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Abstract

For over forty years, the Fay-Herriot model has been extensively used by Na-

tional Statistical Offices around the world to produce reliable small area statistics.

This model develops prediction of small area means of a continuous outcome of

interest based on a linear regression on suitable auxiliary variables. Model errors,

also known as small area effects, of the Fay-Herriot model are treated as inde-

pendent and normally distributed zero-mean random variables with an unknown

variance. Often population means of geographically contiguous small areas display

a spatial pattern. The independence assumption for the random effects may not

hold when effective auxiliary variables are unavailable. Lack of suitable covariates

to account for the variation of the geographic domain means results in a spatial pat-

tern among the random effects. We consider several spatial random-effects models,

including the popular conditional autoregressive and simultaneous autoregressive

models as alternatives to the Fay-Herriot model. We carry out a Bayesian analysis

of these models based on a class of popular noninformative improper prior densi-

ties for the model parameters. We assess the effectiveness of these spatial models

based on a simulation study and a real application. We consider the prediction
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of statewide four-person family median incomes for the U.S. states based on the

1990 Current Population Survey and the 1980 Census. This application and simu-

lation study show considerably superior performance of some of the spatial models

over the regular Fay-Herriot model when good covariates remain unavailable. In

some applications, some small areas are created after the completion of a survey

that does not provide any direct estimates of the late-breaking unsampled small

areas. Proposed spatial models generate better predictions of unsampled small

area means by borrowing from neighboring residuals than the synthetic regression

means that result from the regular independent random effects Fay-Herriot model.

For all the spatial Bayesian models considered, their posterior distributions based

on a useful class of improper prior densities on model parameters, even in the

absence of data from some small areas, are shown to be proper under some mild

conditions.

Keywords: Conditional autoregression; Current Population Survey; Fay-Herriot model;

Intrinsic autoregression; Simultaneous autoregression; Unsampled small areas.
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1 Introduction

Sample surveys provide useful data in estimating various characteristics of a population

of interest. However, when it comes to estimating a sub-population characteristic, a

design-based direct estimate, based solely on data from that sub-population alone, is

usually inaccurate as the accessible sample size is small and sometimes nonexistent for

lack of sample. Sub-populations that lack a reasonable sample size to produce reliable

direct estimates are known as small areas. Also, limited available resources often pre-

clude many sub-populations from being selected in the sample, resulting in unsampled

small areas.

To enhance accuracy of direct estimates of small areas, model-based approach has

been widely used that facilitates borrowing information from such estimates of other do-

mains and other auxiliary data. In many applications, supplementary information from

other surveys and administrative data provide useful covariates. Model-based estimates
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are produced by suitably shrinking the direct estimates (when available) to the synthetic

regression estimates based on auxiliary variables. The improvement in prediction greatly

depends on to which extent the sub-population means of the characteristic are related

to the auxiliary variables. When a small area has no direct estimate, the traditional

independent random effects model by Fay and Herriot (1979) estimates the mean by a

synthetic regression estimate alone.

Fay and Herriot (1979) proposed a very useful model to develop estimates of small

area means based on direct survey estimates (if available) and synthetic regression es-

timates computed from auxiliary variables. Their model, which is essentially a mixed

linear model, is widely known as the Fay-Herriot (FH) model in the small area esti-

mation literature. For i = 1, . . . ,m, let Yi be the direct estimate of the small area

characteristic θi obtained from a survey. Also let xi and β be the p-component vectors

of covariates and corresponding regression coefficients, respectively. Then the FH model

can be written as

Yi = θi + ei, θi = x>i β + vi, i = 1, . . . ,m, (1)

where sampling errors ei, i = 1, . . . ,m, are independently distributed as ei
ind∼ N (0, Di),

and are independent of random effects (small area effects) vi
iid∼ N (0, σ2

v), i = 1, . . . ,m.

Here, the sampling variances Di, i = 1, . . . ,m are assumed to be known but the regres-

sion parameter β and model error variance σ2
v , called model parameters, are unknown

quantities. For unsampled small areas with auxiliary variables, only the second part of

(1) holds for θi.

There has been extensive research on the FH model and its many variants. While

Fay and Herriot (1979) used an empirical Bayes (EB) approach, subsequently, Prasad

and Rao (1990), Datta and Lahiri (2000) and Datta et al. (2005) used the frequentist

approach and derived the second-order mean squared error (MSE) of empirical best lin-

ear unbiased predictor (EBLUP) of θi and various second-order approximate unbiased

estimators of the MSE’s (see Datta and Lahiri, 2000). Earlier Ghosh (1992) proposed a

hierarchical Bayesian (HB) approach to the Fay-Herriot model. In the Bayesian frame-

work, the FH model in (1) can be expressed as the following HB model:

Yi|θ1, . . . , θm,β, σ2
v
ind∼ N (θi, Di), i = 1, . . . ,m, (2)

θi|β, σ2
v
ind∼ N (x>i β, σ

2
v), i = 1, . . . ,m, (3)

π(β, σ2
v) ∝ g(β, σ2

v), (4)
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where g(·) is a suitably chosen function of β and σ2
v , which expresses a prior probability

density function (pdf) for these parameter. Without specifying a prior pdf as in (4),

an EB predictor for θi was originally developed by Fay and Herriot (1979). While a

standard EB approach usually underestimates the measure of uncertainty of the EB

estimator of θi, the HB approach facilitates uncertainty quantification due to estimation

of unknown model parameters, β and σ2
v . The uncertainty is fully captured by the

posterior distribution of the model parameters.

In model-based estimation, random effects are of great importance in capturing the

remaining variability of the θi’s that is not explained by the regression model. In real

applications, small areas generally involve features such as population size, ethnicity,

age-group and education level, which might affect the variability of small area effects.

Furthermore, when disease prevalence rates are of interest, it is reasonable to assume that

random effects of adjacent small areas are correlated in a certain way. In such cases,

the FH model given in (1), which we refer to as the independent FH random-effects

model, oversimplifies and misspecifies the distribution of random effects by assuming a

common and independent distribution. Although benefits from model-based approach

are substantial, it is known that it can perform poorly under model misspecification as

the domain sample size increases (Rao and Molina, 2015).

In Section 2, we propose small area estimation models which effectively account for

heteroscedasticity and spatial dependence of the small area effects. In particular, we take

a fully Bayesian approach by specifying a class of noninformative priors on the model

parameters. Spatial dependence of small area effects are modeled by four widely used

autocorrelation structures. These include conditional autoregressive (CAR), simultane-

ous autoregressive (SAR), intrinsic autoregressive (IAR) and a spatial model suggested

by Rao and Molina (2015) which we refer to as the SRM model. There is an abundance

of literature on spatial models under the Bayesian framework. Sun et al. (1999) studied

an HB model with the conditional and intrinsic autoregressive models on the random

effects. The same models were considered by Speckman and Sun (2003) in the context

of Bayesian spline smoothing. For small area estimation, You and Zhou (2011) modeled

small area effects using a conditional autoregressive model. As an extension of the time

series FH model (Datta et al., 1999), Torabi (2012) proposed a spatio-temporal model

with intrinsic autoregressive random effects. Porter et al. (2014) proposed an extension

of the FH model with functional covariates and intrinsic autoregressive random effects.

