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Summary. National statistical agencies lack statistical methodology to express uncertainty in
their released estimated overall rankings. For example, the US Census Bureau produced an
‘explicit’ ranking of the states based on observed sample estimates during 2011 of mean travel
time to work. Current literature provides measures of uncertainty in estimated individual ranks,
but not a direct measure of uncertainty for the estimated overall ranking. We construct and
visualize a joint confidence region for the true unknown overall ranking that provides a measure
of uncertainty in the estimated overall ranking.
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1. Introduction

We present a simple novel measure of uncertainty for an estimated overall ranking by construct-
ing a joint confidence region for the true unknown overall ranking as follows: by observing how
K known confidence intervals for K means overlap or not, by obtaining a confidence set contain-
ing each population rank, and ultimately obtaining the joint confidence region for the overall
ranking.

Rankings (explicit or implicit) of K �2 populations or governmental units based on sample
survey data are usually released without direct statistical statements of uncertainty on estimated
overall rankings. Our main objective is to provide simple statistical methodology for express-
ing uncertainty in released overall rankings based on data from sample surveys by statistical
agencies. A visualization facilitates communication with wide audiences.

Formally, assume K disjoint populations with associated independent continuous random
variables Y1, : : : , YK and respective cumulative distribution functions F1.y/, : : : , FK.y/. Let θk be
a real-valued characteristic (parameter) related to Fk.y/, for k = 1, : : : , K. Although the values
of θ1, : : : , θK are unknown, it is desired to rank the K populations from smallest to largest on
the basis of these unknown values, i.e. based on
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θ.1/ <θ.2/ < : : :<θ.k/ < : : :<θ.K/: .1/

If Yk1, : : : , Yknk
is a probability sample of size nk from the kth population where the statistic

θ̂k = θ̂k.Yk1, : : : , Yknk
/ is an estimator of θk for k = 1, : : : , K, we rank the K populations on the

basis of the observed ranking of the values, θ̂1, : : : , θ̂K, i.e.

θ̂.1/ < θ̂.2/ < : : :< θ̂.k/ < : : :< θ̂.K/: .2/

For example, data from the US Census Bureau’s American Community Survey (ACS) pro-
duced an explicit ranking of the K = 51 states (including Washington DC) based on observed
sample estimates during 2011 of θk the mean travel time to work (in minutes) for workers 16
years old and over who did not work at home (henceforth ‘mean travel time to work’) for state
k, where k =1, : : : , 51. Also, given estimates in a table without an explicit ranking, users tend to
compare states by looking for smallest or largest estimates and for relative standings between
the states. We refer to such tables as motivating ‘implicit’ rankings.

Because rankings based on the observed values of θ̂1, : : : , θ̂K can vary because of sampling
variability, widely understood and robust (valid and applicable in many situations) statements
of uncertainty should accompany each released ranking.

In this paper, a collection of joint confidence intervals for θ1, : : : , θK forms the basis for the
measure that is presented. Knowledge of the specific complex sampling design and estimation
methodology for each population is not required. In Section 2, we present a simple mathematical
result. Section 3 uses this mathematical result to provide general theory for constructing a joint
confidence region for the overall ranking. Examples using the ACS’s travel time to work data
are given in Section 4. Section 5 gives discussion.

1.1. Overview of the American Community Survey
Conducted by the US Census Bureau, the ACS’s sampling design is basically a national strat-
ified random sample with sampling and estimation following a finite population design-based
framework. Data are collected continually throughout the year. The ACS provides data ev-
ery year for the preceding calendar year and for the preceding 5-year period—giving com-
munities current information that is needed to plan investments and services. The sample
survey generates data that help to determine how hundreds of billions of dollars in federal
and state funds are distributed each year. Currently, over 3500000 housing unit addresses
are contacted each year by Internet, mail, telephone or face to face to provide data for sta-
tistical estimates at various geographic levels—large and small. In addition to travel time
to work, the ACS questionnaire asks about age, sex, race, family and relationships, income
and benefits, health insurance, education, veteran status, disabilities, where people work and
how they get there, and where they live and how much they pay for some essentials. (See
https://www.census.gov/programs-surveys/acs/technical-documentation/
code-lists.html.)

1.2. Travel time to work
There is considerable interest each year from the public, the media, city planners and engineers
who study traffic patterns when travel time to work rankings are released by the Census Bureau.
Increases in the travel times to work have been observed over time. A Washington Post article
(Siddiqui, 2018) noted that

‘There’s a massive body of social science and public health research on the negative effects of commuting
on personal and social well-being. Longer commutes are linked with increased rates of obesity, high
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cholesterol, high blood pressure, back and neck pain, divorce, depression, and death. At the societal
level, people who commute more are less likely to vote. They’re more likely to be absent from work.
They’re less likely to escape poverty. They have kids who are more likely to have emotional problems.’

Rankings help to identify factors and living conditions of areas with lower ranks for travel time
to work for possible adoption by areas with higher ranks.

Among ‘ranking tables’ based on many topics using data collected by the ACS for 2011 is Table
1. From Table 1, the 51 states (including Washington DC) are ranked from largest to smallest by
estimated mean travel time to work, θ̂k (see https://factfinder.census.gov/bkmk/
table/1.0/en/ACS/11 1 YR/R0801.US01PRF). From the ‘statistical significance’ col-
umn, we see the results of 50 separate tests of significance (α=0:1) for Alabama as the selected
state with each of the other states. Alabama is not statistically significantly different from Ten-
nessee, Michigan, Nevada, Mississippi, South Carolina or Rhode Island.

In Table 1, the margin of error MOEk gives uncertainty in the estimate θ̂k for each state sepa-
rately; and the tests of significance compare one state’s estimate with those of each of the other
states. However, a direct assessment of the uncertainty in the estimated overall ranking would
involve all the states simultaneously and their relative standing to each other. The (estimated)
rank of a state (e.g. of Alabama) is informed by data from all states. No direct measure of un-
certainty is given for estimated individual ranks. We seek to provide a measure of uncertainty
that is directly focused on the estimated overall ranking.

