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1 Introduction

The inferential problem of drawing inference about a common mean ` of several
independent normal populations with unequal variances has drawn universal atten-
tion, and there are many exact tests for testing a null hypothesis �0 : ` = `0 against
two-sided alternatives �1 : ` ≠ `0. In this paper we provide a review of their local
powers and a comparison.

A well-known context of this problem occurred when Meier (1953) was ap-
proached to draw inference about the mean of albumin in plasma protein in human
subjects based on results from four experiments, reproduced below (Table 1).

Table 1 Percentage of albumin in plasma protein of four different experiments

Experiment =8 Mean Variance

A 12 62.3 12.99
B 15 60.3 7.84
C 7 59.5 33.43
D 16 61.5 18.51

Another scenario happened when Eberhardt et al. (1989) had results from four
experiments about nonfat milk powder and the problem was to draw inference about
themeanSelenium in nonfatmilk powder by combining the results from fourmethods
(Table 2).

Table 2 Selenium content in nonfat milk powder using four methods

Method =8 Mean Variance

Atomic absorption Spectrometry 8 105.0 85.71
Neutron activation: Instrumental 12 109.8 20.75
Neutron activation: Radiochemical 14 109.5 2.73
Isotope dilution mass spectrometry 8 113.3 33.64

A similar situation arises in the context of environmental data analysis when
upon identifying a hot-spot in a contaminated area, samples are drawn and sent to
several labs simultaneously and then the resulting data are combined for eventual
analysis. This parallel data analysis is especially important for subsequent adoption
of remedial actions in case the mean contamination level at the site is found to exceed
a certain threshold.

A possible application scenario at the Census Bureau may arise if there is a
need to draw inference about average wage of college graduates in a specified age
group in a certain state. County level information can be collected from each county
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via simple random sampling. Then under a model-based approach with a common
overall mean wage across the state and heterogeneous county level variances, the
results developed in this paper can be useful. Of course, in case of complex surveys
involving survey weights, our current formulation of the inference problem will not
be applicable.

A general formulation of the problem can be stated as follows. There are : normal
populations with a common mean ` and different variances f2

1 , · · · , f
2
:
. Based on

a sample of size =8 from the 8Cℎ population, we want to test �0 : ` = `0 versus
�1 : ` ≠ `0. Obviously, there exist : independent C-tests based on C8 =

√
=8 (-̄8−`0)
(8

that follows central C distribution with a8 degrees of freedom. Note that the as-
sumption of normality is crucial in our subsequent discussion. Most meta-analysis
applications are based on this assumption Hartung et al. (2008).

The natural meta-analysis question now is: how to combine the results from the
: independent C-tests? As one can expect, there are many ways of accomplishing
this task based on some exact and some asymptotic procedures. Let us first briefly
review the asymptotic procedures for testing hypothesis about common mean `.

In the trivial case when the : population variances are completely known, the
common mean ` can easily be estimated using the maximum likelihood estimator
ˆ̀ = [∑:

8=1
=8

f2
8

-̄8] [
∑:
9=1

= 9

f2
9

]−1 with +0A ( ˆ̀) =
[ ∑:

8=1
=8

f2
8

]−1. This estimator ˆ̀ is the
minimum variance unbiased estimator under normality as well as the best linear un-
biased estimator without normality for estimating `. A simple test based on standard
normal I is obvious in this case.

However, in most cases, the population variances are unknown and a familiar
estimate, known as the Graybill-Deal estimate can be used Graybill and Deal (1959).
This unbiased estimator ˆ̀�� together with its variance are given as

ˆ̀�� =

∑:
8=1

=8

(2
8

-̄8∑:
9=1

= 9

(2
9

with +0A ( ˆ̀��) = �
[( :∑
8=1

=8f
2
8

(4
8

)/ ( :∑
8=1

=8

(2
8

)2]
.

Khatri and Shah (1974) proposed exact variance expression for ˆ̀�� , which is
complicated and cannot be easily implemented. To address this inferential problem,
Meier (1953) derived a first order approximation of the variance of ˆ̀�� as

+0A ( ˆ̀��) =
[ :∑
8=1

=8

f2
8

]−1 [
1+2

:∑
8=1

1
=8 − 1

28 (1−28)+$
( :∑
8=1

1
(=8 − 1)2

)]
; 28 =

=8/f2
8∑:

9=1 = 9/f2
9

.

Sinha (1985) in the same spirit derived an unbiased estimator of the variance of
ˆ̀�� that is a convergent series. A first order approximation of this estimator is



4 Kifle, Moluh and Sinha

+̂0A (1) ( ˆ̀��) =
1∑:
8=1

=8

(2
8

[
1 +

:∑
8=1

4
=8 + 1

(
=8/(2

8∑:
9=1 = 9/(2

9

−
=2
8
/(4
8

(∑:
9=1 (= 9/(2

9
)2

)]
.

The above estimator is comparable to Meier’s (1953) approximate estimator

+̂0A (2) ( ˆ̀��) =
1∑:
8=1

=8

(2
8

[
1 +

:∑
8=1

4
=8 − 1

(
=8/(2

8∑:
9=1 = 9/(2

9

−
=2
8
/(4
8

(∑:
9=1 (= 9/(2

9
)2

)]
.

The “classical” meta-analysis variance estimator, +̂0A (3) ( ˆ̀��), and approximate
variance estimator proposed by Hartung (1999) +̂0A (4) ( ˆ̀��) are the two other
variance estimators of ˆ̀�� which are given by

+̂0A (3) ( ˆ̀��) =
1∑:
8=1

=8

(2
8

& +̂0A (4) ( ˆ̀��) =
1

: − 1

:∑
8=1

(
=8/(2

8∑:
9=1 = 9/(2

9

)
( -̄8 − ˆ̀��)2.

We should mention that a parametric bootstrap approach based on Graybill-Deal
estimate was suggested in Malekzadeh and Kharrati-Kopaei (2018) to draw infer-
ence about ` which works quite well in large samples. Likewise, inference based on
the MLE of ` suggested in Chang and Pal (2008) is also asymptotic in nature. As
mentioned earlier, the central focus of this paper is to critically examine some exact
tests for the commonmean. A power comparison of these available exact tests is then
a natural desire. In this paper this is precisely what we accomplish by comparing six
exact tests based on their local powers.

