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Abstract

We consider the task of protecting respondent’s privacy when collecting data on categorical

variables. Any mechanism for masking the true value of a respondent can be viewed as a

randomized response (RR) procedure, and its prudent planning depends crucially on the given

privacy criterion. We examine some existing privacy criteria and describe their drawbacks.

We show that a previous notion of average security is inappropriate. Several other criteria,

which simply impose upper bounds on the parity of the RR design, inflict severe data utility

loss, unless the number of categories is fairly small. This applies to local differential privacy

(LDP), which is a leading privacy criterion, and reveals substantial statistical inefficiency of

the RAPPOR procedure, which has been in use by Google, Apple and others. We propose

a new privacy procedure that is similar to l-diversity but, works locally for each respondent.

The procedure is simple to implement and its privacy protection is easy to understand and

communicate to survey participants. We give an unbiased estimator of the probability vector

of all categories and prove its minimaxity within a class of estimators under squared error

loss. We argue and believe that the new procedure offers a better privacy-utility trade-off

than LDP.
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1. Introduction

The collection, analysis and sharing of data have now become central to public policy, business

decisions, research and other areas. The primary goal of statistical activities is to gain knowledge,

but we also need to protect respondents’ privacy in order to meet privacy regulations and to up-

hold public trust. Public awareness and concerns about privacy have grown significantly in recent

years, which have drawn considerable interest to privacy research from statisticians, computer sci-

entists and others. Various privacy concepts, measures and methods, such as identity disclosure,

differential privacy, k-anonymity, l-diversity, data swapping, cell suppression, synthetic data, ran-

domized response, have been proposed; see Willenborg and de Waal (2001), Chen et al. (2009),

Hundepool et al. (2012), Torra (2017) and Venkataramanan and Shriram (2017) for systematic

discussions and references.

We should distinguish between privacy and confidentiality, which have often been used syn-

onymously. Both are about concealing or masking information about each respondent or survey

unit, so that the data may be used only to learn about the population as a whole and not about

any specific unit. However, privacy appears at the time of data collection whereas confidentiality

arises after data collection and they have some distinct features. Many data sets contain the

true values or characteristics of some units, e.g., individuals, families, businesses etc. In particu-

lar, data obtained from administrative records, transactions, on-line postings, searches and many

surveys contain respondents’ true values. Concerns about confidentiality arise when we want to

release or share such data (or even summaries), as we do not want the released data to reveal

much information about any unit in the data set. Consequently, data agencies often release only

high-level summary statistics or a perturbed version of the actual data.

Privacy is an individual’s right to control access to his/her information, even with respect to

the data collector. To protect privacy, each survey unit’s true values need to be masked locally

before reporting to the data collector. So, the data would contain only imprecise or masked
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values of the units in the data set. Evidently, the masking mechanism must be chosen before

the data are collected. In contrast, a method for confidentiality protection may be chosen based

on the observed data. Actually, many confidentiality protection methods, such as generalization,

suppression, data swapping and creating synthetic data, are data dependent. In another view,

confidentiality protection involves output perturbation whereas privacy protection requires input

perturbation.

One serious confidentiality breach in releasing microdata is identity disclosure, which occurs

when a unit’s records in released data can be identified by matching the values of some variables,

called key variables or pseudo-identifiers, that can be easily obtained from other sources. Clearly,

when a unit is identified, one can learn its values for all variables. To control identification risks,

Samarati (2001) and Sweeney (2002) introduced the k-anonymity criterion, which requires that

each record in the released data be identical to at least k−1 other records with respect to the key

variables. So, any unit will have at least k matches by the key variables. Algorithms for achieving

k-anonymity mainly use generalization and suppression of the original values. Other approaches

to defining and controlling identification risks have been discussed in Bethlehem et al. (1990),

Skinner and Elliott (2002), Shlomo and Skinner (2010) and Nayak et al. (2018), among others.

Machanavajjhala et al. (2007) noted that k-anonymity is inadequate for protecting against

attribute disclosure, which occurs when a unit’s true value of a sensitive variable is learned,

using key variables matching. Indeed, a target unit’s value of a sensitive variable (e.g., disease

status) would be revealed if all of its matching units have the same sensitive variable value (e.g.,

cancer). For addressing this problem, Machanavajjhala et al. (2007) proposed l-diversity, which

requires that in released data, each set of matching units with respect to the key variables must

contain at least l “well represented” values for the sensitive variable. They also gave practical

definitions of “well represented” and showed that l-diversity can be achieved using generalization

and suppression. Domingo-Ferrer et al. (2019) presented a unified approach for achieving k-
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anonymity, l-diversity and other privacy requirements.

Usually, each respondent’s identity is known to the data collector. So, privacy protection

mechanisms aim to control attribute disclosure for each unit assuming that its identity is already

disclosed. The goal is to assure that the true values of a unit cannot be ascertained with high

certainty from their masked values. Thus, a data set compiled after giving adequate privacy

protection should not need confidentiality protection. For this reason, even when the true values

are available, a data collector may prefer to mask those before recording. This may be particularly

relevant to companies when collecting information from on-line transactions, searches, postings

etc. Moreover, the masking task can be delegated to computers for both convenience and to avoid

anyone looking at the original values.

In this paper, we consider privacy protection when collecting data on categorical variables.

To describe our context, let X be a categorical survey variable or a cross-classification of sev-

eral variables. Let SX = {c1, . . . , ck} be the range of X, πi = P (X = ci), i = 1, . . . , k, and

π = (π1, . . . , πk)
′, which is unknown. We want to collect data to estimate π and make other

inferences about it. However, for protecting privacy we can observe only a masked version of X.

Randomized response (RR) is a primary tool for privacy protection, which was first proposed by

Warner (1965) for protecting respondent’s privacy in interview surveys of sensitive binary vari-

ables. Subsequently, many other RR methods have been developed for applying to categorical

and quantitative variables. We refer to the books Chaudhuri and Mukerjee (1988), Chaudhuri

(2011) and Fox (2016) for reviews and relevant references.