Although we illustrate our method by using all 51 states to be consistent with the published
ACS ranking tables, the same method could be applied to data subsets that are specified a priori
by analysts who are interested in subsets of states or other domains (e.g. rankings of states in the
north-east, rankings of states with low urbanization or rankings of large metropolitan areas).

1.3. Selected ranking literature
In a seminal paper from the ranking and selection literature, Bechhofer (1954) presented a pro-
cedure for computing sample sizes nk for ranking K populations where the ranking is based on
the observed sample means. Assuming the usual Bayesian set-up of priors on the parameters θk,
the focus is on how to go from posteriors on the parameters θk to a ranking of the parameters.
The literature (Shen and Louis, 1998) suggested that ‘Ranking posterior means can perform
poorly ...’. Others who have provided similar reports include Brand et al. (1996), Goldstein and
Spiegelhalter (1996), Laird and Louis (1989) and Morris and Christiansen (1986). Govindara-
julu and Harvey (1974) pointed out that simply choosing the ranking with the highest posterior
probability may not be an ideal approach, even if it were possible. Louis (1984) argued that any
ranking of populations based on θk should consider the collection or ensemble {θ1, θ2, : : : , θK}
and not the θk individually; we agree. Also see Klein and Wright (2011). Goldstein and Spiegel-
halter (1996) suggested the bootstrap as a means of obtaining interval estimates for ranks, as
did Hall and Miller (2009) and Wright et al. (2013, 2014, 2019).

Bayesian methods (e.g. Laird and Louis (1989) and Shen and Louis (1998)) tend to provide
measures of uncertainty in estimated individual ranks; they do not provide measures of uncer-
tainty in the estimated overall ranking (see Section 5). Stated another way, existing Bayesian
methods seem to answer the question ‘How good is the estimated individual rank for a specific
state?’. We seek to answer the question ‘How good is the estimated overall ranking for all the
states?’, i.e. the estimated overall ranking depends on the observed sample for each state, and
these samples all have sampling error. Other samples could result in alternative estimated overall
rankings. Thus we seek a quantification of this uncertainty via a joint confidence region for the
overall ranking (Sections 3 and 4).
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Table 1. Mean travel time to work of workers 16 years old and over who did not work at home†

Rank Geographical Statistical Estimated Margin
area significance? mean (min) of error

USA 25.5 ±0.1
51 Maryland 32.2 ±0.2
50 New York 31.5 ±0.2
49 New Jersey 30.5 ±0.2
48 District of Columbia 30.1 ±0.5
47 Illinois 28.2 ±0.2
46 Massachusetts 28.0 ±0.2
45 Virginia 27.7 ±0.2
44 California 27.1 ±0.1
44 Georgia 27.1 ±0.3
42 New Hampshire 26.9 ±0.5
41 Pennsylvania 25.9 ±0.1
40 Florida 25.8 ±0.2
39 Hawaii 25.7 ±0.4
38 West Virginia 25.6 ±0.5
37 Washington 25.5 ±0.2
36 Delaware 25.3 ±0.6
35 Connecticut 25.0 ±0.3
34 Arizona 24.8 ±0.2
34 Texas 24.8 ±0.1
32 Colorado 24.5 ±0.3
32 Louisiana 24.5 ±0.2
30 Tennessee ‡ 24.2 ±0.2
29 Michigan ‡ 24.1 ±0.2
29 Nevada ‡ 24.1 ±0.4
27 Alabama § 23.9 ±0.2
27 Mississippi ‡ 23.9 ±0.4
25 South Carolina ‡ 23.6 ±0.3
24 Indiana 23.5 ±0.2
23 Maine 23.4 ±0.4
23 North Carolina 23.4 ±0.2
23 Rhode Island ‡ 23.4 ±0.5
20 Missouri 23.1 ±0.2
20 Ohio 23.1 ±0.1
18 Minnesota 23.0 ±0.2
17 Kentucky 22.9 ±0.2
16 Oregon 22.5 ±0.3
15 Vermont 21.9 ±0.5
15 Wisconsin 21.9 ±0.2
13 Utah 21.6 ±0.3
12 New Mexico 21.4 ±0.4
11 Arkansas 21.3 ±0.4
10 Oklahoma 21.1 ±0.2
9 Idaho 19.7 ±0.4
8 Kansas 18.9 ±0.3
7 Iowa 18.8 ±0.2
6 Alaska 18.4 ±0.5
5 Montana 18.2 ±0.5
4 Nebraska 18.1 ±0.3
4 Wyoming 18.1 ±0.8
2 North Dakota 16.9 ±0.6
2 South Dakota 16.9 ±0.5

†Source: 2011 1-year ACS, ranking table R0801, US Census Bureau. For more information on the ACS,
see https://www.census.gov/programs-surveys/acs/.
‡Indicates when an estimate is not statistically significantly different from the estimate for the selected
state (Alabama).
§Indicates that the selected state is being compared with each of the other 50 states.
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The primary objective in this paper is to present a frequentist joint confidence region for
the overall ranking whose coverage probability has a guaranteed lower bound. The approach
proposed does not require intensive computations that are often needed by Bayesian or bootstrap
methods. However, remark 8 of Section 5 shows how our method can also be easily applied for
Bayesian inference.

2. Main result

One could imply uncertainty in an estimated ranking (2) through confidence intervals and
hypothesis tests for individual parameters θks, and for the pairwise differences θk − θk′ (e.g.
Wright et al. (2019)). This is the approach that is currently taken by the Census Bureau’s ACS
and illustrated earlier with Table 1. However, this approach does not provide a direct measure of
uncertainty for the estimated individual ranks nor the estimated overall ranking. Alternatively,
one may consider the individual ranks as the parameters of interest, and inferences can be drawn
on them and the overall ranking directly. The unknown true ranks are denoted by r1, : : : , rK,
and they are defined such that the population with the smallest θk has rank 1, the population
with the second smallest θk has rank 2, and so on. Formally, we define the rank for the kth
population as

rk =
K∑

j=1
I.θj �θk/=1+ ∑

j:j �=k

I.θj �θk/, for k =1, : : : , K: .3/

The estimated overall ranking, computed on the basis of the estimates θ̂1, : : : , θ̂K, is denoted by
.r̂1, : : : , r̂K/, where

r̂k =1+ ∑
j:j �=k

I.θ̂j � θ̂k/, for k =1, 2, : : : , K: .4/

Naturally, uncertainty in the estimators θ̂1, : : : , θ̂K is propagated to the estimated ranking. An
understandable measure of uncertainty should accompany a released overall ranking.

