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Abstract

Official statistical agencies have an obligation to protect the confidentiality of their respondents.
Traditionally, the task of disclosure avoidance has consisted of a variety of different approaches, including
cell suppression and data swapping, among others. More recently, official statistical agencies (e.g.,
the U.S. Census Bureau) have employed differential privacy (DP) methods to facilitate DA. A major
component of this method of DA involves the addition of noise to the observed measurements from an
appropriate DP noise distribution based on a pre-specified privacy-loss budget. Consequently, it may be
desirable to develop statistical models for the DP noisy measurements which can be used to produce more
accurate synthetic data releases. One natural way to achieve this is using a Bayesian hierarchical model
with an approximation to the DP noise distribution at the data level of the model hierarchy. Through
model-based and empirical simulations, this paper evaluates the accuracy of this modeling approach under
various settings of the DP noise distribution, the privacy-loss budget, and different approximations. We
show that the Gaussian distribution provides a suitable, and computationally tractable approximation
to Laplace and Discrete Gaussian noise mechanisms when the magnitude of the noise mechanisms is not
too large.

1 Introduction

The U.S. Census Bureau and other official statistical agencies employ statistical disclosure avoidance method-
ology as a means of protecting the confidentiality of their respondents. To date, many different disclosure
avoidance methods have been developed, including data swapping, cell suppression, and synthetic data meth-
ods, among others. Although the U.S. Census Bureau utilized various disclosure avoidance techniques in
previous decennial censuses, it has been reported that these techniques were no longer suitable for pro-
tecting the 2020 decennial census. The 2010 U.S. decennial census counted a total population of over 308
million persons, and published at least 7.7 billion statistics from the collected data, or over 25 statistics
per person. Experiments conducted by the Census Bureau using the 2010 decennial census data showed
that the confidential micro-data could be accurately reconstructed from a subset of the published census
statistics (Abowd, 2018), in potential violation of Title 13 U.S.C., which provides confidentiality protections
for individual respondents1.

Due to these concerns, the U.S. Census Bureau is implementing differential privacy (DP) for many of its
2020 decennial census data products (Abowd et al., 2021). In this case, DP provides mathematical privacy
guarantees of individual responses by adding noise to summary statistics. The amount of additive noise is

Disclaimer: This article is released to inform interested parties of ongoing research and to encourage discussion of work in
progress. Any views expressed are those of the authors and not those of the U.S. Census Bureau.

1www.census.gov/history/www/reference/privacy_confidentiality/title_13_us_code.html
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parameterized by a privacy budget, typically denoted by ε > 0. Small values of ε near zero greatly reduce
the risk that an individual respondent can be identified, at the expense of published statistics that are less
accurate with respect to the data as collected. Conversely, larger values of ε increase the risk of unintended
disclosure, but ensure accurate statistics.

Although DP provides mathematical privacy guarantees, there is also a need to balance the privacy-loss
budget to simultaneously provide ample privacy protection while still providing data that are fit for use
(depending on the use-case). “Optimizing” this privacy-loss budget results in tables in which aggregate
cells need to be tabulated in order to avoid unnecessarily allocating privacy-loss budget to cells that could
alternatively be calculated (e.g., directly through aggregation). This optimization must also balance the
expenditure of the privacy-loss budget on queries of interest and overall query sensitivity, while also ensuring
the privacy-loss budget is not split into too many pieces.

The conflict between the need for increased privacy protections for census respondents and the desire to
maintain the gold-standard quality of census data products has led to increased research on using model-
based methods to increase the precision of differentially private measurements. Such model-based methods
may incorporate auxiliary information that does not expend any additional privacy loss budget to increase the
precision of the tabulations that are being disseminated, and to provide tabulations that may not otherwise
be released. One appealing modeling option is a Bayesian hierarchical model (BHM), where the data model
conforms to the known DP distribution being used by the agency, while a latent Gaussian process model
(LGP) is utilized to model the true underlying latent counts. Publicly available auxiliary information, such as
past decennial census data and aggregated sample survey data, such as American Community Survey (ACS)
data, can be easily incorporated in a BHM as regression predictors. Also, various sources of dependence,
such as spatial dependencies and/or multivariate dependencies within decennial census tabulations, can be
leveraged to improve precision of published estimates.