In general, an RR procedure changes each true X into elements of an output space with known

probabilities. Respondent’s privacy is protected by revealing only the randomized response (or

output). Let Z denote the output variable of an RR procedure and SZ = {d1, . . . , dm} be its

range. Note that SX and SZ need not be the same, or even have the same cardinality. Let

pij = P (Z = di|X = cj), i = 1, . . . ,m, j = 1, . . . , k, denote the transition probabilities that
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are inherent in the RR procedure. The transition probability matrix (TPM) Pm×k = ((pij))

characterizes an RR procedure, as it determines all of its effects on privacy and data utility. We

refer to the TPM as the RR design. Quite importantly, any input masking procedure, locally

for each unit, must have a built-in output space and transition probabilities, and thus can be

viewed as an RR procedure. Consequently, the RR framework is quite general for studying and

comparing all local input masking procedures. In particular, choosing a masking procedure for

privacy protection boils down to choosing an RR design P .

To discuss estimation of π based on RR data, let n denote the sample size and Si denote

the sample frequency of di, i = 1, . . . ,m. We assume random sampling, which implies that

S = (S1, S2, . . . , Sm)′ has a multinomial distribution, viz. S ∼ mult(n, λ), where

λm×1 = Pm×kπk×1. (1.1)

A common estimator of λ is λ̂ = S/n. When P is square and nonsingular, an estimator λ̃ (based

on S) of λ gives the estimator π̃ = P−1λ̃ for π, via (1.1). For generality and relating to some

recently introduced RR methods, we assume that m ≥ k and rank(P ) = k. RR methods with

rank(P ) < k are unattractive, because there the distribution of S is not identifiable with respect

to π and hence π is not estimable.

As is well known, data masking reduces data utility, i.e., the scope and quality of statistical

inferences that can be made from masked data are lower compared to original data. A general

objective is to choose and use a masking procedure that provides desired privacy protection at

a minimum loss of data utility. Alternatively, one may try to strike a good balance between

privacy protection and data utility. Clearly, formalizing such ideas requires practical privacy

measures. Thus, we focus this study on privacy criteria and their demands on data utility. The

main contributions of this paper are twofold. (1) We examine some existing privacy criteria,

including local differential privacy (LDP), and discuss their drawbacks and (2) propose a new

criterion (local l-diversity) and a method for estimating π under it.
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The rest of this paper is organized as follows. In the next section, we briefly review two privacy

criteria, viz. strict information privacy (SIP) and φ-average security, that were developed taking

a Bayesian approach. The LDP criterion, which has received substantial attention in recent years,

is closely connected to SIP. In Section 3, we show that (i) φ-average security is a flawed privacy

criterion and (ii) SIP and LDP are highly expensive in terms of data utility, especially for large

k. In Section 4, we propose a simple privacy mechanism that provides a local l-diversity privacy

protection. It generalizes the true category randomly and can be viewed as an RR procedure. We

give a method of moments estimator of π, which is very easy to calculate, and prove that under

squared error loss, it is minimax among all linear unbiased estimators of π. We explain that for

moderate to large k, the new method is better suited than LDP or SIP based methods. Section

5 contains some concluding remarks.

2. A Brief Review of Existing Privacy Criteria

Some recently introduced privacy criteria view a privacy breach as an intruder’s “too much”

information gain about a respondent from his response, and develop this idea using subjective

probability and the Bayes rule, to articulate an intruder’s knowledge, before and after observing

a response. Some relevant works of Evfimievski et al. (2003), Nayak et al. (2015), Ye and Barg

(2018) and Chai and Nayak (2018) are briefly reviewed next.

Let αi denote an intruder’s prior probability that a respondent’s true value of X is ci and let

α = (α1, . . . , αk)
′. Note that α is specific to each intruder-target pair and may be different from

π. For given α, the posterior probability of X = cj given the response Z = di, is

Pα(X = cj |Z = di) =
Pα(X = cj , Z = di)

Pα(Z = di)
=

αjpij∑k
l=1 αlpil

.

So, the prior and posterior probabilities of an event Q ⊆ SX = {c1, . . . , ck} are:

Pα(Q) =
∑
j:cj∈Q

αj and Pα(Q|di) =
∑
j:cj∈Q

Pα(X = cj |Z = di). (2.1)
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2.1. Strict Information Privacy and Parity Bound

One line of thought is that a privacy procedure should guarantee that Pα(Q|di) and Pα(Q), as

defined in (2.1), would be “desirably close” for all Q,α and di. Thus, no intruder would gain

“much” new information about any feature (Q) of any respondent from his response. Chai and

Nayak (2018) formalized this idea generally, observing that any specification of “desirably close”

is equivalent to requiring (2.2) below with two given functions hl and hu.

Definition 2.1. (Chai and Nayak, 2018). Let hl and hu be two functions from [0, 1] to [0, 1]

such that 0 ≤ hl(a) ≤ a ≤ hu(a) ≤ 1 for all 0 ≤ a ≤ 1. An RR design is said to provide strict

information privacy (SIP) with respect to hl and hu if

hl(Pα(Q)) ≤ Pα(Q|di) ≤ hu(Pα(Q)). (2.2)

for all α,Q ⊆ SX and i = 1, . . . ,m.