Although the values of θ1, : : : , θK are unknown, suppose that for each k ∈ {1, 2, : : : , K} we
know real numbers Lk <Uk such that

θk ∈ .Lk, Uk/, .5/

i.e. although each θk is unknown, we do know that θk is contained in the open interval .Lk, Uk/.
For deriving a confidence region for the ranking, there will be no loss of generality in as-

sumption (5) because, when we construct the confidence region in Section 3, we shall replace
the intervals in expression (5) with joint confidence intervals and the main result will then be
used to obtain a probability statement.

For each k ∈{1, 2, : : : , K}, define

Ik ={1, 2, : : : , K}\{k},

ΛLk ={j ∈ Ik : Uj �Lk},

ΛRk ={j ∈ Ik : Uk �Lj},

ΛOk ={j ∈ Ik : Uj >Lk and Uk >Lj}= Ik\.ΛLk ∪ΛRk/:

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.6/

For each k ∈{1, 2, : : : , K}, and j ∈ Ik:

(a) j ∈ΛLk if and only if .Lj, Uj/∩ .Lk, Uk/=∅ and .Lj, Uj/ lies to the left of .Lk, Uk/;
(b) j ∈ΛRk if and only if .Lj, Uj/∩ .Lk, Uk/=∅ and .Lj, Uj/ lies to the right of .Lk, Uk/;
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(c) j ∈ΛOk if and only if .Lj, Uj/∩ .Lk, Uk/ �=∅.

It follows that ΛLk, ΛRk and ΛOk are mutually exclusive, and ΛLk ∪ΛRk ∪ΛOk = Ik. For a finite
set A, let |A| denote the number of elements in A.

2.1. Main result
Under the scenario that was described above, it follows that, for each k ∈{1, 2, : : : , K},

rk ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}: .7/

Proof. Let k ∈ {1, 2, : : : , K}. Because ΛLk, ΛRk and ΛOk are mutually exclusive, and ΛLk ∪
ΛRk ∪ΛOk = Ik, we can write the rank of the kth population as

rk =1+ ∑
j:j �=k

I.θj �θk/=1+ ∑
j∈Ik

I.θj �θk/

=1+ ∑
j∈ΛLk

I.θj �θk/+ ∑
j∈ΛRk

I.θj �θk/+ ∑
j∈ΛOk

I.θj �θk/: .8/

We note that j ∈ΛLk ⇒Uj �Lk ⇒Lj < θj < Uj �Lk < θk < Uk ⇒ I.θj � θk/=1, and j ∈ΛRk ⇒
Uk �Lj ⇒Lk <θk <Uk �Lj <θj <Uj ⇒I.θj �θk/=0; and therefore, continuing from equation
(8), we have

rk =1+ ∑
j∈ΛLk

I.θj �θk/+ ∑
j∈ΛRk

I.θj �θk/+ ∑
j∈ΛOk

I.θj �θk/

=1+ ∑
j∈ΛLk

1+ ∑
j∈ΛRk

0+ ∑
j∈ΛOk

I.θj �θk/

=1+|ΛLk|+
∑

j∈ΛOk

I.θj �θk/:

Because Σj∈ΛOk
I.θj �θk/∈{0, 1, : : : , |ΛOk|} it follows that

rk =1+|ΛLk|+
∑

j∈ΛOk

I.θj �θk/∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}:

This completes the proof.

2.2. Choice of Lk and Uk
As can be seen explicitly from the main result (7), smaller values of |ΛOk| imply a smaller set
size for rk in expression (7), which we desire. Smaller values of |ΛOk| tend to follow from smaller
differences Uk − Lk. Hence, we want to choose real numbers Lk and Uk that are near each
other so that the intervals in expression (5) are as short as possible subject to the constraint
θk ∈ .Lk, Uk/.

In the main result, we assume that Lk and Uk are fixed constants. In Section 3, we take Lk and
Uk as the end points of a confidence interval for θk. Hence, in Section 3, Lk and Uk are random
variables (i.e. statistics).

3. Joint confidence region for an overall ranking

Assume that {.L1, U1/, .L2, U2/, : : : , .LK, UK/} is a collection of confidence intervals for the
unknown parameters θ1, θ2, : : : , θK respectively, and the joint coverage probability of these
intervals is greater than or equal to 1−α, i.e. we assume that
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P

[ K⋂
k=1

{θk ∈ .Lk, Uk/}
]

�1−α:

In this setting, L1, L2, : : : , LK, U1, U2, : : : , UK are random variables. By the main result,

K⋂
k=1

{θk ∈ .Lk, Uk/}⇒
K⋂

k=1

[rk ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}],

where, for each k ∈{1, 2, : : : , K}, rk is the rank that is defined in equation (3), and ΛLk and ΛOk

are as defined in expression (6). Therefore, it follows that

P

( K⋂
k=1

[rk ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}]
)

�P

[ K⋂
k=1

{θk ∈ .Lk, Uk/}
]

�1−α:

Thus we have shown that

{.r1, : : : , rK/ : rk ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1} for k =1, : : : , K} .9/

is a joint confidence region (or set) for the overall ranking .r1, : : : , rK/ having joint coverage
probability of at least 1−α.

