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Abstract

We demonstrate use of bivariate area-level models to improve small area estimates from

one survey by borrowing strength from related estimates from a larger survey. Specifically, we

demonstrate the potential for borrowing strength from estimates from the American Commu-

nity Survey (ACS), the largest U.S. household survey, to improve estimates from smaller U.S.

surveys, without using regression covariates obtained from auxiliary sources. Applications

presented show substantial variance reductions for state estimates of health insurance cover-

age from the National Health Interview Survey, and for state estimates of disability from the

Survey of Income and Program Participation, when modeling these jointly with corresponding

ACS estimates. A third application shows substantial variance reductions in ACS one-year

county estimates of poverty of school-aged children from modeling these jointly with previous

ACS five-year county estimates of school-age poverty. Simple theoretical calculations show
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how the amount of variance reduction depends on characteristics of the underlying data. For

our applications, we examine three alternative bivariate models, starting with a simple bivari-

ate Gaussian model. Since our applications involve modeling proportions, we also examine a

bivariate binomial logit normal model, and an unmatched model that combines the Gaussian

sampling model with the bivariate logit normal model for the population proportions.

KEYWORDS: combining surveys, bivariate model, health insurance coverage estimate, poverty

estimate

1 Introduction

Small area estimation models can improve upon direct survey estimates by borrowing strength

from auxiliary data sources, and from data for other small areas, to provide predictors with sub-

stantially reduced error variances. See Rao and Molina (2015) or Pfeffermann (2013) for reviews

of small area estimation. Small area models often use regression covariates derived from auxiliary

data sources such as administrative records, an approach with significant potential for variance

reduction. Use of models with such covariates has some limitations, however. First, suitable co-

variates may simply be unavailable for some applications. Second, covariates found useful at one

point in time may lose their effectiveness if the underlying data source materially changes, which

can result from such things as new legislation that alters an administrative data source. For an illus-

tration of this, see Bell et al. (2016, pp. 361-362). Finally, use of covariates increases the modeling

effort. While this may be a minor obstacle when only one or a few population characteristics are

of interest, it can pose a significant challenge when the goal is to improve estimates of many dif-

ferent population characteristics for which many different covariate data sources could be needed.

In light of these limitations, small area modelers may turn to another potentially powerful source

of auxiliary information, namely, to related estimates from other surveys. A related option is to

borrow information from estimates of the same population characteristic from the same survey, but
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for an earlier time period.

We consider here the case where the smaller of two surveys defines the target population

characteristic, and the goal of the modeling is to improve estimates of this target characteristic.

This includes the case where the two surveys estimate ostensibly the same population character-

istic, though their estimates may differ systematically due to different nonsampling errors (i.e.,

differences in response errors, nonignorable nonresponse errors, mode effects, concept definitions,

timing, etc.)

To be specific, we focus here on borrowing information from the Census Bureau’s American

Community Survey (ACS) to improve estimates from smaller U.S. surveys. The ACS is a complex

sample survey that encompasses many topics, asking questions about demographics, income, em-

ployment, occupation, housing, health insurance, education, veteran status, etc. Since 2012, ACS

has sampled approximately 3.5 million addresses per year, though the final interviewed sample has

ranged from about 2.1-2.3 million housing units due to nonresponse and to some addresses later

determined not to be housing units (commercial or nonexistent units). Estimates are produced an-

nually based on either the sample data collected the previous year or, for geographic areas with

population less than 65,000, on pooled samples from the previous five years of data collection.

More information about the ACS is available at www.census.gov/programs-surveys/acs/.

The ACS sample is substantially larger than the samples of other U.S. household surveys. For

example, the Current Population Survey’s Annual Social and Economic Supplement (CPS ASEC)

samples about 100,000 addresses each year, with some of these ultimately lost to vacant housing

units, non-housing units, and nonresponse. Thus, the ACS annual sample is about 25 times larger

than the CPS ASEC sample. With its large sample size and the breadth of estimates produced, the

ACS presents a potentially very valuable data source for small area models to improve estimates

from smaller surveys.

The approach we pursue here borrows information from ACS by using simple bivariate area
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level models for the estimate of the target population characteristic from a smaller survey and a

related ACS estimate. The models include intercept terms but no other regression covariates. Two

of our specific applications include modeling relevant ACS state one-year estimates jointly with

state estimates from other surveys: first, with estimates of health insurance noncoverage from the

National Health Interview Survey (NHIS), and second, with estimates of total disability from the

Survey of Income and Program Participation (SIPP). A third application illustrates bivariate model-

ing that uses ACS estimates to improve other ACS estimates. Specifically, we model previous ACS

five-year county poverty estimates jointly with current ACS one-year county poverty estimates to

improve the latter. Results for these three applications show that borrowing information from the

ACS via these simple bivariate models can produce posterior variances significantly lower than

the sampling variances of the smaller survey, or than the sampling variances of the ACS one-year

estimates in the third application.

We obtain and compare results from three types of bivariate models here. One is the standard

bivariate normal model, which is the particular case of the bivariate extension of the model of Fay

and Herriot (1979) that uses no covariates apart from the intercepts. The multivariate FH model

was first suggested by Fay (1987) and was then studied by Datta et al. (1991, 1996) and by Ghosh

et al. (1996), among others. The second model we consider, used for proportions, is a no-covariates

version of the bivariate binomial logit normal (BLN) model previously studied in Franco and Bell

(2013, 2015). The BLN model may be more appropriate for proportions as it can naturally handle

skewed data and observations (direct survey estimates) equal to zero. This model also keeps the

predictions in their restricted support of [0, 1]. The third model we consider, also for proportions,

is the bivariate extension of a particular case of the unmatched sampling and linking model of You

and Rao (2002). This model combines the Gaussian sampling error model with, as in the BLN, a

bivariate logit normal model for the population proportions.

Theoretical calculations done under simplifying assumptions help explain our empirical re-

sults and reveal under what conditions and to what extent one might expect to benefit from jointly
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modeling two survey estimates in this way. We decompose the variance reductions to show how

much of the improvement from bivariate model predictions is due to pure shrinkage as from a uni-

variate model, and how much is due to incorporating the second survey estimates into the model.

These results also shed some light on how the relative sizes of the two surveys affect the variance

reductions that can be achieved, suggesting that while a smaller survey can benefit from borrowing

strength from a larger survey, little benefit should be expected if a larger survey attempts to borrow

strength from a substantially smaller one. We give a measure reflecting the effective relative sizes

of the two surveys, to quantify the difference between “smaller” and “larger”.

Other authors have pursued area level modeling approaches to combining survey estimates,

though typically incorporating available covariates appropriate for their particular applications.

