Figure 2: Depiction of the process creating input data used for synthetic data generation in the
empirical study. The upper table represents the (complete) census data in the studied industries.
The lower table represents the final input data for this empirical study. AnnPay denotes annual
payroll; Pay1Q, 1st quarter payroll; Emp1Q, 1st quarter employment; Sales, sales/receipts; and
Other*, other variables.
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As done at the U.S. Census Bureau, we assume that all establishment values in the datasets used for

tabulations are protected, regardless of whether they are the originally reported values, administrative

data substitutions, or imputed values. The protected values can be inconsistent with the supplied

edits, assuming that an analyst has validated them.

5.2 Results

Within each industry, we conducted repeated experiments for each synthetic data method (Sam-

pleSyn1, SampleSyn2, and PopSyn), with a different random seed for each MCMC chain. In each

trial, each synthetic method creates m=10 synthetic datasets by drawing every 200th iteration of a

MCMC chain after 2000 iterations of a burn-in period. We decided to repeat the entire synthesis

process ten times, to rule out the possibility that some of the findings might be the result of

exceptionally lucky or unlucky draws from the synthesis model.

5.2.1 Analytical validity

In Table 7, we present summary statistics on the ratios of estimated synthetic data totals to the

corresponding true values (θ) from the input data. For each synthetic method, we obtained the

estimated total (θ̂r) from each independent MCMC run (r = 1, 2, . . . , 10) by combining m = 10

synthetic datasets. The table reports the average of the ratios across the ten runs. The numbers

in parentheses below the averages are the minimum and maximum values across the ten runs.

Regardless of industry or item, there is very little variability in the estimates between the ten trials

of the synthetic data generator, with the possible exception of the transportation industry.

We see similar patterns in Table 7 as in the simulation study. Despite imposing limits on unit-level

item values via range edits, the estimated totals with SampleSyn1 are overestimated, with the degree

of overestimation increasing as the survey weights become more variable, i.e., the highest in the

service industry. In contrast, the estimated totals with SampleSyn2 and PopSyn approximate their
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Table 7: Averages of the ratios of estimated synthetic data totals to corresponding true values across
the ten trials. A ratio close to one indicates high utility of the synthetic dataset. The numbers in
the parentheses are the minimum and maximum values of the ratios across 10 independent trials.

Industry Method AnnPay Pay1Q Emp1Q Sales

Transportation

SampleSyn1 1.24 1.16 1.26 1.35
(1.16,1.36) (1.08,1.27) (1.17,1.34) (1.26,1.43)

SampleSyn2 0.98 0.93 1.05 1.03
(0.96,1.00) (0.91,0.96) (1.02,1.08) (0.99,1.06)

PopSyn 1.00 0.95 1.04 1.04
(0.96,1.05) (0.91,1.00) (1.00,1.07) (0.99,1.10)

Insurance

SampleSyn1 2.54 2.51 1.95 2.46
(2.49,2.60) (2.46,2.58) (1.93,1.97) (2.43,2.50)

SampleSyn2 1.02 1.01 0.97 0.98
(1.02,1.03) (1.00,1.02) (0.96,1.00) (0.96,0.98)

PopSyn 1.04 1.03 1.00 1.05
(1.02,1.05) (1.00,1.06) (0.99,1.01) (1.02,1.06)

Services

SampleSyn1 3.25 3.17 2.72 3.06
(3.19,3.44) (3.10,3.40) (2.67,2.83) (2.98,3.32)

SampleSyn2 1.04 1.02 1.03 0.98
(1.02,1.04) (1.01,1.03) (1.02,1.03) (0.97,0.99)

PopSyn 0.99 0.99 1.03 1.01
(0.94,1.04) (0.93,1.03) (0.98,1.07) (0.94,1.06)
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Figure 3: Ratios of the standard errors of PopSyn to those of SampleSyn2 by item within industry.
Distributions are obtained from the 10 independent trials within method.

input data counterparts. Clearly, SampleSyn1 is inadequate for producing viable totals.

