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Abstract

Disclosure avoidance techniques are used by agencies to prepare releases of statistics and microdata
when internal data contain information considered sensitive to individual subjects. Differential privacy
(DP) techniques have become popular in the literature and are finding increasing use in practical ap-
plications. One fundamental DP technique to protect sensitive data is to add noise from a selected
distribution in such a way that mathematical privacy criteria are satisfied. An analyst making use of
such data in a statistical model may wish to account for uncertainty introduced by the added noise.
This work considers Bayesian regression models which regard the agency noise—or equivalently, the un-
released sensitive data—as augmented data. Given other random variables in the model, conditional
distributions of these augmented data form weighted densities, but a method of drawing from them
may not be apparent. We revisit the direct sampling method proposed by Walker et al. (JCGS 2011)
and explore several customizations to address issues encountered in the basic version of the algorithm.
Draws from the desired conditional distributions may be then taken reliably, largely avoiding the need
for rejections or manual tuning. The customized direct sampler is used to complete the specification of
a Gibbs sampler to fit a Lognormal regression model where agency noise has been added to both the
outcome and some of the covariates. Demonstrations compare inference using the sensitive internal data
versus the privacy-protected release.

Keywords: Differential privacy; Gibbs sampler; Weighted distribution; Hierarchical model; Step function
approximation

1 Introduction

This paper revisits the direct sampling method proposed by Walker et al. (2011) and demonstrates its utility
in Bayesian modeling applications which account for additive noise from a disclosure avoidance mechanism.

For example, consider the regression log yi = x>i β + γi for i = 1, . . . , n with γi
iid∼ N(0, σ2). The outcome

yi ∈ R and some elements of xi ∈ Rd are collected by an agency but considered too sensitive for public
release. Therefore, the agency instead releases ỹi = yi + ξyi and x̃i = xi + ξxi , along with parameters of the
distributions of ξyi and ξxi . Our objective is to fit the desired regression model using the released data while
accounting for the added noise.

Statistical agencies are entrusted to produce summaries of data collected from the public—and micro-
data based on data collected from the public—while ensuring that individuals’ sensitive information is not
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disclosed. There is a large and growing literature on disclosure avoidance (e.g. Matthews and Harel, 2011).
Recently, the field of differential privacy (DP) has become increasingly popular for its ability to mathemati-
cally bound risks to unwanted disclosure in the released data (Dwork and Roth, 2014). Such guarantees can
be made independently of particular methods that an attacker might use to learn the sensitive data. Dif-
ferential privacy is also becoming widespread in practice; for example, the U.S. Census Bureau is evaluating
use of differential privacy for public release of the data collected in the 2020 Decennial Census (Garfinkel
et al., 2018).

Roughly, DP proposes mechanisms to distort sensitive data into a protected form. Proof is required to
show that data in the protected form meet some criteria of interest to ensure the privacy of every individual’s
records. One of the fundamental DP methods is to add noise from a selected distribution such as Laplace
(Dwork and Roth, 2014, Section 3.3), Double Geometric (alternatively, “Two-Sided Geometric”) (Ghosh
et al., 2012; Kuo et al., 2018), and Gaussian (Dwork and Roth, 2014, Appendix A). Parameters of noise
distributions must be selected appropriately to ensure that DP criteria are enforced. The privacy protection
mechanism, including noise parameters, is made completely known to users of the protected data (Gong,
2020). The present paper will regard the added noise simply as draws from a known distribution. For a more
complete view of DP for statisticians, Bowen and Liu (2020) provide a recent overview including privacy
criteria and a variety of other protection mechanisms.

There are many examples of literature which develop DP mechanisms to protect sensitive data while
maintaining desirable statistical properties, however, some assume particular usages which may or may not be
of interest to all future data users. Dwork and Smith (2010) consider a release mechanism based on maximum
likelihood estimation which corrects for the bias due to extra randomization, producing estimates from a
predetermined parametric model. Charest (2011) considers Bayesian modeling under privacy protection via
a particular DP mechanism for binary data; here, a Metropolis-Hastings step is used to sample the sensitive
data within a Gibbs sampler. Klein and Sinha (2019) consider generation and analysis of multiply imputed
data under noise from a Laplace mechanism, taking very large and very small values to be censored. Evans
and King (2020+) propose a modified version of ordinary least squares regression where estimators are
consistent under added DP noise. Gong (2019) demonstrates approximate Bayesian computation (ABC)
and Monte-Carlo Expectation Maximization to analyze DP releases with additive noise. For a simple linear
regression model where the response and covariate have added DP noise, Gong (2020) shows that failing
to account for the added DP noise in an analysis distorts inferences about their association, even when the
sample size is taken arbitrarily large; this work emphasizes the benefit of DP that protection mechanisms
are fully disclosed and can be appropriately accounted for in the analysis. Bernstein and Sheldon (2019)
formulate a Gibbs sampler for linear regression similar to the present setting; noise from a Laplace mechanism
is drawn as augmented data using the fact that a Laplace random variable is a scale mixture of Normals.

The present work considers the method of direct sampling proposed by Walker et al. (2011). Direct
sampling does not appear to be widely adopted in subsequent literature; one exception is by Braun and
Damien (2016) who explore it as a scalable replacement for the inherently serial Markov chain Monte Carlo
(MCMC) approach. For us, direct sampling will provide a reliable way to sample agency noise—such as ξyi
and ξxi —as augmented data within a Gibbs sampler (Tanner and Wong, 1987). In this setting, conditional
distributions frequently arise which present difficulties in the basic direct sampling approach. We provide
customizations to handle these cases while avoiding manual tuning and rejections; the latter being necessary
only if draws from the exact distribution are required instead of an approximation.

Noise distributions are selected by the agency releasing the data, likely driven by privacy considerations
rather than modeling convenience, and therefore not within the analyst’s control. Furthermore, even if the
agency wishes to make analysis as convenient as possible, it may be unrealistic that all possible modeling
applications will be foreseen when preparing a release. Therefore, conditional distributions involved in
drawing the augmented noise steps will not necessarily reduce to more familiar forms. However, given draws
of the noise, the remaining steps of the Gibbs sampler can be carried out routinely.

The remainder of the paper proceeds as follows. Section 2 reviews the direct sampling method from
Walker et al. (2011) and presents several customizations to be used in the remainder of the paper. Section 3
illustrates the customized sampler on several important special cases which are expanded upon in subsequent
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sections. Section 4 presents a simple illustration of the direct sampler in a disclosure avoidance setting, where
draws from the distribution of the added noise are desired. Section 5 considers a larger regression model
where the response and some covariates have added agency noise. Here the direct sampler is used as a
step within a Gibbs sampler. A small simulation study demonstrates the complete sampler and compares
the impact of modeling the data before and after adding noise. Finally, Section 6 concludes the paper.
Appendix A provides several additional technical details.

Supporting code for this paper is provided in the repository http://github.com/andrewraim/DirectSampling,
including materials to replicate the results. Illustrations from Sections 2 and 4 are implemented purely in R
(R Core Team, 2020), while more demanding computations for Section 5 are carried out in C++ and made
accessible in R via the Rcpp framework (Eddelbuettel, 2013).