For a (generic) prior-posterior pair (p, p∗), Definition 2.1 says that p∗ is “desirably close” to

p if and only if hl(p) ≤ p∗ ≤ hu(p). The β-factor privacy of Nayak et al. (2015), which requires

1/β ≤ Pα(Q|di)/Pα(Q) ≤ β, is a special case, with hl(p) = (1/β)p and hu(p) = βp. Another

special case is the ρ1-to-ρ2 privacy (Evfimievski et al., 2003), which defines privacy breaches as

Pα(Q) < ρ1 and Pα(Q|di) > ρ2 or Pα(Q) > ρ2 and Pα(Q|di) < ρ1; here hl and hu are step

functions. Chai and Nayak (2018) gave a characterization of all RR designs that satisfy SIP. It

yields useful guidance on how to choose hl and hu in practice, and involves the following:

Definition 2.2. (Nayak et al., 2015). The ith row parity of P is defined as

ηi(P ) = max
{pij
pil
| j, l = 1, . . . , k

}
=

maxj{pij}
minj{pij}

,

with the convention 0/0 = 1 and a/0 = ∞ for any a > 0. The parity of P is defined as

η(P ) = maxi{ηi(P )}.
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Chai and Nayak (2018) proved that for given hl and hu, an RR design P satisfies (2.2) if and

only if its parity η(P ) does not exceed a specific value B(hl, hu) determined by hl and hu. In

particular, necessary and sufficient conditions for P to satisfy ρ1-to-ρ2 and β-factor privacies are

η(P ) ≤ [ρ2(1 − ρ1)]/[ρ1(1 − ρ2)] and η(P ) ≤ β, respectively. The following criterion, which has

been studied by Kairouz et al. (2016), Wang et al. (2016), Duchi et. al. (2018), Ye and Barg

(2018) and others, is closely related to SIP.

Definition 2.3. An RR design provides ε-local differential privacy (ε-LDP), for ε > 0, if

sup
B⊆SZ

sup
ci,cj∈SX

P (Z ∈ B|X = ci)

P (Z ∈ B|X = cj)
≤ eε.

Chai and Nayak (2018) showed that an RR procedure provides ε-LDP if and only if

Pα(Q)

1 + (γ − 1)(1− Pα(Q))
≤ Pα(Q|di) ≤

γPα(Q)

1 + (γ − 1)Pα(Q)
(2.3)

for all α,Q and di, where γ = eε, i.e., the procedure provides SIP with hl and hu defined as the

lower and upper bounds in (2.3), respectively. It also follows that an RR design P provides ε-LDP

if and only if η(P ) ≤ γ = eε. An important conclusion is that satisfying ε-LDP or SIP, including

its special cases, all reduce to imposing an upper bound on the RR design’s parity.

2.2. Privacy as Average Information Gain

Boreale and Paolini (2015) introduced a “worst-case breach” criterion, which is essentially the

same as β-factor privacy. The phrase “worst-case” refers to the requirement that (2.2) must hold,

with hl(p) = (1/β)p and hu(p) = βp, for all possible responses di, i = 1, . . . ,m, irrespective of

their probabilities, which are Pα(Z = di) =
∑k

l=1 αlpil, i = 1, . . . ,m. They also proposed an

“average-case breach” criterion, taking the response probabilities into account. They considered

the scenario where an intruder uses Z to predict whether X ∈ Q or X ∈ Qc, for some Q ⊆ SX .

Under 0 – 1 loss, an optimum rule declares X ∈ Q if Pα(Q|di) ≥ 1/2, and otherwise X ∈ Qc. For
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this rule, the probability of a correct prediction is

Gα(Q|Z) =

m∑
i=1

max{Pα(Q|di), Pα(Qc|di)}Pα(Z = di)

=

m∑
i=1

max{Pα(Q ∩ di), Pα(Qc ∩ di)}

and the Bayes risk is 1 − Gα(Q|Z). Similarly, the correct prediction probability when only the

prior (and not Z) is used is Gα(Q) = max{Pα(Q), Pα(Qc)}. It can be seen that 0.5 ≤ Gα(Q) ≤

Gα(Q|Z) ≤ 1 and so, the ratio Gα(Q|Z)/Gα(Q) must be between 1 and 2.

Definition 2.4. Boreale and Paolini (2015). An RR procedure P permits an average-case breach

at level φ ∈ (1, 2) if there exists some Q ⊆ SX and a prior α such that Gα(Q|Z)/Gα(Q) > φ.

Moreover, P is said to be φ-average secure if it does not allow any average-case breach at level φ.

Actually, they used a negative log scale and connected the correct prediction probabilities to

Renyi’s min-entropy. Huang and Du (2008) also considered Gα(Q|Z), but evidently with α = π.

Boreale and Paolini (2015) also proved the following:

Theorem 2.1. For an RR design Pm×k, let ~pi denote its ith column and let

l1(P ) = max
i,j
‖~pi − ~pj‖1 = max

i,j

m∑
u=1

|pui − puj |.

Then, P is φ-average secure if and only if l1(P ) ≤ 2(φ− 1).

3. Disadvantages of Average Security and Parity Bounding

3.1. Drawbacks of Average Security

The average security criterion in Definition 2.4 might seem intuitively reasonable, but it is ill-

suited for assuring privacy. To illustrate this, we consider k = 2 and the following two design
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matrices:

P1 =

d1

d2

d3


0.5 0

0 0.5

0.5 0.5

 and P2 =
d1

d2

0.7 0.2

0.3 0.8

 .
Note that l1(P1) = l1(P2) = 1.0 and by Theorem 2.1, both P1 and P2 are φ-average secure at

φ = 1.5. However, under P1, the responses d1 and d2 (corresponding to the first two rows of P1)

reveal that X is c1 and c2, respectively. Thus, P1 discloses the true category of each respondent

with probability 0.5, which is highly unsatisfactory. Evidently, P1 is unacceptable for privacy

protection and P2 is much better, but the average-case breach criterion cannot recognize that or

any difference between P1 and P2.

Similarly, for general φ and k = 2, the design

P0 =

d1

d2

d3


φ− 1 0

0 φ− 1

2− φ 2− φ

 (3.1)

is φ-average secure, but it discloses the true X category when the response is d1 or d2. In contrast,

P (Z = d3|X = x) does not depend on x. Consequently, d3 does not contain any information about

π and under it, all posterior probabilities are the same as the corresponding prior probabilities.