A natural question to ask regarding the joint confidence region for the overall ranking is as
follows: ‘Is the estimated ranking .r̂1, r̂2, : : : , r̂K/ contained in the joint confidence region for
the overall ranking (9)?’. The following result gives a condition on the joint confidence intervals
.L1, U1/, : : : , .LK, UK/, that will ensure that the estimated ranking is in fact contained in the
joint confidence region for the overall ranking. The result states that, if .L1, U1/, : : : , .LK, UK/

are constructed such that the estimator θ̂k ∈ .Lk, Uk/ for all k ∈{1, 2, : : : , K} with probability 1
(which is so with our approach), then the estimated ranking .r̂1, r̂2, : : : , r̂K/ is contained in the
joint confidence region (9) with probability 1.

Result 1. If P [
⋂K

k=1{θ̂k ∈ .Lk, Uk/}]=1, then

P

( K⋂
k=1

[r̂k ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}]
)

=1:

Proof. If the observed values of L1, : : : , LK, U1, : : : , UK, θ̂1, : : : , θ̂K are such that θ̂k ∈ .Lk, Uk/

for all k ∈{1, : : : , K}, then an argument similar to that used in the proof of the main result gives

r̂k =1+ ∑
j:j �=k

I.θ̂j � θ̂k/

=1+|ΛLk|+
∑

j∈ΛOk

I.θ̂j � θ̂k/

∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1},

for all k ∈{1, : : : , K}. Thus we have established that
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K⋂
k=1

{θ̂k ∈ .Lk, Uk/}⇒
K⋂

k=1

[r̂k ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}]

and, therefore,

P

( K⋂
k=1

[r̂k ∈{|ΛLk|+1, |ΛLk|+2, |ΛLk|+3, : : : , |ΛLk|+ |ΛOk|+1}]
)

�P

[ K⋂
k=1

{θ̂k ∈ .Lk, Uk/}
]

=1:

Hence the result follows. �
In general, the joint confidence region in expression (9) contains more than one possible

overall ranking. However, if the values of θk are sufficiently different from each other such that
.Lk, Uk/∩ .Lk′ , Uk′/=∅ for all k �=k′ and k=1, 2, : : : , K, then it follows immediately that the joint
confidence region contains only one overall ranking, and it is the estimated ranking .r̂1, : : : , r̂K/;
when this happens, we would have the ‘tightest’ possible joint confidence region.

4. Joint confidence region construction: two examples

For simplicity, this section illustrates two ways to construct joint confidence regions from the
set of familiar θ̂k ± zα=2SEk individual confidence intervals, assuming that each SEk is known,
although in most applications this is only approximately true. However, for full generality,
it is straightforward to adapt either construction to work with any appropriate method for
constructing individual 100.1 − α/% confidence intervals for each θk. Nonetheless, for ease
of exposition, let us assume that θ̂1, θ̂2, : : : , θ̂K are independently distributed such that θ̂k ∼
N.θk, SEk/ for k =1, 2, : : : , K with θ1, θ2, : : : , θK unknown and SE1, SE2, : : : , SEK known. For
a given θk, an individual 100.1−α/% confidence interval is

.θ̂k − zα=2SEk, θ̂k + zα=2SEk/:

To construct a joint confidence region as discussed in Section 3, we consider two cases of the
joint confidence intervals for θ1, : : : , θK:

(a) using Bonferroni correction and
(b) using independence.

(Note that MOEk = zα=2SEk for k =1, : : : , K are assumed known.)

4.1. Joint confidence intervals for θ1,. . . , θK by using Bonferroni correction
We apply the Bonferroni correction to obtain a collection of confidence intervals whose joint
coverage for θ1, θ2, : : : , θK is greater than or equal to 1−α; these intervals are given by

.θ̂k − z.α=K/=2SEk, θ̂k + z.α=K/=2SEk/, for k =1, 2, : : : , K: .10/

The Bonferroni inequality (Mukhopadhyay (2000), page 157) states that, for events A1, : : : ,
AK,

P

( K⋂
i=1

Ai

)
�

K∑
i=1

P.Ai/− .K −1/:
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Applying the Bonferroni inequality, we see that

P

[ K⋂
k=1

{θk ∈ .θ̂k − z.α=K/=2SEk, θ̂k + z.α=K/=2SEk/}
]

�
K∑

k=1
P{θk ∈ .θ̂k − z.α=K/=2SEk, θ̂k + z.α=K/=2SEk/}− .K −1/

=
K∑

k=1
.1−α=K/− .K −1/=K −α− .K −1/=1−α:

Thus the Bonferroni-corrected confidence intervals given by expression (10) have joint coverage
probability greater than or equal to 1−α. We apply the proposed methodology to the ACS travel
time to work data for the year 2011. In this example, θk is the mean travel time (in minutes)
to work for state k (including Washington DC) where k = 1, 2, : : : , 51. The fifth column of
Table 2 shows the Bonferroni-corrected joint confidence intervals for θ1, θ2, : : : , θ51 as given by
expression (10) with α=0:10. Table 2 also shows the joint confidence region (sixth column) for
the ranking .r1, : : : , r51/ obtained by using expression (9) as applied to the Bonferroni-corrected
confidence intervals for θ1, θ2, : : : , θK. (In some cases, it is convenient to show that k ranges over
the names of the states rather than over the integers 1, : : : , K.)

To illustrate some of the details on part of one row in Table 2, we focus on Alabama. For
α=0:10, z.α=51/=2 =3:1. The Bonferroni-corrected joint confidence interval for θAlabama is given
by expression (10): (

23:9− 3:1×0:2
1:645

, 23:9+ 3:1×0:2
1:645

)
= .23:5, 24:3/: .11/

To obtain the portion of the joint confidence region for rAlabama, we refer to the observed ranking
and note that

ΛL,Alabama ={Missouri, Ohio, Minnesota, : : : , South Dakota} implies |ΛL, Alabama|=20,

ΛR,Alabama ={Maryland, New York, : : : , Washington DC, Connecticut, Arizona, Texas}
implies |ΛR, Alabama|=18

and
ΛO,Alabama ={Delaware, Colorado, : : : , Nevada, Mississippi, Rhode Island} implies

|ΛO,Alabama|=12:

Hence the portion of the joint confidence region for rAlabama by using expression (9) is

{20+1, 20+2, 20+3, : : : , 20+12, 20+12+1}={21, : : : , 33}: .12/

The Bonferroni portion for other rows of Table 2 are obtained similarly.