2 Direct Sampling

Lower case letters will be used to denote both random variables and particular values; the distinction should
be clear from the context. Consider drawing a random variable x with support Ω ⊆ R whose density takes
the form

f(x) = w(x)g(x)/ψ, x ∈ Ω, ψ =

∫
Ω

w(x)g(x)dν(x), (1)

where ν(·) is a dominating measure. The distribution may be discrete, continuous, or continuous with
point masses. Density f can be recognized as a weighted distribution (e.g. Patil and Rao, 1978) with
w : R→ [0,∞) a nonnegative weight function that adjusts the base density g in some prescribed way. Direct
sampling augments a random variable u so that the joint distribution [x, u] is easier to draw than x itself.
Let c = supx∈Ω w(x) and I(·) be the indicator function. Assume that [u | x] ∼ Uniform(0, w(x)/c), so that

f(u | x) =
c

w(x)
I(0 < u < w(x)/c).

Let us define the event Au = {x ∈ Ω : w(x) > uc}. The joint density of [x, u] is then

f(x, u) =
c

ψ
g(x) I(x ∈ Au). (2)

From (2), the marginal density of u may be obtained as

p(u) =
c

ψ
P(Au), u ∈ [0, 1], P(Au) =

∫
I(x ∈ Au)g(x)dν(x).

The distribution of [x | u] is then

f(x | u) =
g(x)

P(Au)
I(x ∈ Au). (3)

Now u is bounded in [0, 1], with Av ⊇ Au if v ≤ u so that P(Au) is monotonically nonincreasing in u. At
the endpoints u ∈ {0, 1}, A0 is equivalent to the support of w with P(A0) =

∫
Ω

I(w(x) > 0)g(x)dν(x) and
A1 is an empty set with P(A1) = 0.

A draw from f(x) can be obtained by drawing u ∼ p(u) then x ∼ f(x | u) in the following way. For a
predefined positive integer N , compute

q(k/N) =
P(Ak/N )∑N
`=0 P(A`/N )

, k = 0, 1, . . . , N. (4)

http://github.com/andrewraim/DirectSampling
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Sample k from the values 0, 1, . . . , N with respective probabilities q(0/N), . . . , q(N/N). Given k, sample
u ∼ Beta(k + 1, N − k + 1). The density of u is then proportional to

N∑
k=0

uk(1− u)N−k

B(k + 1, N − k + 1)
q(k/N) ∝

N∑
k=0

(
N

k

)
uk(1− u)N−kq(k/N), u ∈ (0, 1) (5)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. Expression (5) is an approximation to p(u) by
Bernstein polynomials (e.g. Rivlin, 1981). A simple way to draw x from the truncated distribution (3) is
by taking candidate draws from x∗ ∼ g(x), which is likely to be more straightforward, and rejecting until
x∗ ∈ Au. This algorithm was described by Walker et al. (2011) as a basic but general implementation of the
direct sampling idea; it will be referred to as the basic direct (BD) sampler.

The BD sampler encounters some challenges in practice which may lead to unreliable results. Figure 1
illustrates several difficulties involving the unnormalized density P(Au). The example in Figure 1a features
a support point uH ≈ 7 × 10−14 where P(Au) = 0 numerically for all u > uH . Furthermore, there is a
uL ∈ (0, uH) where P(AuL

) = P(A0) for all u < uL. The interval [uL, uH ] is an important characteristic
of the function P(Au) which contains its descent from P(A0) to 0. It is unhelpful to approximate P(Au)
outside of this interval, which, in Figure 1a, is extremely narrow so that P(Au) is practically a step function.
Figure 1c illustrates a second example of P(Au) where the decrease from P(A0) to 0 is more gradual and
occurs over a larger interval within [0, 1]. A second issue is more straightforward: the basic rejection sampling
method described for (3) may require a very large number of draws to accept even once when the set Au has
small probability under g(x).

We first address the issue of improving the approximation of P(Au). A bisection method described in
Appendix A may be used to locate uL and uH . It is then possible to focus the Bernstein approximation (5)
to the interval (uL, uH) (e.g. Rivlin, 1981), or consider other functional bases from the literature. Instead,
we take an approach based on step functions, which is relatively simple with low computational burden and
can be controlled for accuracy. Martino et al. (2018, Section 3.6) provide background on step functions in
the context of rejection sampling; this motivates our use in approximating and drawing from the distribution
p(u). Expressions for the density, CDF, and quantile function are available, and exact draws may be taken
directly via the quantile function. Through appropriate placement of knot points, a step function can directly
capture jumps such as those seen in Figure 1. Simple bounds on the accuracy of the approximation can be
obtained in our setting, and such bounds can be improved by placing additional knot points until a desired
tolerance is achieved. Finally, a step function can serve as an envelope in rejection sampling if exact draws
are required.

To approximate the unnormalized P(Au), let u0 < · · · < uN be knot points with u0 = uL and uN = uH
and consider the function

h∗(u) = P(Au0
) · I(0 ≤ u < u0) +

N−1∑
j=0

P(Auj
) · I(uj ≤ u < uj+1).

A density is obtained using h(u) = h∗(u)/a with

a =

∫ 1

0

h∗(u)du = P(Au0) · u0 +

N−1∑
j=0

P(Auj ) · (uj+1 − uj),

The corresponding cumulative distribution function (CDF) is the piecewise linear function

H(u) =

{
a−1 P(Au0

)u if 0 ≤ u < u0,

a−1 P(Au0
)u0 + a−1

∑`−1
j=0 P(Auj

) · (uj+1 − uj) + a−1 P(Au`
) · (u− u`) if u` ≤ u < u`+1

for ` ∈ {0, . . . , N − 1}, with H(u) = 0 if u ≤ 0 and H(u) = 1 if u ≥ uN . The quantile function is also a
piecewise linear function,

H−1(ϕ) = u` + (u`+1 − u`)
ϕ−H(u`)

H(u`+1)−H(u`)
, if H(u`) ≤ ϕ < H(u`+1) (6)



Direct Sampling in Bayesian Regression Models with Added Noise 5

for ` ∈ {0, . . . , N − 1}. A draw from h is now given by u = H−1(v) where v ∼ Uniform(0, 1).
One way to characterize the closeness of h(u) to p(u) is by comparing probabilities computed under

the two densities using total variation distance. Let Rj represent the rectangle in R2 whose upper-left
point is (uj−1,P(Auj−1

)) and lower-right point is (uj ,P(Auj
)), for j = 1, . . . , N . The area of Rj is |Rj | =[

P(Auj−1
)− P(Auj

)
]

(uj − uj−1). A proof of the following result is given in Appendix A.