The noise mechanism used in the application of differential privacy is assumed to be known, and can
naturally be incorporated into a BHM, along with a mixed effects model for the true counts which are
modeled on the logarithmic scale. However, there are unique challenges to model development for differ-
entially private measurements. The main difficulty is that one of the most popular distributions used for
generating differentially private measurements, the Laplace distribution, presents computational challenges
when directly used in the data model of a BHM. We also consider modeling data which has been protected
by a mechanism based on the discrete Gaussian distribution. We address both situations by proposing a
continuous Gaussian distribution to approximate the noise mechanism. Post-processing may be used in
practice to satisfy data quality constraints, such as ensuring non-negative population counts and hierarchical
consistency in a group of related tabulations (e.g., Abowd et al., 2022). Accounting for such adjustments
in a model may be significantly more complicated than the DP mechanism itself. Therefore, we assume
throughout this work that modeling is carried out after DP but before any post-processing, as a means of
potentially improving the accuracy of published tabulations.

In this paper, we demonstrate the benefits of using a BHM to improve the accuracy of tabulations treated
with DP, as compared to utilizing the noisy measurements directly. Several variations of lognormal models
are demonstrated as practical examples of LGPs. We critically evaluate the performance of a Gaussian
distribution in place of the corresponding DP data distribution in a BHM with respect to computational time
and accuracy. If the approximation is demonstrated to provide accurate tabulations, along with measures
of uncertainty, then this would ultimately open the door for model-based tabulations to be produced in a
massive production setting. Though this investigation is motivated by the Census Bureau’s adoption of DP,
the settings used and analyses conducted are not necessarily indicative of the approaches that will be used
in production.

This paper proceeds as follows. Section 2 provides background on differential privacy and Bayesian
hierarchical modeling. In particular, we discuss the popular data model, process model, and parameter
model paradigm (Cressie and Wikle, 2015) and how the DP distribution is incorporated into the data model
specification. Simulations using the Laplace mechanism for DP are provided in Section 3. In contrast,
Section 4 provides simulation results in the context for which the discrete Gaussian distribution is the DP
noise. Sections 5 and 6 provide the results of an empirical simulation study using Laplace noise and discrete
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Gaussian noise respectively. Finally, Section 7 concludes.

2 The DP Data Model and Bayesian Hierarchical Models

2.1 A Motivating Dataset

The 2020 U.S. Decennial Census will be the first to use DP as the primary method of privacy protection.2

At the time of this writing, the Public Law 94–171 File, which is used by states to conduct legislative
redistricting, has been released to the public. Here, DP is implemented via the TopDown Algorithm (Abowd
et al., 2022), although state-level population counts are held invariant so that exact enumerations are available
for redistricting.3 Other products, such as a Demographic and Housing Characteristics File and a Detailed
Demographic and Housing Characteristics File are being prepared and are not yet fully specified.

For privacy-protected datasets, the sensitive underlying data will not be available to produce results which
could potentially become public (Abowd, 2018). To study the effect of DP, we will consider tabulations from
the 2010 decennial census which have been publicly released after privacy protection using non-DP methods.
Regarding these data as exact enumerations, we may apply standard DP methods and consider models to
make inference on the underlying enumerations through the protected data, though we do not apply nor
investigate the effects of post-processing. This setting motivates the remainder of the paper. The release
from the 2010 census contains a number of tabulations across several data products; we focus specifically on
a single tabulation PCT1 “American Indian and Alaska Native Alone with One Tribe Reported for Selected
Tribes” and three particular fields which represent counts of American Indian and Alaska Native (AIAN)
groups: Cherokee, Choctaw, and Sioux. These are among the largest AIAN groups by total population at the
national level, and are represented in other datasets that we will describe shortly. We consider county-level
tabulations for Oklahoma and its surrounding states: Colorado, Kansas, Missouri, Arkansas, Texas, and
New Mexico. Oklahoma was selected as a spatially coherent illustrative example because of the presence of
Cherokee, Choctaw and Sioux persons. Counts for the 723 counties in this region are displayed in Figure 1,
transformed to the log-scale using f(x) = log(x+ 1) to improve visualization and accommodate zero counts.
Each group contains a number of counties with small or zero counts; this is especially seen for Sioux. The
counties with smaller counts often appear to be clustered together, suggesting that there may be a spatial
effect. The empirical densities shown in Figure 1d emphasize that the counts for each group are highly
right-skewed and will influence model selection.