Porter et al. (2015) incorporated the conditional autoregressive random effects on the

multivariate FH model.

We note that the existing Bayesian spatial FH models consider a proper prior on
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σ2
v . Furthermore, most of the models assume a conditional autoregressive structure on

the random effects. The main contributions of this paper are as follows. First, we

provide in Section 2 sufficient conditions for posterior propriety for a class of improper

noninformative priors on model parameters. These conditions do not depend on the

assumed autocorrelation structure provided that it yields a positive definite covariance

matrix for the random effects. Secondly, in Subsection 2.1 we further extend the spatial

models to estimate small area means of several unsampled small areas with no direct

estimates. The unsampled area mean θi is estimated by borrowing strength from the

auxiliary variables of this area and, for spatial models, from the regression residuals of

its neighboring areas. We again prove that the posterior distributions based on improper

noninformative priors are proper for this more practical problem. The effectiveness of

the proposed spatial models is demonstrated in Section 3 and 4. We apply the spatial

models to simulated data and real data sets from the Current Population Survey (CPS).

We compare various spatial models in Section 4 to estimate four-person family median

incomes for the forty-nine contiguous states of U.S. based on the CPS data and appro-

priate covariates from previous census and administrative data. Our data analysis and

simulation studies reveal that proposed spatial models significantly improve prediction

accuracy and reduce measure of uncertainty (posterior variance). We provide concluding

remarks in Section 5. All technical discussions including the proofs of propriety of the

various posterior distributions are provided in Section 6.

2 Some spatial alternatives to the independent FH

model

Let Y = (Y1, . . . , Ym)> be the m-component vector with the direct estimates of m small

areas, and D = diag{Di}mi=1 be the m×m diagonal matrix with the sampling variances of

the direct estimates. We denote by θ = (θ1, . . . , θm)> the m-component vector of small

area means. Also, let X = [x1, · · · ,xm]> be the m × p matrix of auxiliary variables,

where xi is the p-component vector of auxiliary variables (including the intercept term)

for the ith small area. A special case of the HB model given in (2)–(4) can be expressed

as

Y|θ,β, σ2
v ∼ Nm(θ,D), (5)

θ|β, σ2
v ∼ Nm(Xβ, σ2

vIm), (6)

π(β, σ2
v) ∝ 1, (7)
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where β is the p-component regression coefficient vector, σ2
v is the model error variance

and Im is the identity matrix of order m. The uniform prior (7) on the model parameters

is a popularly used noninformative prior. The resulting posterior pdf is proper provided

that m > p+ 2. See Berger (1985) and Datta and Smith (2003).

From (6), it can be seen that θi, i = 1, . . . ,m, are independently distributed with

common random effects variance σ2
v over the small areas. However, in many cases, the

area characteristic of interest is closely related to geographical factors such as population

size, ethnicity, age-group and education level. In such cases, due to misspecified random

effects distribution (independence and equal variance, in this case), inference based

on the hierarchical model (5)–(7) may produce unreliable estimates which can yield

erroneous decisions. Moreover, if available auxiliary variables are not sufficiently related

to the small area means or lurking variables exist, this problem can be even worse as they

cause extra variability that cannot be explained by the independently and identically

distributed (i.i.d.) random effects.

Let W = {wij}ij, 1 ≤ i, j ≤ m, be the adjacency matrix which plays an important

role in capturing spatial dependency. In particular, wij = 1 if ith and jth small areas

are connected via geographical boundary or through other mechanisms (for example, air

traffic), and wij = 0, otherwise. Also, wii = 0 for i = 1, . . . ,m. Note that wij’s need not

be binary; they can take other positive values, such as the “length” of the geographical

border or volumes of air traffic between the two areas. Since W is a symmetric, non-null

matrix, its eigenvalues λi’s are real with at least one is non-zero. We denote the ith

largest eigenvalue by λi such that λ1 ≥ . . . ≥ λm. Since
∑m

i=1wii = 0 we get as a result

that λm < 0 < λ1. Let wi. =
∑m

j=1wij be the sum of the ith row of W and define

L = diag{wi.}mi=1. We assume that diagonal elements of L are positive and we define

W̃ = L−1W. We consider four different spatial dependencies that are represented by

the following positive definite “precision” matrices associated with random effects:

CAR: Ω2(ρ) = Im − ρW, ρ ∈ (λ−1m , λ−11 ), (8)

SAR: Ω3(ρ) = (Im − ρW̃)>(Im − ρW̃), ρ ∈ (−1, 1), (9)

IAR: Ω4(ρ) = L− ρW, ρ ∈ (−1, 1), (10)

SRM: Ω5(ρ) = ρR + (1− ρ)Im, ρ ∈ (0, 1), (11)

where the model parameter ρ is called the spatial autocorrelation that captures the

strength of spatial dependence. The matrix R above is defined as R = L −W. The

ith diagonal element of R is the number of neighborhoods of the ith small area, and the

(i, j)th off-diagonal element is -1 if the ith and the jth small areas are connected and 0
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ρ = 0 ρ = 0.75 ρ = 0.85 ρ = 0.95

under −5.2
−5.2 to −3.8

−3.8 to −2.5
−2.5 to −1.1

−1.1 to 0.22
0.22 to 1.6

1.6 to 2.9
over 2.9

Figure 2.1: Geographical illustrations of spatial dependencies with various values of ρ.
Each geographical region is one of 159 counties of Georgia. Data are generated from the
SAR model.

otherwise. The SAR adjacency matrix W̃ is row-normalized so that as ρ varies between

-1 to 1, the precision matrix remains positive definite. The SRM precision matrix is

a convex combination of the extreme IAR precision matrix Ω4(1) and independent FH

precision matrix (the coefficient ρ used in the convex combination is different from the

same symbol used in Ω4(ρ)). Note that even if the diagonal elements of a precision

matrix are all equal, for example the CAR model, the diagonal elements of the inverse

may not be all equal, leading to heteroscedasticity of random effects.

Figure 2.1 graphically illustrates the strength of spatial autocorrelation, where the

small areas are them = 159 counties of Georgia. Data are generated fromNm(0m, σ
2
v{Ω3(ρ)}−1),

where 0m is the m-component null vector, σ2
v = 1 and ρ = 0, 0.75, 0.85, 0.95. Although a

value of ρ is not directly comparable from model to model, a large value of it represents

strong neighborhood similarity.