4.2. Joint confidence intervals for θ1,. . . , θK by using independence
In the independence situation, because θ̂1, : : : , θ̂K are independently distributed such that θ̂k ∼
N.θk, SEk/ for k = 1, 2, : : : , K with θ1, θ2, : : : , θK unknown and SE1, SE2, : : : , SEK known, we
may also consider the following intervals whose joint coverage equals 1−α:

.θ̂k − zγ=2SEk, θ̂k + zγ=2SEk/, for k =1, 2, : : : , K, .13/

where γ =1− .1−α/1=K. We note that
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Table 2 Joint confidence region for ranking based on joint confidence intervals (θks): Bonferroni or inde-
pendence (travel time to work data)†

r̂k State (k) θ̂k MOEk Results for Bonferroni (10) Results for independence (13)

90% joint 90% joint 90% joint 90% joint
confidence confidence confidence confidence
intervals region intervals region
for θks for ranking for θks for ranking

51 Maryland (MD) 32.2 0.2 .31:8, 32:6/ {50, 51} .31:8, 32:6/ {50, 51}
50 New York (NY) 31.5 0.2 .31:1, 31:9/ {50, 51} .31:1, 31:9/ {50, 51}
49 New Jersey (NJ) 30.5 0.2 .30:1, 30:9/ {48, 49} .30:1, 30:9/ {48, 49}
48 District of Columbia (DC) 30.1 0.5 .29:2, 31:0/ {48, 49} .29:2, 31:0/ {48, 49}
47 Illinois (IL) 28.2 0.2 .27:8, 28:6/ {45, 46, 47} .27:8, 28:6/ {45, 46, 47}
46 Massachusetts (MA) 28.0 0.2 .27:6, 28:4/ {43, : : : , 47} .27:6, 28:4/ {43, : : : , 47}
45 Virginia (VA) 27.7 0.2 .27:3, 28:1/ {43, : : : , 47} .27:3, 28:1/ {43, : : : , 47}
44 California (CA) 27.1 0.1 .26:9, 27:3/ {42, 43, 44} .26:9, 27:3/ {42, 43, 44}
44 Georgia (GA) 27.1 0.3 .26:5, 27:7/ {42, : : : , 46} .26:5, 27:7/ {42, : : : , 46}
42 New Hampshire (NH) 26.9 0.5 .26:0, 27:8/ {37, : : : , 46} .26:0, 27:8/ {37, : : : , 46}
41 Pennsylvania (PA) 25.9 0.1 .25:7, 26:1/ {36, : : : , 42} .25:7, 26:1/ {36, : : : , 42}
40 Florida (FL) 25.8 0.2 .25:4, 26:2/ {35, : : : , 42} .25:4, 26:2/ {35, : : : , 42}
39 Hawaii (HI) 25.7 0.4 .24:9, 26:5/ {32, : : : , 42} .25:0, 26:4/ {33, : : : , 42}
38 West Virginia (WV) 25.6 0.5 .24:7, 26:5/ {30, : : : , 42} .24:7, 26:5/ {30, : : : , 42}
37 Washington (WA) 25.5 0.2 .25:1, 25:9/ {34, : : : , 41} .25:1, 25:9/ {34, : : : , 41}
36 Delaware (DE) 25.3 0.6 .24:2, 26:4/ {25, : : : , 42} .24:2, 26:4/ {25, : : : , 42}
35 Connecticut (CT) 25.0 0.3 .24:4, 25:6/ {27, : : : , 40} .24:4, 25:6/ {27, : : : , 40}
34 Arizona (AZ) 24.8 0.2 .24:4, 25:2/ {27, : : : , 39} .24:4, 25:2/ {27, : : : , 39}
34 Texas (TX) 24.8 0.1 .24:6, 25:0/ {29, : : : , 38} .24:6, 25:0/ {30, : : : , 37}
32 Colorado (CO) 24.5 0.3 .23:9, 25:1/ {23, : : : , 38} .23:9, 25:1/ {23, : : : , 38}
32 Louisiana (LA) 24.5 0.2 .24:1, 24:9/ {23, : : : , 37} .24:1, 24:9/ {24, : : : , 37}
30 Tennessee (TN) 24.2 0.2 .23:8, 24:6/ {22, : : : , 35} .23:8, 24:6/ {22, : : : , 35}
29 Michigan (MI) 24.1 0.2 .23:7, 24:5/ {21, : : : , 35} .23:7, 24:5/ {21, : : : , 35}
29 Nevada (NV) 24.1 0.4 .23:3, 24:9/ {19, : : : , 37} .23:4, 24:8/ {20, : : : , 37}
27 Alabama (AL) 23.9 0.2 .23:5, 24:3/ {21, : : : , 33} .23:5, 24:3/ {21, : : : , 33}
27 Mississippi (MS) 23.9 0.4 .23:1, 24:7/ {17, : : : , 36} .23:2, 24:6/ {17, : : : , 35}
25 South Carolina (SC) 23.6 0.3 .23:0, 24:2/ {16, : : : , 32} .23:0, 24:2/ {16, : : : , 32}
24 Indiana (IN) 23.5 0.2 .23:1, 23:9/ {17, : : : , 30} .23:1, 23:9/ {17, : : : , 30}
23 Maine (ME) 23.4 0.4 .22:6, 24:2/ {15, : : : , 32} .22:7, 24:1/ {15, : : : , 31}
23 North Carolina (NC) 23.4 0.2 .23:0, 23:8/ {16, : : : , 29} .23:0, 23:8/ {16, : : : , 29}
23 Rhode Island (RI) 23.4 0.5 .22:5, 24:3/ {15, : : : , 33} .22:5, 24:3/ {15, : : : , 33}
20 Missouri (MO) 23.1 0.2 .22:7, 23:5/ {15, : : : , 27} .22:7, 23:5/ {15, : : : , 27}
20 Ohio (OH) 23.1 0.1 .22:9, 23:3/ {16, : : : , 26} .22:9, 23:3/ {16, : : : , 26}
18 Minnesota (MN) 23.0 0.2 .22:6, 23:4/ {15, : : : , 27} .22:6, 23:4/ {15, : : : , 26}
17 Kentucky (KY) 22.9 0.2 .22:5, 23:3/ {15, : : : , 26} .22:5, 23:3/ {15, : : : , 26}
16 Oregon (OR) 22.5 0.3 .21:9, 23:1/ {11, : : : , 24} .21:9, 23:1/ {11, : : : , 24}
15 Vermont (VI) 21.9 0.5 .21:0, 22:8/ {10, : : : , 21} .21:0, 22:8/ {10, : : : , 21}
15 Wisconsin (WI) 21.9 0.2 .21:5, 22:3/ {11, : : : , 16} .21:5, 22:3/ {11, : : : , 16}
13 Utah (UT) 21.6 0.3 .21:0, 22:2/ {10, : : : , 16} .21:0, 22:2/ {10, : : : , 16}
12 New Mexico (NM) 21.4 0.4 .20:6, 22:2/ {10, : : : , 16} .20:7, 22:1/ {10, : : : , 16}
11 Arkansas (AR) 21.3 0.4 .20:5, 22:1/ {10, : : : , 16} .20:6, 22:0/ {10, : : : , 16}
10 Oklahoma (OK) 21.1 0.2 .20:7, 21:5/ {10, : : : , 14} .20:7, 21:5/ {10, : : : , 14}
9 Idaho (ID) 19.7 0.4 .18:9, 20:5/ {4, : : : , 9} .19:0, 20:4/ {4, : : : , 9}
8 Kansas (KS) 18.9 0.3 .18:3, 19:5/ {3, : : : , 9} .18:3, 19:5/ {3, : : : , 9}
7 Iowa (IA) 18.8 0.2 .18:4, 19:2/ {3, : : : , 9} .18:4, 19:2/ {3, : : : , 9}
6 Alaska (AK) 18.4 0.5 .17:5, 19:3/ {1, : : : , 9} .17:5, 19:3/ {1, : : : , 9}
5 Montana (MT) 18.2 0.5 .17:3, 19:1/ {1, : : : , 9} .17:3, 19:1/ {1, : : : , 9}
4 Nebraska (NE) 18.1 0.3 .17:5, 18:7/ {1, : : : , 8} .17:5, 18:7/ {1, : : : , 8}
4 Wyoming (WY) 18.1 0.8 .16:6, 19:6/ {1, : : : , 9} .16:6, 19:6/ {1, : : : , 9}
2 North Dakota (ND) 16.9 0.6 .15:8, 18:0/ {1, : : : , 6} .15:8, 18:0/ {1, : : : , 6}
2 South Dakota (SD) 16.9 0.5 .16:0, 17:8/ {1, : : : , 6} .16:0, 17:8/ {1, : : : , 6}