For example, Ragunathan et al. (2007) used a hierarchical Bayes trivariate model with many

covariates to combine estimates of the same characteristic from two health surveys. Manzi et al.

(2011) focused on combining biased small area estimates of different types (e.g, synthetic) based

on survey data sources, rather than on combining direct estimates from different surveys. Wang et.

al (2012) used a hierarchical Bayes model to combine estimates from multiple repeated surveys

with different temporal supports.

A related alternative to jointly modeling two survey estimates is to incorporate the second

survey estimates as a regression covariate while accounting for their sampling error using a mea-

surement error model (e.g., Fuller 1987, Ybarra and Lohr 2008, Arima et. al 2017). The simple

bivariate Gaussian model we consider in Section 2 is actually equivalent to a structural measure-

ment error model with no additional covariates. Bell et al. (2019) provided some cautions about

using the other main type of measurement error model, the functional measurement error model,

for small area estimation. Kim et al. (2015) used a different type of measurement error model that

treats the true population characteristic as a latent variable whose values for each area are fixed,

unknown quantities. Another related alternative that is sometimes proposed is to simply include

in a model the estimates from the second survey as a regression covariate ignoring their sampling
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error. We strongly warn against this approach, as such models are misspecified, which Bell et

al. (2019) observed can result in suboptimal prediction and misstatement of the prediction error

variances.

The bivariate models we propose here are simple to implement and can be fit with readily

available software. In our applications we use a Bayesian approach with diffuse priors imple-

mented via JAGS (Plummer, 2010). The models could alternatively be implemented from a fre-

quentist approach by coding likelihood evaluation and maximization, as well as prediction results,

in a statistical package such as R (R core team, 2017) or SAS (2010). We expect the general

trends regarding variance reduction from use of a bivariate model would be similar under either a

Bayesian or frequentist approach.

Section 2 defines the bivariate models and discusses model comparison. It also presents

some theoretical results showing the potential for variance reduction from the bivariate model

versus univariate shrinkage. Section 3 presents the three applications, demonstrating the very large

variance reductions possible from bivariate modeling. Finally, Section 4 provides discussion and

suggestions for future research.

2 Models, Model Comparison, and Bivariate Model Prediction

Error Variance Decomposition

Suppose we have direct estimates for i = 1, . . . ,m small areas of population characteristics θ1i

estimated by the smaller survey and θ2i estimated by the ACS. θ1i and θ2i are assumed to be related

but not identical characteristics. Since our applications involve modeling proportions, we denote

the direct survey estimates appearing in our model below by p1i for the smaller survey and p2i for

the ACS. For applications that do not involve proportions one may think of revising the notation

for the observations in the model below to a more generic notation such as (y1i, y2i). Our focus
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here is on using bivariate models to borrow information from the ACS estimates p2i to improve

predictions of θ1i relative to use of the direct estimates p1i.

The bivariate Gaussian model that we use here is:

p1i = θ1i + e1i θ1i = µ1 + u1i i = 1, . . . ,m. (1)

p2i = θ2i + e2i θ2i = µ2 + u2i (2)

[
u1i
u2i

]
i.i.d∼ N(0,Σ), Σ =

[
σ11 σ12
σ12 σ22

]
(3)[

e1i
e2i

]
ind.∼ N(0,Vi), Vi =

[
vi11 vi12
vi12 vi22

]
(4)

where uji for j = 1, 2 are the area i random effects, which are independent of the sampling errors

eji in the direct estimates. In the small area estimation literature, the sampling covariance matrix

Vi is typically assumed known, but in practice it must be estimated using survey micro data. The

direct estimates of vi11 for areas with small to moderate sample sizes will typically be unstable,

and should generally be improved. This could involve averaging variances or design effects over

some areas or, for repeated surveys, over time, or fitting a generalized variance function (GVF). In

Section 3 we mention how this was done for each application. For the applications to state level

survey estimates in Section 3, the estimates of vi22 come from large ACS samples for which such

improvements were not needed. Finally, note that if the samples for the two surveys are drawn

independently, as will be (at least approximately) the case in all the applications in this paper, then

vi12 = 0. If this condition doesn’t hold, then vi12 must be estimated from survey microdata.

An important parameter not explicitly defined above is the correlation between the model

errors, which we denote as ρ = corr(u1i, u2i) = σ12/
√
σ11σ22. We expect more benefits from

borrowing information from the ACS estimates p2i the larger is the value of |ρ|.

Generalizing µj to x′jiβj in (1) and (2), where βj is a vector of regression coefficients, gives
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the general bivariate Fay-Herriot (1979) model. We will see from our applications, however, that

large reductions in variances compared to the direct estimates can be achieved by the model given

in (1)–(4) even without adding regression covariates. Equation (1) taken alone provides the cor-

responding univariate Gaussian model (with no covariates) for the smaller survey estimates, and

similarly for equation (2) and the ACS estimates.

Since we are modeling proportions, we examine two alternative models to the bivariate Gaus-

sian model given above. The first is a bivariate extension of a particular case of the unmatched

sampling and linking model (USL) of You and Rao (2002). This model replaces equations (1) and

(2) of the bivariate Gaussian model by

p1i = θ1i + e1i logit(θ1i) = µ1 + u1i i = 1, . . . ,m. (5)

p2i = θ2i + e2i logit(θ2i) = µ2 + u2i. (6)

where logit(θ1i) = log[θ1i/(1−θ1i)], and similarly for logit(θ2i). Thus, in (5) and (6), the equations

for p1i and p2i remain the same as in (1) and (2), but the model for the θji is now for their logits.

(You and Rao (2002) consider a general link function, not just the logit.) We retain equations (3)

and (4) from the bivariate Gaussian model, though the quantities u1i, u2i, µ1, µ2, σ11, σ22, and ρ

are not directly comparable between the Gaussian and USL models since the logit link function

puts the model for logit(θji) on a different (logit) scale.

Our other alternative model for proportions is the bivariate BLN model previously studied

in Franco and Bell (2013, 2015). To specify this model we define, for the smaller survey, the

(estimated) effective sample sizes ñ1i and “effective sample numbers of successes” ỹ1i to reproduce

the direct estimated proportions p1i and their estimated sampling variances vi11, the latter through
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the usual p(1− p)/n variance estimate for a proportion. Thus,

ñ1i = p1i(1− p1i)/vi11 (7)

ỹ1i = p1i × ñ1i. (8)

We make the analogous definitions of ñ2i and ỹ2i for the ACS estimates. Rounding of ñ1i, ỹ1i,

ñ2i, and ỹ2i is needed by some statistical software. These adjustments to the observed, unweighted

sample counts, and to the sample sizes, are meant to approximately capture the effects of the

sampling design.