A CAR model assumes that θi depends only on neighboring small area means. In

other words, θi is correlated with other areas only through area means of surrounding

areas. Similar interpretation holds for IAR and SRM models. On the other hand, a

SAR model assumes that θi depends simultaneously on other θj, j 6= i, but have larger

(weaker) correlations for adjacent (distant) areas. The independent FH model can be

viewed as a special case of the above class of models with ρ = 0. For convenience of

notation, the precision matrix for the independent FH model is denoted by Ω1(ρ) = Im,

which actually does not depend on ρ.
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We consider the following five HB models with k = 1, . . . , 5 (Ω1(ρ) = Im):

Y|θ,β, σ2
v , ρ ∼ Nm(θ,D), (12)

θ|β, σ2
v , ρ ∼ Nm(Xβ, σ2

v{Ωk(ρ)}−1), (13)

π(β, σ2
v , ρ) ∝ g(σ2

v)h(ρ), β ∈ Rp, σ2
v > 0, `k < ρ < uk, (14)

where g(σ2
v) and h(ρ) are suitable functions of σ2

v and ρ, and `k and uk are the lower

and upper bounds of ρ under the kth model. Let 1(·) be the indicator function taking

the value 1 when its argument is true and 0 otherwise. Then the (joint) posterior pdf

of model parameters is proper under the following conditions.

Theorem 1. For all the HB models given in (12)–(14), the posterior probability density

functions are proper if the following conditions hold for some positive constant c > 0:

(a)
∫∞
0
g(σ2

v)1(σ2
v ≤ c)dσ2

v <∞.

(b)
∫∞
0

(σ2
v)
−(m−p)/2g(σ2

v)1(σ2
v > c)dσ2

v <∞.

(c)
∫ uk
`k
h(ρ)dρ <∞.

Any bounded function of ρ satisfies (c) in Theorem 1 as the domains are all bounded.

Consider the following family of noninformative priors:

π(β, σ2
v , ρ) ∝ (σ2

v)
−α1(`k < ρ < uk), β ∈ Rp, σ2

v > 0. (15)

Under (15), we provide the conditions for the posterior propriety in the following corol-

lary.

Corollary 1.1. For any of the hierarchical Bayes models given in (12)–(13) with the

prior in (15), the posterior pdf is proper if and only if 1− (m− p)/2 < α < 1.

2.1 Estimation of unsampled small area means

In this section, we consider the case when there are several unsampled small areas that

have no direct estimates. Since the direct estimate of an unsampled area is missing,

the prediction of the mean of the unsampled small area is solely based on its synthetic

estimator, and the vector of regression residuals, with more emphasis on the components

of its neighboring areas. Here, we propose to exploit spatial dependencies in predict-

ing area means of unsampled small areas. Without loss of generality, let there be m1

unsampled small areas and Ym1+1, . . . , Ym be the direct estimates of the sampled small
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areas. Based on the m2 = m −m1 sampled direct estimates, we consider the following

HB models:

Y(2)|θ,β, σ2
v , ρ ∼ Nm2(θ(2),D(2)), (16)

θ|β, σ2
v , ρ ∼ Nm(Xβ, σ2

v{Ωk(ρ)}−1), k = 1, . . . , 5, (17)

π(β, σ2
v , ρ) ∝ (σ2

v)
−α1(`k < ρ < uk) for β ∈ Rp, 0 < σ2

v , (18)

where Y(2) = (Ym1+1, . . . , Ym)>, D(2) = diag{Di}mi=m1+1 and θ(2) = (θm1+1, . . . , θm)> is

the subvector of θ corrosponding to the sampled areas. Then the posterior pdf for this

model is proper under the following conditions.

Theorem 2. Under the various hierarchical Bayes models given in (16)–(18), the cor-

responding posterior pdf is proper if 1− (m−m1 − p)/2 < α < 1.

We can directly see that equivalent conditions for the posterior propriety are α < 1

and m−p−2+2α > m1. Thus, using the uniform prior, α = 0, the posterior distribution

is proper as long as the number of unsampled small areas is fewer than m− p− 2.

Remark 1. In all applications, we use the prior corresponding to α = 0, which is

a uniform prior for the model parameters. In a recent article, Berger et al. (2020)

suggested a class of objective priors for model parameters in general normal hierarchical

models. According to them, uniform priors for the model parameters do not produce

optimal solution in terms of admissibility. Following them, π(σ2
v) = (σ2

v)
(−.5) is a better

alternative for σ2
v , and π(β) = [m + βTXTD−1Xβ]−(p−1)/2 may be a better alternative

for β. For p = 1, the prior of β is uniform. Since π(β) is bounded above by 1, it can

be easily proved that this general improper prior for β also yields a proper posterior

density.

3 A simulation study

In this section, we evaluate the prediction performances of independent FH model and

the four spatial models in the absence of “good” covariates using simulated data sets.

Small areas of interest are m = 159 counties in the state of Georgia. Sampling variances

Di, i = 1, . . . ,m, are independently generated from a gamma distribution with mean

3.3 and shape parameter 1.1 (which lead to a scale 3). We consider two independent

covariates x1 and x2, each exhibiting a spatial dependence modeled by

xj
iid∼ Nm(0m, {Ω3(ρ)}−1), j = 1, 2.
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We consider 16 different simulation settings corresponding to various values of spatial

autocorrelation and model error variance. Specifically, we consider four different degrees

of spatial autocorrelation, ρ = 0, 0.75, 0.85, 0.95. For the model error variance parameter

σ2
v , we also consider four values, σ2

v = D̄/8, D̄/2, D̄, 2D̄, where D̄ = m−1
∑m

i=1Di.

For given values of ρ, σ2
v and Di, i = 1, . . . ,m, we consider S = 50 replicates of data

sets generated from

θi
ind∼ N (µi, σ

2
v), Yi|θi

ind∼ N (θi, Di), i = 1, . . . ,m,

where µi = β1xi1 + β2xi2 and (β1, β2)
> = (2, 0.5)>. This makes x1 a more influential

covariate than x2. Also, both variables will introduce spatial variation to the θi’s.

To examine how the spatial models can capture extra variability introduced by the

spatial dependence from one (or both) of the missing covariates, we consider L = 3

different reasonable combinations of covariates. In particular, we consider X1 = 1m,

X2 = [1m,x2] and X3 = [1m,x1], where 1m represents the m-component vector of ones.

We do not consider the full model involving both the covariates since that model will

fully capture µi, consequently, the independent FH model will be sufficient to capture

the variability of the i.i.d. random effects. For each k = 1, . . . , 5, we fit the following

HB models:

Y|θ,β`, σ2
v , ρ ∼ Nm(θ,D), (19)

θ|β`, σ2
v , ρ ∼ Nm(X`β`, σ

2
v{Ωk(ρ)}−1), ` = 1, . . . , 3, (20)

π(β`, σ
2
v , ρ) ∝ 1(`k < ρ < uk), (21)

where the dimensions of β` agree with the corresponding X`.