†Source: based on 2011 1-year ACS, ranking table R0801.
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P

[ K⋂
k=1

{θk ∈ .θ̂k − zγ=2SEk, θ̂k + zγ=2SEk/}
]

=P

(
− zγ=2 <

θ̂1 −θ1

SE1
<zγ=2, − zγ=2 <

θ̂2 −θ2

SE2
<zγ=2, : : : , − zγ=2 <

θ̂K −θK

SEK
<zγ=2

)

=
K∏

k=1
P

(
− zγ=2 <

θ̂k −θk

SEk
<zγ=2

)

=
K∏

k=1
.1−γ/= .1−γ/K = [1−{1− .1−α/1=K}]K =1−α:

Thus the confidence intervals given by expression (13) have joint coverage probability equal to
1 −α. As with the Bonferroni-corrected confidence intervals, we apply this proposed method-
ology to the ACS travel time to work data. The seventh column of Table 2 shows the joint
confidence intervals for θ1, θ2, : : : , θ51 as given by expression (13) with α=0:10. The last column
of Table 2 shows the joint confidence region for the ranking .r1, r2, : : : , r51/ that is obtained by
using expression (9) as applied to the independent confidence intervals for θ1, θ2, : : : , θ51.

Fig. 1 (independence) makes it easy to identify all overall rankings in the 90% joint confidence
region as specified in expression (9). We are 90% confident that the true overall ranking of the 51
states lies within this joint confidence region. Ties are permitted. For example, states Vermont
and Wisconsin are tied at estimated rank 15.

The joint confidence region in Fig. 1 contains many possible rankings of the 51 states based
on the data. By result 1, one of those overall rankings is the observed estimated overall ranking
of states in the first and second columns of Table 2 and shown in the bold rectangles in Fig. 1.
One other example of an overall ranking in the joint confidence region is (ordered from rank
51 to rank 1; see Table 2 for definitions of the state abbreviations) (NY, MD, DC, NJ, IL,
MA, VA, CA, GA, NH, PA, FL, HI, WV, WA, DE, CT, TX, AZ, LA, CO, TN, MI, NV, AL,
MS, SC, IN, ME, NC, RI, OH, MO, MN, KY, OR, VT, WI, UT, NM, AR, OK, ID, KS,
IA, AK, MT, NE, WY, SD, ND). To select other rankings from the joint confidence region,
start with the first row at the top and select NY or MD for rank 51. From the second row from
the top, select NY or MD for rank 50—the one state that is not selected for rank 51. (If NY
and MD are both selected for rank 51 (tied), then we leave row 50 blank and proceed to row
49. We proceed similarly for each remaining row.) For rank 49, select NJ or DC a state from
the third row of the region. Continue in similar fashion until selecting a state for rank 1. A
state can be selected only once in any ranking, but a rank can be assigned to more than one
state.

Moreover, the joint confidence region of Fig. 1 makes it easy to read off marginal confidence
intervals. Each row of the joint confidence region (Fig. 1) shows which states could occupy
each rank. Similarly, each column k of the joint confidence region (Fig. 1) shows the marginal
confidence set for the rank rk of state k, i.e. the possible values of rk.