If p1i = 0 or 1, one would probably want to replace it in (7) by some preliminary improved

estimate of θ1i defined to be between 0 and 1 so as to avoid obtaining an effective sample size

estimate of zero. Franco and Bell (2013, 2015) illustrate this, albeit in models with regression

covariates. Alternatively, if p1i = 0 or 1, ñ1i might be set to some fraction of the actual sample

size, allowing for a design effect greater than 1. The estimates of the sampling variances vi11 in (7)

may come from a GVF.

Following Franco and Bell (2013, 2015), we use the quantities just defined to specify the

bivariate BLN model as follows:

ỹ1i|θ1i, ñ1i ∼ Bin(ñ1i, θ1i) logit(θ2i) = µ1 + u1i i = 1, . . . ,m. (9)

ỹ2i|θ2i, ñ2i ∼ Bin(ñ2i, θ2i) logit(θ1i) = µ2 + u2i (10)

The BLN replaces the first parts of equations (5) and (6) from the USL model with the binomial dis-

tribution assumptions while retaining the bivariate normal model for (logit(θ1i), logit(θ2i)). Note

that the BLN model assumes conditional independence of ỹ1i and ỹ2i given θji and ñji, j = 1, 2.

Analogous to the previous models, this holds when p1i and p2i are estimated from different samples

drawn independently, as is the case in the applications we examine.
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If the ñ1i are sufficiently large, and since the ñ2i are even larger, the binomial distributions in

(9) and (10) should be approximately normal, and the BLN and USL models may then yield similar

results. Some potential for differences stems from the facts that the USL model takes the sampling

variances, vi11 and vi22 as known, whereas the BLN model takes the effective sample sizes, ñ1i and

ñ2i, as known, which allows the sampling variances var(p1i|θ1i, ñ1i) = θ1i(1 − θ1i)/ñ1i to vary

with θ1i, and similarly for var(p2i|θ2i, ñ2i).

For Bayesian treatment of the models using JAGS, we used diffuse normal priors on the

means µ1 and µ2 , uniform priors on σ11, and σ22, and a uniform[−1, 1] prior on ρ. We used

standard model diagnostic tools to check convergence of the MCMC chains, including Gelman-

Rubin-Brooks plots (Brooks and Gelman, 1998), plots of the autocorrelation functions, and trace

plots. These were computed using the coda package in R (Plummer et al. 2006).

2.1 Model comparisons

One would like some model selection criterion to decide between the three models described above.

Rao and Wu (2001) give an overview of the various types of statistical model selection criteria.

Most do not apply to our problem since our three models are non-nested (so hypothesis tests won’t

work) and the BLN assumes a discrete distribution for the data while the other two models assume

a Gaussian distribution, so likelihood-based criteria and certain Bayesian approaches, such as DIC

(van der Linde, et al. 2002), seem inapplicable. To avoid these difficulties, we look to a criterion

based on mean squared prediction errors (MSPE). Rao and Wu (2001, Sec. 3) review a number of

these, which differ in regard to the various overfitting penalties used. The penalties are generally

functions of the number of model parameters and the number of observations. Since our three

models all have the same number of parameters, and the number of observations for a given data

set is a constant, we can ignore overfitting penalties and use a simple criterion based on mean

squared residuals.
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Since our interest lies in using p2i to predict θ1i, we define conditional residuals for use in

model comparisons as

εi = p1i − E(p1i|p2i). (11)

Note that E(εi|p2i) = 0 and E(ε2i |p2i) = var(εi|p2i) = var(p1i|p2i). The general form of criterion

we use for model comparison is the weighted MSPE defined as

WMSPE =
m∑
i=1

wiε
2
i

/
m∑
i=1

wi (12)

where the wi ≥ 0 are suitable weights. To account for the fact that higher levels of sampling error

in p1i will tend to produce larger squared prediction errors, one obvious choice would be wi =

1/vi11. A more sophisticated choice, more fully accounting for inherent levels of predictability,

would be wi = 1/var(p1i|p2i). The latter reduces WMSPE to the mean square of the standardized

conditional residuals, [εi/[var(p1i|p2i)].5]. Still another choice would be wi = 1/var(θ1i|p2i). For

comparing models, it seems advisable to use a single set of weights for all three models when

computing their WMSPE. Our results give model comparisons using either wi = 1/var(p1i|p2i)

or w∗i = 1/var(θ1i|p2i), taking these for simplicity from the Gaussian model, plugging posterior

means of model parameters into the calculation.

An alternative derived from WMSPE is

WMSPE* =
m∑
i=1

w∗i (ε
2
i − vi11)

/
m∑
i=1

w∗i . (13)

For the Gaussian and USL models with parameters known, it can be shown that E(ε2i |p2i) =

var(θ1i|p2i) + vi11, so that WMSPE* estimates the weighted average MSE for prediction of the

θ1i. If wi ≡ w∗i , then model selections based on (12) or (13) yield the same results, though the

interpretation of WMSPE* may be preferred. However, WMSPE* can be negative, the chance of

which increases with increasing overall levels of sampling error. For the applications of Section 3,

we use wi for WMSPE and w∗i for WMSPE*, so the model preferences from these two comparison
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criteria do not exactly agree.

Computation of the quantities E(p1i|p2i) and var(p1i|p2i) for the Gaussian model uses stan-

dard results on the multivariate normal distribution. Appendix A discusses computation of these

quantities for the USL and BLN models.

2.2 Decomposing the decreases in model prediction error variances from

using the bivariate Gaussian model predictors rather than the direct

estimators

In this section we use simple analytical computations to help shed light on what situations could

lead to large decreases in prediction error variances from using bivariate models. We assume for

simplicity that the model defined by (1)–(2) is the true model with vi12 = 0, and that the model

parameters are known. The latter assumption can hold approximately in cases where the number

of small areas is large. Without the Gaussian assumption, the results here apply to optimal linear

prediction from the model defined by (1)–(2). The results can also be taken as providing a rough

indicator of the potential for variance reduction from other bivariate models, such as the bivariate

BLN and USL models, as will be seen from results for the applications.

We find that the variance reductions can be expressed in terms of just three quantities: ρ,

r1i =
vi11
σ11

, and r2i = vi22
σ22

, the latter two being the noise to signal ratios of each of the two surveys.