Let θ̂k = (θ̂k1 . . . , θ̂km)> be the predictor under the kth model. For convenience of

notation we denote the vector of direct estimates Y by θ̂0. To evaluate predictors, θ̂k,

k = 0, . . . , 5, in terms of prediction accuracy, we calculate their total squared prediction

error, TSPEk =
∑m

i=1(θ̂ki − θi)2, after fitting the models above for each replicated data

set. We then average TSPEk over the replicated data sets for each k = 0, . . . , 5, to

compute total empirical mean squared prediction error, TeMSPEk, given by TeMSPEk =

S−1
∑S

s=1

∑m
i=1(θ̂

(s)
ki −θ

(s)
i )2. Here, θ

(s)
i is the true value of the ith small area mean based

on the sth replicated data set; and θ̂
(s)
ki is the predicted value of θ

(s)
i by the kth model.

By setting the direct estimate’s TeMSPE0 as the baseline, the independent FH and the
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µi = β0

Figure 3.1: Prediction accuracy improvements when no covariate is in the fitted model.
The height of each horizontal bar represents the kth model’s total empirical mean
squared prediction error, TeMSPEk, as a fraction of direct estimate’s total empirical
mean squared prediction error, TeMSPE0. Data are generated under four different lev-
els of model error variance and spatial correlation.

spatial models are assessed by the ratio

Frck,0 =
TeMSPEk

TeMSPE0

,

which expresses TeMSPEk as a fraction of TeMSPE0, the baseline total empirical mean

squared prediction error. A better model will have a smaller value of Frck,0. Simulation

results for the three reasonable candidate models based on combinations of covariates

in the fitted model are summarized in Figures 3.1 – 3.3, respectively. In each figure, a

horizontal bar is drawn for Frck,0, where a shorter bar for a model means smaller total

mean squared prediction error for that model relative to the vector of direct estimates

Y .

From Figures 3.1 to 3.3, when ρ = 0 the µi’s and hence the θi’s do not have any

spatial variation whether the model error terms vi’s are small (for small σ2
v) or large (for

large σ2
v), we find that all the spatial models are as useful as the independent FH model

in terms of total mean squared prediction error. These show no loss in using a spatial

model (other than any extra effort to fit a slightly complicated model) for predicting

small area means that have no spatial variation.

Figure 3.1 illustrates results with no covariate (intercept only) in the fitted models,
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µi = β0 + β2 xi2

Figure 3.2: Prediction accuracy improvements when only the covariate x2 is in the fitted
model. The height of each horizontal bar represents the kth model’s total empirical mean
squared prediction error, TeMSPEk, as a fraction of direct estimate’s total empirical
mean squared prediction error, TeMSPE0. Data are generated under four different levels
of model error variance and spatial correlation.

for four values of spatial correlation and four values of model error variance. As the

spatial correlation increases, we see from the leftmost column to the rightmost one that

the performances of all the spatial models are better than the independent FH model,

and they improve progressively. In the case of very strong spatial pattern with ρ = 0.95,

the FH model deteriorates significantly with its predictions that are very similar to

the direct estimates. While the spatial models have much smaller TeMSP relative to

the FH model for smaller model error variance (top rows of the figure), their superior

performance persists, though gets diminished for larger model error variance (in case of

a very large model error variance all the models produce little shrinkage of the direct

estimates). The average improvements of the spatial models over the FH independent

model range from 33% (σ2
v = D̄/8) to 15% (σ2

v = 2D̄).

Figure 3.2 presents results when only the less influential covariate x2 is used in fitting

all five models, again using the same four values of spatial correlation and four values

of model error variance. The results for this setup are practically identical to those

in Figure 3.1 with an intercept only model. Thus the inclusion of a weaker covariate

displaying the same spatial pattern as in the µi’s did not improve the performance of

the independent FH model. The spatial models are found to be better suited to capture
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Figure 3.3: Prediction accuracy improvements when only the covariate x1 is in the fitted
model. The height of each horizontal bar represents the kth model’s total empirical mean
squared prediction error, TeMSPEk, as a fraction of direct estimate’s total empirical
mean squared prediction error, TeMSPE0. Data are generated under four different levels
of model error variance and spatial correlation.

the spatial pattern of the µi’s in the absence of the most effective covariate. Among the

spatial models, the SAR model shows the largest improvement which can be attributed

to the SAR pattern used in generating the µi’s.

Figure 3.3 presents results when the most influential covariate x1 in addition to

the intercept is used in fitting all five models for the identical combinations of spatial

correlation and model error variance. The results for this setup show that the inclusion

of this covariate that mostly determines the spatial pattern of µi’s makes up most of

the deficiency of the independent FH model relative to the spatial models (still incurs

about 50% more TeMSP over the spatial models when σ2
v = D̄/8 and ρ = 0.95). Also,

the inclusion of the more influential predictor leads to considerably improved predictive

performance for all five models, measured by their TeMSP values.

Figure 3.4 illustrates spatial models’ average posterior standard deviations as frac-

tions of the average sampling standard deviation, m−1
∑m

i=1

√
Di, when only the less

influential covariate x2 is included in the fitted models. The results show a similar pat-

tern as in Figure 3.3. All five models improve the variability of predictions over the

direct estimates. Compared with the independent FH model, predictions based on spa-

tial models show smaller variability when ρ > 0. As the spatial pattern strengthens, the
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Figure 3.4: Ratio of average posterior standard deviation to average sampling standard
deviation when only the covariate x2 is in the fitted model. Data are generated under
four different levels of model error variance and spatial correlation.

average posterior standard deviation of small area means based on the SAR model stays

approximately the same as this model more effectively captures spatial dependence of

small area means. On the other hand, the average posterior standard deviations of other

models increase as ρ increases, whereas spatial models still outperform the independent

FH model. When ρ = 0.95, the improvements made by the independent FH model are

less than 10%. When there is no spatial pattern in the residual, ρ = 0, the variabilities

of all five models are practically identical. The average posterior standard deviations

corresponding to design matrices X1 and X3 are summarized in Figures A.1 and A.2 in

Appendix.