Result 2.1. Let B denote the collection of measurable subsets of [0, 1]; then

sup
B∈B

∣∣∣∣∫
B

h(u)du−
∫
B

p(u)du

∣∣∣∣ ≤ c

ψ

N∑
j=1

|Rj |. (7)

There are a number of possible choices for the knots u1, . . . , uN−1. Equally-spaced knots uj = uL +
(j/N)(uH −uL) provide simplicity but can fail to capture regions of [uL, uH ] with sudden changes in P(Au).
Result 2.1 motivates placement of knots to ensure that no Rj is too large. Namely, given u0, u1, . . . , uk with
associatedR1, . . . ,Rk we consider placing a new knot at the midpoint of [uj−1, uj ] which has the largest |Rj |.
This replaces Rj with rectangles R(1)

j and R(2)
j , yielding an improvement |R(1)

j | + |R
(2)
j | < |Rj | in regions

where P(Au) is decreasing; otherwise, |R(1)
j | + |R

(2)
j | = |Rj | so that the bound in (7) is no worse. Stated

as Algorithm 1, this method often provides a better selection of knots under a fixed N than equally-spaced
points, at the cost of increased computation. Use of a data structure such as a priority queue (Cormen et al.,
2009, Section 6.5) can help to avoid repeated sorting of |R1|, . . . , |Rk| in Algorithm 1.

Figure 1 displays two examples using both equally-spaced knots and knot selection by Algorithm 1. The
example in Figures 1a and 1b is effectively a step function; here the step is correctly identified by both
methods, but with only N = 5 knots, Algorithm 1 requires more knots to address the large rectangle near
the bottom of the step. Figures 1c displays a case where equal spacing with N = 5 knots fails to capture most
of the change in the density, which occurs between the first two knots. Figure 1d shows that Algorithm 1
gives this area more attention.

Remark 2.2 (Rejection sampling). The step function h∗(u) can be used to formulate a rejection sampler
to take exact draws from p(u) (e.g. Martino et al., 2018). For this application, a suitable upper bound for
the unnormalized ratio of densities is required. From the definition of Rj we obtain

P (Auj−1
) = P (Auj

) + |Rj |/(uj − uj−1) = · · · =
N∑
`=j

|R`|/(u` − u`−1),

noting that P (AuN
) ≡ 0. Now,

P(Au)

h∗(u)
≤

P(Auj−1)

P(Auj
)

=

∑N
`=j |R`|/(u` − u`−1)∑N
`=j+1 |R`|/(u` − u`−1)

, for u ∈ [uj−1, uj)

=⇒ P(Au)

h∗(u)
≤

N∨
j=1

∑N
`=j |R`|/(u` − u`−1)∑N
`=j+1 |R`|/(u` − u`−1)

=: M, for u ∈ [0, 1] (8)

Taking v ∼ Uniform(0, 1), the candidate u ∼ h(u) may be accepted as a draw from p(u) if v < P(Au)/{M ·
h∗(u)}; otherwise, the process is repeated. Normalizing the ratio in (8) to a ratio of densities yields
p(u)/h(u) ≤ cM/(ψa) so that the probability of accepting each proposed u is ψa/(cM) and expected number
of proposals before one acceptance is cM/(ψa). With some additional bookkeeping, a rejected u may be
added to the set of knot points to increase the probability of acceptance in subsequent proposals.

The remainder of this paper utilizes the step function h(u) with Algorithm 1 to select knots so that draws
from h(u) are regarded as approximate draws from p(u).

We now turn to the second issue identified in the BD sampler, which is efficiently drawing from (3).
In particular, suppose w is a unimodal weight function with mode x∗, where w(x) is nondecreasing on
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Figure 1: Two realizations of the function P(Au), shown as solid red lines, using a Lognormal weight function
and Double Geometric base distribution as described in Section 4. (a) and (b) are based on z = 200000,
µ = −2, σ2 = 8.5, and ρ = 0.01, while (c) and (d) are based on z = 2, µ = 0, σ2 = 1, and ρ = 0.1. (a) and
(c) display knots selected by equal steps (•) with N = 5, while (b) and (d) use Algorithm 1. Dashed black
lines highlight the upper-right portion of the rectangles Rj .

Algorithm 1 Select knots u1, . . . , uN−1 to reduce
∑N
j=1 |Rj |.

Let u(0) = uL, and u(1) = uH .
for i = 1, . . . , N − 1 do

Let u0 < . . . < ui be sorted u(0), . . . , u(i).
Let |Rj | = {P(Auj−1

)− P(Auj
)}(uj − uj−1) for j = 1, . . . , i.

Let j∗ = argmax
j=1,...,i

|Rj |.

Let u(i+1) = mid(uj∗−1, uj∗).
end for
Let u0 < . . . < uN be sorted u(0), . . . , u(N).
return (u0, . . . , uN ).
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{x ∈ Ω : x < x∗} and nonincreasing on {x ∈ Ω : x > x∗}. Such weight functions will be of interest for the
remainder of this work. Futhermore, suppose density g is associated with CDF and quantile functions

G(x) =

∫ x

−∞
g(s)dν(s) and G−(ϕ) = inf{x ∈ Ω : G(x) ≥ ϕ},

respectively. In this case, Au is an interval (x1(u), x2(u)) whose endpoints are identified by the roots of the
equation w(x) = cu. Some examples of w where x1(u) and x2(u) have a closed form are given in Section 3; in
other cases, numerical root finding may be necessary. Now, (3) represents the base distribution g truncated
to the interval (x1(u), x2(u)), with

f(x | u) =
g(x) I(x1(u) < x < x2(u))

G(x2(u)−)−G(x1(u))

where G(x−) = limt↑xG(t) and dxe and bxc represent the ceiling and floor functions of x, respectively. The
associated CDF is

F (x | u) =
G(x)−G(x1(u))

G(x2(u)−)−G(x1(u))
, x1(u) < x < x2(u), (9)

with F (x | u) = 0 for x < x1(u) and F (x | u) = 1 for x > x2(u). We may invert F (x | u) to obtain the
quantile function. To reduce clutter, let us write

s = G(x1(u)) and t = G(x2(u)−),

so that the ϕ ∈ (0, 1) quantile of the distribution [x | u] is given by

F−(ϕ | u) = inf{x ∈ Au : F (x | u) ≥ ϕ}
= inf{x ∈ Ω : F (x | u) ≥ ϕ} (10)

= inf{x ∈ Ω : [G(x)− s]/(t− s) ≥ ϕ}
= inf{x ∈ Ω : G(x) ≥ (t− s)ϕ+ a}
= G−((t− s)ϕ+ s). (11)

To justify step (10), x ∈ Ω \ Au implies x ≤ x1(u) or x ≥ x2(u) so that either F (x | u) = 0 and does not
satisfy the criteria F (x | u) ≥ ϕ, or F (x | u) = 1 and there is a smaller x′ ∈ (x1(u), x2(u)) with F (x′ | u) ≥ ϕ.
Therefore, including Ω\Au does not change the infimum. Now, an exact draw can be obtained via the inverse
CDF method (e.g. Lange, 2010, Section 22.3) using x = F−(v | u) with v ∼ Uniform(0, 1).

To distinguish the BD sampler from the modified version we have just described, we will refer to the
latter as the customized direct (CD) sampler. To summarize, the CD sampler is feasible for weight functions
w with maximum value c and where Au = {x ∈ Ω : w(x) > uc} is an interval with endpoints (x1(u), x2(u));
ideally, all can be readily identified without much computation. The sampler is also facilitated by a base
distribution g which is easy draw from and whose quantiles are easily computed.