The organization of the paper is as follows. In section 2 we provide a brief de-
scription of the six exact tests with their references. The pdf of non-central C which
naturally plays a pivotal role for studying power of C tests is given along with its local
expansion (in terms of its non-centrality parameter). Section 3, a core section of the
paper, provides expressions of local powers of all the proposed tests. Appendix I at
the end contains proofs of all technical results. Section 4 contains some numerical
(power) comparisons in the case of equal sample sizes and also in the case of one
specific unequal sample sizes. We conclude this paper with some remarks in Section
5.

2 Review of six exact tests for N0 versus N1

Consider : independent normal populations where the 8Cℎ population follows a nor-
mal distribution with mean ` ∈ R and variance f2

8
> 0. Let -̄8 denote the sample

mean, (2
8
the (unbiased) sample variance, and =8 the sample size of the 8Cℎ popula-

tion. Then, we have -̄8 ∼ N(`,
f2
8

=8
) and (=8−1)(2

8

f2
8

∼ j2
a8
, where a8 = (=8 − 1) and
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8 = 1, · · · , : . Note that the statistics {-̄8 , (2
8
, 8 = 1, · · · , :} are all mutually indepen-

dent.

A generic notation for a C statistic based on a sample of size = is C>1B =√
=(Ḡ − `0)/B. We can refer to this C computed from a given data set as the ob-

served value of our test statistic, and reject �0 when |C>1B | > Ca;U/2, where a is the
degrees of freedom and U is Type I error level. A test for �0 based on a %-value
on the other hand is based on %>1B = %[|Ca | > |C>1B |], and we reject �0 at level
U if %>1B < U. Here Ca stands for the central C variable with a degrees of freedom
and Ca;U/2 stands for the upper U/2 percentile of Ca . It is easy to check that the two
approaches are obviously equivalent.

A random %-value which has a Uniform(0, 1) distribution under �0 is defined as
%A0= = %[|Ca | > |CA0= |], where CA0= =

√
=( -̄ − `0)/(. All suggested tests for �0 are

based on %>1B and C>1B values and their properties, including size and power, are
studied under %A0= and CA0=. To simplify notations, we will denote %>1B by small ?
and %A0= by large %. Six exact tests based on C>1B and ? values from : independent
studies as available in the literature are listed below.

2.1 P-value based exact tests

2.1.1 Tippett’s test

This minimum %-value test was proposed by Tippett et al. (1931), who noted that, if
%1, · · · , %: are independent ?-values from continuous test statistics, then each has
a uniform distribution under �0. Suppose that %(1) , · · · , %(:) are ordered ?-values.
According to this method, the common mean null hypothesis �0 : ` = `0 is rejected
at U level of significance if %(1) <

[
1− (1−U) 1

:

]
. Incidentally, this test is equivalent

to the test based on "C = <0G1≤8≤: |C8 | suggested by Cohen and Sackrowitz (1984).

2.1.2 Wilkinson’s test

This test statistic proposed by Wilkinson (1951) is a generalization of Tippett’s test
that uses not just the smallest but the A Cℎ smallest ?-value (%(A ) ) as a test statistic.
The common mean null hypothesis �0 : ` = `0 will be rejected if %(A ) < 3A ,U,
where %(A ) follows a Beta distribution with parameters A and (: − A + 1) under �0
and 3A ,U satisfies %A{%(A ) < 3A ,U |�0} = U. Obviously, this procedure generates a
sequence of tests for different values of A = 1, 2, · · · , : . And an attempt has been
made to identify the best choice of A [Table 4].
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2.1.3 Inverse normal test

This exact test procedure which involves transforming each ?-value to the corre-
sponding normal score was proposed independently by Stouffer et al. (1949) and
Lipták (1958). Using this inverse normal method, hypothesis about the common `
will be rejected at U level of significance if

[ ∑:
8=1Φ

−1 (%8)
] [√

:
]−1

< −IU, where
Φ−1 denotes the inverse of the cdf of a standard normal distribution and IU stands
for the upper U level cutoff point of a standard normal distribution.

2.1.4 Fisher’s inverse 62-test

This inverse j2-test is one of the most widely used exact test procedures for com-
bining : independent ?-values (Fisher, 1932). This procedure uses the

∏:
8=1 %8

to combine the : independent ?-values. Then, using the connection between uni-
form and j2 distributions, the hypothesis about the common ` will be rejected
if −2

∑:
8=1 ln(%8) > j2

2:,U, where j
2
2:,U denotes the upper U critical value of a

j2-distribution with 2: degrees of freedom.

2.2 Exact test based on a modified t

Fairweather (1972) consider a test based on a weighted linear combination of the
C8’s. In this paper, we consider a variation of this test based on a weighted linear
combination of |C8 | as we are testing a non-directional alternative. Our test statistic
)1 is given as

∑:
8=1 F18 |C8 |, where F18 ∝ [+0A ( |C8 |)]−1 with +0A ( |C8 |) =

[
[a8 (a8 −

2)−1] −
(
[Γ( a8−1

2 )
√
a8] [Γ( a82 )

√
c]−1)2] . The null hypothesis �0 : ` = `0 will be

rejected if )1 > 31U, where %A{)1 > 31U |�0} = U. In applications 31U is computed
by simulation.

2.3 Exact test based on a modified L

Jordan and Krishnamoorthy (1996) considered a weighted linear combination of the
�-test statistics �8 , namely )2, which is given as

∑:
8=1 F28�8 , �8 = C28 ∼ � (1, a8),

and F28 ∝ [+0A (�8)]−1 with +0A (�8) = [2a2
8
(a8 − 1)] [(a8 − 2)2 (a8 − 4)]−1 for

a8 > 4. The null hypothesis �0 : ` = `0 will be rejected if )2 > 32U, where
%A{)2 > 32U |�0} = U. In applications 32U is computed by simulation.