From Table 2, note that the confidence interval for θNevada under independence is shorter
than the corresponding confidence interval for θNevada under Bonferroni correction. The same
is true for some other states, e.g. Mississippi and Maine. In most cases, the given corresponding
intervals under independence and under Bonferroni correction are equal in length. We observe
in result 2 that the confidence interval under independence will always be no longer than the
corresponding confidence interval under Bonferroni correction. As a consequence, the joint
confidence region for .r1, : : : , r51/ based on independence is at least as tight as the corresponding
joint confidence region based on the Bonferroni correction.
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Result 2. The intervals in expression (13) based on independence are shorter than the corre-
sponding intervals in expression (10) based on Bonferroni correction.

Proof. Note that the intervals in expression (13) are shorter than the corresponding intervals
in expression (10) if and only if zγ=2 <z.α=K/=2, which is equivalent to

1−α<

(
1− α

K

)K

: .14/

Thus it is sufficient to show that the inequality in expression (14) is true. A simple proof based
on the binomial theorem is found in Klein et al. (2018).

Although the intervals that are based on independence are shorter than the corresponding
intervals based on Bonferroni correction, the 90% joint confidence regions are similar in Table 2
(Bonferroni and independence) because the values of .α=K/=2=0:00098 and γ=2=0:00103 are
nearly equal, with corresponding z-values 3.096 and 3.081 respectively. Thus the corresponding
confidence intervals in expressions (10) and (13) are close as shown in Table 2.

5. Discussion

Remark 1. A simple and useful 100.1 −α/% joint confidence region is given for an overall
ranking .r1, r2, : : : , rK/ of K populations that gives a measure of uncertainty for the estimated
overall ranking .r̂1, r̂2, : : : , r̂K/ based on sample survey data. When none of the confidence
intervals for the θk overlap, the joint confidence region is as ‘tight’ as it can be and contains only
the observed estimated overall ranking .r̂1, : : : , r̂K/. National statistical agencies may increase
the release of estimated overall rankings now that a measure of uncertainty for each exists that
can be shared with users. A possible wording of the release is ‘Our estimated overall ranking is
abc ... xyz, and we are 90% confident that the true overall ranking lies within the joint confidence
region shown in Fig. 1 (or equivalently Table 2)’.

Remark 2. A proposed visualization makes it easy to communicate this uncertainty in the
estimated overall ranking while also revealing many other possible overall rankings (for example
see Fig. 1).

Remark 3. The key concept underlying the joint confidence region presented is found in the
following quote from a reviewer:

‘Assume that, for each unit (i.e., state), we have identified a confidence interval (CI) that places an upper
and lower bound on what its true mean can be. Then the rank of any unit can reliably be placed above
that of all of the units whose CIs lie entirely below its own CI, and conversely (below all of the units
whose CIs lie entirely above its own CI).’

Of course there is the possibility of other units’ confidence intervals that overlap this unit’s
confidence interval. The full details form this paper’s content. A simulation study which con-
firms the method and its properties for both Bonferroni and independence cases is given in
Klein et al. (2018).

Remark 4. There are several differences between the current treatment of rankings (Table 1)
and the proposed treatment of overall rankings (Fig. 1 or equivalently Table 2) of this paper.
First, and perhaps most significantly, Table 1 does not provide a measure of uncertainty for the
estimated overall ranking; Fig. 1 does, and it is the joint confidence region. As is the case with
a confidence interval for a scalar parameter, the joint confidence region shows the many other
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possible true overall rankings. Fig. 1 focuses on rankings and ranks, which we desire; Table
1 seems to place most of its attention directly on the parameters θk. Table 1 which compares
Alabama separately with each of the other 50 states is just one of 51 displays that are needed
to show how each state ranks against the others; Fig. 1 presents only one needed display which
shows (at once) how all states stand relative to each and all of the others. Beyond the estimated
rank for a given state, Table 1 does not show the other possible ranks for that state; Fig. 1 does
show the other possible ranks for that state. For a given rank, Table 1 does not show which
states can hold that rank; Fig. 1 does show the other states that can hold a given rank. Table 1
is a table which requires more effort to absorb its contents; Fig. 1 is a visualization which
helps to simplify and to deliver its content correctly. Moreover, Fig. 1 shows which estimates of
individual ranks are more reliable. Those estimates of states with shorter vertical columns are
more reliable than those estimates of states with longer vertical columns.

To be specific, Table 1 shows that the estimated rank of AL is 27 and that AL is tied with
MS. We also see that AL’s estimated mean travel time to work is not statistically different from
those for TN, MI, NV, MS, SC and RI. From Fig. 1, the estimated rank for AL is 27 and it
is tied with MS. Fig. 1 shows that the rank of AL could range from 21 to 33. We also see the
other states that could occupy these ranks. In particular, rank 27 could be occupied by states
MO, RI, NC, ME, IN, SC, MS, AL, NV, MI, TN, LA, CO, AZ, CT and DE. From Fig. 1, we
immediately see that the estimated rank for AL is more reliable than the estimated rank for MS.

Remark 5. As we briefly mentioned earlier, Bayesian methods have been used to address
ranking problems. For example, Laird and Louis (1989) provided

‘... ranking methods based on the conditional (posterior) distribution of the ranks rather than the
conditional (posterior) distribution of the θks’.

They proposed a ranking based on the posterior mean ranks which has the effect of shrinking
each of the estimated ranks towards the mean rank .K +1/=2 when there is high variability in
the posterior distributions of the θks. To provide uncertainty in the individual posterior mean
ranks, Laird and Louis used the posterior standard deviations.

Also in a Bayesian setting, Shen and Louis (1998) sought to provide a collection of estimates
of parameters (θks) to satisfy three goals:

(a) good estimates of the parameters;
(b) a good estimate of the histogram of the parameters;
(c) good estimates of the individual ranks of the parameters.