The simulation study in the previous section demonstrated that the true variance of the estimated

totals is approximately similar for SampleSyn2 and PopSyn, but SampleSyn2 underestimates these

variances, while the variance estimates of PopSyn are close to the empirical variances. If similar

patterns hold in the empirical applications, we would expect that the estimated variances for PopSyn

would generally be larger than the estimated variances for SampleSyn2. Figure 3 presents box

plots of the standard error ratios (ŜEPopSyn/ŜESampleSyn2) within industry by item. We used a

stratified simple random sampling variance estimate for SampleSyn2 (denoted V̂ (θ̂)str in Section

4.5.1), assuming that any released synthetic data would include instructions on design-appropriate

within sample variance components. Consistent with the simulation results, the variance estimates

of PopSyn tend to be much larger than those of SampleSyn2. These effects are especially notable
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Table 8: Regression slope estimates (industry-average ratios) by industry and method, averaged over
10 independent trials.

Industry Method AnnPay/Emp1Q AnnPay/Pay1Q Sales/AnnPay

Transportation

Truth 68.60 4.12 3.64
SampleSyn1 67.38 4.36 3.97
SampleSyn2 64.62 4.34 3.84
PopSyn 66.40 4.33 3.81

Insurance

Truth 59.63 3.91 2.82
SampleSyn1 77.61 3.96 2.74
SampleSyn2 62.56 3.97 2.71
PopSyn 61.65 3.97 2.85

Services

Truth 77.40 4.37 2.80
SampleSyn1 92.65 4.48 2.63
SampleSyn2 78.00 4.42 2.65
PopSyn 74.56 4.40 2.84

in the Services industry, which uses different edits by imputation cell and has the largest spread

in survey weights. Assuming the findings from the simulation studies hold, i.e., the true variances

of the point estimates are approximately similar for both synthesis approaches and the variance

estimate of PopSyn is close to the true value, this application study does provide some evidence that

the precision of the total estimate from SampleSyn2 is likewise overestimated.

Next, we turn to two model-based utility metrics. First, we consider a linear regression model,

Yi = βXi+εi where εi ∼ (0, Xiσ
2). Under this model, the least square estimate is β̂ =

∑
i Yi/

∑
iXi,

i.e., the industry-average ratio. Survey weights are included in the regression estimates for the

SampleSyn2 measures. Table 8 presents the regression parameters for three ratio tests. These

industry-average ratios represent useful economic measures, as described earlier in Section 3.1. The

results can be summarized as follows. In the transportation industry, little sampling is performed.

Hence, the sampling design is not strongly informative and the results generally are very similar

with all synthetic data methods although the upward bias for the Sales to AnnPay ratio is a little

larger for SampleSyn1. For the insurance and services industries, SampleSyn1 shows substantial

differences to the values from the original data (Truth) for the ratio of AnnPay to Emp1Q. For the
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Table 9: Regression parameters for multiple regression model, E{log(AnnPay)} = β0 +
β1log(EmpQ1) + β2log(Sales), averaged over 10 trials. Coefficients whose estimates are different
from the true values by at least 5% of the true values are marked with ∗ symbols.

Industry Method β0 β1 β2

Transportation

Truth 1.52 0.41 0.52
SampleSyn1 1.77∗ 0.48∗ 0.47∗

SampleSyn2 1.53 0.45∗ 0.50
PopSyn 1.62∗ 0.44∗ 0.50

Insurance

Truth 0.67 0.66 0.56
SampleSyn1 0.65 0.60∗ 0.59∗

SampleSyn2 0.79∗ 0.64 0.55
PopSyn 0.67 0.65 0.56

Services

Truth 0.87 0.68 0.53
SampleSyn1 1.01∗ 0.67 0.53
SampleSyn2 0.82∗ 0.62∗ 0.55
PopSyn 0.87 0.68 0.53

ratio of AnnPay to Pay1Q all synthesis methods perform very similarly, which can be explained by

the strong degree of association between the two variables. Finally, for the Sales to AnnPay ratio,

SampleSyn1 and SampleSyn2 show similar amounts of differences to the original values. The results

for SampleSyn2 might be improved with a better measure of unit size. Overall, PopSyn shows good

approximations to the industry-average ratios.