Wemention in passing that Philip et al. (1999) studied some properties of the con-
fidence interval for the commonmean ` based onFisher’s test and inverse normal test.
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The pdfs of C statistic under the null and alternative hypotheses which will be
required in the sequel are given below. X =

√
=(`1 − `0)/f below stands for the

non-centrality parameter when `1 is chosen as an alternative value. Later, we will
denote (`1 − `0) by Δ.

5a (C) =
Γ( a+12 )√
acΓ( a2 )

(
1 + C

2

a

)− a+1
2

5a;X (C) =
a

a
2 exp

( −aX2

2(C2+a)
)

√
cΓ( a2 )2

a−1
2

(
C2 + a

) a+1
2

∫ ∞

0
Ha exp

[
− 1

2
(
H − XC
√
C2 + a

)2
]
3H

First and second derivatives of 5a;X (C) evaluated at X = 0 (equivalently, Δ = 0)
which will play a pivotal role in the study of local powers of the proposed tests
appear below.

m 5a;X (C)
mX

���
X=0

=
C

√
2c

(
C2

a
+ 1

) a+2
2

m2 5a;X (C)
mX2

���
X=0

=
Γ( a+12 )
Γ( a2 )

√
ac

[
C2 − 1
( C2
a
+ 1) a+32

]

3 Expressions of local powers of the six proposed tests

In this section we provide the expressions of local powers of the suggested exact
tests. A common premise is that we derive an expression of the power of a test under
Δ ≠ 0, and carry out its Taylor expansion around Δ = 0. It turns out that due to
two-sided nature of our tests, the first term vanishes, and we retain terms of order
$ (Δ2).

The final expressions of the local powers of the proposed tests are given below
in the general case and also in the special case when =1 = · · · = =: = =, and
a1 = · · · = a: = a = = − 1. All throughout, we write Ψ =

∑:
8=1

1
f2
8

which is relevant
in the special case. For detailed proofs of all technical results below we refer to the
Appendix section of this paper.
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3.1 Local power of Tippett’s test [RV(Z)]

!%()) ≈ U + (1 − U) :−1
:
Δ2

2

( :∑
8=1

=8

f2
8

|ba8) (0U) |
)

(1)

= U +
[
=Δ2

2
Ψ

] [
(1 − U) :−1

:

]
|ba) (0U) |

[
special case

]
where ba) (0U) =

∫ Ca ( 0U2 )
−Ca ( 0U2 )

m2 5a;X (C)
mX2

���
X=0
3C; 0U = [1 − (1 − U)

1
: ] . It turns out that

ba) (0U) < 0.

3.2 Local power of Wilkinson’s test [RV(]r)]

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A

Δ2

2

[ :∑
8=1

=8

f2
8

|b8, (3A ,U) |
]

(2)

= U +
[
=Δ2

2
Ψ

] (
: − 1
A − 1

)
|ba, (3A ;U) |3A−1

A ;U (1 − 3A ;U):−A
[
special case

]
where ba, (3A ;U) is equivalent to ba) (0U) with 0U = 3A ;U. It turns out that
ba, (3A ;U) < 0.

Remark: For the special case A = 1, !%(,A ) = !%()), as expected,
because 31;U = [1 − (1 − U)

1
: ], implying (1 − 31;U):−1 = (1 − U) :−1

:

3.3 Local power of Inverse Normal test [RV(OTT)]

!%(�##) ≈ U + Δ
2
√
:
q(IU)

:∑
8=1

=8a8

f2
8

[
IU [�a8 − �a8 ]

2
√
:

− �a8
]

(3)

= U +
[
=Δ2

2
Ψ

]
2a
√
:
q(IU)

[
IU [�a − �a]

2
√
:

− �a
] [

special case
]

where �a =
∫ ∞
−∞ Dq(D)&a (D)3D; �a =

∫ ∞
−∞ D

2q(D)&a (D)3D; �a =
∫ ∞
−∞ q(D)&a (D)3D;

&a (D) =
[
G2−1
G2+a

]
G=Ca ( 22 ) , 2=Φ(D)

; q(D) is standard normal pdf and Φ(D) is standard
normal cdf.
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3.4 Local power of Fisher’s test [RV(L)]

!%(�) ≈ U + Δ
2

2

[ :∑
8=1

=8a8

f2
8

�a8

] [
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
(4)

= U +
[
=Δ2

2
Ψ

]
a�a

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

] [
special case

]
where �0 = �

[
log (@)

]
; �a = �

[
*ka (*)

]
; * ∼exp[2]; @ ∼gamma[1, :];

) ∼gamma[2, :];ka (D) =
[
G2−1
G2+a

]
G=Ca ( 22 ) , 2=exp (− D

2 )
.

3.5 Local power of a modified t test [RV(Z1)]

!%()1) ≈ U +
Δ2

2

( :∑
9=1

= 9a 9

f2
9

)
��0

[{ (C2
9
− 1)a 9

C2
9
+ a 9

}
�{∑:

8=1 F18 |C8 |>31U}

]
(5)

= U +
[
=Δ2

2
Ψ

]
a��0

[{ (C21 − 1)a
C21 + a

}
�{∑:

8=1 |C8 |>31U }

] [
special case

]

3.6 Local power of a modified L test [RV(Z2)]

!%()2) ≈ U +
Δ2

2

( :∑
9=1

= 9

f2
9

)
��0

[{ [�9 − 1]a 9
�9 + a 9

}
�{∑:

8=1 F28�8>32U }

]
(6)

= U +
[
=Δ2

2
Ψ

]
��0

[{
[�1 − 1]a
�1 + a

}
�{∑:

8=1 �8>32U }

] [
special case

]

4 Comparison of local powers

It is interesting to observe from the above expressions that in the special case of
equal sample size, local powers can be readily compared, irrespective of the values
of the unknown variances (involved through Ψ, which is a common factor in all the
expressions of local power).
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Table 3 Comparison of the 2=3 term of local powers [without =Δ2Ψ/2] of six exact tests for
different values of : and = (equal sample size)