Regarding the 2010 data (with additional privacy protection by DP) as outcomes to be modeled, obvious
sources of predictors are previous censuses and releases of ACS estimates. We therefore consider the 2000
census and 2009 ACS 5-year estimates. From the 2000 census, we make use of analogous data to 2010, via the
fields for Cherokee, Choctaw, and Sioux from tabulation PCT1 “American Indian and Alaska Native Alone
with One Tribe Reported for Selected Tribes”. From the 2009 ACS release, we make use of 5-year period
estimates from table B02005 “American Indian and Alaska Native Alone for Selected Tribal Groupings”,
using point estimates for Cherokee, Choctaw, and Sioux population counts. Margins of error (MOEs) for ACS
estimates are also available but are not used in this work, though future work may consider incorporating
measurement error models to utilize this information. Figure 2 displays scatterplots comparing the 2010
census counts to both 2000 census counts and ACS point estimates for each of the three groups. We notice
a strong linear relationship between the 2000 census and 2010 census counts for all three groups. The
relationship between the ACS estimates and 2010 census counts appears strongest for Cherokee, showcasing
some outliers for larger Choctaw counts, and with more noticable deviation for the Sioux race group. This
suggests that both 2000 census counts and ACS point estimates will be useful predictors, but the former
may provide the most utility in formulating model-based predictions for unobservable sensitive data. We
will revisit these data in Sections 5 and 6.

Data from the 2010 census, 2000 census, and 2009 ACS may be obtained in a number of ways. In

2Description of 2020 data products: https://www.census.gov/programs-surveys/decennial-census/decade/2020/

planning-management/release/about-2020-data-products.html.
3https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html.
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particular, the website https://data.census.gov is useful for browsing available data. The Census Bureau
data API https://api.census.gov provides a web service to make programmatic requests for data. Users
of R (R Core Team, 2022) can request data from the API within R using the tidycensus package (Walker and
Herman, 2022). Supplementary materials included with this paper demonstrate the tidycensus approach.

2.2 Hierarchical models

Consider modeling privacy-protected data released by an agency. Denote Y = (Y1, . . . , Yn) as sensitive
data which is internal to the agency. A protected version of the data Z = (Z1, . . . , Zn) is released to the
public, where Zi = Yi + ξi and ξ = (ξ1, . . . , ξn) is generated from a privacy protection mechanism which will
be discussed in Section 2.3. In this application, these mechanisms are realized by univariate distributions
which are fully known to the analyst including any parameters. Covariates xi ∈ Rd will be assumed to
be available without privacy protection, given that non-DP methods were applied to past data products.
We will consider three Bayesian hierarchical models based on log-normally distributed process models with
added DP noise: an independent and identically distributed model (IID), a regression model (REG) based
on a given covariate and independent errors, and a regression model whose errors are spatially dependent via
conditional autoregression (CAR). These will be expressed as hierarchical models with three levels (Cressie
and Wikle, 2015) a data model, a latent process model, and a parameter model.

To formulate the CAR model, suppose we are modeling a geographical domain consisting of n areal units.
Let A = (aij) be the n× n adjacency matrix with

aij =

{
1 if i 6= j and areas i and j are adjacent,

0 otherwise,

for i, j ∈ {1, . . . , n}. Let D = Diag(A1n) be an n× n diagonal matrix of adjacency counts a1+, . . . , an+ for
each areal unit, where 1n is a vector of n ones. A random variable (T1, . . . , Tn) ∼ N(µ, σ2(D − ρA)−1) if
and only if each coordinate has the conditional distribution

[Ti | T−i = t−i] ∼ N

(
µi +

ρ

ai+

n∑
`=1

ai`(t` − µ`),
σ2

ai+

)
(2.1)

(e.g., see Cressie, 1993, Chapter 6), where µ = (µ1, . . . , µn), σ2, and ρ are parameters. The IID, REG, and
CAR models assume the same data model

Zi = Yi + ξi, i = 1, . . . , n, (2.2)

where the observed Zi is a noisy observation based on latent Yi with added agency noise ξi. The distribution
of Y = (Y1, . . . , Yn) will be determined by the process model for each scenario:

IID: log Yi = µ+ ηi, ηi|σ2 i.i.d.∼ N(0, σ2),

REG: log Yi = x>i β + ηi, ηi|σ2 i.i.d.∼ N(0, σ2),

CAR: log Yi = x>i β + ηi, η|σ2 ∼ N(0, σ2(D − ρA)−1),

where i = 1, . . . , n and η> = (η1, . . . , ηn) represents the random error. For the CAR model, we assume
a fixed value of ρ < 1 so that the matrix D − ρA is nonsingular. Alternatively, estimation of ρ can be
avoided by assuming an intrinsic CAR (ICAR) dependence structure (Besag and Kooperberg, 1995). The
vector θ will refer to the unknown parameters in each setting; that is, θ = (µ, σ2) in the IID model and
θ = (β, σ2) in the REG and CAR models. The final level of the hierarchy—the parameter model—will vary
across simulation settings, and will therefore be specified in those sections.
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(b) Choctaw.
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(d) Cherokee (solid), Choctaw (dash), Sioux (dash-dot).

Figure 1: 2010 census counts—transformed to the log-scale using f(x) = log(x + 1) for visualization—of
three AIAN race groups among 723 counties, and smoothed density.
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Figure 2: 2010 census counts versus auxiliary data for three AIAN race groups among 723 counties.
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2.3 Differential Privacy Mechanisms

The IID, REG, and CAR models presented in Section 2.2 assume data model (2.2) where data are only
released after applying additive agency noise ξ = (ξ1, . . . , ξn). In this section, we will briefly review several
differential privacy mechanisms which can be used to generate ξ. Each mechanism considers ξi to be
independent and identically distributed, with a distribution depending on a known scale parameter λi, and
absent any post-processing. An overview of differential privacy can be found in Dwork and Roth (2014).

For the remainder of this section, let the sensitive data procured by an agency be denoted by x and
suppose q(x) ∈ Rn is a vector of statistics to be released in a protected form. Here, x is assumed to be
a histogram (or table) where each entry represents a number of records matching a unique combination of
characteristics. The set of all possible histograms is denoted X. The function q represents a query on a
given histogram; e.g., given records x representing the population count in each state of the U.S. by age,
one choice of q(x) could produce the number of people aged 18 or younger in each state. We will consider
several randomized noise mechanisms of the form

T (x; q) = q(x) + ξ, (2.3)

where the distribution of ξ is to be specified. To discuss differential privacy of such mechanisms, let ‖x‖p =
(
∑n
i=1 |xi|p)1/p denote the lp norm of x ∈ X for p ≥ 1. Let D1 = {(x,x′) ∈ X×X : ‖x−x′‖1 = 1} represent

pairs of histograms x and x′ which differ by a single record. The lp-sensitivity of a function g : X 7→ Rn is
defined as

∆pg = max
(x,x′)∈D1

‖g(x)− g(x′)‖p.

We may now state one of the commonly used criteria for differential privacy.

Definition 2.1. Let ε > 0 and let q : X 7→ Rn be a query. A randomized noise mechanism T : X 7→ A is
said to satisfy ε-differential privacy if

P(T (x; q) ∈ A) ≤ eε P(T (x′; q) ∈ A) (2.4)

for all measurable subsets A ⊆ A and all x,x′ ∈ X such that ‖x− x′‖1 ≤ 1.

The privacy loss budget ε > 0 is selected by the agency to quantify the level of protection to be received
by the data. A small value of ε corresponds to a large amount of protection as well as a larger amount of
noise in T . The following examples recall two noise mechanisms of the form (2.3). Suppose q : X 7→ Rn has
finite sensitivity and x ∈ X.

Example 2.2. The Laplace distribution Lap(λ) is defined by the probability density function

fLap(x;λ) =
1

2λ
e−|x|/λ

The associated Laplace mechanism

TLap(x; q) = q(x) + ξ, ξi
i.i.d.∼ Lap(λ), λ = ∆1q/ε (2.5)

satisfies ε-differential privacy (Dwork and Roth, 2014, Chapter 3).

Example 2.3. The discrete Gaussian distribution DG(µ, σ2) is defined by the probability mass function

fDG(x;µ, σ2) =
e−(x−µ)2/2σ2

∞∑
j=−∞

e−(j−µ)2/2σ2

· I(x ∈ Z).