The relative decrease in prediction error variance from using the bivariate model predictor rather

than the direct survey estimator can be expressed as:

vi11 − var(θ1i|p1i, p2i)
vi11

=

[
r1i

1 + r1i

]
︸ ︷︷ ︸

var reduction, UNI vs. DIR

×
[
1 +

1

r1i

(
r1iρ

2

(1 + r1i)(1 + r2i)− ρ2

)
︸ ︷︷ ︸
var reduction, BIV vs. UNI

]
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=

[
vi11 − var(θ1i|p1i)

vi11

]
×

[
1 +

1

r1i

(
var(θ1i|p1i)− var(θ1i|p1i, p2i)

var(θ1i|p1i)

)]
(14)

The first term in brackets in the above equations is the relative decrease in variance resulting

from use of the univariate model predictors compared to the direct survey estimators. The second

term in brackets involves the noise to signal ratio for the first survey and the relative decrease

from using the bivariate Gaussian model predictors rather than the univariate model predictors.

Derivation of these results is given in Appendix B. We see there is some part of the variance

reduction from bivariate modeling that can be attributed to univariate shrinkage to the mean µ1.

We now explore how the potential for variance reduction from bivariate modeling depends

on ρ, r1i, and r2i. To aid interpretation, for this purpose we replace r2i by ki = r1i/r2i. Notice that

if σ11 ≈ σ22, as can happen when ACS and the smaller survey are estimating ostensibly the same,

or very similar, quantities, then ki ≈ vi11/vi22. Since we would expect vi11 and vi22 to be inversely

proportional to the smaller survey and ACS sample sizes, then with a little further thought, and

defining effective sample sizes ñ1i and ñ2i as the sample sizes divided by the respective survey

design effects (essentially what is happening in equation (7)), we can argue that, to a rough ap-

proximation, ki ≈ ñ2i/ñ1i. We can thus consider ki a rough measure of the ratio of the effective

sample size of the ACS to that of the smaller survey.

Figure 1 plots the decreases in variances from using the univariate and bivariate models,

rather than the direct survey estimators, showing how the decreases depend on ρ, ki, and r1i, with

r1i plotted on a log scale. Panel (a) shows that the percentage decrease in variance from using the

univariate model predictor rather than the direct survey estimator increases with r1i. The percent-

age decreases are small for small values of r1i, which can occur due to either large sample size

(so vi11 is small) or substantial variation in θ1i across areas (so σ11 is large). Substantial variance

reductions exceeding 30 percent are achieved around r1i = 0.5, and the reductions increase to quite

large values as r1i increases.
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Figure 1: Plots of approximate variance decreases, based on first order approximations. (a) Plot
of percentage decrease from using the univariate Gaussian model predictors rather than the direct
estimates against r1i. (b)-(d) Contour plots of percentage decrease from using bivariate model
predictors rather than univariate Gaussian model predictors when ki = 0.025, 1, 40, respectively
for (b), (c), and (d), plotted over ranges of values of ρ and r1i. Note that r1i is plotted on the log
scale.

Panels (b)–(d) of Figure 1 show contour plots of the percentage decrease in variance from

using a bivariate rather than a univariate model, with contours drawn over ranges of values of ρ

and r1i, with plots given for the values ki = 0.025, 1, 40. Panel (b) shows virtually no variance
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reduction from bivariate modeling versus univariate shrinkage for the case of ki = 0.025, over all

values of ρ and r1i shown. In general, small values of ki < 1 mean that the first survey is much

larger than the second, the reverse of the case of interest here. The graph shows that no meaningful

variance reductions should be expected from bivariate modeling for the estimates from the larger

survey.

Considering panels (b)–(d) of Figure 1, we see that the variance reductions from using a

bivariate model versus a univariate model increase with increasing ki. Panel (c), for the case

ki = 1, suggests that for surveys of similar size/precision, some benefit might be obtained from

using a bivariate rather than a univariate model, up to about a 40% decrease in variances, though

such large variance reductions occur only for very high values of ρ and for limited values of r1i.

Panel (d) plots results for ki = 40, which is closer to the median ki values for the applica-

tions presented in Section 3 that illustrate use of the ACS estimates to improve the estimates from

smaller surveys. For this larger value of ki, we see that very large reductions in variances can be

achieved by using a bivariate rather than a univariate model, particularly when ρ is very high, and

for “intermediate” values of r1i, with r1i values from about 1 to 10 yielding the biggest benefits.

Note also that for moderate values of ρ, say less than 0.5, the reductions in variance are relatively

low (less than 20%) regardless of the value of r1i. However, in Section 3, we will see that very

high values of ρ do occur in practice.

3 Three Applications

3.1 State-level health insurance coverage as measured by the NHIS

In recent years there has been significant interest in estimates of health insurance coverage for

the U.S. – the proportion of the population possessing some form of health insurance – for the
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whole population as well as for population subgroups defined by age, race, sex, geographic area,

etc. Concerns about the uninsured population have led to legislation establishing government pro-

grams designed to raise coverage, including the Affordable Care Act of 2010 and the Children’s

Health Insurance Program (CHIP, formerly state CHIP) of 1997, with these programs building

on the earlier established Medicaid (1965) and Medicare (1966) programs. Several U.S. surveys,

including the ACS, NHIS, CPS, and the SIPP, provide estimates of health insurance coverage.

Estimation of insurance coverage by these surveys differs in various ways including the concep-

tual definitions used of insurance coverage, the methods and timing of the data collection, and the

timing for release of coverage estimates. Questions about which data to use in the CHIP fund-

ing allocation formula led to a workshop in 2010 sponsored by the U.S. Department of Health

and Human Services and convened by the Committee on National Statistics of the U.S. National

Research Council (NRC). The workshop summary report (NRC 2010) includes a number of back-

ground papers discussing the various sources of estimates of insurance coverage. Chapter 8 of this

report (Kenney and Lynch 2010) provided the assessment that “There is a general consensus that

the NHIS produces the most valid coverage estimates” (p. 72) while acknowledging that “. . . the

[NHIS] sample size is too small to produce precise annual state (and substate) estimates for most

states” (p. 73).

The NHIS is a multistage probability sample of the civilian noninstitutionalized population

of the U.S. that is conducted continuously by the National Center for Health Statistics through

an agreement with the U.S. Census Bureau. It is a comprehensive health survey that provides

estimates of three measures of health insurance noncoverage (uninsured at time of interview, unin-

sured for at least part of the year prior to interview, and uninsured for more than 1 year at time

of interview), along with estimates of different types of insurance coverage (public and private

types of coverage). The NHIS provides estimates of coverage for some states through its Early

Release (ER) program, which updates its estimates quarterly. Estimates, and further information

about the ER program, are available from the NHIS web page at https://www.cdc.gov/

nchs/nhis.htm. ACS estimates of state health insurance coverage are available from American
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FactFinder at https://factfinder.census.gov/faces/nav/jsf/pages/index.

xhtml. (To be replaced soon by Data.census.gov.)