Exact Test
k=5 k=10 k=15

n=15 n=25 n=40 n=15 n=25 n=40 n=15 n=25 n=40

Tippett 0.0575 0.0633 0.0667 0.0322 0.0361 0.0383 0.0227 0.0257 0.0275
Wilkinson 0.0633 0.0664 0.0681 0.0412 0.0430 0.0441 0.0324 0.0338 0.0346
Inv Normal 0.0730 0.0731 0.0730 0.0576 0.0584 0.0588 0.0491 0.0501 0.0504
Fisher 0.1050 0.1179 0.1191 0.0844 0.0861 0.0877 0.0641 0.0705 0.0716
Modified C 0.0724 0.0738 0.0754 0.0471 0.0508 0.0529 0.0378 0.0417 0.0426
Modified � 0.0722 0.0768 0.0798 0.0479 0.0523 0.0556 0.0389 0.0410 0.0427

Table 3 represents values of the 2=3 term of local power given above in equa-
tions 1 to 6, apart from the common term

[
=Δ2

2 Ψ
]
for different values of : , = and

choices of A (≤ :) with maximum local power. A comparison of the 2=3 term of
local power of Wilkinson’s test for different values of A (≤ :) is provided in Ta-
ble 4 for = = 15 and : ∈ {5, 10, 15, 20, 30, 40}. All throughout we have used U = 5%.

Here are some interesting observations: comparing Tippett’s and Wilkinson’s
tests, we note that Wilkinson’s test for some A > 1 always outperforms Tippett’s
test, and the optimal choice of A seems to increase with : (Table 4 and Figure
2), it is just above

√
: . Among the other tests, Figure 1 with Ψ = 1 reveals that

Fisher’s test fares the best uniformly in the design parameters = and : . Both modi-
fied C andmodified � tests perform reasonably well for all values of : and = (Table 3).

Some limited local power computations in case of unequal sample sizes are re-
ported in Table 5. It again follows that Fisher’s test has an edge over all other tests.
Our recommendation based on the local power comparison of the available exact
tests is to advocate the use of Fisher’s test in all scenarios.

Following the suggestion of first reviewer, we have added a table (Table 6) that
shows a comparison of Fisher’s local powers and Monte Carlo simulated powers for
different values of =, Δ2, : = 5 and f2

8
∈ {1.0, 1.5, 2.0, 0.5, 0.3}. The accuracy of

local power of Fisher’s test is evident from these computations especially for large =.
It also turns out that for smaller values of Δ2 (not reported here) the accuracies are
fairly good even for small value of =. Following the suggestion of second reviewer,
we have added two figures (Figure 3 and Figure 4) displaying approximate pdf of*
for small values of Δ2 and simulated pdf of* for the same small values of Δ2 (Figure
3), and approximate pdf of * for small values of Δ2 and approximate normal pdf
of * for the same small values of Δ2 (Figure 4). The figures attest testimony to our
assumption that the pdf of* for local alternatives can be approximated by a normal
distribution.
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5 Conclusion

Based on our computations of local powers of the available exact tests, we have
noted that a uniform comparison of them, irrespective of the values of the unknown
variances, can be readily made in case of equal sample size, and it turns out that
Fisher’s exact test performs the best. Some limited computations of local powers in
case of unequal sample sizes also reveal the superiority of Fisher’s test compared to
the other exact tests.
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Table 4 Comparison of the 2=3 term of local powers [without =Δ2Ψ/2] of Wilkinson’s test for
= = 15 (equal sample size) and different values of : and A (≤ :)

r k=5 k=10 k=15 k=20 k=30 k=40

1 0.0575 0.0322 0.0227 0.0177 0.0124 0.0096
2 0.0633 0.0395 0.0292 0.0234 0.0169 0.0134
3 0.0587 0.0412 0.0317 0.0259 0.0193 0.0155
4 0.0494 0.0404 0.0324 0.0271 0.0206 0.0168
5 0.0359 0.0384 0.0322 0.0275 0.0214 0.0176
6 0.0355 0.0314 0.0274 0.0214 0.0181
7 0.0320 0.0302 0.0270 0.0220 0.0185
8 0.0279 0.0287 0.0264 0.0219 0.0187
9 0.0230 0.0270 0.0256 0.0218 0.0188
10 0.0168 0.0250 0.0246 0.0215 0.0187
11 0.0229 0.0235 0.0212 0.0186
12 0.0205 0.0224 0.0208 0.0185
13 0.0178 0.0211 0.0203 0.0184
14 0.0147 0.0197 0.0198 0.0181
15 0.0108 0.0182 0.0192 0.0179
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Wilkinson’s Exact Test (k=5)
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Wilkinson: r=2

Wilkinson: r=3

Wilkinson: r=4

Wilkinson: r=5

alpha=0.05

Fig. 2 Comparison of local powers of Wilkinson’s exact test for ==15, :=5 and Ψ = 1
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Fig. 3 Approximate pdf of * and simulated pdf of * for different values of Δ2 ∈
{0.005, 0.010, 0.020, 0.030}

Table 5 Coefficients of Δ2/2 in the 2=3 term of local powers of six exact tests for different values
of :, = (unequal sample sizes) and f2

Exact Test

k=2 k=3 k=4
=1 = 10, f2

1 = 1 =1 = 10, f2
1 = 1 =1 = 10, f2

1 = 1
=2 = 20, f2

2 = 2 =2 = 20, f2
2 = 2 =2 = 20, f2

2 = 2
=3 = 30, f2

3 = 3 =3 = 30, f2
3 = 3

=4 = 40, f2
4 = 4

Tippett 2.3332 2.6606 2.9108
Inverse Normal 1.7719 2.4772 3.0894
Fisher 3.4033 4.2150 5.0382
Modified C 2.5295 2.9658 3.4026
Modified � 2.4663 3.0839 3.4484

Wilkinson (A = 1) 2.3332 2.6606 2.9108
Wilkinson (A = 2) 1.9464 2.5472 2.9611
Wilkinson (A = 3) 1.8972 2.5389
Wilkinson (A = 4) 1.8447
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Fig. 4 Approximate pdf of* and approximate normal pdf of* for different values of [Δ/f ]2