3 Example Weight Functions and Base Distributions

We now demonstrate some specific distributions which are relevant to the disclosure avoidance application
and/or convenient as w or g functions in the CD sampler. Several of the examples will be expanded upon
in Sections 4 and 5.

Example 3.1 (Normal weight function). Suppose w(x) is based on the density of Normal distribution
N(µ, σ2). The normalizing constant (σ

√
2π)−1 cancels from (1), and can therefore be omitted, yielding

w(x | µ, σ2) = exp

{
− 1

2σ2
(x− µ)2

}
, x ∈ R.
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The mode of w(x | µ, σ2) is x∗ = µ so that c = w(x∗ | µ, σ2) = (σ
√

2π)−1. To find the endpoints of the
interval Au, consider finding the roots of the equation w(x)− cu = 0, or equivalently,

0 = logw(x)− log(cu) ⇐⇒ 0 = − 1

2σ2
(x− µ)2 − log(cu),

which is a quadratic form in x with roots

{x1(u), x2(u)} = µ±
[
−2σ2 log(cu)

]1/2
.

Example 3.2 (Normal weight function with transformation). Let h : R → R be a bijection, and consider
extending the weight function from Example 3.1 to

w(x | µ, σ2) = exp

{
− 1

2σ2
[h(x)− µ]2

}
, x ∈ R.

Here, the mode is x∗ = h−1(µ) so that c = w(x∗ | µ, σ2) = 1, and the endpoints of the interval Au are

{x1(u), x2(u)} = h−1
(
µ±

[
−2σ2 log(cu)

]1/2)
.

Example 3.3 (Lognormal weight function). Suppose w(x) is based on the density of Lognormal distribution
LN(µ, σ2),

w(x | µ, σ2) =
1

x
exp

{
− 1

2σ2
[log(x)− µ]2

}
· I(x > 0).

The mode is x∗ = exp{µ− σ2} so that c = w(x∗ | µ, σ2) = exp{−(µ− σ2/2)}. To find the endpoints of the
interval Au, consider finding the roots of the equation w(x)− cu = 0, or equivalently,

0 = logw(x)− log(cu) ⇐⇒ 0 = −y − 1

2σ2
(y − µ)2 − log(cu),

taking y = log(x). This is a quadratic form in y with roots

y = (µ− σ2)±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2
;

therefore,

{x1(u), x2(u)} = exp
{

(µ− σ2)±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2}
.

Example 3.4 (Student’s t weight function). Suppose w(x) is based on the unnormalized density of the
t-distribution with ν > 0 degrees of freedom, center µ ∈ R, and scale σ > 0,

w(x | ν, µ, σ2) =

[
1 +

(x− µ)2

νσ2

]−(ν+1)/2

.

The mode x∗ = µ yields c = w(x∗ | ν, µ, σ) = 1. After some algebra, the roots of w(x∗ | ν, µ, σ) = cu are
found to be

{x1(u), x2(u)} = µ± σ
[
ν(cu)−2/(ν+1) − 1

]1/2
.

Example 3.5 (Normal base distribution). Suppose g(x) is the density of N(0, σ2). The associated CDF and
quantile functions are G(x | σ2) = Φ(x/σ) and G−(ϕ | σ2) = σΦ−1(ϕ), respectively, where Φ is the CDF of
the standard Normal distribution. These may be used to compute (9) and (11).
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Example 3.6 (Laplace base distribution). Let g(x | λ) = 1
2λe
−|x|/λ for x ∈ R be the density of the Laplace

distribution Lap(0, λ). The associated CDF and quantile functions are

G(x | λ) =
1

2
+

1

2
sgn(x)[1− e−|x|/λ], and

G−(ϕ | λ) = −λ sgn(ϕ− 1/2) log(1− 2|ϕ− 1/2|),

respectively, where sgn(x) = I(x > 0) − I(x < 0) denotes the sign function. Again, these may be used to
compute (9) and (11), with G(x− | λ) = G(x | λ) in the continuous case.

Example 3.7 (Double Geometric base distribution). Let DGeom(ρ) denote the Double Geometric dis-
tribution, whose density is g(x | λ) = ρ

2−ρ (1 − ρ)|x| · I(x ∈ Z) with Z the set of integers. The Double
Geometric distribution can be obtained from the transformation x = x1 − x2 where x1 and x2 are inde-
pendent Geometric(ρ) random variables with density h(x | ρ) = ρ(1 − ρ)x · I(x ∈ {0, 1, 2, . . .}). In some
differential privacy literature such as Ghosh et al. (2012), DGeom(ρ) appears with the parameterization
ρ = 1− e−α. Using expressions for the geometric series, it can be shown that the CDF of x is

G(x | ρ) =

{
1

2−ρ (1− ρ)−bxc if x < 0,

1− 1
2−ρ (1− ρ)bxc+1 if x ≥ 0.

Because G is a discrete distribution, G(x− | ρ) = G(dxe − 1 | ρ) is used in (9). Finally, G(x | ρ) may be
inverted to obtain the quantile function for use in (11). If x < 0,

ϕ ≤ G(x) ≡ 1

2− ρ
(1− ρ)−x ⇐⇒ x ≥ − log[ϕ(2− ρ)]

log(1− ρ)
.

The smallest integer x that satisfies the last inequality is G−(ϕ | ρ) = d− log(ϕ(2−ρ))/ log(1−ρ)e. If x ≥ 0,

ϕ ≤ G(x) ≡ 1− 1

2− ρ
(1− ρ)x+1 ⇐⇒ x ≥ log[(1− ϕ)(2− ρ)]

log(1− ρ)
− 1

so that G−(ϕ | ρ) = dlog[(1− ϕ)(2− ρ)]/ log(1− ρ)− 1e.

4 Direct Sampler Illustration

Suppose an agency releases a sensitive random variable y ≥ 0 by adding Double Geometric noise with a
known parameter ρ. Using the released data, we would like to model log y by a N(µ, σ2) distribution and
account for the added noise. This scenario can be described by

z = y + ξ, log y ∼ N(µ, σ2), ξ ∼ DGeom(ρ),

with z and ρ observed. Here z may be negative, but we must have z > ξ because y is nonnegative. Here
we are concerned only with the direct sampling step; Section 5 will extend to a more complete setting
with multiple noisy observations, µ specified by a regression, and a prior assumed for unknown parameters.
Augmented data approaches such as Expectation Maximization (Dempster et al., 1977) and Gibbs sampling
(Tanner and Wong, 1987) make use of the distribution [ξ | z, µ, σ2]. The joint distribution of [ξ, z | µ, σ2] is

f(z, ξ | µ, σ2) ∝ w(z − ξ | µ, σ2)g(ξ),

where w is the Lognormal weight function in Example 3.3 and g is the Double Geometric density in Exam-
ple 3.7. The distribution of [ξ | z, µ, σ2] is then

f(ξ | z, µ, σ2) =
w(z − ξ | µ, σ2)g(ξ)
∞∑

s=−∞
w(z − s | µ, σ2)g(s)

=

1
z−ξ exp

{
− 1

2σ2 (log(z − ξ)− µ)2
}

(1− ρ)|ξ| · I(z > ξ)

bzc∑
s=−∞

1
z−s exp

{
− 1

2σ2 (log(z − s)− µ)2
}

(1− ρ)|s|

. (12)
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Consider drawing ξ from (12) using the direct sampler described in Section 2. To compute the endpoints of
the interval Au, we must first extend Example 3.3 in the following way. Let w∗(ξ) = w(z − ξ | µ, σ2). The
mode of w∗ is

ξ∗ = argmax
ξ:z>ξ

w(z − ξ | µ, σ2) = z − exp{µ− σ2},

which attains a value of c = w(z − ξ∗ | µ, σ2) = exp{−(µ − σ2/2)}. The roots of w∗(ξ) − cu = 0 are also
modified to

{ξ1(u), ξ2(u)} = z − exp
{

(µ− σ2)±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2}
.