We find from our simulations that if any spatial pattern exists in the residuals after

fitting a model, then the spatial models effectively capture the extra variability and

allow more accurate predictions. Although we generate spatial patterns in the µi’s

from the SAR model, the SRM and the IAR models occasionally display competitive

performance in terms of TeMSPE. When no spatial pattern exists, spatial models show

the same performace as the independent FH model in terms of total emprical mean

squared prediction error and average posterior standard deviation.
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4 An application to some current population survey

data

In this section, we evaluate the spatial models in terms of their accuracy of prediction of

state level small area means of forty-nine U.S. states. The U.S. Department of Health

and Human Service (HHS) annually needed accurate data for median income of four-

person families in a state to implement a welfare program. While accurate national

median income data are available from the Current Population Survey (CPS), the CPS

data do not provide accurate median income data for the individual states. To supply

accurate statistics to the HHS, the U.S. Census Bureau considered model-based small

area estimation method by utilizing auxiliary data from other federal programs. We

apply our proposed spatial models to estimate four-person family median incomes for

the contiguous forty-nine U.S. states (including the Washington, D.C.) for the year

1989. We consider 1989 so that we can compare our predictions with the more reliable

corresponding statistics obtained from data compiled from the 1990 Census long form.

Prediction performances are measured using data from all small areas, and suitable

subsets of data after leaving out data for some states to treat these states as unsampled

small areas.

4.1 Four-person family median income estimation

Let θi be the true four-person family median income of the ith state for the year 1989,

where i = 1, . . . ,m and m = 49 is the number of contiguous states including the District

of Columbia. The states of Alaska and Hawaii are excluded as they are not geographically

connected to the mainland. Let Yi be the direct estimate of θi based on the 1990 CPS that

collected income data for 1989. Covariates of interest are 1980 census median income xi1

and an adjusted 1980 census median income xi2. The adjusted census median income xi2

is defined as (PCIi,1989/PCIi,1979)xi1, i = 1, . . . ,m, where PCIi,1979 and PCIi,1989 are the

1979 and 1989 per capita income of the ith state provided by the Bureau of Economic

Analysis of the U.S. Department of Commerce. It has been known that the adjusted

census median income is a good covariate which accounts for the variability of the small

area median income. We consider the state level median incomes obtained from the

1990 census as the true values of θi, i = 1, . . . ,m, for the year 1989. We note that dollar

amounts are scaled by $1000.

We fit all five models as described by (12)–(14) with X = [1m,x1,x2] and X =

[1m,x1]. For the latter, we exclude the adjusted census median income from the fitted
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µi = β0 + β1xi1 + β2xi2 µi = β0 + β1xi1
β0 β1 β2 ρ β0 β1 ρ

FH 1.41 (5.58) 0.39 (0.37) 0.67 (0.12) NA -3.86 (7.29) 1.97 (0.33) NA
CAR 1.31 (5.53) 0.40 (0.37) 0.67 (0.12) -0.06/0.038 (0.14) -1.11 (7.44) 1.88 (0.33) 0.14/0.17 (0.04)
SAR 1.51 (5.83) 0.44 (0.39) 0.64 (0.13) 0.10/0.396 (0.48) -2.59 (9.14) 1.92 (0.29) 0.76/0.80 (0.14)
IAR 1.35 (5.58) 0.45 (0.40) 0.64 (0.13) 0.21/0.831 (0.55) -2.85 (6.99) 1.91 (0.29) 0.93/0.99 (0.09)
SRM 2.19 (6.00) 0.50 (0.44) 0.59 (0.15) 0.57/0.803 (0.27) -2.04 (7.83) 1.89 (0.29) 0.85/0.97 (0.13)

Table 1: Posterior mean and standard deviation (in parentheses) of model parameters
under the independent FH model and four spatial models. For spatial autocorrelations,
the posterior mode is also provided beside the posterior mean. The left part of the table
summarizes posterior distributions of model parameters when both covariates are used
in the fitted model, and the right side of the table summarizes when only x1 is included
in the fitted model.

model. The prior distribution for the model parameters is the noninformative prior (15)

with α = 0. Table 1 summarizes the posterior distributions of model parameters in

terms of the posterior mean, mode, and standard deviation. All models provide nearly

similar posterior distributions of regression coefficients. When both the covariates are

included, all models show that β2 is the only significant regression coefficient and β1

is insignificant as its 95% credible interval includes zero (not presented here). The

posterior distributions of ρ indicate no strong spatial dependency, whereas posterior

modes indicate a mild degree of spatial pattern (the SRM model is an exception). On

the other hand, when only x1 is used in the regression model, β1 becomes significant,

and the posterior distribution of ρ is concentrated away from zero indicating a strong

spatial pattern for all the spatial models, including the CAR model. We emphasize that

for the CAR model, the permissible range of the spatial parameter ρ is (−0.349, 0.185).

We use the estimates from the fitted models and the true values from the 1990

census data, and calculate the squared deviations and obtain the ASD by averaging

the 49 squared deviations for each model. We also obtain posterior standard deviations

associated with θ̂ki and calculate average posterior standard deviations (APSD) for each

k = 1, . . . , 5. Table 2 lists ASD, APSD and respective percentage improvements. When

both the covariates are available, the SRM model has approximately 13% smaller ASD

and 4% smaller APSD than the independent FH model. In terms of ASD, the second best

performing model is the SAR having approximately 11% smaller ASD. In terms of APSD,

the IAR is the second best model with 2% smaller APSD. When only x1 is included

in model fitting (the right half of the Table), the SAR model has approximately 40%

smaller ASD and 15% smaller average posterior standard deviation than the independent

FH model. The IAR and SRM models show reasonably good performances having

approximately 35% smaller ASD and 15% smaller APSD over the independent FH model.
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µi = β0 + β1xi1 + β2xi2 µi = β0 + β1xi1
ASD ASD-PI APSD APSD-PI ASD ASD-PI APSD APSD-PI

FH 2.899 0% 1.940 0% 7.241 0% 2.317 0%
CAR 2.989 -3.12% 1.948 -0.40% 5.643 22.07% 2.232 3.66%
SAR 2.583 10.92% 1.937 0.15% 4.318 40.37% 1.963 15.27%
IAR 2.642 8.89% 1.903 1.94% 4.614 36.28% 1.994 13.95%
SRM 2.507 13.51% 1.855 4.41% 4.554 37.12% 1.978 14.62%

Table 2: Average squared deviations and average posterior standard deviations when all
covariates are available, and only less informative covariate, x1, is available, respectively.
The percentage improvements (PI) over the independent FH model are listed.

By removing the covariate x2 from the full model, the ASD for the SAR model increases

approximately 66%, and the ASD for the independent FH model increases more than

140%. This example shows the effectiveness of spatial models over the independent FH

model when good covariates are unavailable.

4.2 Estimation of some unsampled state means excluding their

CPS values

In this section, we evaluate spatial models in terms of unsampled small area prediction

accuracy. At each instance, we arbitrarily exclude direct estimates of multiple states

and make predictions for the median incomes of the excluded states. For our 49 states,

we have 12 data sets with m1 = 4 or m1 = 5 missing states, where m1 is the number

of small areas given in Section 2.1, whose CPS estimates are excluded from fitting the

model. Excluded states for these twelve data sets are listed in Table 3. For convenience

of notation, we denote the median income and corresponding direct estimate of the jth

unsampled area by θj and Yj, j = 1, . . . ,m1.