The associated discrete Gaussian mechanism

TDG(x; q) = q(x) + ξ, ξi
i.i.d.∼ DG(0, λ2), λ = ∆1q/ε (2.6)

satisfies ε2/2-differential privacy (Canonne et al., 2020, Theorem 4).
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The addition of DP is considered separately from any post-processing, such as the constraints to non-
negative integer values or hierarchical consistency utilized in the Census Bureau’s TopDown Algorithm
(Abowd et al., 2022). This post-processing can greatly affect the underlying DP distribution, as well as
the associated properties. In this work we consider only the effects of adding DP noise, without any post-
processing.

2.4 MCMC Sampling

From the perspective of a data analyst, a major benefit of differential privacy over other disclosure avoidance
methodologies is that the noise-generating mechanism is often completely known; this includes any param-
eters. In principle, this means the noise mechanism can be included as a known source of uncertainty in
a statistical analysis. However, selection of a noise mechanism may be concerned primarily with enforcing
privacy criteria while maintaining a notion of utility of the underlying data; i.e., it is not necessarily chosen
for the data analysts’ convenience. Furthermore, future analyses involving the data may not be known to
the agency while tabulations are being prepared for release.

We will compare two competing MCMC samplers under the Laplace mechanism mentioned in Section 2.3,
and two other competing samplers under the Discrete Gaussian mechanism. In each case, one method uses
the correct noise mechanism and one uses an approximation which is potentially more computationally
efficient. Our objective is to ascertain whether the approximations produce nearly the correct inference, and
whether the improvement in performance is worthwhile. The IID, REG, and CAR models will be considered
under each of the two mechanisms. We will compare two Stan models (Carpenter et al., 2017) under a
Laplace mechanism: one using the correct noise-generating Laplace mechanism, and one using a Gaussian
approximation. Stan and other off-the-shelf modeling software is appealing for applied model development;
once a desired model is correctly specified, the analyst need not derive, program, and debug a tailored
sampling algorithm to apply it to the data. For the Discrete Gaussian noise mechanism, Stan currently does
not support drawing discrete latent random variables; therefore, we will compare a Gibbs sampler making
use of the correct Discrete Gaussian noise mechanism to a model using a continuous Gaussian approximation.
The model with continuous Gaussian approximation is implemented using either Stan or a Gibbs sampler,
depending on setting. The conditions necessitating the use of a Gibbs sampler are discussed in Section 6.
Details for Gibbs samplers are given in Appendix A.

MCMC sampling will yield R draws of the parameter θ and the latent process Y = (Y1, . . . , Yn) from the
posterior distribution [Y ,θ | Z = z], denoted θ(r) and Y (r), respectively, for r = 1, . . . , R. A model-based

prediction of Yi is taken to be the mean Ŷi = 1
R

∑R
r=1 Y

(r)
i . A model-based 95% interval for Yi is taken to

be the 0.025 and 0.975 quantiles from the draws Y
(1)
i , . . . , Y

(R)
i ; the endpoints are respectively labeled Ŷ Li

and Ŷ Ui .

Using the true noise-generating mechanism in the Laplace case, the data model assumes ξi
i.i.d.∼ Lap(0, λ)

for i = 1, . . . , n. A competing data model is obtained using the approximation ξi ∼ N(0, πλ2/2). Although
other Gaussian approximations are possible, our choice of distribution is motivated by the following result.

Claim 2.4. Suppose g(x; ν, λ) = 1
2λe
−|x−ν|/λ is a Laplace density with given parameters ν and λ. The

Kullback-Leibler (KL) divergence between g and f(x;µ, σ2) = 1√
2πσ2

exp{− 1
2σ2 (x− µ)2} is minimized when

µ = ν and σ2 = πλ2/2.