Table 6 Comparison of Fisher’s local powers and Monte Carlo simulated powers for different
values of =, Δ2, f2

8
∈ {1.0, 1.5, 2.0, 0.5, 0.3} and : = 5

n .J. �2
Local Power (" = 5%)

Fisher MC simulated

15 2.5484

0.01 0.1147 0.0952
0.02 0.1793 0.1548
0.03 0.2440 0.2161
0.04 0.3087 0.2861
0.05 0.3733 0.3572

25 2.6860

0.01 0.1636 0.1372
0.02 0.2772 0.2609
0.03 0.3908 0.3808
0.04 0.5044 0.4943
0.05 0.6180 0.6128

40 2.7057

0.01 0.2331 0.2106
0.02 0.4162 0.4156
0.03 0.5992 0.5991
0.04 0.7823 0.7463
0.05 0.9654 0.8499
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Appendix I: Proofs of local powers of six exact tests

We begin by stating a result related to the distribution of a %-value under the alter-
native hypothesis �0 : ` = `1, which will be crucial for providing the main results
on local power of all tests based on the %-values. We denote �a (·) to represent the
cdf of a central C-distribution with a degrees of freedom.

Lemma 1

%A{% > 2 |�1} ≈ (1 − 2) +
Δ2

2

[
=

f2 ba (2)
]
. (7)

Proof

%A{% > 2 |�1} = %A
{
%A

[
|Ca | > |

√
=( -̄ − `0

)
(

|
]
> 2 |�1

}
= %A

{
1 −

[
�a

(
|
√
=( -̄ − `0

)
(

|
)
− �a

(
− |
√
=( -̄ − `0

(
|
)]
> 2 |�1

}
= %A

{[
�a

(
|
√
=( -̄ − `0

)
(

|
)
− �a

(
− |
√
=( -̄ − `0

(
|
)]
< 1 − 2 |�1

}
= %A

{
|
√
=( -̄ − `0

)
(

| < Ca
( 2
2
)
|�1

}
= %A

{
− Ca

( 2
2
)
<

√
=( -̄ − `0

)
(

< Ca
( 2
2
)
|�1

}
= %A

{
− Ca

( 2
2
)
< Ca (X) < Ca

( 2
2
)
|�1

}
=

∫ Ca ( 22 )

−Ca ( 22 )
5 (G |a, X) 3G

[
5 (G |a, X) ∼ non-central Ca

(
X =

√
=

f
Δ

)]
≈

∫ Ca ( 22 )

−Ca ( 22 )

{
5 (G |a, 0) + X

(
m 5

mX

)���
X=0
+ X

2

2

(
m2 5

mX2

)���
X=0

}
3G

≈ (1 − 2) + =

2f2Δ
2
∫ Ca ( 22 )

−Ca ( 22 )

{
m2 5 (G |a, X)

mX2

���
X=0

}
3G

≈ (1 − 2) + Δ
2

2

[
=

f2 ba (2)
]

where ba (2) =
∫ Ca ( 22 )
−Ca ( 22 )

{
m2 5 (G |a, X)

mX2

���
X=0

}
3G =

Γ( a+12 )
Γ( a2 )

√
ac

∫ Ca ( 22 )
−Ca ( 22 )

(
G2−1

[ G2
a
+1]

a+3
2

)
3G. It

turns out that ba (2) < 0. �
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I. Local power of Tippett’s test [RV(Z)]

Recall that Tippett’s test rejects the null hypothesis if %(1) <
[
1 − (1 − U) 1

:

]
= 0U.

This leads to

Power = 1 −
:∏
8=1

%A
{
%8 > 0U |�1

}
.

Applying Lemma 1, the local power of Tippett’s test is calculated as follows:

Local power ≈ 1 −
:∏
8=1

[
(1 − 0U) +

Δ2

2

(
=8

f2
8

ba8) (0U)
)]

≈ 1 −
:∏
8=1

[
(1 − U) 1

: + Δ
2

2

(
=8

f2
8

ba8) (0U)
)]

≈ 1 −
[
(1 − U) + (1 − U) :−1

:
Δ2

2

( :∑
8=1

=8

f2
8

ba8) (0U)
)]

≈ U + (1 − U) :−1
:
Δ2

2

( :∑
8=1

=8

f2
8

|ba8) (0U) |
)
.

For the special case =1 = · · · = =: = =; a1 = · · · = a: = a = = − 1 and ba1) (0U) =
· · · = ba:) (0U) = ba) (0U), the local power of Tippett’s test reduces to:

LP(T) ≈ U + (1 − U) :−1
:
=Δ2

2
|ba) (0U) |

( :∑
8=1

1
f2
8

)
= U +

[
=Δ2

2
Ψ

] [
(1 − U) :−1

:

]
|ba) (0U) | where Ψ =

:∑
8=1

1
f2
8

.

II. Local power of Wilkinson’s test [RV(]r)]

Using A Cℎ smallest ?-value %(A ) as a test statistic, the null hypothesis will be rejected
if %(A ) < 3A ,U, where %(A ) ∼ Beta[A, : − A + 1] under �0 and 3A ,U satisfies U =
%A{%(A ) < 3A ,U |�0} =

∫ 3A,U
0

DA−1 (1−D):−A
� [A ,:−A+1] 3D. This leads to

Power = %A [%(A ) < 3A ,U |�1]

=

:∑
;=A

%A{%81 , . . . , %8; < 3A ,U < %8;+1 , . . . , %8: |�1}

where (81, · · · , 8; , 8;+1, · · · , 8: ) is a permutation of (1, · · · , :). Applying Lemma 1,
we get
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%A{%81 , . . . , %8; < 3A ,U < %8;+1 , . . . , %8: |�1}

≈
{ ;∏
9=1

(
3A ,U −

=8 9Δ
2

2f2
8 9

b8 9, (3A ,U)
)}{ :∏

9=;+1

(
1 − 3A ,U +

=8 9Δ
2

2f2
8 9

b8 9, (3A ,U)
)}

≈
{
3;A ,U − 3;−1

A ,U

Δ2

2

( ;∑
9=1

=8 9

f2
8 9

b8 9, (3A ,U)
)}
×

{
(1 − 3A ,U):−; + (1 − 3A ,U):−;−1Δ

2

2

( :∑
9=;+1

=8 9

f2
8 9

b8 9, (3A ,U)
)}

≈ 3;A ,U (1 − 3A ,U):−; +
Δ2

2

{
3;A ,U (1 − 3A ,U):−;−1

( :∑
9=;+1

=8 9

f2
8 9

b8 9, (3A ,U)
)

−3;−1
A ,U (1 − 3A ,U):−;

( ;∑
9=1

=8 9

f2
8 9

b8 9, (03A,U )
)}
.