Thus, P0, reveals the true category of each respondent with probability φ − 1 and hides it fully

with probability 2− φ, which would be unsatisfactory privacy protection unless φ is very close to

1. But, when φ is close to 1, a large proportion (viz. 2 − φ) of the observations (all d3 values)

would be totally noninformative about π (and wasted). Also, as we discuss below, P0 yields the

best data utility among all φ-average secure designs. Thus, the average security criterion leads to

a dire trade-off between privacy and data utility.

The following adaptation of Blackwell’s (1951, 1953) approach to comparing statistical exper-

iments gives a strong criterion for comparing data utility of RR designs.
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Definition 3.1. An RR design Pm×k is said to be at least as informative (or good) as another

design Ar×k, to be denoted P � A, if there exists a transition probability matrix Cr×m such that

A = CP .

From Blackwell’s works, it follows that P � A implies that under any loss function, for any

inference rule δ based on the data from A, there exists a rule δ∗ based on P such that the risk

function of δ∗ does not exceed that of δ. So, the assertion “at least as informative” holds in a

very broad sense. In an intuitive way, A = CP means that applying A is equivalent to further

randomizing by C the responses obtained using P , and the second RR (by C) should inflict further

data utility loss. Logically, we should say P and A are equivalent (denoted P ∼ A) if both P � A

and A � P hold, and P is better than A (written P � A) if P � A but A 6� P . Also, P is said

to be admissible if there exists no A such that A � P . For k = 2, the following result asserts

optimal data utility of P0 among all RR designs that are φ-average secure.

Theorem 3.1. Within Aφ = {Pm×2 : m ≥ 2, l1(P ) ≤ 2(φ− 1)}, with 0 < φ < 1, only P0 in (3.1)

is admissible. Thus, P0 is the most informative design among all φ-average secure designs.

A proof of the theorem is given in the appendix. The drawbacks of φ-average security discussed

above hold for all k ≥ 2. In particular, it can be seen that for any k ≥ 2, the design

P(k+1)×k =

 (φ− 1)Ik

(2− φ)1′k


is φ-average secure and also admissible. But, it discloses the true category of each respondent

with probability φ− 1. We may note that for k > 2, other admissible designs exist. We can prove

that a φ-secure design P is admissible if and only if in each row of P , all nonzero elements are

equal.
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3.2. Cost of Parity Bounds

Here, we examine the effects of privacy demands on estimating π under squared error loss. Con-

sider an RR design P and an estimator π̂ = (π̂1, . . . , π̂k)
′ of π, derived under P and multinomial

sampling. Then, under squared error loss, the risk function of (P, π̂), normalized for sample size

for convenience, is

R(P, π̂;π) = n× EP,π
[
‖π̂ − π‖2

]
= n× EP,π

[ k∑
i=1

(π̂i − πi)2
]
, (3.2)

where the expectation is with respect to both sampling and randomization. It is well known that

when P = I (i.e., no randomization is used), π̂0 = S/n is the best unbiased estimator of π; recall

that S denotes the frequency vector from RR data. Also, R(I, π̂0;π) =
∑k

i=1 πi(1 − πi). So, for

assessing the data utility cost of an RR design P (and an estimator π̂) we compare R(P, π̂;π)

with R(I, π̂0;π).

For given γ, let Cγ = {P : η(P ) ≤ γ}, the class of all P that satisfy the parity constraint

η(P ) ≤ γ. Chai and Nayak (2018) give a full characterization of Cγ . Generally, Cγ contains many

designs with different effects on data utility. So, we assess the cost of the privacy requirement

η(P ) ≤ γ by the cost of an optimal design in Cγ and an optimal estimator (inspired by Chai and

Nayak, 2019). Specifically, for each P , we consider only unbiased estimators of π that are linear

in S. This is equivalent to considering estimators of the form π̂ = LS/n, where Lk×m is a fixed

matrix satisfying LP = I. With this restriction, a design and estimator pair (P∗, π̃ = L∗S/n) is

minimax under (3.2) if P∗ ∈ Cγ , P∗L∗ = I and

sup
π
EP∗,π

[
‖L∗S
n
− π‖2

]
= inf

P∈Cγ
inf

L:LP=I
sup
π
EP,π

[
‖LS
n
− π‖2

]
.

Chai and Nayak (2019) solved this problem and derived the minimax pair (P∗, π̃). From their

work, it also follows that the risk function of (P∗, π̃) is

R(P∗, π̃;π) =
[ (k − 1)2

f(q)− k
+

1

k
− 1
]

+

k∑
i=1

πi(1− πi), (3.3)
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where the function f and the quantity q are as defined in Chai and Nayak (2019). Actually, q is an

integer valued function of k and γ, and q is either b k

1 + γ
c or d k

1 + γ
e. Because of unbiasedness,

R(P∗, π̃;π) is also n× tr[V (π̃)] = n×
∑
V (π̃i). The last term of (3.3) is R(I, π̂0;π); it reflects the

sampling variability (with no randomization) and will be denoted VS(π). The term [ ] in (3.3),

to be denoted VR, is the added variance due to RR. Interestingly, note that VR is independent of

π, unlike the sampling variance VS(π).

k

γ 2 3 5 10 20 50 100 150 200

1.1 220 640 1441.333 3571.2 7959.1 21129.05 43125.92 65124.08 87121.7

1.5 12 32 76 193.5 432.25 1151.5 2351.25 3551.167 4751.125

2 4 10 25.333 64.2857 143.6484 383.2656 783.1343 1183.06 1583.067

3 1.5 3.5 9 23.7857 53.2 143.1798 293.04 443.0614 593.02

5 0.625 1.375 3.25 9.3515 21.70 59.0807 121.5399 184.015 246.5202

10 0.2469 0.5185 1.1358 3.1111 7.9883 22.7995 47.4115 72.1117 96.7882

20 0.1108 0.2271 0.4765 1.1967 3.0526 9.7502 20.7440 31.8096 42.9131

30 0.0713 0.1451 0.2996 0.7277 1.7621 5.9575 13.0144 20.1314 27.2974

50 0.0416 0.0841 0.1716 0.4048 0.9338 3.0204 7.1749 11.3367 15.5002

80 0.0256 0.0516 0.1045 0.2423 0.5419 1.6331 4.0926 6.6071 9.2567

100 0.0204 0.0410 0.0828 0.1910 0.4226 1.2399 3.0101 5.1851 7.0862

Table 1: The added variance (VR) due to RR for the minimax method.