Set 1 Set 2 Set 3
MS OK AR SD DE AZ CO TN WV MD NV MI

Set 4 Set 5 Set 6
NC MT NY NE ID ND DC GA MO VT WY AL

Set 7 Set 8 Set 9
LA UT FL WA MN MA TX SC KY RI VA WI

Set 10 Set 11 Set 12
IN IL PA NH CA ME OH NJ OR KS NM IA CT

Table 3: Excluded small areas for each data set.
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Figure 4.1: Squared deviations of the independent FH model over the four spatial models.
The value larger (smaller) than one indicates a spatial model has a smaller (larger)
squared deviation. The blue (red) color scheme represents states where a spatial model
outperform (underperform) the FH model.

For each data set, we fit the independent FH model and four spatial models as

specified in (16)–(18) with α = 0 for (18). Then the squared deviations of unsampled

areas are obtained for each model. Specifically, for j = 1, . . . ,m1, we calculate r2kj =

(θ̂kj − θj)2, where θ̂kj is the posterior mean of θj under the kth model with the missing

direct estimates Y1, . . . , Ym1 . Each panel displayed in Figure 4.1 illustrates the following

quantities:

ξki =
r21i
r2ki
, i = 1, . . . ,m, (22)

where k = 2, . . . , 5. A value of ξki less than 1 favors the independent FH model and we

identify this by depicting the state in red color scheme in the map. On the other hand,

a value of ξki larger than 1 indicates that the kth, k = 2, . . . , 5, model has a smaller

squared deviation on the ith small area. The darker the red (blue) color is the smaller

(larger) ξki is.
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The top left panel of Figure 4.1 indicates that only for 21 states the CAR model

produces squared deviations that are smaller than that of the independent FH model,

and for 28 states the FH model squared deviations are smaller. The FH independent

model is better. Of the 28 states with smaller FH squared deviations, seven of them

have squared deviations less than half of the squared deviations of the CAR model, and

remaining twenty-one states have smaller squared deviations but more than half the

corresponding value from the CAR model.

The results with the SAR model are illustrated at the top right panel. The SAR

model has smaller squared deviations for 36 out of 49 states, and for only 13 states smaller

squared deviations for the FH model. Among the 36 states with larger FH squared

deviations, five states have at least five times bigger, fourteen states have between 1.5

and 5 times bigger, and seventeen states have between 1 and 1.5 times bigger.

The IAR model outperforms the independent FH model in 33 states. Among the 33

states with larger FH squared deviations, seven states have at least five times bigger,

eleven of them have between 1.5 and 5 times bigger, and the remaining fifteen states

have between 1 and 1.5 times bigger. Overall, it performs similarly to the SAR model

but the results are more volatile than the SAR model.

Lastly, the bottom right panel presents results for the SRM model. The SRM model

outperforms the independent FH model in 24 states. Of the 24 states with larger FH

squared deviations, 12 states have at least five times bigger, and the remaining twelve

of them have between 1.5 and 5 times bigger.

5 Conclusions

In this paper, we followed a Bayesian approach to investigate four popular spatial ran-

dom effects models as alternatives to the independent Fay-Herriot model to estimate

small area means. In particular, we considered four spatial models with different auto-

correlation structures. We further extended the spatial models to allow multiple small

areas without any direct estimates in predicting small area means for all the areas. For

a class of improper noninformative priors, we established posterior proprieties of the

proposed models for both setups.

A simulation study in Section 3 showed that prediction accuracy can be greatly im-

proved by considering spatial models when effective covariates are unavailable. Datta

et al. (2011) has noted that the prediction accuracy of small area estimation models

largely depends on the availability of good covariates. In other words, when good co-

variates are unavailable, we may not expect much improvement from the independent
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Fay-Herriot model over direct estimates. The simulation results indicated that in such

cases, the spatial models significantly improved the prediction accuracy by exploiting

information from adjacent areas.

We applied various spatial random effects models to estimate four-person family

median incomes of 49 U.S. contiguous states. Even when a good covariate exists, the

spatial models exhibited noticeable improvement in terms of average squared deviations

and average posterior standard deviations. When a good covariate was unavailable or

unused, spatial models provided significantly more accurate median income predictions

(measured by the average squared deviation) with much smaller variability (measured

by the average posterior standard deviation). This conclusion was consistent with the

simulation results when a more effective covariate was not included in the regression

model. Furthermore, the SAR and IAR models provided more precise small area es-

timates when some small areas do not have direct estimates. In summary, the spatial

models considered in this paper outperform the independent Fay-Herriot model. A sig-

nificant improvement over the independent Fay-Herriot model can be expected when

effective covariates are unavailable. Since useful covariates are not always available, the

utility of the proposed method based on spatial models in small area estimation can

be substantial. Finally, our Bayesian approach straightforwardly provided the point

estimate and measure of uncertainty of that estimate of a small area mean.

6 Proof of Propriety of Posterior Probability Den-

sities

Proof of Theorem 1. For convenience of notation, we denote Ωk(ρ) by Ωk, and, for a

given square matrix M , the determinant of M is denoted by |M |. Let δ = maxiDi <∞.

Then, for a generic positive finite constant K,

f(y,θ,β, σ2
v , ρ) ≤ Kg(σ2

v)h(ρ) exp

{
− 1

2δ

m∑
i=1

(yi − θi)2
}

(23)

×|σ2
vΩ
−1
k |
−1/2 exp

{
−1

2
(θ −Xβ)>(σ2

vΩ
−1
k )−1(θ −Xβ)

}
.

(24)
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Integrating both sides with respect to θ, we get∫
f(y,θ,β, σ2

v , ρ)dθ

≤Kg(σ2
v)h(ρ)|δIm + σ2

vΩ
−1
k |
−1/2 exp

{
−1

2
(y −Xβ)>(δIm + σ2

vΩ
−1
k )−1(y −Xβ)

}
.

We now derive upper bounds for

|δIm + σ2
vΩ
−1
k |
−1/2 exp

{
−1

2
(y −Xβ)>(δIm + σ2

vΩ
−1
k )−1(y −Xβ)

}
,

for k = 2, . . . , 5.