Permuting (81, . . . , 8: ) over (1, . . . , :), we get for any fixed ; (A ≤ ; ≤ :),

1st term =

(
:

;

)
3;A ,U (1 − 3A ,U):−;

2nd term =
Δ2

2
3;A ,U (1 − 3A ,U):−;−1

{(
: − 1

: − ; − 1

) ( :∑
8=1

=8

f2
8

b8, (3A ,U)
)}

3rd term = −Δ
2

2
3;−1
A ,U (1 − 3A ,U):−;

{(
: − 1
; − 1

) ( :∑
8=1

=8

f2
8

b8, (3A ,U)
)}
.

The 2nd term above follows upon noting that when
[ ∑:

9=;+1
=8 9

f2
8 9

b8 9, (3A ,U)
]
is

permuted over (8;+1 < · · · < 8: ) ⊂ (1, . . . , :), each term =8

f2
8

b8, (3A ,U) appears ex-
actly

( :−1
:−;−1

)
times, for each 8 = 1, · · · , : . The 3rd term, likewise, follows upon noting

that when
[ ∑;

9=1
=8 9

f2
8 9

b8 9, (3A ,U)
]
is permuted over (81 < · · · < 8;) ⊂ (1, . . . , :), each

term =8

f2
8

b8, (3A ,U) appears exactly
(:−1
;−1

)
times, for each 8 = 1, · · · , : .

Adding the above three terms and simplifying, we get

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A

Δ2

2

[ :∑
8=1

=8

f2
8

|b8, (3A ,U) |
]
.
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For the special case =1 = · · · = =: = =; a1 = · · · = a: = a = = − 1 and
ba1, (3A ;U) = · · · = ba:, (3A ;U) = ba, (3A ;U), the local power of Wilkinson’s test
reduces to:

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A

=Δ2

2
|b8, (3A ,U) |

( :∑
8=1

1
f2
8

)
= U +

[
=Δ2

2
Ψ

] (
: − 1
A − 1

)
|ba, (3A ;U) |3A−1

A ;U (1 − 3A ;U):−A where Ψ =

:∑
8=1

1
f2
8

.

III. Local power of Inverse Normal test [RV(OTT)]

Under this test, the null hypothesis will be rejected if 1√
:

∑:
8=1*8 < −IU, where

*8 = Φ
−1 (%8), Φ−1 is the inverse cdf and IU is the upper U level critical value of a

standard normal distribution. This leads to

Power = %A
{

1
√
:

:∑
8=1
*8 < −IU |�1

}
.

First, let us determine the pdf of* under�1, 5�1 (D), via its cdf ��1 (D) = %A{* ≤
D |�1}.

%A{* ≤ D |�1} = %A{Φ(*) ≤ Φ(D) |�1}
= %A{% ≤ Φ(D) |�1}

[
* = Φ−1 (%) =⇒ % = Φ(*)

]
= 1 − %A{% > Φ(D) |�1}

≈ 1 −
[
[1 −Φ(D)] + =Δ

2

2f2

[
ba (2)

]
2=Φ(D)

] [
upon applying Lemma 1

]
≈ Φ(D) − =Δ

2

2f2

[
ba (2)

]
2=Φ(D) .

This implies

5�1 (D) ≈
3

3D

[
Φ(D) − =Δ

2

2f2

[
ba (2)

]
2=Φ(D)

]
≈ q(D)

[
1 − =Δ

2

2f2

(
3

3D

[
ba (2)

]
2=Φ(D)

)]
≈

q(D)
[
1 + =aΔ2

f2 &a (D)
]

1 + =aΔ2

f2

∫ ∞
−∞ q(D)&a (D)3D

, &a (D) =
[
G2 − 1
G2 + a

]
G=Ca ( 22 ) , 2=Φ(D)

.

Here we have used the fact that 3
3D
[ba (2)] = 3

32
[ba (2)] 323D ,

3
32
[ba (2)] = &a (·)

given above, upon simplification, and 32
3D
= q(D). The denominator in the last ex-
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pression is a normalizing constant.

Let us define �a , �a and�a as �a =
∫ ∞
−∞ Dq(D)&a (D)3D, �a =

∫ ∞
−∞ D

2q(D)&a (D)3D
and �a =

∫ ∞
−∞ q(D)&a (D)3D. Using these three quantities, we now approximate the

distribution of* as:

* ∼ # [� (*), +0A (*)] where � (*) =
∫ ∞

−∞
D 5�1 (D)3D ≈

=aΔ2

f2 �a and

+0A (*) =
∫ ∞

−∞
D2 5�1 (D)3D ≈ 1 + =aΔ

2

f2 [�a − �a] .

This leads to:

1
√
:

:∑
8=1
*8 ∼ #

[
1
√
:

:∑
8=1

� (*8),
1
:

:∑
8=1
+0A (*8)

]
∼ #

[
Δ2
√
:
X1, 1 +

Δ2

:
X2

]
where X1 =

:∑
8=1

=8a8

f2
8

�a8 and X2 =

:∑
8=1

=8a8

f2
8

[�a8 − �a8 ] .

Using the above result, the local power of inverse normal test is obtained by

approximating its %>F4A = %A
{

1√
:

∑:
8=1*8 < −IU |�1

}
as

Local power (INN) ≈ Φ
[−IU − Δ2

√
:
X1√

1 + Δ2

:
X2

]
≈ Φ

[
− IU −

Δ2
√
:
X1 +

IU

2
Δ2

:
X2

]
≈ Φ

[
− IU +

Δ2
√
:

(
IU

2
√
:
X2 − X1

)]
≈ Φ(−IU) +

Δ2
√
:
q(IU)

[
IU

2
√
:
X2 − X1

]
≈ U + Δ

2
√
:
q(IU)

[
IU

2
√
:
X2 − X1

]
.