In the context of the bootstrap, Hall and Miller (2010) observed that

‘... one feature of many rankings reported over time is that the ordering (of K objects) at the extreme top
or bottom remains relatively invariant (over time) ... (their explanation). Those scores at the extreme of
a range are more likely to be sufficiently “spaced out” to overcome the problems of data noise, whereas
less extreme scores are likely to be bunched more closely together.’

However, each of these three approaches studies the estimates of individual ranks. None of
them provides an explicit statement of uncertainty for the estimated overall ranking, as is the
main contribution of our paper.

Remark 6. Fig. 1 shows varying levels of uncertainty among the estimated ranks. Specifi-
cally, there is more uncertainty around the mid-estimated ranks than at the extremes. Also the
uncertainty is particularly small for the four states holding the estimated ranks 51, 50, 49 and
48. As can be seen immediately from the main result (7), the size of the set which gives the
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possible ranks for state k is |ΛOk| + 1, i.e. 1 plus the number of states whose confidence interval
for θk′ overlaps the confidence interval for θk where k′ �=k (Fig. 2). We comment on three groups
of states, though it seems difficult to make generalizations about strong relationships between
travel times to work, varying geography and levels of uncertainty among the estimated ranks in
Fig. 1. Other groupings are possible.

(a) Group 1—states with estimated ranks 51,..., 39: these states are mainly along the east coast
of the USA (MD, NY, NJ, DC, MA, VA, GA, NH, PA and FL), part of the west coast and
pacific (CA and HI) and part of the central USA (IL). The states tend to be highly urban
with large populations and large population densities. They tend to report the longest
travel times to work. The relatively large individual estimates θ̂k among these states are
more ‘spaced out’ and as a result the confidence intervals for these (θk) do not overlap
much (Fig. 2). The average value of |ΛOk| for states in this group is 3.9 states. These states
tend to show the least uncertainties in estimated ranks.

(b) Group 2—states with estimated ranks 15,..., 2: these states are mainly among the mountain
states (UT, NM, ID, MT and WY), parts of central USA (WI, AR, OK, KS, IA, NE, ND
and SD) and AK. The states tend to have large unpopulated land areas with relatively
few large population areas and large population density areas. They tend to report the
shortest travel times to work. Although the individual estimates θ̂k among these states
are ‘somewhat spaced out’, they are not as spaced out as those in group 1, and there is a
little more overlap among their confidence intervals than in group 1 (Fig. 2). The average
value of |ΛOk| for states in this group is 6.1 states. These states tend to show the second
least uncertainties in estimated ranks.

(c) Group 3—states with estimated ranks 38,..., 15: the remaining states are all over the USA,
but mainly among the east central (north and south) states (MI, IN, OH, KY, TN, MS
and AL), some other southern states (NC, SC, LA and TX) and some western states
(WA, OR, NV, AZ and CO). The states tend to have mixes of urban and rural areas, a
mix of large and small population areas and large and small population density areas.
The individual estimates θ̂k among these states are more ‘bunched’ together and their
confidence intervals overlap more than in groups 1 or 2 (Fig. 2). They tend to report
the middle travel times to work, and each state tends to have confidence intervals for
θk that overlap more states than is true for states in the other two groups. The average
value of |ΛOk| for states in this group is 13.1 states. These states tend to show the largest
uncertainties in estimated ranks.

Remark 7. In the presence of sampling error, inferences about a population’s rank are not nec-
essarily equivalent to pairwise comparisons between populations. Therefore, attempts to make
pairwise comparisons by using the joint confidence region proposed may lead to misleading
inferences, as the joint confidence region is not designed for this.

For instance, imagine a set of three populations A, B and C with estimated ranks 1, 2 and 3
respectively, i.e. r̂A =1, r̂B =2 and r̂C =3. If SE.θ̂A/ is sufficiently large, whereas B and C have
sufficiently small SEs, it is possible to be highly confident that rC >rB, and so rC > 1, but not to
be confident that rC is different from rA. In other words, confidence that rC �=1 does not imply
confidence that rC �= rA, even though r̂A =1.

As a concrete example with reference to Table 2, the confidence region for Alabama’s rank is
{21, : : : , 33}, and Delaware’s estimated rank is 36. Although we are 90% confident that rAL �=36,
this is not necessarily equivalent to being 90% confident that Alabama and Delaware have
different ranks or different mean travel times. The underlying confidence intervals (23.5, 24.3)
and (24.2, 26.4) for mean travel time (Table 2, under independence) respectively for Alabama
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and for Delaware overlap, as do their underlying confidence intervals for rank. In either case, we
cannot safely determine whether the mean travel times or the ranks of Alabama and Delaware
are necessarily significantly different, because it is known that the method of examining overlap
of pairs of confidence intervals should not be used for formal hypothesis testing (Schenker
and Gentleman, 2001; Wright et al., 2019). If the primary goal is to make formal pairwise
comparisons, then we suggest using a method that is specifically designed for this such as
discussed by Wright et al. (2019).

Remark 8. Finally, the methodology in this paper has been developed from the frequentist
perspective; and from this perspective we have developed a joint confidence region for the overall
ranking. If one instead works from the Bayesian perspective, then this paper’s main result can also
be used to construct a credible region that contains the overall ranking .r1, : : : , rK/ with posterior
probability at least 1−α. Such a region can be constructed by first using the posterior distribu-
tion of .θ1, : : : , θK/ to construct a set of joint credible intervals .L1, U1/, : : : , .LK, UK/ such that
the posterior probability of the event ∩K

k=1{θk ∈ .Lk, Uk/} is at least 1−α. By applying this pa-
per’s main result, one can then obtain a credible region for the overall ranking .r1, : : : , rK/, such
that the posterior probability that the overall ranking is contained in this region is at least 1−α.

6. R software for figures

All figures in this paper were made in R (R Core Team, 2019). Our data set, plotting functions and
example code are in the RankingProject R package (Wieczorek, 2020), which is available on
line from the CRAN repository, https://CRAN.R-project.org/package=Ranking
Project. The package also contains a vignette which reproduces both figures in the paper.
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