In Table 1, we report the values of VR for some k and γ. The values of k are given in the

second row and the γ values are shown in the first column. For each (k, γ) pair, the value of

VR is reported in the corresponding cell. As expected, VR increases with k and it decreases as γ

increases. However, our main point, elaborated below, is that unless k is small and γ is large, the

added variance (VR) is quite large relative to sampling variance VS(π).

Recall that the sampling variance depends on π, whereas the added variance is independent
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of π. So, the ratio VR/VS(π), which is of natural interest, depends on π. However, it can be

seen that 0 ≤ VS(π) ≤ 1 − 1/k < 1 for all π. Consequently, VR/VS(π) > VR and VR/VS(π) can

be arbitrarily large depending on VS(π). Consider, for example, the case of γ = 20, which we

believe gives only light privacy protection. There, for k = 20, VR(= 3.0526) is more than three

times VS(π), and for k = 100, VR > (20.74)VS(π). As another example, consider k = 5 (a small

value) and π = (.4, .2, .2, .1, .1), which yields VS(π) = 0.74. Here, for γ = 20, VR = 0.4765 and

so, VR = (0.644)VS(π) and [VR + VS(π)]/VS(π) = 1.644. Thus, providing SIP with γ = 20 (or

equivalently, LDP at ε = 2.996) increases the overall variance by 64.4% (compared to no RR and

no privacy). It can be seen that for k = 5, SIP at γ = 10 (providing moderate privacy) increases

the variance by 153.49%.

In summary, LDP (or SIP) is suitable only for small k, because for reasonable values of γ (say

≤ 20), data utility costs are substantial even for moderate k. We might mention that a large

sample size mitigates high added variance and yields a small tr[V ar(π̃)]. Naturally, with a (very)

large sample size it is possible to give high privacy protection and yet estimate π accurately. So,

LDP might be useful when data from many thousands or millions of transactions, searches etc.

are captured.

4. A Local l-Diversity Method

4.1. The Randomization Mechanism

We propose a new procedure that is easy to implement and offers a better privacy-utility trade-

off than SIP (or LDP) for moderate to large k. Our main motivation comes from the practice

of collecting data on quantitative variables in measurement classes, to protect privacy. A direct

approach to adopting that idea for categorical variables is collecting data after merging categories,

i.e., coarsening (or generalizing) the response categories. Common methods for providing k-
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anonymity and l-diversity do that (but after data collection). One drawback of that approach

is that the probabilities of the merged categories cannot be estimated from the resulting data.

To avoid this problem, we propose to randomly coarsen the true category of each respondent, as

described next.

Our basic idea is to generalize each respondent’s category to a superset of l categories con-

sisting of the true category and additional l− 1 randomly selected categories. The randomization

mechanism and statistical inferences can be discussed conveniently using indicator vectors. Rep-

resent the categorical variable X with a row vector ~X = (X1, . . . , Xk), where Xi = 1 if the true

category is ci and otherwise Xi = 0. Thus, ~X is an indicator vector for the true category. We

represent a random generalization of X by a row vector ~Z = (Z1, . . . , Zk). The conversion from ~X

to ~Z is done as follows. For a response ~X with Xi = 1, we (i) set Zi = 1, (ii) randomly select l−1

of the remaining components of ~Z and set them to 1 and (iii) assign 0 to all other components.

Thus, each ~Z contains exactly l ones and k − l zeros.

The preceding mechanism is equivalent to an RR procedure. Its output range SZ consists

of all k dimensional row vectors, each having 1 in l components and 0 in the rest. Clearly, SZ

contains
(
k
l

)
elements. Let al = 1/

(
k−1
l−1
)

and E[i] = {~z = (z1, . . . , zk) ∈ SZ : zi = 1}. Then, it can

be seen easily that

P (~Z = ~z|X = ci) =


al if ~z ∈ E[i]

0 otherwise.

(4.1)

The resultant TPM is of order
(
k
l

)
× k and in its each row, l values are al and (k − l) are 0.

Clearly, a randomized response ~z simply reveals that the respondent’s true category is one of l

categories. To be specific, for a given ~z = (z1, . . . , zk), let B~z = {ci ∈ SX : zi = 1}. Then, ~z reveals

that the respondent’s true category is in B~z and all are equally plausible, as P (~Z = ~z|X = ci) is a

constant (al) for all i ∈ B~z. It follows easily that an intruder with prior α will have the following
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posterior probabilities:

P (X = ci|~Z = ~z) =


αi

Pα(B~z)
if ci ∈ B~z

0 otherwise

for i = 1, . . . , k. Thus, from ~Z = ~z, an intruder only learns that X ∈ B~z and updates his

probabilities by simply normalizing his prior over B~z.

We regard our procedure as a local l-diversity mechanism, noting that it’s connection to l-

diversity is similar to the connection between local differential privacy and differential privacy.

However, certain differences between l-diversity and our approach should be noted. Fundamen-

tally, we address privacy protection whereas l-diversity is about data confidentiality. We collect

responses after masking whereas for l-diversity, the data agency perturbs the true data, after

collected, using a data dependent mechanism. Also, l-diversity depends on the choice of key vari-

ables, but that is irrelevant to us. Both, our mechanism and its privacy implications are local to

each respondent, independent of the values of other units.