Finally, we consider the regression of log(AnnPay) on log(EmpQ1) and log(Sales), obtaining all

regression parameters with OLS and WLS incorporating survey weights as appropriate. Table 9

presents the regression parameters, averaged over 10 independent trials. Note that this model is not

– to our knowledge – an indicative of any meaningful economic phenomenon; instead, it is meant

to illustrate the type of exploratory analysis that could be performed by a curious data user. The

results in Table 9 illustrate the preservation of multivariate relationships in PopSyn synthetic data

but show marginal performances of SampleSyn1 and SampleSyn2.
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Figure 4: Box plots of the absolute relative difference of the largest estimated value, ARD= |L̂−L|/L,
between the synthetic data and the true value by industry and item. Larger values of the ARD
measure indicate higher levels of protection.

5.2.2 Disclosure risk

As a whole, the SampleSyn2 and PopSyn total estimates were very close to the true values. This

proximity could have implications on the disclosure risk (sensitivity) of the synthetic data. Figure 4

presents box plots of the absolute relative difference, ARD= |L̂− L|/L, of the four items collected

in all industries under Scenario 1 (the attacker has access to the synthetic data only). We also

computed the ARD of each total under Scenario 2 (the attacker has access to the synthetic data and

the value from the 2nd largest establishment plus c collaborators, where c = 0, 1, or 2). However,

the estimates under this scenario were not sensitive, with all ARDs well above 100%, so we do not

consider the scenario hereafter.

Figure 4 provides a few interesting insights. In the transportation industry, the differences of ARDs
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between SampleSyn2 and PopSyn are nonnegligible for all items but the first quarter payroll (Pay1Q).

ARD values are above 0.05 for all four variables in all ten trials for PopSyn but only for seven out of

ten trials for SampleSyn2. Hence, PopSyn offers a higher level of protection for the transportation

industry. In the insurance and services industries, we expected that SampleSyn2 would result in very

small ARD values for annual payroll (AnnPay), Pay1Q, and annual sales (Sales), as the constructed

size variable is the geometric mean of the first two variables, and Pay1Q is strongly related to

AnnPay. We do not see strong evidence of this in the insurance industry, but do see these effects in

the services industry, which is the most finely stratified, has the most variable weights, and imposes

the finest-level edit restrictions. Notice the extremely high disclosure risk in Sales from SampleSyn2,

with ARD values below 0.05 in seven of the ten SampleSyn2 trials. Generating a fully synthetic

population (PopSyn) generally reduces the sensitivity of the largest values for AnnPay, Pay1Q, and

Sales over their partially synthetic sample counterparts (SampleSyn2). Again, this makes sense given

that the size variable is a strong predictor of these three items, whereas the sampling weight used in

PopSyn is not strongly related to any items.

Some attention should be paid to the ARD values of Emp1Q in both the insurance and services

industries. As expected, the estimate of the largest unit’s values of Emp1Q from SampleSyn2 is not

too precise due to the weak association between the size variable included in the SampleSyn2 model

and the number of employees. While this appears to be a sensible explanation for the low sensitivity

of the SampleSyn2 employment estimates, it is not sufficient to explain the extremely high precision

of the corresponding PopSyn estimates, especially in the insurance industry. Both insurance and

service industries contain a small set of certainty units that have similar large values of employment

(at least 1,000 employees more than the 99th percentile value in the industry) with relatively small

ratios of AnnPay to Sales distinct from other establishments. In other words, this set of a few

establishments has large workforces paid at the low end of the industry rate with average profit

ratios. In PopSyn, these few large establishments form a single mixture component with a small
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variance Σk, which in turn generates some records that are very similar to the original establishments

contained in this mixture component. The fact that the establishment with the largest Emp1Q value

happens to be among this group of homogeneous establishments results in an accurate estimate of

the largest value of Emp1Q. We present a more descriptive explanation, along with a sensitivity

analysis in the insurance industry, in Section 5.2.3. The effects of this set of isolated observations

are less pronounced in the services industry because the synthetic data are generated separately by

imputation cell, so that the largest employment observation in the fully assembled industry data

could be obtained from one of three different imputation cell populations.