Final ER estimates based on a full calendar year’s sample, and corresponding sampling stan-

dard errors, are released in May or June of the year following data collection. The estimates for

2016, based on a sample of 97,459 persons, were released on May 16, 2017. These included

state estimates of noncoverage for persons of all ages for 45 states. Estimates for Alaska, District

of Columbia (DC), North Dakota, South Dakota, Vermont, and Wyoming were omitted “due to

considerations of sample size and precision” (Cohen et al., 2017). The number of state estimates

provided varies over the years; for 2017, with a full-year sample of 78,074 persons, only 18 state

estimates of coverage for persons of all ages were provided.

We mentioned in Section 2 that the direct estimators of sampling variances should be im-

proved whenever possible prior to applying small area estimation models. The NHIS published

estimates of sampling variances differ from the direct variance estimators for all but the 10 largest

states. For the smaller states included in the publication, the sampling variances were calculated

by assuming their design effect is the average of the design effects for the 10 largest states (Cohen

et al, 2017).

Here we demonstrate how jointly modeling ACS one-year and NHIS final ER coverage es-

timates can substantially reduce the variances of the latter. To have a reasonable number of state

estimates for the modeling, we use the NHIS 2016 estimates for 45 states of the percentage of

persons of all ages lacking any health insurance coverage at time of interview. The ACS annual

health insurance coverage estimates are released in September of the year following data collec-

tion. Because this is substantially later in the year than the release of the corresponding year’s

NHIS estimates, we model ACS estimates for 2015 rather than 2016 jointly with the 2016 NHIS

estimates, for the 45 states with estimates from NHIS. This conforms to what ACS data would

reasonably be available on the NHIS publication schedule. The ACS sample for 2015 included

2,305,707 household interviews nationally.
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Figure 2.a plots the NHIS direct state estimates of health insurance noncoverage against

the estimates from ACS. The plot suggests a strong linear relation between the two; in fact, the

estimated correlation is 0.93. More of the points fall below the y = x line, suggesting a possible

tendency for higher estimates from the ACS. The reverse is suggested, however, by the national

estimates, which are 9.0% (std. error = 0.27) for NHIS and 8.6% (std. error = 0.1) for ACS,

yielding a not quite significant difference of 0.4% (std. error = 0.288).

Panels b and c of Figure 2 give histograms for the r1i and ki values. One extremely large

ki value (352) was omitted from the histogram as it distorted the plot. The r1i values are all

below 0.25 (max(r1i) = .246), which puts them in the region for which Figure 1.a suggests little

benefit from univariate shrinkage. The ki values are mostly large – their first quartile is about 20

– so for most states graphs like Figure 1.d would suggest potential for significant benefits from

bivariate modeling if ρ is large. In fact, panel d of Figure 2 shows that the posterior density of ρ is

concentrated near 1, with a 90% credible interval of (.94, .99), and a posterior mean of 0.97.

Panel e of Figure 2 shows that the NHIS direct estimates differ substantially from the bivari-

ate Gaussian model predictions, as one would expect, although no extreme outliers appear on the

plot. In contrast, Panel f shows that differences between the bivariate BLN and bivariate Gaussian

predictions are rather small. The same is also true for comparisons of either to the bivariate USL

predictions (results not shown).

Panels g, h, and i of Figure 2 plot the posterior variance decreases (empty circles) from the

three bivariate models – Gaussian, USL, and BLN, respectively – against the sampling variances

of the direct NHIS estimates. For the three states with the lowest sampling variances, the variance

reductions from the Gaussian bivariate model are negligible (California) to small, about 25% (New

York and Florida). For the remaining 42 states modeled, the variance improvements increase

with vi11 from around 40% to near 80%. This assessment also applies, for the most part, to the

bivariate USL and BLN results, except that their variance reductions do not show a smooth increase

with vi11. The large variance reductions from all three bivariate models contrast with the minimal
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Figure 2: Bivariate modeling of 2016 NHIS and 2015 ACS estimates of health insurance noncov-
erage

variance reductions from univariate shrinkage shown in the plots (filled triangles).

Panels j, k, and l plot ratios of the posterior variances for the three pairs of bivariate models

against posterior means for the bivariate BLN model. The two plots that involve the Gaussian

model show substantial differences from the USL and BLN models, with the ratios increasing

roughly linearly with the point predictions. These differences will definitely affect statistical in-
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ferences, such as prediction intervals, made from the models. The posterior variance ratios of the

USL to the BLN model reflect smaller differences, with those from the USL tending to be slightly

lower.

Table 2 provides some summary statistics on the variance reductions from vi11 for univariate

shrinkage (for the Gaussian model) and for the three bivariate models. These results reflect the

corresponding results of panels g, h, and i of Figure 2 discussed above. Table 2 also provides the

model comparison statistics WMSPE and WMSPE* defined in Section 2.1. These statistics favor

the USL and BLN models over the Gaussian model, and are somewhat neutral between the USL

and BLN, whose differences are small. The univariate model statistics, which measure weighted

sums of squared differences from the overall mean, are much higher than those from the bivariate

models.

percentage variance reductions model comparison stats
model mean 1st q. median 3rd q. max WMSPE WMSPE*

univariate Gaussian 11 7 11 15 19 11.01 10.48
bivariate Gaussian 62 53 66 72 78 1.41 0.138

bivariate USL 65 61 68 74 85 1.37 0.093
bivariate BLN 62 60 66 71 84 1.38 0.074

Table 1: 2016 NHIS state health insurance noncoverage estimates: Percent variance reductions
from direct estimates for the univariate and bivariate models, and the model comparison statistics,
WMSPE and WMSPE*.

The main conclusion from the results presented is that bivariate modeling of the NHIS and

ACS state estimates of health insurance noncoverage can yield predictions with substantially re-

duced variances compared to the direct estimates from NHIS for most states. This could allow

NCHS to publish estimates for more states, perhaps for all states and DC.
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3.2 State-level total disability as measured by the SIPP

A number of U.S. surveys provide data on disability, including the ACS, CPS, and SIPP. Yang and

Tan (2018) and Livermore, et al. (2011) provide overviews of U.S. federal disability data sources.

The web page, “How Disability Data are Collected from The Survey of Income and Program

Participation,” on the Census Bureau web site (at https://www.census.gov/topics/

health/disability/guidance/data-collection-sipp.html), notes that a SIPP

redesign in 2014 included putting the six disability questions asked in ACS on the SIPP, along with

three additional questions each on child disability and work disability. Prior to this, the 2008 SIPP

panel collected more detailed disability data in three topical modules, and this data provided the

basis for the “Americans With Disabilities” P70 report series. In reference to these topic modules

it is noted that, “While the [SIPP] disability measure covers a broader spectrum of activities, a

drawback to the SIPP as a data source is the relatively small sample size.” Thus, here we examine

bivariate modeling of ACS and SIPP state disability estimates to try to reduce the variances of

estimates from the 2008 SIPP panel.