Details for the CAR Model

We first consider the CAR model where k = 2. Let PW be an orthogonal matrix such

that P>WWPW = diag{λi}mi=1 = Λ. Then Ω2(ρ)−1 = PW{I − ρΛ}−1P>W and hence

(y −Xβ)>(δIm + σ2
vΩ
−1
2 )−1(y −Xβ)

= (P>Wy −P>WXβ)>(δIm + σ2
v{I− ρΛ}−1)−1(P>Wy −P>WXβ)

= (y∗ −X∗β)>(δIm + σ2
v{I− ρΛ}−1)−1(y∗ −X∗β),

where y∗ = P>Wy and X∗ = P>WX. Suppose the rows of X∗ corresponding to distinct

p indices {i1, . . . , ip} ⊆ {1, . . . ,m} are linearly independent. We denote these rows by

x>ik∗, k = 1, . . . , p. Define the p× p non-singular matrix [xi1∗, . . . ,xip∗]
> by A. Also, let

η = (η1, . . . , ηp)
> = Aβ. Note that

(y −Xβ)>(δIm + σ2
vΩ
−1
2 )−1(y −Xβ) ≥

p∑
k=1

(yik∗ − ηik)2

δ + σ2
v(1− ρλik)−1

.

From this, we get that

∫
exp

{
−1

2
(y −Xβ)>(δIm + σ2

vΩ
−1
2 )−1(y −Xβ)

}
dβ ≤

∫
exp

{
−1

2

p∑
k=1

(yik∗ − ηik)2

δ + σ2
v(1− ρλik)−1

}
dβ

=

∫
exp

{
−1

2

p∑
k=1

(yik∗ − ηik)2

δ + σ2
v(1− ρλik)−1

}
dη|A>A|−1/2

= K

p∏
k=1

{ δ + σ2
v(1− ρλik)−1}1/2, (25)
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where K > 0 is a finite generic constant. Also, we know that

|δIm + σ2
vΩ
−1
2 |−1/2 =

m∏
i=1

{
δ + σ2

v(1− ρλi)−1
}−1/2

. (26)

By (25) and (26), we get

|δIm + σ2
vΩ
−1
2 |−1/2

∫
exp

{
−1

2
(y −Xβ)>(δIm + σ2

vΩ
−1
2 )−1(y −Xβ)

}
dβ

≤ K
∏

i/∈{i1,...,ip}

{
δ + σ2

v(1− ρλi)−1
}−1/2

≤ K

1(σ2
v < N) + (σ2

v)
−(m−p)/2

∏
i/∈{i1,...,ip}

(1− ρλi)1/21(σ2
v > N)


(27)

for any positive number N . Recall that λ−1m < ρ < λ−11 . We know 1−ρλi is an eigenvalue

of Ω2. Thus, for λ−1m < ρ < λ−11 , for i = 1, · · · ,m, 1−ρλi > 0. Also,
∑m

i=1(1−ρλi) = m.

These imply that 0 < 1− ρλi < m. Then from (27), we get

|δIm + σ2
vΩ
−1
2 |−1/2

∫
exp

{
−1

2
(y −Xβ)>(δIm + σ2

vΩ
−1
2 )−1(y −Xβ)

}
dβ

≤ K
{

1(σ2
v < N) + (σ2

v)
−(m−p)/21(σ2

v > N)
}
. (28)

From (28), propriety of the posterior will follow under the conditions of the theorem.

Details for the SAR Model

We now consider k = 3 for the SAR model. With W∗ = L−1/2WL−1/2, we have

Ω3 = (Im − ρW̃)>(Im − ρW̃)

= (L− ρW)>L−2(L− ρW)

= L1/2(Im − ρW∗)L
−1(Im − ρW∗)L

1/2.

First, tr Ω3 = m+ρ2
∑

i

∑
j w̃

2
ij ≤ m+ρ2

∑
i

∑
j w̃ij = m+ρ2m < 2m since 0 ≤ w̃ij ≤ 1,∑

j w̃ij = 1, and −1 < ρ < 1.

Note that the eigenvalues ν1, . . . , νm of W∗ are all real (since W∗ is symmetric).

Also, W∗ and W̃ have identical eigenvalues. Being a stochastic matrix, W̃ has at least

one eigenvalue equal to one and the remaining eigenvalues are bounded by 1, that is
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|νi| ≤ 1 and maxi νi = 1. For −1 < ρ < 1, 1−ρνi > 0. Then, |Ω3| =
∏m

i=1(1−ρνi)2 > 0.

Thus, the eigenvalues of Ω3 are positive and bounded above by 2m. Let `(1) = min `i

and `(m) = max `i, where L = diag{`i}mi=1. Then `(1) > 0 and `(m) is bounded above. By

writing

Σ3 = δIm + σ2
vΩ
−1
3 = L−1/2{δL + σ2

v(Im − ρW∗)
−1L(Im − ρW∗)

−1}L−1/2,

we have

|Σ3| = |L|−1|δL + σ2
v(Im − ρW∗)

−1L(Im − ρW∗)
−1|

≥ |L|−1`m(1) |δIm + σ2
v(Im − ρW∗)

−2|

= |L|−1`m(1)
m∏
i=1

{
δ + σ2

v(1− ρνi)−2
}
, (29)

We also note that

(y −Xβ)>Σ−13 (y −Xβ)

= (L1/2y − L1/2Xβ)>
{
δL + σ2

v(Im − ρW∗)
−1L(Im − ρW∗)

−1}−1 (L1/2y − L1/2Xβ)

= (r− Sβ)>
{
δL + σ2

v(Im − ρW∗)
−1L(Im − ρW∗)

−1}−1 (r− Sβ)

≥ (`
−1/2
(m) r− `−1/2(m) Sβ)>

{
δIm + σ2

v(Im − ρW∗)−2
}−1

(`
−1/2
(m) r− `−1/2(m) Sβ)

= (r̃− S̃β)>
{
δIm + σ2

v(Im − ρM∗)
−2}−1 (r̃− S̃β)

≥
p∑

k=1

(r̃ik − s̃>ikβ)2

δ + σ2
v(1− ρνik)−2

, (30)

where r = L1/2y, S = L1/2X, r̃ = `
−1/2
(m) PW∗r, S̃ = `

−1/2
(m) PW∗S, M∗ = diag{νi}mi=1, P>W∗

is an orthogonal matrix of eigenvectors of W∗, and {i1, . . . , ip} is a subset of {1, . . . ,m}
so that the p×p matrix [s̃i1 , . . . , s̃ip ]> = S̃1, a submatrix of S̃, is non-singular. Note that

S̃1 is determined by W. Using (30) we get

∫
exp{ − 1

2
(y −Xβ)>Σ−13 (y −Xβ)}dβ ≤ (2π)p/2|S̃>1 S̃1|−1/2

p∏
k=1

{
δ + σ2

v(1− ρνik)−2
}1/2

.

(31)
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Based on (29) and (31), we get that∫
|Σ3|−1/2 exp{ − 1

2
(y −Xβ)>Σ−13 (y −Xβ)}dβ

≤ K
∏

i/∈{i1,...,ip}

{
δ + σ2

v(1− ρνi)−2
}−1/2

≤ K

1(σ2
v < N) + (σ2

v)
−(m−p)/21(σ2

v > N)
∏

i/∈{i1,...,ip}

(1− ρνi)


≤ K

{
1(σ2

v < N) + (σ2
v)
−(m−p)/21(σ2

v > N)
}
, (32)

where we use the fact that −1 < ρ < 1 and −1 ≤ νi ≤ 1 to claim 0 < 1 − ρνi < 2.