We can now provide several examples of the BD and CD samplers under this setting.

Example 4.1. First we describe a situation where the BD sampler works well. Suppose z = 10 is observed
with µ = 3, σ2 = 2, and ρ = 0.7. We draw n = 1,000 samples from the distribution [ξ | z, µ, σ2] in (12) using
N = 100 in the Bernstein polynomial approximation of p(u). When drawing each of the n samples from
(3) by rejection sampling, we set an upper limit of 10,000 attempts. Figure 2 plots the results of the direct
sampler. Figure 2a shows that the empirical distribution of the draws is close to the density, which indicates
that the sampler is functioning correctly. Figure 2b plots the number of attempts required for rejection
sampling in draws i = 1, . . . , n. Most draws required a small number of attempts before an acceptance, but
several required more than 450 attempts.

Example 4.2. Here is a situation where the BD sampler runs into difficulties. Again, consider Example 4.1,
but suppose z = 244,388 is observed with µ = 3.5, and σ2 = 8.5. With N = 100, the BD sampler is unable
to accept any draws of the rejection sampler within the limit of 10,000 attempts. Upon closer inspection,
we find that uL ≈ 1.8179× 10−8 and uH ≈ 1.8188× 10−8. The BD sampler is not designed to make use of
this fact, basing its approximation of p(u) on q(0/N) = 1 and q(1/N) = · · · = q(N/N) = 0, and failing to
capture the region of interest [uL, uH ].

Example 4.3. The CD sampler overcomes the issues in Example 4.2. Figure 3a plots the empirical dis-
tribution of n = 50,000 draws with N = 100, showing close agreement with the target density f(x). The
remaining panels of Figure 3 display several variations of the distribution along with the empirical distribu-
tion of draws from the CD sampler. Figure 3b reduces ρ to 0.01, which results in the agency noise being
increased by several orders of magnitude. Figures 3c and 3d take z = −10, µ = 3.5, σ2 = 8.5, with respective
values of ρ ∈ {0.7, 0.01}. Here the shape of the distribution is heavily influenced by the lower bound z, and
is more obviously not a symmetric distribution about zero than Examples 4.1 and 4.2.

In this setting, the weight function w corresponds to the distribution of the outcome and the base
distribution g corresponds to the added agency noise. Using the examples in Section 3, we could also
formulate a CD sampler with outcomes following Normal, transformed Normal, or shifted/scaled Student’s
t distributions, or with Normal or Laplace agency distributions assumed for agency noise.

5 Regression Model Applications

We now build on Section 4 and show the direct sampler—specifically, the CD sampler—in the context of
a more complete Bayesian regression model. The following notation will be used. The d-variate Normal
distribution with density function fN(x | µ,Σ) ∝ exp{− 1

2 (x−µ)>Σ−1(x−µ)} is denoted by x ∼ Nd(µ,Σ).

The Inverse Gamma distribution with density fIG(x) ∝ x−a−1e−b/x · I(x > 0) is denoted by x ∼ IG(a, b).
The Laplace distribution with density fLap(x | µ, λ) ∝ e−|x−µ|/λ is denoted by x ∼ Lap(µ, λ). The Double
Geometric distribution with density fDGeom(x | ρ) ∝ (1 − ρ)|x| I(x ∈ Z) is denoted x ∼ DGeom(ρ). The
n × n identity matrix is In. The vector of outcomes will be denoted by y = (y1, . . . , yn) and the matrix
of covariates (without agency noise) by X = (xij), with row xi· = (xi1, . . . , xid) corresponding to the ith
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Figure 2: Outcome of BD sampler for Example 4.1. (a) empirical distribution of the sample (◦) along with
the density value (+). Connecting lines between density values are shown only for visual reference—the
target distribution is defined on Z. (b) density of the number of rejections needed to acquire each of the
n = 1,000 samples.

subject and column x·j = (x1j , . . . , xnj) corresponding to the jth variable. Similar conventions will be used
for other matrix and vector-valued quantities.

Consider a non-negative response yi and covariates xij ∈ R for subjects i = 1, . . . , n and variables
j = 1, . . . , d. Suppose y and x·j are considered sensitive for j = 1, . . . , d1 and d1 ≤ d; these data are procured
by an agency which release noise-infused versions to protect privacy. Namely, ỹi = yi+ξyi and x̃ij = xij +ξxij

are released using ξyi
ind∼ DGeom(ρyi ) and ξxij

ind∼ Lap(0, λxij).
1 Parameters ρyi and λxij are provided so that

the noise-generating mechanism is fully known to the analyst. Covariates labeled j = d1 + 1, . . . , d are not
considered sensitive and available to the analyst without noise. To study a Lognormal regression relationship
which accounts for the added noise, we consider the hierarchical model

ỹi = yi + ξyi , ξyi
ind∼ DGeom(ρyi ),

x̃ij = xij + ξxij , ξxij
ind∼ Lap(0, λxij), j = 1, . . . , d1,

log yi = x>i·β + γi, γi
iid∼ N(0, σ2),

β ∼ Nd(0, σ
2
βId), σ2 ∼ IG(aσ, bσ). (13)

As analysts outside of the agency, we therefore observe noisy responses ỹ and covariate X̃ whose first d1

columns have been protected with agency noise. We are also provided the noise parameters ρyi and λxij
and know that they are associated with Double Geometric and Laplace noise mechanisms, respectively.
Hyperparameters σ2

β , aσ, and bσ are chosen by us to facilitate the analysis. For demonstration purposes, the
assumed Lognormal regression will be the correct data-generating mechanism; of course, such a mechanism
usually is not known with real data so that model specification becomes an important component of the
analysis.

A Gibbs sampler to fit model (13) is given in Algorithm 2. The notation [φ | —] is used to denote
the distribution of φ conditional on all other random variables. A conjugate prior has been assumed for
the model parameters θ = (β, σ2) so that drawing from their conditionals is routine. This formulation of

1As described later in this section, covariates will be drawn from a standard Normal distribution. A Double Geometric noise
mechanism produces integer noise which would be large relative to the data; therefore, we instead consider a Laplace noise
mechanism which allows finer control over magnitude of the noise.
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(b) z = 244388, µ = 3.5, σ2 = 8.5, ρ = 0.01.
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(c) z = −10, µ = 3.5, σ2 = 8.5, ρ = 0.7.
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(d) z = −10, µ = 3.5, σ2 = 8.5, ρ = 0.01.