Previously, You, Datta, and Maples (2014) pursued bivariate modeling of ACS and SIPP

2008 panel state disability estimates, using models that included two covariates drawn from ad-

ministrative records. The two covariates used were percentages of the population receiving benefits

from the supplemental security income and disability income programs, respectively. Here, we ex-

amine the potential for improving the SIPP total disability estimates analyzed by You, et al. via

bivariate models of SIPP and ACS data without using any covariates.

You, et al. defined “total disability” for the SIPP data as the estimated number of per-

sons age 15 and over having any of four general types of disability – vision, hearing, mental

functional limitations, and physical functional limitations. For comparable ACS data, they took

ACS estimates of persons 15+ with a positive response to any of the six ACS disability ques-

tions. The state-level SIPP estimates of total disability were based on data collected between May

21

https://www.census.gov/topics/health/disability/guidance/data-collection-sipp.html
https://www.census.gov/topics/health/disability/guidance/data-collection-sipp.html


and August of 2010 from wave 6 of the 2008 SIPP panel, which provided interviews from about

35,000 housing units (Sundukchi and Westra, 2015). The 2010 ACS sample obtained interviews

from 1.92 million housing units (https://www.census.gov/acs/www/methodology/

sample-size-and-data-quality/sample-size/). The 2010 ACS estimates were re-

leased in September of 2011 and so would have been available for use with data from wave 6 of

the 2008 SIPP panel, whose estimates were released in July 2012. The estimates used by You,

et al. were custom tabulations of SIPP data. The ACS estimates are available from American

FactFinder. To smooth out the SIPP direct variance estimates, we took the national-level estimate

of the design-effect, and assumed that the same design effect held for all the individual states.

Figure 3.a plots the SIPP direct state estimates of total disability against the estimates from

ACS. The plot suggests a positive relation between the two, and the estimated correlation is 0.55.

It is clear, however, that the two set of estimates are estimating different underlying quantities, as

the SIPP estimates are higher than those of the ACS for all but one state. The dotted regression

line further highlights the differences.

Panels b and c of Figure 3 give histograms for the r1i and ki values. The values of r1i are

rather large for some states, with a maximum of 2.35 and a third quartile of about 0.56. The afore-

mentioned value of the third quartile suggests that for several states we should see some notable

reductions in variances from using a pure shrinkage model, since Figure 1 suggests reductions of

about 33% for r1i of about 0.5. The ki values are also large, with a median of 43. As in the NHIS

application, these ki values suggest potential for significant benefits from bivariate modeling if ρ

is large. Panel d of Figure 3 shows the posterior density of ρ, which has a posterior mean of 0.79,

with a 90% credible interval of (0.64, 0.90). The density is not as highly concentrated near 1 as in

the NHIS application, but still shows solid evidence of a high value of ρ.

Panel e of Figure 3 shows that the SIPP direct estimates differ substantially from the bivariate

Gaussian model predictions. Though there do not appear to be large systematic differences, we

see a bit of shrinkage taking place, with some of the more extreme direct estimates becoming less
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Figure 3: Bivariate modeling of 2010 SIPP and ACS estimates of total disability

extreme after modeling. Note for instance, the two points in the top center, or the point in the lower

left. Panel f shows that differences between the bivariate BLN and bivariate Gaussian predictions

are rather small. The same is true for comparisons that involve the bivariate USL predictions

(results not shown).

Panels g, h, and i of Figure 3 plot the posterior variance decreases (empty circles) from the
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three bivariate models – Gaussian, USL, and BLN, respectively – against the sampling variances

of the direct SIPP estimates. The variance improvements increase with vi11 to over 80% for all

three models. The variance improvements from the univariate shrinkage model (triangles) are also

notable, and can be as high as 60−66%, depending on the model, with a third quartile of 31−32%

for the BSL, USL, and Gaussian models. The patterns of increase as the SIPP sampling variance

increases are similar for all three models, with the plot smoother for the Gaussian model.

Panels j, k, and l plot ratios of the posterior variances for the three pairs of bivariate models

against posterior means for the bivariate BLN model. The two plots that involve the Gaussian

model show systematic differences from the USL and BLN models, again with the ratios increasing

roughly linearly with the point predictions. The posterior variance ratios of the USL to the BLN

model reflect slightly smaller differences, with neither model having higher variances than the

other overall, and no clear pattern, with one possible outlier with a USL/BLN ratio of about 0.76.

Table 2 provides some summary statistics on the variance reductions from vi11 for univariate

shrinkage (for the Gaussian model) and for the three bivariate models. These results reflect the

corresponding results of panels g, h, and i of Figure 3 discussed above. Table 2 also provides the

model comparison statistics WMSPE and WMSPE* defined in Section 2.1. These statistics do

not distinguish well among the three bivariate models, but do favor all bivariate models over the

univariate ones.

percentage variance reductions model comparison stats
model mean 1st q. median 3rd q. max WMSPE WMSPE*

univariate Gaussian 22 8 20 32 66 22.1 19.6
bivariate Gaussian 41 21 39 57 85 13.4 11.8

bivariate USL 40 21 36 58 83 13.5 11.6
bivariate BLN 40 21 37 59 83 13.4 11.7

Table 2: Percent variance reductions from direct estimates for the univariate and bivariate models,
and the model comparison statistics, WMSPE and WMSPE*.

We conclude that bivariate modeling of the SIPP and ACS state estimates of total disability
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yields predictions with substantially reduced variances for most states compared to the direct esti-

mates from SIPP. Some of this improvement is due to pure (univariate) shrinkage, and some is due

to borrowing strength from ACS.

3.3 ACS One Year Estimates Borrowing Strength from the Five-Year Esti-

mates

In this section, we illustrate using ACS estimates to improve ACS estimates. Specifically, we use

2007-2011 ACS 5-year county estimates of rates of school-aged children in poverty to improve

the corresponding ACS one-year estimates for 2012. The specific variable of rates of school-aged

children in poverty is chosen as an illustration, but we expect similar benefits could be achieved

for other ACS one-year estimates. Despite its very large national sample size, ACS publishes one-

year estimates only for counties of 65,000 or more populations, and even for these counties some

estimates will be suppressed due to high sampling variances. Here we model 1-year and 5-year

estimates for 3,137 counties, omitting 5 U.S. counties which were not consistently defined across

the different years of data. Many of the 1-year estimates are unpublished. These 1-year and 5-year

estimates have an estimated correlation of 0.58.