We make three general observations with respect to this phenomenon. First, such clustering

is not unusual in economic data sets. For example, a small subgroup of businesses could have

large expenditures on structural improvements while maintaining more typical levels of payroll,

employment, and sales. Second, the effects of the isolated clusters on the fully synthetic populations

should decline as more variables are included in the synthesis, as it becomes less likely that several

units are very homogeneous in all the attributes while at the same time being far enough from the

rest of the data so that they will always end up in the same mixture component. Lastly, these results

demonstrate that one cannot offer an ex-ante guarantee that the data will be fully protected, even

with full synthesis.

5.2.3 Sensitivity analysis in the insurance industry

In Section 5.2.2, we describe the effects of clustered values on the studied synthetic data generator.

Because of the regulations, we cannot provide scatter plots of the real Economic Census data used

for the synthesis. Instead, Figure 5 illustrates this phenomenon, using a fictional multivariate

distribution of three variables (employment, sales, and inventories). The sales and inventories

variables are collected in thousands of dollars: sales values range from 1,345 to 270,244; inventories

values range from 1,223 to 273,031; and the correlation between the two items is 0.74. In contrast,

45



employment is collected in units, and its values range from 4 to 410, with correlation coefficients

of 0.57 to sales and 0.37 to inventories. In this figure, the total number of employees are plotted

against the ratio of sales to inventories.

Figure 5: Fictional multivariate distribution of employment and inventories to illustrate the effects
of clustered values in Section 5.2.2.

Notice the distinct set of four large establishments in the upper left hand corner, which will be

distinctly represented in a mixture component with a small value of Σk. The PopSyn synthesizer will

always generate some records that are very similar to the establishments contained in this mixture

component. Because the unit with the largest value of employment is contained in this group of

homogeneous units, we postulate that there is a very high probability of consistently generating

a synthetic unit that matches the largest unit in the original data (in terms of employment) on
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all items. To verify this hypothesis, we modified the four largest values of EMP1Q in the input

dataset for the insurance industry, replacing each original value with their mean, i.e., the average

of the four largest values, and leaving the remaining items in these four records untouched. After

modifying the input data (one of four variables in four of approximately 29,000 observations), we ran

10 independent trials using the PopSyn method, with a different random seed for each MCMC chain,

essentially repeating the procedure described in Section 5.1. Figure 6 presents summary results over

10 independent trials, with the upper row presenting ratios of the PopSyn synthetic totals to the

true totals (utility measure) and the lower row presenting Scenario 1 privacy loss for each studied

variable, where privacy loss is defined as one minus absolute relative difference.

Figure 6: Utility (upper row) and privacy metrics (lower row) obtained from modified insurance
data by macroaggregation.
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As expected, the synthetic data totals remain very close to the original data totals, and the privacy

loss for annual payroll, 1st quarter payroll, and sales are – as expected – unchanged. However, the

privacy loss for 1st quarter employment is greatly improved, with no degradation in corresponding

utility. Indeed, the ARD values for 1st quarter employment were greater than 0.10 in nine of the 10

independent trials. Note that we do not recommend modifying the input data as a general practice

for resolving overly accurate synthetic data estimates. This investigative approach, however, did

provide strong evidence in favor of our hypothesis and – in this case – yielded synthetic populations

with high utility and low disclosure risk in this specific situation. Note that the differences in

regression parameters for all studied models was trivial and are not reported.