Again, proceeding along that lines we did for the CAR model, we can establish from

(32), the propriety of the posterior pdf under the conditions stated in the theorem.

Details for the IAR Model

We now consider k = 4 for the IAR model where

Ω4 = L− ρW = L1/2(Im − ρW∗)L
1/2.

Let Σ4 = δIm + σ2
vΩ
−1
4 = L−1/2{δL + σ2

v(Im − ρW∗)
−1}L−1/2. Then

|Σ4| ≥ |L|−1km∗
m∏
i=1

{
δ + σ2

v(1− ρνi)−1
}
, (33)

where k∗ = min{`(1), 1}. Proceeding along the same line as in (30), we get that

(y −Xβ)>Σ−14 (y −Xβ) ≥
p∑

k=1

(r̃ik − s̃>ikβ)2

δ + σ2
v(1− ρνik)−1

. (34)

Again, as we had for the two previous cases, we can use (33) and (34) to establish the

propriety of the posterior pdf under the conditions stated in the theorem.

Details for the SRM Model

Finally, we consider k = 5, where for the SRM case we have

Ω5 = ρR + (1− ρ)Im.
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Suppose r1, . . . , rm are the eigenvalues of R and PR is an orthogonal matrix such that

P>RRPR = diag{ri}mi=1. Since R is a non-negative definite matrix, ri ≥ 0, i = 1, . . . ,m,

and
∑m

i=1 ri = tr R =
∑m

i=1 `i, implying that r1, . . . , rm are all bounded between 0 and

` =
∑m

i=1 `i. Then we can write

Ω5 = PR{diag(ρri + 1− ρ)mi=1}P>R,

and claim that for 0 < ρ < 1, the eigenvalues of Ω5 are all positive and bounded above

by
∑m

i=1 ri + 1 = ` + 1. Then, with r̃ = P>Ry, and S̃ = P>RX, we can establish an

inequality similar to (30). Note that the nonsingular matrix S̃1 is a submatrix of S̃ and

is free from ρ. Boundedness of the eigenvalues of Ω5 will lead to an inequality similar

to (33). Finally, the propriety will be attained under the conditions in the theorem.

Proof of Corollary 1.1 . The result is directly obtained by Theorem 1 as follows.

Since h(ρ) = 1(`k < ρ < uk) is integrable, it suffices to show the integrability with

g(σ2
v) = (σ2

v)
−α. We know that∫ N

0

(σ2
v)
−αdσ2

v <∞ and

∫ ∞
N

(σ2
v)
−(2α+m−p)/2dσ2

v <∞,

if α < 1 and (2α + m− p)/2 > 1, respectively. Thus the posterior pdf will be proper if

1− (m− p)/2 < α < 1.

Proof of Theorem 2. Let m1 ≥ 0 be the number of small areas with no direct esti-

mates and let m2 = m−m1. Also, let Y(2) be the m2 × 1 vector with direct estimates

corresponding to the sampled small areas. Without loss of generality, we assume that

θ1, . . . , θm are arranged so that θ = (θ>(1),θ
>
(2))
>. Let D(2) = {Di}mi=m1+1 be the di-

agonal matrix with sampling variances corresponding to the components of Y(2) and

δ = maxm1<i≤mDi < ∞. For convenience of notation, we denote Ωk(ρ) by Ω, and as

before, any generic positive finite constant will be denoted by K.

The joint pdf of Y(2),θ,β, σ
2
v and ρ is given by

f(y(2),θ,β, σ
2
v , ρ) = Nm2(y(2)|θ(2),D(2))Nm(θ|Xβ, σ2

vΩ
−1)g(σ2

v)h(ρ), (35)

where Nm2(y(2)|θ(2),D(2)) is the multivariate normal pdf with the mean θ(2) and covari-
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ance matrix D(2). Since

Nm2(y(2)|θ(2),D(2)) ≤ K exp

{
− 1

2δ
(y(2) − θ(2))

>(y(2) − θ(2))

}
,

we have

π(θ,β,σ2
v , ρ|y(2)) ≤ K exp

{
− 1

2δ
(y(2) − θ(2))

>(y(2) − θ(2))

}
Nm(θ|Xβ, σ2

vΩ
−1)g(σ2

v)h(ρ)

= K

∫
exp

{
− 1

2δ
(y − θ)>(y − θ)

}
dy(1)Nm(θ|Xβ, σ2

vΩ
−1)g(σ2

v)h(ρ). (36)

By integrating both sides of (36) with respect to θ, we get

π(β, σ2
v , ρ|y(2)) ≤Kg(σ2

v)h(ρ)

∫
Nm(y|Xβ, δIm + σ2

vΩ
−1)dy(1). (37)

Partition X as X = [X1,X2]
>, where X>1 is m1 × p and X>2 is m2 × p. We assume that

rank(X2) = p. Let d = (0>m1
,y>(2))

>, φ = (y>(1),β
>)> and

G =

[
−Im1 X>1

0m2,m1 X>2

]
.

Then, we can write

y −Xβ = d−Gφ,

where G is m× (m1 + p), φ is (m1 + p)× 1. Hence, (37) can be written as

π(β, σ2
v , ρ|y(2)) ≤ Kg(σ2

v)h(ρ)

∫
Nm(d|Gφ, δIm + σ2

vΩ
−1)dy(1). (38)

By integrating both sides of (38) with respect to β, we get

π(σ2
v , ρ|y(2)) ≤ Kg(σ2

v)h(ρ)

∫
Nm(d|Gφ, δIm + σ2

vΩ
−1)dφ. (39)

Since rank(X2) = p, we immediately get that rank(G) = m1 + p. Thus G has full

column rank. Now if we take G in place of X and φ in place of β in Theorem 1, and we

proceed as in Theorem 1, the propriety of the posterior pdf will follow under the stated

conditions of the Theorem.
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A Supplementary figures
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Figure A.1: Ratio of average posterior standard deviation to average sampling standard
deviation when only the intercept is in the fitted model.

ρ = 0

σ v2
=

D
 /8

ρ = 0.75 ρ = 0.85 ρ = 0.95

σ v2
=

D
 /2

σ v2
=

D
 

40% 60% 80% 100%

σ v2
=

2 
D

40% 60% 80% 100%40% 60% 80% 100%40% 60% 80% 100%

FH CAR SAR IAR SRM

µi = β0 + β1 xi1

Figure A.2: Ratio of average posterior standard deviation to average sampling standard
deviation when only the covariate x1 is in the fitted model.
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