We should mention that while ~z only reveals that the true category is in B~z, an intruder with

strong prior information may learn a lot from it. For example, if an intruder knows (a priori) for

a respondent that all but one category in B~z are impossible, then he would learn the respondent’s

true category with certainty from ~z. This applies also to l-diversity, as Li et al. (2007) noted.

However, such situations are unlikely for large l. Thus, to mitigate effects of strong priors on

privacy protection, we suggest to use reasonably large values for l, depending on the sensitivity

of X and the value of k.

4.2. Statistical Estimation

With vector representation of the responses, our RR procedure yields an n × k data matrix

Z = ((zij)), with each row showing one respondent’s data. A method of moments estimator of π

can be obtained easily as follows. Let V ′ = (V1, . . . , Vk) denote the column sums of Z. Note that
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V is the sum of a random sample of n vectors drawn from the distribution of ~Z. It can be seen

that for i = 1, . . . , n,

E[
Vi
n

] = E[Zi] = P (Zi = 1) = πi + (1− πi)
( l − 1

k − 1

)
= ζi, say. (4.2)

Using (4.2), we obtain the following method of moments estimators:

π̂i∗ =
(k − 1

k − l

)Vi
n
− l − 1

k − l
, i = 1, . . . , k. (4.3)

Let π̂∗ = (π̂1∗, . . . , π̂k∗)
′. Then, it can be seen that π̂∗ is an unbiased estimator of π and

V (π̂∗) = [(k− 1)/n(k− l)]2Σ, where Σ = ((σij)) denotes V (~Z). Furthermore, σii = ζi(1− ζi) and

for i 6= j, σij = ζij − ζiζj , where

ζij = P (Zi = Zj = 1) =

(
k − 2

l − 2

)
al
(
πi + πj

)
+

(
k − 3

l − 3

)
al
(
1− πi − πj

)
=

(l − 1)(k − l)
(k − 1)(k − 2)

[
πi + πj +

l − 2

k − l

]
.

As in Section 1, let S denote the
(
k
l

)
dimensional vector of frequencies of the elements in SZ .

Then, with λ defined as in (1.1), a natural estimator of λ is λ̂ = S/n. In view of (1.1), one may

consider linear functions of λ̂ (or equivalently of S) for estimating π. In the appendix, we prove

the following optimality property of our method of moments estimator.

Theorem 4.1. Among all unbiased estimators of π that are linear in S, the estimator given by

(4.3) is minimax under squared error loss.

Using the above expressions and standard algebra we find that

nV (π̂i∗) =
( l − 1

k − l
)
(1− πi) + πi(1− πi).

and

R(Pk,l, π̂∗;π) = n× tr
(
V (π̂∗)

)
=

(k − 1)(l − 1)

(k − l)
+

k∑
i=1

πi(1− πi), (4.4)
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where Pk,l denotes the TPM of our RR mechanism. The first term on the right side of (4.4), to be

denoted V ∗+, is the added variance due to our random generalization. Note that V ∗+ is independent

of π and it increases with l and decreases to (l− 1) as k increases to ∞. Naturally, as l increases,

both privacy protection and added variance increase.

4.3. Comparison with Other Criteria

A natural question is: which of the two approaches – local l-diversity and parity bounding – we

should use in practice? Recall that LDP, ρ1-to-ρ2 privacy, β-factor privacy and SIP all result

in imposing an upper bound on the parity of the RR design P . To help answer the question,

we compare their privacy protection aspects at equal added variance (a measure of data utility).

Specifically, for a given locally l-diverse mechanism, we take the strongest parity (or LDP) protec-

tive mechanism, in the minimax sense of Chai and Nayak (2019), with the same added variance

and compare their privacy protection characteristics.

For given k and l, let Pk,l denote the locally l-diverse design. From (4.4), the added variance

of Pk,l is (k − 1)(l − 1)/(k − l). To find the minimax design P ∗k,l with the same added variance,

we calculate γ and q such that the term [ ] in (3.3) equals (k− 1)(l− 1)/(k− l). This gives us the

smallest γ for which the parity condition η(P ) ≤ γ can be satisfied with the same added variance.

It specifies the largest privacy protection, in the sense of SIP or LDP, that can be afforded with

that added variance. We may remark that the facts that the added variance terms in (3.3) and

(4.4) are independent of π enable us to hold them at the same level easily. In Table 2, for some

values of k and l, we report the corresponding values of γ and q, in parentheses.

For clarity of comparison, we briefly review certain features of the minimax mechanism of Chai

and Nayak (2019). For given k and γ, they first calculate an optimum integer value q. Then,

using vector representations as discussed earlier, from a true value ~x = (x1, . . . , xk) a response

~z = (z1, . . . , zk) is generated as follows. Suppose xi = 1. Then, they set zi = 1 with probability
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p = (qγ)/(qγ+k−q); otherwise zi = 0. If zi = 1, they randomly choose q−1 other components of

z and set those to 1. On the other hand, if zi = 0, q of the remaining components of ~z are selected

at random and set to 1. In both cases, the other (k − q) components are assigned 0. Similar to

our procedure, the response vector ~Z contains exactly q ones and k − q zeros. One important

difference is that in our case, B~z (the set of categories for which zi = 1) includes the true category

but in their method, B~z contains the true category with probability p (as given above).

k

l 10 15 20 50 100 200 500

5 6(2) 10.11(1) 14.19(1) 38.50(1) 78.96(1) 159.87(1) 402.58(1)

10 NA 3.73(3) 5.83(3) 18.02(3) 38.23(3) 78.60(3) 199.71(3)

15 NA NA 3.00(5) 11.25(4) 24.63(4) 51.34(4) 131.44(4)

20 NA NA NA 7.88(6) 17.96(5) 37.98(5) 97.99(5)

25 NA NA NA 5.83(7) 13.94(7) 30.01(6) 78.04(6)

30 NA NA NA 4.44(9) 11.25(8) 24.63(8) 64.69(8)

Table 2: Best privacy protecting minimax designs at l-diversity’s added variance.