To smooth the direct variances, for both the ACS 5-year estimates and the ACS 1-year esti-

mates, we use the GVF described in Franco and Bell (2013). The GVF uses preliminary estimates

of the county proportions derived from a nonlinear regression using county-level covariates tab-

ulated from SNAP and IRS data. Those model-based preliminary estimates are then used to fit a

model for the direct variances of the county-level ACS estimates. These GVF estimates were also

used in Franco and Bell (2015), Arima et al. (2017), and Bell et. al (2019), for different sets of

years.

Our graphical displays in this section differ from those of Sections 3.1 and 3.2 for two rea-
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sons. First, because of disclosure limitation restrictions on the unpublished ACS 1-year county

estimates, and second, because some of the original plots were unclear when produced for more

than 3, 000 data points. Hence, we exclude the analogous plots to some of the panels in Figures 2

and 3, but remark that the general trends are similar for these plots as we saw in the NHIS and SIPP

applications. For instance, point predictions from the different bivariate models are similar, while,

as before, the corresponding posterior variances can be quite different, with the posterior variance

ratios between the pairs of models increasing with the point predictions for the USL/Gaussian and

BLN/Gaussian ratios, as we saw in panels j and k of Figures 2 and 3.

Panels a and b of Figure 4 show histograms for the values of r1i and ki. The median of r1i is

0.47 with a mean of 0.66, and a 95th percentile of 1.90. This implies some of the values of r1i are

quite high, indicating potential for variance decreases from a pure shrinkage model. The values

of ki are more moderate than in the NHIS and SIPP applications, with the first and third quartiles

between 3 and 4, though this is still large enough that one might expect to benefit from borrowing

strength from the 5-year estimates provided that ρ is very high. In fact, panel c of Figure 4 shows

that the posterior density of ρ for the bivariate Gaussian model is quite concentrated at values near

one. The posterior mean of ρ is 0.94 with a 90% credible interval of (0.93, 0.95).

Figure 4, panels d-f show histograms of the percentage reductions of the posterior variances

relative to the sampling variances of the direct estimates, of the univariate and bivariate Gaussian,

USL, and BLN models, respectively. Each panel overlays the histogram of percentage variance

reductions from using a bivariate model, shown in gray, with that from using the corresponding

univariate shrinkage model, shown in white. Overall, we see large benefits for a considerable

share of the counties from the bivariate modeling with the 5-year estimates. Note that for each

model the variance reductions from the bivariate models are considerably larger than those from

univariate shrinkage – the bulk of the distributions of the bivariate models’ percent differences are

concentrated around higher values than is the case for univariate shrinkage.

Table 3 provides some summary statistics on the variance reductions from vi11 for univariate
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Figure 4: Bivariate modeling of 2012 ACS and 2007-2011 ACS estimates of school-aged children
in poverty

shrinkage (for the Gaussian model) and for the three bivariate models. These results reflect the

corresponding results of panels d-f of Figure 4 discussed above. Table 3 also provides the model

comparison statistics WMSPE and WMSPE* defined in Section 2.1. Again, these statistics do

not distinguish well among the three bivariate models, but do favor all bivariate models over the

univariate ones.

Panel f of Figure 4 shows some negative percent differences for posterior variances with

the univariate BLN model (univariate shrinkage) compared to sampling variances of the direct

estimates. These arise from the fact, noted in Section 2, that the BLN model holds the effective

sample sizes, ñ1i, constant, but allows the sampling variances, var(p1i|θ1i, ñ1i), to vary with θ1i. If,

for a given area, posterior information about θ1i suggests that it differs substantially from the pro-
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percentage variance reductions model comparison stats
model mean 1st q. median 3rd q. 95th percentile WMSPE WMSPE*

univariate Gaussian 33 17 32 47 65 0.0119 0.0103
bivariate Gaussian 62 54 67 74 81 0.0058 0.0045

bivariate USL 58 48 62 71 82 0.0057 0.0044
bivariate BLN 60 52 64 73 83 0.0058 0.0044

Table 3: Percent variance reductions from direct estimates for the univariate and bivariate models,
and the model comparison statistics, WMSPE and WMSPE*.

portion effectively reflected in vi11, then the sampling variance implicitly used in the calculation of

the posterior variance of θ1i can be substantially different from vi11. If this implicit sampling vari-

ance is substantially larger than vi11, then the resulting posterior variance of θ1i can be larger than

vi11, especially for the univariate shrinkage model. With over 3, 000 county estimates calculated,

this occurred for univariate shrinkage with the BLN a number of times. To address this issue, for

the purpose of estimating percent variance reductions for the BLN we replaced the original sam-

pling variances, vi11, with θ̂1i(1 − θ̂1i)/ñ1i, where θ̂1i is the posterior mean of θ1i. This reduced

the number of negative variance improvements, though some still remain in panel f. We calculated

this same correction to the BLN results for the NHIS and SIPP applications, but the effects there

were minor, and so are not shown in Sections 3.1 and 3.2.

It is natural for this application to ask if a time series model would be more suitable than the

bivariate model, as we have multiple years of 1-year estimates available. This question was studied

by Franco and Bell (2015) using a BLN model with a first-order autoregressive (AR(1)) structure

for the random effects, with application to ACS county estimates of poverty rates for school-aged

children. We also studied analogous linear Gaussian time series models, and models of different

orders up through AR(5) models. The results showed empirically and analytically that even when

the AR(1) model is true, non-trivial variance reductions from using an AR(1) model rather than

a bivariate model occur only in very limited circumstances, and did not occur for the application

studied, even when excluding available regression covariates from the models. The AR(5) model

did not fare much better. Hence, we focused on the bivariate model here.
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4 Discussion and Conclusions

The theoretical calculations in Section 2 shed light on the conditions that lead to large decreases in

variances from bivariate modeling of two survey estimates, and the three applications in Section 3

illustrate that these conditions do occur for modeling ACS estimates jointly with estimates from

a smaller survey. Though univariate shrinkage produced some of the decreases in variances we

saw in the three applications, substantial additional benefits resulted from borrowing strength from

the ACS estimates. Given the breadth of estimates provided by the ACS, and their geographic

detail, the results in this paper suggest a large potential for bivariate modeling to improve small

area estimates from the many smaller U.S. surveys.

A key factor in the amount of variance reduction achieved from bivariate modeling is the cor-

relation, ρ, between the population characteristics estimated by the ACS and by the smaller survey.

When ACS estimates ostensibly the same characteristic as the smaller survey, as for the NHIS and

SIPP applications shown, one would expect ρ to be high. But even if ACS does not estimate os-

tensibly the same quantity as the target population characteristic estimated by the smaller survey,

beneficial variance reductions can be possible if ACS estimates a related characteristic strongly

correlated with the target population characteristic.