Figure 3: Outcome of CD sampler for Example 4.3 under four realizations. Empirical distribution of the
sample (◦) is shown with the density value (+). Connecting lines between density values are shown only for
visual reference—the target distribution is defined on Z.
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Bayesian linear regression is a special case of the one discussed in Hoff (2009, Section 9.2); other formulations
would work equally well in this demonstration (e.g. Walter and Augustin, 2010; Gelman et al., 2013).

To derive a Gibbs sampler, consider the joint distribution of [ỹ,y, X̃, ξx,θ], factorized as

f(ỹ,y, X̃, ξx,θ) = f(ỹ | y, X̃, ξx,θ) · f(y | X̃, ξx,θ) · f(X̃ | ξx,θ) · f(ξx | θ) · f(θ)

= f(ỹ | y) · f(y | X̃, ξx,θ) · f(ξx) · f(θ)

with

f(ỹ | y) =

n∏
i=1

fDGeom(ỹi − yi | ρyi ), f(ξx) =

n∏
i=1

d1∏
j=1

fLap(ξxij | 0, λxij),

f(y | X̃, ξx,θ) =

n∏
i=1

fLN(yi | x>i·β, σ2), f(θ) = fN(β | 0, σ2
βId) · fIG(σ2 | aσ, bσ).

For the term f(ỹ | y), the variables ỹi = yi + ξyi are shifts of ξyi ∼ DGeom(ρyi ) by constants yi which are
independent for i = 1, . . . , n, and make an appropriate transformation to obtain the density function. This
term is free of model parameters θ. From here, we may obtain the desired conditional distributions. From
the conjugate prior, we routinely obtain that

[β |—] ∼ Nd(ϑ,Ω
−1), Ω = σ−2X>X + σ−2

β Id, ϑ = Ω−1

(
σ−2

n∑
i=1

xi· log yi

)
, (14)

[σ2 |—] ∼ IG(a∗, b∗), a∗ = aσ +
n

2
, b∗ = bσ +

1

2

n∑
i=1

(log yi − x>i·β)2, (15)

which are obtained routinely. For the unobserved outcomes y, we have

f(y |—) ∝
n∏
i=1

fLN(yi | x>i·β, σ2) · fDGeom(ỹi − yi | ρyi )

∝
n∏
i=1

[
1

yi
exp

{
− 1

2σ2

[
log yi − x>i·β

]2}
(1− ρyi )|ỹi−yi| I(yi ≥ 0)

]
. (16)

whose product form indicates that y1, . . . , yn may be drawn independently. These distributions match (12)
with (ỹi−ξyi , ξ

y
i ) relabeled as (yi, ỹi−yi); therefore, yi can be sampled by first drawing ξyi from [ξyi | ỹi,β, σ2]

via (12) using the direct sampler in Section 4, then taking yi = ỹi − ξyi . Finally, to sample ξx, consider
drawing the jth coordinate ξx·j = (ξx1j , . . . , ξ

x
nj) conditionally on all other random variables:

f(ξx·j |—) ∝
n∏
i=1

fLap(ξxij | 0, λxij)
n∏
i=1

fLN(yi | x>i·β, σ2)

∝
n∏
i=1

e−|ξxij |/λx
ij exp

− 1

2σ2

log yij −
∑
6̀=j

xi`β` − (x̃ij − ξxij)βj

2



∝
n∏
i=1

[
e−|ξ

x
ij |/λ

x
ij exp

{
− 1

2τ2
ij

[(x̃ij − ξxij)− ϑij ]2
}]

, (17)

where τ2
ij = σ2/β2

j and ϑij = β−1
j

(
log yi −

∑
6̀=j xi`β`

)
. Because (17) factors into a product, ξx1j , . . . , ξ

x
nj

may be drawn independently within this step. A direct sampler for each coordinate can be obtained following
the same procedure as in Section 4, using the expressions in Examples 3.1 and 3.6 corresponding to a Normal
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weight function and Laplace base distribution. Note that if βj = 0, (17) simplifies to a product of Laplace
densities because the Lognormal weight functions are free of ξx·j .

A Gibbs sampler using these conditional distributions is stated as Algorithm 2. The special case d1 = 0
with only noise-free covariates is given as Algorithm 3. Finally, Algorithm 4 states an equivalent sampler
when all y and x·j are observed without noise.

Remark 5.1. For comparison, it would be interesting to consider a model which uses the protected data
and simply ignores the noise. However, a Lognormal regression model can not immediately be applied as
some observations become negative with the added noise. To avoid ad hoc adjustments to the model, along
with comparisons to the many alternative sampling approaches which exist in the literature, Algorithm 4
represents an “ideal” situation for comparison.

Remark 5.2. Transformations of x may be of interest in the regression portion of (13), rather than x
itself. When x̃ is observed with added noise, care must be taken to incorporate such a transformation into
(17) to determine an appropriate draw of ξx·j . For example, consider h(x·j) = (h1(x·j), . . . , hn(x·j)) which
operates only on the jth variable. A logarithmic transformation hi(x·j) = log xij operates coordinate-wise on
elements of x·j and manifests in (17) as a transformed normal weight function as in Example 3.2. This differs
from Example 3.3 where the Jacobian of the transformation appears. On the other hand, standardization
via hi(x·j) = (xij − x̄·j)/s(x·j), with x̄·j = 1

n

∑n
i=1 xij and s2(x·j) = 1

n−1

∑n
i=1(xij − x̄·j)2, involves data

from each subject in all coordinates of hi(x·j). Here, (17) no longer factorizes into independent terms by
subject.

Algorithm 2 Gibbs sampler for model (13).

Repeat the following steps for r = 1, . . . , R to obtain the desired number of draws R.

1. Draw yi from [yi |—] for i = 1, . . . , n using (16).
2. For each noisy covariate j = 1, . . . d1,

a. Draw ξx1j , . . . , ξ
x
nj from [ξx1j , . . . , ξ

x
nj |—] using (17), conditioning on all xi` for ` 6= j.

b. Let xij = x̃ij − ξxij for i = 1, . . . , n.

3. Draw β from [β |—] using (14).
4. Draw σ2 from [σ2 |—] using (15).
5. Let y(r) = y, X(r) = X, β(r) = β, and σ2(r) = σ2.

Algorithm 3 Gibbs sampler for model (13) with d1 = 0.

Repeat the following steps for r = 1, . . . , R to obtain the desired number of draws R.

1. Draw yi from [yi |—] for i = 1, . . . , n using (16).
2. Draw β from [β |—] using (14).
3. Draw σ2 from [σ2 |—] using (15).
4. Let y(r) = y, β(r) = β, and σ2(r) = σ2.

5.1 Fixed Covariates

First, consider d = 2 covariates with d1 = 0 so that both are observed without added agency noise. Here, it
may be of interest to study the effects on inference when using noisy responses ỹ with Algorithm 3 versus
the sensitive y with Algorithm 4. We take n = 200, β = (5,−1), ρyi ≡ ρ = 0.01, and consider σ ∈ {0.25, 5}
corresponding to relatively accurate and imprecise regression models. To give an idea of the magnitude
of the noise, the 0.005 and 0.995 quantiles of DGeom(0.01) are −458 and 458 respectively. We generate
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Algorithm 4 Noise-free Gibbs sampler for model (13).