To discuss the values in Table 2, take for example, k = 20 and l = 5 and the associated locally

l-diverse design P20,5. Table 2 shows that the corresponding minimax design P ∗20,5 has γ = 14.19

and q = 1. Here, the two competing RR designs, P20,5 and P ∗20,5, have the same data utility

(added variance). So, to choose between the two, we may ask: Privacy characteristics of which

one are easier to comprehend and communicate? Which of the two designs is likely to be more

comforting to respondents? We believe that empirical work is needed to find out respondents’

preferences, but we also note a few points below.

In terms of SIP, the minimax design P ∗20,5 (with γ = 14.19) assures each respondent that

for all intruders, events (or properties) of interest and RR outputs, the ratio of posterior to
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prior probabilities will be between 0.0705 (=1/14.19) and 14.19. Alternatively, it assures LDP

at ε = 2.6525 (= ln 14.19). We speculate that in practice, it would be difficult to communicate

these assurances (especially the LDP) correctly and effectively to many respondents (not having

much background in probability). Indeed, LDP and SIP are mathematically rigorous, but are

also highly technical and difficult for the public to grasp. Also, it is not even clear that real

life intruders revise their opinion probabilistically and using the Bayes rule (which requires a full

elicitation of the intruder’s prior distribution over SX—not an easy task).

The RR mechanisms of minimax designs, discussed above, give practical information about

P ∗20,5. Here, as q = 1, each respondent reports exactly one category. Furthermore, p = (qγ)/(qγ+

k − q) = 0.4275 and so, each respondent reports his true category with probability 0.4275; oth-

erwise, he randomly selects and reports one of the other 19 categories. Thus, under P ∗20,5, an

intruder (or data collector) can correctly predict a respondent’s true category with probability

0.4275. In contrast, the locally 5-diverse design P20,5 asks each respondent to report a set of 5

(out of 20) categories, one of which must be his true category (the other 4 are added randomly).

Here, an intruder with no prior knowledge can correctly guess a respondent’s true category (from

the RR output) with probability 0.2 (generally, 1/l for Pk,l), which is much smaller than 0.4275.

Thus, we suspect that respondents will largely prefer the local l-diversity mechanism.

As another example, for k = 50 and l = 10, Table 2 gives γ = 18.02 and q = 3. We

also calculate that ε = 2.8915 and p = 0.5349. Under local l-diversity (with l = 10) and with

no prior knowledge, a respondent’s true category can be guessed correctly with probability 0.1.

Under the corresponding minimax design, each respondent reports three categories as follows.

With probability 0.5349 each respondent reports his true category plus two randomly selected

categories. Otherwise, i.e., with probability 0.4651, he reports three randomly selected categories,

excluding his true category. Here, a respondent might observe that by randomly selecting one

of the three reported categories, intruders will be able to correctly guess his true response with
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probability (1/3)(0.5349) = 0.1783. As this is noticeably larger than 0.1, respondents are likely

to favor local l-diversity.

5. Discussion

Privacy criteria are very important as they are central to developing and choosing privacy mech-

anisms. In this paper, we examined several existing criteria. We found that the average security

criterion has a serious flaw, which makes it unsatisfactory. To examine LDP and SIP (and its

special cases), we took a common approach using the fact that each of those simply imposes an

upper bound on the parity of the design matrix. We showed that when the number of categories

is moderate to large, the condition η(P ) ≤ γ, with reasonably small γ (to give modest privacy),

induces high data utility loss, even when an optimal design is used to satisfy the parity constraint.

In particular, this implies that LDP, which has received significant attention in recent years (and

seems to be the leading privacy criterion), may be suitable only for small k.

The LDP is used most prominently in the RAPPOR procedure (see Erlingsson et al., 2014;

and Fanti et al., 2016), which is a significant privacy mechanism that is being used notably by

Google and Apple for Internet data collection. It was developed to satisfy LDP. Previously,

Chai and Nayak (2019) showed that basic RAPPOR is substantially inefficient (and does greater

harm to data utility) compared to their minimax procedure. So, our findings about the minimax

procedure’s data utility cost indicate that in many applications, RAPPOR would produce data

with only little statistical information (and practical value).

The proposed l-diversity procedure has certain attractive features. First, its response ran-

domization can be implemented easily. Actually, it is easier than RAPPOR. Second, its privacy

protection is easy to grasp and communicate to the public. Simply, each respondent reveals l

categories, of which one is his true category. Third, statistical estimation is simple and effective.

The data can be presented nicely as an n× k matrix and the computation of π̂∗, in (4.3), is very
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simple. Also, the estimator is unbiased and minimax in a specific sense. As the privacy con-

cept and its impacts vary widely depending on contexts, various privacy criteria and protection

methods are needed to handle practical problems. We hope that our findings and the proposed

l-diversity method will be useful in practice and stimulate further research.

6. Appendix

A. Proof of Theorem 3.1.

Proof. Chai and Nayak (2018) showed that if P has rows that are proportional and P̃ is obtained

from P by merging its proportional rows, then P ∼ P̃ . They also argued that one should merge

all proportional rows of an RR design, if any. It can also be verified directly that l1(P ) = l1(P̃ ).

So, it suffices to consider only the designs Pm×2 ∈ Aφ that have no propositional rows.

Next, we prove that if Pm×2 has a row (c d) with 0 < c, d < 1 and c 6= d, then P is inadmissible.