Though the potential benefits of bivariate modeling seem clear, some issues of methodology

deserve further study. One such problem is that of improving direct estimates of sampling variances

from small samples. Direct sampling variance estimates can be expected to be more unstable than

the corresponding direct survey point estimates that the small area models aim to improve. In our

examples, we used simple methods to smooth the direct sampling variances, but further study of

this problem is warranted.

Another issue that deserves more attention is model selection/model diagnostics. For each

application the point predictions from the three models tended to look rather similar, leading to

similar looking diagnostics. This also explains why the WMSPE criteria we explored did not do
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a very good job distinguishing between the three alternative bivariate models considered, though

they did show that the bivariate models performed substantially better than univariate shrinkage for

all three applications. Posterior variances did differ substantially, especially between the Gaussian

and the other two models, recommending further investigation to determine which model best

reflects prediction uncertainty for a given application.
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Appendix A: Computations needed for the WMSPE statistics

We show how to compute the quantities E(p1|p2) and var(p1|p2) needed to compute the WMSPE

measures of Section 2.1 for the USL and BLN models. (Those for the Gaussian model follow from

standard results.) To simplify notation, we drop the i subscript in the following, understanding that

the results below would be applied for each area i = 1, . . . ,m.

We start with the USL model given by (5) and (6). Let z1 = logit(θ1) = log[θ1/(1− θ1)] and

z2 = logit(θ2) = log[θ2/(1−θ2)], and note that the inverse logit function is θ1 = [1+exp(−z1)]−1.

From standard results for the bivariate Gaussian model for (z1, z2)′, z1|z2 ∼ N(µ1+(σ12/σ22)(z2−

µ2), σ11 − σ2
12/σ22). Let φ(z1|z2) denote the corresponding density. For any integrable function

f(z1) defined on (−∞,∞), we have

E[f(z1)|z2] = E[f(z1)|θ2] =
∫ ∞
−∞

f(z1)φ(z1|z2)dz1.

Functions f(z1) of interest are f(z1) = θ1 = [1 + exp(−z1)]−1 and f(z1) = θ21, for which we

calculate

E(θ1|θ2) =

∫ ∞
−∞

[1 + exp(−z1)]−1φ(z1|z2)dz1 (15)

E(θ21|θ2) =

∫ ∞
−∞

[1 + exp(−z1)]−2φ(z1|z2)dz1 (16)

var(θ1|θ2) = E(θ21|θ2)− [E(θ1|θ2)]2. (17)

Given values for the model parameters (in our applications, we use their posterior means from the

fitted bivariate model), and given a value for z2 = logit(θ2), we can compute (15) and (16) by

numerical integration, which thus also gives (17). We used the integrate function of R (R Core

Team 2017) for this purpose.
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Now

E(p1|p2) = Eθ2|p2 [E(p1|p2, θ2)]

= Eθ2|p2{Eθ1|θ2 [E(p1|θ1, p2, θ2)]}

= Eθ2|p2 [Eθ1|θ2(θ1)]

= Eθ2|p2 [E(θ1|θ2)]. (18)

To compute Eθ2|p2 [E(θ1|θ2)], we took posterior simulations of θ2|p2 obtained from JAGS using the

univariate USL model for p2 given by (6). One way to do this is to run the bivariate USL model

fixing ρ = 0. For each such simulated value of θ2, we computed E(θ1|θ2) from (15), and then

averaged these results over the simulations. The averaging over simulations was done within R

using functions from CODA (Plummer, et al. 2006).

We also have

var(p1|p2) = Eθ2|p2 [var(p1|p2, θ2)] + varθ2|p2 [E(p1|p2, θ2)]

= Eθ2|p2 [var(p1|θ2)] + varθ2|p2 [E(p1|θ2)]. (19)

The second term in (19) equals varθ2|p2 [E(θ1|θ2)] sinceE(p1|θ2) = Eθ1|θ2 [E(p1|θ1, θ2)] = Eθ1|θ2(θ1).

This can be computed analogously to the computation of (18) by taking the variance of the values

of E(θ1|θ2) computed for the simulations of θ2|p2, again using CODA. For the first term in (19),

we note that

var(p1|θ2) = Eθ1|θ2 [var(p1|θ1, θ2)] + varθ1|θ2 [E(p1|θ1, θ2)] (20)

= Eθ1|θ2(v11) + varθ1|θ2(θ1)

= v11 + var(θ1|θ2).
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The first term in (19), Eθ2|p2 [var(p1|θ2)], can thus be computed by adding v11 to the average of the

values of var(θ1|θ2) computed over the simulations of θ2|p2, once again using CODA.

The derivation for the BLN model is the same as above through equation (20). The second

term in (20) then becomes var(θ1|θ2), as above, but for computing the first term in (20) we have

Eθ1|θ2 [var(p1|θ1, θ2)] = Eθ1|θ2 [var(p1|θ1)]

= Eθ1|θ2 [θ1(1− θ1)/ñ1]

= ñ−11 [E(θ1|θ2)− E(θ21|θ2)].

Appendix B: Sketch of proof of the decomposition formula (14)

As in Appendix A, we simplify notation by dropping the i subscript in the following. Since pre-

dicting θ1 is equivalent to predicting e1, by the properties of the multivariate normal distribution,

we have

var(θ1|p1) = var(e1|p1) = v11 − v211(σ11 + v11)
−1 =

v11σ11
σ11 + v11

. (21)

Similarly, we have

var(θ|p) = var(e|p) = V −V(Σ + V)−1V,

where θ = (θ1, θ2), e = (e1, e2), and p = (p1, p2). Simplifying, and assuming v12 = 0, we obtain,

for the (1, 1) element of the resulting conditional variance matrix

var(θ1|p) = v11 −
v211(v22 + σ22)

(v11 + σ11)(v22 + σ22)− ρ2σ11σ22
. (22)
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To compute the percentage decrease in posterior variances from using the univariate model versus

the direct estimators, we have

v11 − var(θ1|p1)
v11

=
v11 − v11σ11/(σ11 + v11)

v11
=

v11
σ11 + v11

=
r1

1 + r1

Similarly, using (21) and (22) and simplifying we obtain

var(θ1|p1)− var(θ1|p)
var(θ1|p1)

=
ρ2v11σ22

(v11 + σ11)(v22 + σ22)− ρ2σ11σ22
=

r1ρ
2

(r1 + 1)(r2 + 1)− ρ2
(23)

Computing the percentage difference between the bivariate model posterior variances and the direct

estimators, and expressing it in terms of r1, r2, and ρ gives

v11 − var(θ1|p)
v11

=
r1(r2 + 1)

(r1 + 1)(r2 + 1)− ρ2

which, after some algebra, can be shown to be equivalent to expression (14).
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