Repeat the following steps for r = 1, . . . , R to obtain the desired number of draws R.

1. Draw β from [β |—] using (14).
2. Draw σ2 from [σ2 |—] using (15).
3. Let β(r) = β and σ2(r) = σ2.

covariates xij ∼ N(0, 1) independently for j = 1, 2 and i = 1, . . . , n. For each value of σ, we generate
observations according to (13) and run Algorithms 3 and 4 for 2,000 iterations, discarding the first 1,000
draws as burn-in. Figures 4 and 5 display the saved 1,000 draws of β and σ2, respectively. When the data
are generated more precisely about the regression with σ = 0.25, we notice that the posterior distribution
of β is more dispersed under Algorithm 3 than Algorithm 4. Furthermore, the distribution of σ2 is notably
larger and more dispersed under Algorithm 3. When σ = 5, the two algorithms produce results which are
much more similar. The data in this setting have also yielded posteriors centered on the true value of σ2,
but this may vary with draws of y.

The initial results support intuition that agency noise will have a larger effect on inference when the
proposed regression model holds more precisely. A simulation study over S = 500 generated datasets
confirms the behavior over many realizations. We now consider n = 200, β = (5,−1), and vary ρyi ≡ ρ ∈
{0.01, 0.1, 0.4} and σ ∈ {0.25, 1, 5}. Covariates xij ∼ N(0, 1) are generated independently for j = 1, 2 and
i = 1, . . . , n and fixed for the remainder of the study. For each pair of ρ and σ, we generate n observations
according to (13) and run Algorithms 3 and 4 for 2,000 iterations, discarding the first 1,000 draws as
burn-in. This process is repeated to produce S realizations y(s), ỹ(s), X(s), and X̃(s),2 and saved MCMC
draws θ(r,s) = (β(r,s), σ2(r,s)) for r = 1, . . . , R = 1,000 of simulation s = 1, . . . , S from each algorithm. To
summarize the posterior distribution of θ relative to the true data-generating θ0, we compute the mean-
squared error

MSE(s) =
1

R

R∑
r=1

‖θ(r,s) − θ0‖2 ≈
∫
‖θ − θ0‖2f(θ | ỹ(s), X̃(s))dθ (18)

for s = 1, . . . , S under both algorithms. The resulting empirical distributions of MSE(1), . . . ,MSE(S) are
displayed in Figure 6. This supports our initial intuition that the loss of precision, in using y with Algorithm 4
to using ỹ with Algorithm 3, is most pronounced when the regression model is more precise and there is
more agency noise. Conversely, inference from the two algorithms tends to become more similar as agency
noise is reduced or the data-generating regression model becomes less precise.

5.2 Noisy Covariate

Now, consider d = 2 covariates with d1 = 1 so that x̃·1 is released with Laplace noise and x·2 is unprotected.
Here we illustrate the effects on inference when using Algorithm 2 with the privacy-protected releases versus
Algorithm 4 with the sensitive data. We take n = 200, β = (5,−1), ρyi ≡ ρ = 0.01, σ = 1, and consider λxij ≡
λ ∈ {0.05, 0.20}. For reference, (0.005, 0.995) quantiles for the Lap(0, 0.05) distribution are (−0.230, 0.230),
and are (−0.921, 0.921) for the Lap(0, 0.20) distribution; therefore λ = 0.20 represents a larger magnitude of
noise added to covariates. We generate covariates xij ∼ N(0, 1) independently for j = 1, 2 and i = 1, . . . , n.
For each value of λ, we generate observations according to (13) and Algorithms 2 and 4 are used to produce
a chain of 2,000 draws of θ, discarding the first 1,000 draws as burn-in. In particular, at each step of the
simulation, Algorithms 2 and 4 make use of common realizations of the generated data. Figures 7 and 8
display the saved 1,000 draws of β and σ2, respectively. As may be anticipated, observations generated with
larger λ result in increased bias and uncertainty in the posterior of β.

2To emphasize, X(s) and X̃(s) are equivalent in Section 5.1 and different in Section 5.2.
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To empirically assess the behavior over many samples. a simulation study similar to Section 5.1 was
carried out. We now consider n = 200, β = (5,−1) and σ = 1, and vary ρyi ≡ ρ ∈ {0.01, 0.1, 0.4} and

λxij ≡ λ ∈ {0.05, 0.10, 0.20}. Covariates xij
ind∼ N(0, 1) are fixed for the duration of the study. For each

combination of ρ and λ, observations are generated according to (13) and Algorithms 2 and 4 are each run
for 2,000 iterations, discarding the first 1,000 draws as burn-in. This process is repeated S = 500 times,
yielding θ(r,s) and MSE(s) as defined in (18).

The empirical distributions of MSE(1), . . . ,MSE(S) are displayed in Figure 9. This supports the intuition
that more agency noise or more precise data generation leads to less precise inference from Algorithm 2 than
Algorithm 4. Conversely, inference from the two algorithms tends to become more similar as agency noise is
reduced or the data-generating regression model becomes less precise. Larger magnitudes of ξyi or ξxij , from
smaller ρ and larger λ respectively, decrease the precision of the posterior distribution of θ from Algorithm 2
compared to Algorithm 4 where privacy is ignored.

6 Discussion and Conclusions

In this work, we revisited the direct sampling approach proposed by Walker et al. (2011), which appears to
be underappreciated in the literature. To formulate Gibbs sampling steps involving pairs of commonly used
but non-conjugate distributions, we considered several customizations to the basic direct sampling approach
for robustness in a variety of encountered situations, and to avoid rejecting proposed samples. First, a step
function approximation helped to capture the shape of the density p(u), which is monotone and nonincreasing
on [0, 1] but subject to sudden jumps that may all occur within a very narrow interval. Second, for unimodal
weight functions and base distributions with a readily computed quantile function, draws from the required
truncated base distribution may be taken without the need for rejections.

The resulting sampler provided a means to draw latent agency noise in a disclosure avoidance setting,
where noise distributions are selected to enforce privacy protection and not necessarily for convenience in a
Gibbs sampler. This was illustrated in a small empirical study, comparing models fit using noise-free and
noise-infused data, corresponding to sensitive data before and after disclosure avoidance measures have been
taken. As we might expect, inference based on the noise-infused data becomes more distorted when the
accuracy of the underlying regression model and the amount of noise are increased. The primary objective
here was to demonstrate the sampler; a more in-depth study of the relationship between inference and DP
noise is provided by Gong (2020).

Draws of the latent agency noise were by far the slowest step of the otherwise straightforward Gibbs
sampler in our illustration, but might still be considered reasonable. For example, a run of Algorithm 3 to
produce draws for Figure 4b took 77.34 seconds to complete on an Intel Core i7–2600 3.40 GHz workstation
with four CPU cores; of this, 76.11 seconds were spent in drawing the latent y. A run of Algorithm 2 to
produce draws for Figure 7b completed in 129.29 seconds on the same workstation; of this, 70.29 seconds
were spent drawing y and 57.67 seconds were spent drawing ξx. With multiple CPUs and some additional
programming, elapsed time might be considerably reduced by parallel computing: elements of y and x·j
may be drawn in parallel as their respective steps are encountered in the overall sampler. Care with floating
point operations was also required for a resilient implementation of the sampler.