6 Conclusion

In most National Statistical Institutes, access to confidential business data is strictly regulated to

reduce the risk of an unauthorized disclosure and providing alternative microdata such as PUMS is

generally discouraged with business data. Consequently, disseminating fully synthetic data instead

of the original data is an appealing strategy to facilitate access to the data. Our paper focuses on

providing useful general-purpose synthetic data under informative sampling designs. As we illustrate

through a simulation study followed by an empirical application using selected industries from

the 2012 U.S. Economic Census, synthetic data approaches previously proposed in the literature

(SampleSyn1 in our study), treating the original sample as a simple random sample from the

population, will introduce substantial bias in inference, as they fail to account for the informative

sampling design. To overcome this problem, we propose a pseudo likelihood approach and present

the necessary adjustments for the Gibbs sampler employed to generate the synthetic data. We treat

the revised Gibbs sampler as a super-population synthesizer and draw finite synthetic populations.

In our simulations and application, the synthetic population produced approximately the same

benchmark totals as the corresponding original data, retained the multivariate relationships between
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items, and conformed to a predetermined set of edits.

The pseudo likelihood approach proposed in this paper offers three important advantages. First,

it is straightforward for statistical agencies to implement, as it only requires incorporating the

sampling weights into the likelihood function. A commonly suggested strategy for dealing with

informative sampling designs in a strictly model-based framework is to include the entire set of

design variables in the model as additional predictors (SampleSyn2 in our study). This approach

assumes that all design variables are available to the data synthesizer, which is not always the

case as in the empirical application presented in Section 5. Second, the approach should also be

applicable in the general context of multiple imputation for nonresponse for complex survey designs.

The multiple imputation approach has been criticized repeatedly for ignoring the complex sampling

designs typically encountered when dealing with survey data (Fay, 1996; Kim et al., 2006, among

others). We are planning to evaluate whether the pseudo likelihood approach can be a suitable way

to address this criticism. Third, users do not need to consider the sampling design of the original

survey data because they are provided with synthetic populations.

The empirical data application of this paper further reveals that even fully synthetic data are not

free from disclosure risk. This is an important finding. It seems prudent to assume that risks are

generally negligible for fully synthetic data, as the data cannot be linked to any original records.

However, even though risks of re-identification are typically trivial for fully synthetic data, the

risk of attribute disclosure may not be. Indeed, attribute disclosure is often a large concern with

business populations. Although the inclusion of the largest establishments (or enterprises) in sample

surveys is generally not considered as confidential, specific attributes of these units are expected to

be protected in the disseminated data products. Attribute risk appears to be amplified with the

release of masked or synthetic microdata, as an atypical unit in a tabulation cell could potentially

provide information on many related items. The insurance industry application provided in Section

5 illustrates this phenomenon: any attacker can accurately estimate the number of employees for the
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largest unit in this industry from the synthetic population data generated by the pseudo likelihood

model and could subsequently make reasonable inferences about the same unit’s values of annual

payroll, 1st quarter payroll, and total sales.

This finding highlights the common dilemma in data dissemination: there is always a trade-off

between preserving the information in the data and the risk of disclosure. The flexibility of the DP

Gaussian mixture model used in our considered synthetic data generators ensures that the analytical

validity is high even when looking at small subsets of the particular set of data. However, any utility

measure becomes a risk measure when applied at a very detailed level. This tradeoff needs to be

respected in the development and release of synthetic data.

We propose a synthetic data generator that fuses design-based and model-based methods, adopting

the design-based perspective of a superpopulation from which finite populations are randomly drawn

while using model-based methods to generate viable posterior predictive populations. Sample design

features are embedded within the generating models. Variance estimation with the multiple synthetic

populations is straightforward and easy to implement in practice, allowing for valid inference in many

commonly-used settings. We did identify data conditions that can lead to increased sensitivity in

the synthetic data, and this sensitivity should be checked prior to synthetic data release. Developing

methods for dealing with this problem is another interesting area for future research.

Certainly, the proposed synthesis approach, which accommodates many special features of business

data distributions, is an improvement over more standard synthetic data generators such as synthpop

(Nowok et al., 2016). Given the utility requirement that the synthetic data produce similar benchmark

totals as the corresponding original data statistics, it might be possible to release these tabulations in

place of noise-infused totals as obtained using differential privacy or other formal privacy frameworks.

Of course, that is another area of future research, as is the effect of releasing synthetic microdata or

macrodata on the overall privacy budget.
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