Without loss of generality, suppose that the first row of P is (c d) with 0 < d < c < 1 and let P∗

denote the matrix of the remaining rows of P . Now, consider

P1 =


c− d 0

d d

P∗


and note that P = (e1 | I)P1, where e1 is a column vector whose first element is 1 and the rest

are 0. So, P1 � P . Next, to see that P 6� P1, suppose there exists a transition probability matrix

C(m+1)×m = ((cij)) such that P1 = CP . Then, each row of P1 is a weighted combination of the

rows of P , with all weights being in [0, 1]. The first row of P1 can satisfy these conditions only if

P∗ has a row (a, 0), with a ≥ c − d. Without loss of generality, suppose that the first row of P∗

(i.e., the second row of P ) is (a, 0). Then, for P1 = CP to hold, both the first and third rows of P1

must be reconstructed from the second row of P . So, we must have c12 = (c− d)/a and c32 = 1,
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in which case the sum of the second column of C would exceed 1, contradicting the assumption

that C is a TPM. Thus, we can conclude that P1 � P .

The preceding discussions imply that any admissible P ∈ Aφ with no proportional rows must

be of the form

Pa =


a 0

0 a

1− a 1− a


with a ≤ φ − 1 (to be φ-average secure). But, it can be seen, using arguments similar to those

used above, that if a < φ− 1, then P0 � Pa. Thus, within Aφ only P0 is admissible, and hence it

is the best design.

A. Proof of Theorem 4.1.

Proof. To prove the theorem, we use some results and ideas from Chai and Nayak (2019). Label

the elements of SZ using the vectors ~z as described in Section 4.1. Then, the transition proba-

bilities for our RR mechanism are as in (4.1). Let Pk,l = ((pij)) denote the transition probability

matrix, with some ordering of all possible ~z. Note that Pk,l is of order m× k, with m =
(
k
l

)
. Let

λ = Pk,lπ = (λ1, . . . , λm)′ and λ̂ = S/n. From Chai and Nayak (2019) it follows that for any fixed

Lk×m, Lλ̂ is an unbiased estimator of π if and only if LPk,l = I, and the following:

Lemma 6.1. Consider any Lk×m such that LPk,l = I. Let R(Pk,l, L;π) = nEPk,l,π‖Lλ̂ − π‖2

denote the risk function of Lλ̂ for estimating π under squared error loss and let Dλ denote the

diagonal matrix with elements λ1, . . . , λm. Then,

R(Pk,l, L;π) = n[tr(VPk,l,π(Lλ̂))] = tr[L(Dλ − λλ′)L′]

= tr(LDλL
′)−

k∑
i=1

π2i (6.1)

≥ tr(P ′k,lD−1λ Pk,l)
−1 −

k∑
i=1

π2i (6.2)
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and the lower bound in (6.2) is attained when

L = (P ′k,lD
−1
λ Pk,l)

−1P ′k,lD
−1
λ = L∗(π), say. (6.3)

Note that the optimum L in (6.3) depends on π via Dλ, which shows that a uniformly minimum

risk linear unbiased estimator π does not exist. Let πu = (1/k, . . . , 1/k)′ = 1
k1k, Lu = L∗(πu) and

π̃ = LuS/n. It is easy to see, using (6.3), that LuPk,l = I and thus, π̃ is an unbiased estimator of

π. Recall that in each row of Pk,l, l values are al [= 1/
(
k−1
l−1
)
] and the rest are 0. So, when π = πu,

λ = Pk,lπu =
1

k
Pk,l1k =

1

k
lal1m =

1

m
1m,

which implies that Dλ = 1
mI and hence Lu = (P ′k,lPk,l)

−1P ′k,l. Let P ′k,lPk,l = H = ((hij)). Then,

hii = ‖ith column of Pk,l‖2 and for i 6= j, hij is the inner product of the ith and jth columns of

Pk,l. Note that in each column of Pk,l, al values are al and the rest are zero and any two columns

of Pk,l have the value al in
(
k−2
l−2
)

common rows. From these, it follows that

P ′k,lPk,l =
al

k − 1

[
(k − l)Ik + (l − 1)1k1

′
k

]
and

Lu = (P ′k,lPk,l)
−1P ′k,l =

1

al(k − l)

[
(k − 1)Ik − (1− 1

l
)1k1

′
k

]
P ′k,l

=
1

k − l

[(k − 1

al

)
P ′k,l − (l − 1)1k1

′
m

]
. (6.4)

Next, we note that tr(LuDλL
′
u) does not depend on π. To see that, let ((gij)) = G = L′uLu.

Since the rows of Pk,l are permutations of each other, the same holds true for L′u, in view of (6.4).

So, gii is a constant, say g0 for all i. Now,

tr(LuDλL
′
u) = tr(DλL

′
uLu) = tr(DλG) =

m∑
i=1

λigii = g0

m∑
i=1

λi = g0,

which is independent of π. This and (6.1) and the fact that
∑
π2i is minimum when π = πu now

give us

sup
π
R(Pk,l, Lu;π) = tr(LuDλL

′
u)− inf

π

k∑
i=1

π2i = R(Pk,l, Lu;πu).
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Then,

inf
L

sup
π
R(Pk,l, L;π) ≥ inf

L
R(Pk,l, L;πu) = R(Pk,l, Lu;πu) = sup

π
R(Pk,l, Lu;π),

where the first “=” follows from Lu = L∗(πu). In conclusion we have the following:

Lemma 6.2. Under Pk,l, the estimator π̃ = LuS/n is minimax among all linear unbiased esti-

mators of π.

We complete the proof of Theorem 4.1 by showing that π̂∗ in (4.3) and π̃ (in Lemma 6.2) are

the same. Using (6.4), we obtain

LuS

n
=

k − 1

n(k − l)al
P ′k,lS −

( l − 1

k − l

)
1k. (6.5)

The jth element of P ′k,lS is the inner product of S and the jth column of Pk,l. Recall from (4.1)

that pij = al if ~z ∈ E[j] = {~z = (z1, . . . , zk) ∈ SZ : zj = 1} and 0 otherwise. So, the inner product

that yields the jth element of P ′k,lS is al times the total number of responses with zj = 1 or alVj .

Now, it can be seen easily that (6.5) reduces to the method of moments estimator π̂∗.
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