The illustration in Section 5 represents a simplified setting where subject-level data are released. Real
data releases have a number of interesting features which may require nontrivial extensions. For example,
sensitive data may consist of tabulations where noise variates are added to each cell. Sensitive data may also
represent estimates from a survey and include both point estimates and margins of error. Such extensions
may be of increasing interest as disclosure avoidance becomes more widely adopted and data users seek to
include this source of variability in analyses.
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A Appendix

A bisection search method (e.g. Lange, 2010, Section 5) is useful in several computations in the CD sampler.
Suppose S ⊆ R and ζ(x) : S → {0, 1} is a step function which increases from 0 to 1 at a point x∗.
The objective of Algorithm 5 is to identify x∗ by supplying lower and upper bounds xL < xH such that
ζ(xL) = 0 and ζ(xH) = 1, a function mid(x, y) : S2 → S which returns a point in [x, y], and a distance
function dist(x, y). We may therefore write x∗ = min{x ∈ [xL, xH ] : ζ(x) = 1}.

Algorithm 5 Bisection search for x∗ = min{x ∈ [xL, xH ] : ζ(x) = 1}. Inputs are bounds xL < xH , a step
function ζ(x) with ζ(xL) = 0 and ζ(xH) = 1, a midpoint function mid(x, y), a distance function dist(x, y),
and a tolerance δ > 0.

x = mid(xL, xH)
while dist(xL, xH) > δ do

xL = ζ(x) · xL + [1− ζ(x)] · x
xH = ζ(x) · x+ [1− ζ(x)] · xH
x = mid(xL, xH)

end while
return x

Algorithm 5 is useful in the following computations in Section 2.

1. The interval [uL, uH ] represents the range where p(u) decreases from P(A0) to 0. To find the point
uL, we first locate a sufficiently small j∗ ∈ {0, 1, 2, 4, 8, . . .} until P(Aexp(−j)) = P(A0). Now, uL
represents the smallest u ∈ [0, 1] such that P(Au) < P(A0), and may be located by Algorithm 5 using
ζ(x) = I{P(Ax) < P(A0)} with xL = e−j

∗
, xH = 1, mid(x, y) = (x+ y)/2 and dist(x, y) = y − x.

2. The point uH represents the smallest u ∈ [0, 1] such that P(Au) = 0. It may be located by Algorithm 5
using ζ(x) = I{P(Ax) = 0}, xL = uL, and xH = 1.

3. The quantile function H−1(ϕ) may be evaluated by Algorithm 5. Given precomputed values H(u0),
. . . , H(uN ) of the associated CDF, the index ` of the interval containing ϕ can be identified using
S = {0, 1, . . . , N}, xL = 0, xH = N , mid(`1, `2) = b(`1 + `2)/2c, and ζ(`) = I{H(u`) ≥ ϕ}. From here,
linearity between H(u`) and H(u`+1) yields H−1(ϕ) = u`+(u`+1−u`){ϕ−H(u`)}/{H(u`+1)−H(u`)}.

In practice, we work on the log-scale to seek log uL and log uH , as uL and uH may be numbers with
extremely small magnitudes. A bisection approach is useful in this setting because smoothness is not required
in P(Au). Both phenomena—uL and uH with extremely small magnitudes and P(Au) with abrupt changes—
are seen in Figure 1.

https://www.R-project.org/
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Proof of Result 2.1. First considering the unnormalized densities,

sup
B∈B

∣∣∣∣∫
B

h∗(u)du−
∫
B

P(Au)du

∣∣∣∣ = sup
B∈B

∫
B

[h∗(u)− P(Au)]du

=

∫ 1

0

[h∗(u)− P(Au)]du

=

N∑
j=1

∫ uj

uj−1

[h∗(u)− P(Au)]du

≤
N∑
j=1

∫ uj

uj−1

[P(Auj−1)− P(Auj )]du

=

N∑
j=1

[P(Auj−1)− P(Auj )](uj − uj−1)

=

N∑
j=1

|Rj |. (19)

We have used the fact that h∗(u) = P(Au) for u ∈ [0, u0] and h∗(u) ≥ P(Au) otherwise. Next, integrating
each term of the inequality P (Au) ≤ h∗(u) ≤ 1 over u ∈ [0, 1] gives ψ/c ≤ a ≤ 1, and inverting gives
1 ≤ 1/a ≤ c/ψ. Combining this with (19) yields inequalities for the normalized densities∫

B

h(u)du−
∫
B

p(u)du ≤ c

ψ

[∫
B

h∗(u)du−
∫
B

P(Au)du

]
≤ c

ψ

N∑
j=1

|Rj |. (20)

and ∫
B

p(u)du−
∫
B

h(u)du ≤ c

ψ

∫
B

h∗(u)du− 1

a

∫
B

h∗(u)du

=

[
a− ψ/c
aψ/c

] ∫
B

h∗(u)du

≤
[
a− ψ/c
aψ/c

]
a

=
c

ψ

[∫ 1

0

h∗(u)du−
∫ 1

0

P(Au)du

]
≤ c

ψ

N∑
j=1

|Rj |. (21)

The result follows from (20) and (21).
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(a) Noise-free, σ = 0.25.
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(b) Noisy, σ = 0.25.
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(d) Noisy, σ = 5.

Figure 4: Empirical density—based on 1,000 draws—of the posterior distribution of β, for particular data
realizations in Section 5.1. Data generating parameter values were β = (5,−1), ρ = 0.01, and the displayed
value of σ. (b) and (d) adjust for agency noise via Algorithm 3, while (a) and (c) utilizes Algorithm 4 with
sensitive data observed.

0.1

0.2

0.3

0 250 500 750 1000
Saved Draws

σ2

(a) σ = 0.25.

20

25

30

0 250 500 750 1000
Saved Draws

σ2

(b) σ = 5.

Figure 5: Traceplots of σ2 draws for particular data realizations in Section 5.1. Black and grey lines
correspond to noisy and noise-free fits under Algorithms 3 and 4, respectively, and red dashed lines are true
data-generating values of σ2.
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(i) ρ = 0.4, σ = 5.

Figure 6: For Section 5.1, the empirical density of the MSE (18) over S = 500 simulation repetitions. The
solid line and dashed lines represent noisy and noise-free fits under Algorithms 3 and 4, respectively.
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Figure 7: Empirical density—based on 1,000 draws—of the posterior distribution of β, for a particular data
realization in Section 5.2. Data generating parameter values were β = (5,−1), ρ = 0.01, and σ = 1. (a) and
(b) adjust for agency noise via Algorithm 2, while (c) utilizes Algorithm 4 with sensitive data observed.
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Figure 8: Traceplots of σ2 draws for a particular data realization in Section 5.2. The black and grey lines
correspond to Algorithms 2 and 4, respectively, and red dashed lines mark true data-generating value σ2 = 1.
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(i) ρ = 0.4, λ = 0.05.

Figure 9: For Section 5.2, the empirical density of the MSE (18) over S = 500 simulation repetitions. Solid
line and dashed lines represent Algorithms 2 and 4, respectively.
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