Substituting back the expressions for X1 and X2 results in:

!%(�##) ≈ U + Δ
2
√
:
q(IU)

:∑
8=1

=8a8

f2
8

[
IU [�a8 − �a8 ]

2
√
:

− �a8
]
.
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For the special case =1 = · · · = =: = = and a1 = · · · = a: = a = = − 1, the local
power of Inverse Normal test reduces to:

!%(�##) ≈ U + =aΔ
2

√
:
q(IU)

( :∑
8=1

1
f2
8

) [
IU [�a − �a]

2
√
:

− �a
]

= U +
[
=Δ2

2
Ψ

]
2a
√
:
q(IU)

[
IU [�a − �a]

2
√
:

− �a
]

where Ψ =

:∑
8=1

1
f2
8

.

IV. Local power of Fisher’s test [RV(L)]

According to Fisher’s exact test, the null hypothesis will be rejected if
∑:
8=1*8 >

j2
2:;U, where *8 = −2 ln (%8), and j2

2:;U is the upper U level critical value of a
j2-distribution with 2: degrees of freedom. This leads to

Power = %A
{ :∑
8=1
*8 > j2

2:;U |�1

}
.

In a similar way to the inverse normal test in Appendix III, first let us determine the
pdf of* under �1, 6�1 (D), via its cdf ��1 (D) = %A{* ≤ D |�1}.

%A{* ≤ D |�1} = %A{−2 ln (%) ≤ D |�1}
= %A{ln (%) > −D/2|�1}
= %A{% > exp (−D/2) |�1}

≈ [1 − exp (−D/2)] + =Δ
2

2f2

[
ba (2)

]
2=exp (−D/2)

[
upon applying Lemma 1

]
.

This implies

6�1 (D) ≈
3

3D

[
1 − exp (−D/2) + =Δ

2

2f2

[
ba (2)

]
2=exp (−D/2)

]
≈

1
2 exp (−D/2)

[
1 + =aΔ2

f2 Ψa (D)
]

1 + =aΔ2

f2

[ ∫ ∞
0

1
2 exp (−D/2)Ψa (D)3D

] , Ψa (D) =
[
G2 − 1
G2 + a

]
G=Ca ( 22 ) , 2=exp (−D/2)

.

The denominator again stands for a normalizing constant.

Define �0 =
∫ ∞

0
1

Γ(:) exp (−D)D:−1 ln (D)3D and �a =
∫ ∞

0
1
2 exp (−D/2) (D −

2)Ψa (D)3D. Using these quantities, we can now approximate the distribution of *
as:

* ∼ �0<<0[V = 2, Wa] where Wa =
[
1 + =aΔ

2

2f2 �a
]
.
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Here Gamma[V, Wa] stands for a Gamma random variable with scale parameter
V and shape parameter Wa with the pdf 5 (G) = [4−G/VGWa−1]/[VWaΓ(Wa)]. By the
additive property of independent �0<<0[V = 2, Wa1 ], · · · , �0<<0[V = 2, Wa: ]
corresponding to *1, · · · ,*: , we readily get the approximate distribution of (*1 +
· · · +*: ) as:

:∑
8=1
*8 ∼ �0<<0

[
V = 2, : + Δ2�

]
where � =

1
2

:∑
8=1

=8a8

f2
8

�a8 .

The local power of Fisher’s test under �1 is then obtained as follows:

Local power (F) ≈
∫ ∞

j2
2:;U

exp (−C/2)C:+�Δ2−1

2:+�Δ2
Γ(: + �Δ2)

3C

[
since

:∑
8=1
*8 ∼ �0<<0

[
V = 2, : + Δ2�

] ]
= &(Δ2).

We now expand &(Δ2) around Δ2 = 0 to get

Local power (F) ≈ U + Δ2
∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:

[
m

mΔ2

(
(C/2)�Δ2

Γ(: + �Δ2)

)
Δ2=0

]
3C

≈ U + Δ2
∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:

[
� ln (C/2)
Γ(:) −

�
∫ ∞

0 exp (−D)D:−1 ln (D)3D
Γ2 (:)

]
3C

≈ U + Δ2�

∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:Γ(:)

[
ln (C/2) −

∫ ∞
0 exp (−D)D:−1 ln (D)3D

Γ(:)

]
3C

≈ U + Δ2�

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
.

Substituting back the expressions for � results in:

!%(�) ≈ U + Δ
2

2

[ :∑
8=1

=8a8

f2
8

�a8

] [
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
.

For the special case =1 = · · · = =: = = and a1 = · · · = a: = a = = − 1, the local
power of Fisher’s test reduces to:

!%(�) ≈ U + =Δ
2

2
a�a

[ :∑
8=1

1
f2
8

] [
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
= U +

[
=Δ2

2
Ψ

]
a�a

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
where Ψ =

:∑
8=1

1
f2
8

.
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V. Local power of a modified t test [RV(Z1)]

Using this exact test based on a modified C, the null hypothesis �0 : ` = `0 will
be rejected if )1 > 31U, where )1 =

∑:
8=1 F18 |C8 |, F18 ∝ [+0A ( |C8 |)]−1, +0A ( |C8 |) =

[a8 (a8 − 2)−1] −
(
[Γ( a8−1

2 )
√
a8] [Γ( a82 )

√
c]−1)2, and %A{)1 > 31U |�0} = U. In

applications 31U is computed by simulation. This leads to

Power of )1 = %A

{ :∑
8=1

F18 |C8 | > 31U |�1

}
=

∫
· · ·

∫
∑:

8=1 F18 |C8 |>31U

:∏
8=1

[
5a8 , X8 (C8)

]
dC8

[
X8 =

√
=8Δ

f8

]
≈

∫
· · ·

∫
∑:

8=1 F18 |C8 |>31U

:∏
8=1

[
5a8 (C8) + X8

m 5a8 , X8 (C8)
mX8

���
X8=0
+
X2
8

2
m2 5a8 , X8 (C8)

mX2
8

���
X8=0

]
dC8

≈ U +
:∑
9=1

X2
9
a 9

2

[ ∫
· · ·

∫
∑:

8=1 F18 |C8 |>31U

{ :∏
8=1

5a8 (C8)
}{ m2 5a9 , X 9 (C 9 )

mX2

��
X=0

5a 9 (C 9 )

}] :∏
8=1

dC8

≈ U +
:∑
9=1

X2
9
a 9

2

[
��0

[{ m2 5a9 , X 9 (C 9 )
mX2

9

���
X 9=0

5a 9 (C 9 )

}
�{∑:

8=1 F18 |C8 |>31U }

] ]
≈ U +

:∑
9=1

X2
9
a 9

2

[
��0

[{ (C2
9
− 1)a 9

C2
9
+ a 9

}
�{∑:

8=1 F18 |C8 |>31U } |�0

] ]
≈ U + Δ

2

2

( :∑
9=1

= 9a 9

f2
9

��0

[{ (C2
9
− 1)a 9

C2
9
+ a 9

}
�{∑:

8=1 F18 |C8 |>31U}

] )
using

[
X 9 =

√
= 9Δ

f9

]
.

��0 [·] above is computed by simulation. It is easy to verify from Section 3 that

the product terms
{
m 5a8 , X8 (C8)
mX8

���
X8=0

}
×

{
m 5a9 , X 9 (C 9 )

mX 9

���
X 9=0

}
involve (C8C 9 ), apart from C2

8

and C2
9
, whose integral over {∑:

8=1 F18 |C8 | > 31U} under �0 is zero.
For the special case =1 = · · · = =: = = and a1 = · · · = a: = a = = − 1 which

implies F11 = · · · = F1: = 1, the local power of this exact test based on modified C
reduces to:

!%()1) ≈ U +
=Δ2

2

( :∑
9=1

1
f2
9

)
a��0

[{ (C21 − 1)a
C21 + a

}
�{∑:

8=1 |C8 |>31U}

]
= U +

[
=Δ2

2
Ψ

]
a��0

[{ (C21 − 1)a
C21 + a

}
�{∑:

8=1 |C8 |>31U }

]
where Ψ =

:∑
9=1

1
f2
9

.
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VI. Local power of a modified L test [RV(Z2)]

According to this exact test based on a modified �, the null hypothesis �0 : ` =
`0 will be rejected if )2 > 32U, where )2 =

∑:
8=1 F28�8 , �8 ∼ � (1, a8), F28 ∝

[+0A (�8)]−1 = [2a2
8
(a8 − 1)]−1 [(a8 − 2)2 (a8 − 4)], and %A{)2 > 32U |�0} = U. In

applications 32U is computed by simulation. This leads to

Power of )2 = %A

{ :∑
8=1

F28�8 > 32U |�1

}
=

∫
· · ·

∫
∑:

8=1 F28�8>32U

:∏
8=1

[
5a8 ,_8 (�8)

]
d�8

[
5a,_ (�) ∼ non-central �1,a

(
_ =

=Δ2

f2

)]
.

Note that 5a,_(�) and its local expansion around _ = 0 are give by

5a,_ (�) = exp (−_
2
)
∞∑
9=0

( _2 )
9

9!

[ ( a1
a2
)
a1+2 9

2 Γ( a1+a2+2 9
2 )

Γ( a1+2 9
2 )Γ(

a2
2 )

] [
�

a1+2 9
2 −1(

1 + � a1
=D2

) a1+a2+2 9
2

]

≈ 5a (�)
(
1 − _

2
)
+

[ ( _2 ) ( a1
a2
)
a1+2

2 Γ( a1+a2+2
2 )

Γ( a1+2
2 )Γ(

a2
2 )

] [
�a1(

1 + � a1
a2

) a1+a2+2
2

]
= 5a (�) +

_

2
[
5 ∗a (�) − 5a (�)

]
, where 5 ∗a (�) =

(
1
a

) 3
2
[

�

(1 + �
a
) a+32 �[ 32 ,

a
2 ]

]
.

Using the above first order expansion of 5a,_(�) leads to the following local power
of )2.

!%()2) ≈
∫
· · ·

∫
∑:

8=1 F28�8>32U

[ :∏
8=1

5a8 (�8) +
:∑
9=1

_ 9

2

(
5 ∗a 9 (�9 ) − 5a 9 (�9 )

) {∏
8≠ 9

[
5a8 (�8)

]}] :∏
8=1

d�8

≈ U +
( :∑
9=1

_ 9

2
��0

[{
5 ∗a 9 (�9 ) − 5a 9 (�9 )

5a 9 (�9 )

}
�{∑:

8=1 F28�8>32U }

] )
��0 [·] stands for expectation w.r.t �1, . . . , �: under �0 [�8 ∼ � (1, a8)] .

≈ U +
( :∑
9=1

_ 9

2
��0

[{
�9 − 1
�9

a 9
+ 1

}
�{∑:

8=1 F28�8>32U }

] )
≈ U + Δ

2

2

( :∑
9=1

= 9

f2
9

��0

[{ [�9 − 1]a 9
�9 + a 9

}
�{∑:

8=1 F28�8>32U }

] )
using

[
_ 9 =

= 9Δ
2

f2
9

]
.

��0 [·] is obtained by simulation.
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For the special case =1 = · · · = =: = = and a1 = · · · = a: = a = = − 1 which
implies F21 = · · · = F2: = 1, the local power of this exact test based on modified �
reduces to:

!%()2) ≈ U +
=Δ2

2

( :∑
9=1

1
f2
9

)
��0

[{
[�1 − 1]a
�1 + a

}
�{∑:

8=1 �8>32U }

]
= U +

[
=Δ2

2
Ψ

]
��0

[{
[�1 − 1]a
�1 + a

}
�{∑:

8=1 �8>32U }

]
where Ψ =

:∑
9=1

1
f2
9

.
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