Proof. For two probability densities, f and g, with common support, the KL divergence from g to f
is defined as DKL (f | g) = Ef (log (f/g)) = Ef log(f) − Ef log(g). Easy calculations give Ef log(f) =

−(1/2) log
(
2πσ2

)
− Ef (x− µ)

2
/(2σ2) and log(g) = − log(2λ)− |x− ν|/λ. Then

DKL(f | g) = Ef log f − Ef log g

= −1

2
log
(
2πσ2

)
− Ef

(x− µ)2

2σ2
+ log(2λ) + Ef

|x− ν|
λ

= −1

2
log
(
2πσ2

)
− 1

2
+ log(2λ) +

1

λ

∫
|x− ν| 1

2πσ2
e−

(x−µ)2

2σ2 dx.
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Figure 3: The Lap(0, 1) density and Gaussian approximation N(0, π/2) shown with solid and dashed lines,
respectively.

Differentiating the integral∫ ∞
−∞
|x− ν| 1

2πσ2
e−

(x−µ)2

2σ2 dx = −
∫ ν−µ

−∞
(x+ µ− ν) e−

x2

2σ2 dx+

∫ ∞
ν−µ

(x+ µ− ν) e−
x2

2σ2 dx

with respect to µ and setting equal to zero gives µ = ν. We can therefore set µ = ν = 0 without loss of
generality. Taking the second derivative, we have that this function is convex for µ = ν = 0. Then

DKL(f | g) = −1

2
log(2πσ2)− 1

2
+ log(2λ) +

1

λ
Ef |x|

= −1

2
log(2πσ2)− 1

2
+ log(2λ) +

σ

λ

√
2

π
.

Differentiating the above with respect to σ and setting equal to zero gives the result.

Figure 3 displays an example using Claim 2.4, with Lap(0, 1) versus its Gaussian approximation N(0, π/2).

3 Simulations with Laplace Mechanism

We conducted a simulation study to assess the suitability of the Gaussian approximation to the Laplace
mechanism covered in Section 2.3 in a Gibbs sampler. Data were simulated according to data model (2.2)
using IID, REG and CAR process models for Y in Sections 3.1, 3.2, and 3.3 respectively. Agency noise ξ
variates were generated from the Laplace mechanism (2.5).

The primary goal was to predict Y using two MCMC samplers: one based on the correctly specified
Laplace noise mechanism and one using the Gaussian approximation. We also compare uncertainty estimates
and accuracy of credible intervals constructed using each sampler. A secondary goal was to evaluate accuracy
of the estimates of unknown model parameters, specified for each scenario. Both samplers were implemented
in Stan (Carpenter et al., 2017) through R (R Core Team, 2022) using the RStan package (Stan Development
Team, 2022). When feasible, the default settings in Stan were used, which include a single chain of 2,000
HMC iterations, with the first 1,000 discarded as a burn-in, and a maximum tree-depth of 10. Adjustments
needed to achieve good mixing and convergence as identified using appropriate diagnostics are noted in each
of the respective sections.
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For each setting of the simulation, S = 100 datasets were generated. Within the sth simulated dataset,

a single chain of R draws was saved from each MCMC sampler indexed r = 1, . . . , R. Let Y
(s)
1 , . . . , Y

(s)
n

denote the data in the sth dataset which represent the sensitive data that require protection. Let Ŷ
(s)
i =

1
R

∑R
r=1 Y

(r,s)
i denote model-based predictions based on the R saved draws. Similarly, let Ŷ

L(s)
i and Ŷ

U(s)
i

represent 0.025 and 0.975 quantiles from the draws Y
(1,s)
i , . . . , Y

(R,s)
i . The following metrics are produced

for the sth dataset for each sampler:

RMSE(s) =

[
1

n

n∑
i=1

(Ŷ
(s)
i − Yi)2

]1/2

, MAE(s) =
1

n

n∑
i=1

|Ŷ (s)
i − Yi|, MRAE(s) =

1

n+

∑
i:Yi>0

|Ŷ (s)
i − Yi|
|Yi|

,

MAX(s) =

n∨
i=1

|Ŷ (s)
i − Yi|, COV(s) =

1

n

n∑
i=1

I
(
Ŷ
L(s)
i ≤ Yi ≤ Ŷ U(s)

i

)
, LEN(s) =

1

n

n∑
i=1

(
Ŷ
U(s)
i − Ŷ L(s)

i

)
,

where n+ =
∑n
i=1 I(yi > 0) and

∨n
i=1 xi represents the maximum of x1, . . . , xn. These metrics summarize

root-mean squared error, bias, relative bias, maximum absolute error, and empirical coverage and length of
an interval with 95% nominal coverage, respectively, over the n observations. We also consider “observed”
versions of the metrics which use the observed differentially private measurements, Zi, in place of model-based
predictions:

RMSE(s) =

[
1

n

n∑
i=1

(Z
(s)
i − Yi)

2

]1/2

, MAE(s) =
1

n

n∑
i=1

|Z(s)
i − Yi|, MRAE(s) =

1

n+

∑
i:Yi>0

|Z(s)
i − Yi|
|Yi|

,

MAX(s) =

n∨
i=1

|Z(s)
i − Yi|, COV(s) =

1

n

n∑
i=1

I
(
F−i (0.025 | λi) ≤ Z(s)

i − Yi ≤ F
−
i (0.975 | λi)

)
,

LEN(s) =
1

n

n∑
i=1

[
F−i (0.975 | λi)− F−i (0.025 | λi)

]
≡ F−1 (0.975 | λ1)− F−1 (0.025 | λ1),

where F−i (γ | λi) represents the γ quantile of the distribution of ξi. Simulation-level summaries for model-
based predictions or observations are produced by averaging the S metrics using:

RMSE =
1

S

S∑
s=1

RMSE(s), MAE =
1

S

S∑
s=1

MAE(s), MRAE =
1

S

S∑
s=1

MRAE(s),

MAX =
1

S

S∑
s=1

MAX(s), COV =
1

S

S∑
s=1

COV(s), LEN =
1

S

S∑
s=1

LEN(s).

To summarize draws of the parameters, let θ(r,s) = (θ
(r,s)
1 , . . . , θ

(r,s)
k ) denote rth saved draw of the parameter

using the sth simulated dataset. Point estimates θ̄
(s)
j = 1

R

∑R
r=1 θ

(r,s)
j are computed from the draws for the

sth dataset, and summarized for the simulation using

θ̄j =
1

S

S∑
s=1

θ̄
(s)
j and sd(θj) =

[
1

S − 1

S∑
s=1

(θ̄
(s)
j − θ̄j)

2

]1/2

for j = 1, . . . , k. For each process model under consideration, we take privacy budget ε ∈ {0.01, 0.1, 0.5}
and three settings of model parameters for a total of 3 × 3 = 9 settings. The values of ε correspond to
λ ≡ 1/ε ∈ {100, 10, 2}, which tend to generate large noise with λ = 100 and much smaller noise with λ = 2.
Figure 1 suggests that the variance of census data increases with the mean, so we consider increasing the
variance parameter along with the mean to mimic the behavior of the population counts for the selected
detailed AIAN groups. The three settings of the model parameters are labeled Scenarios S1, S2, and S3
for each form of the process model (IID, REG, and CAR) and their exact meanings are specified in the
respective subsections.
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3.1 Independent and Identically Distributed

Under the IID process model, data were generated with sample size n = 1,000. We consider three settings
of the parameters (µ, σ2): Scenario S1 uses µ = 1 and σ2 = 1, S2 uses µ = 2 and σ2 = 2, and S3 uses µ = 3
and σ2 = 3. The Laplace sampler produced a chain of 3,000 HMC iterations, with the first 1,000 iterations
discarded as a burn-in, yielding R = 2,000 saved draws, while the Gaussian sampler produced a chain of
2,000 HMC iterations, with the first 1,000 discarded as a burn-in. We found that Stan is very sensitive to
the choice of starting values, as the chain moves around the parameter space very slowly. Initial values

Y (0,s) = W (s), µ(0,s) =
1

n

n∑
i=1

W
(s)
i , and σ2(0,s) =

1

n− 1

n∑
i=1

[
W

(s)
i − µ(0,s)

]2
helped to achieve good HMC chains, where W

(s)
i = log{max(Z

(s)
i , 1)} and Y (r,s) represents the rth draw of

the latent random variable Y (s). Here we have assumed Stan’s default improper prior for µ by leaving the
distribution unspecified, and assumed a prior σ2 ∼ Gamma(10, 10).

The samplers for the entire simulation took about 46.74 hours to complete: 43.38 hours for the Laplace
sampler and 3.37 hours for the Gaussian sampler. Average sampler run times for each scenario are displayed
in Table 13. Increasing (µ, σ2) for each fixed ε appears to only have had a mild effect on the runtimes of the
Gaussian model, but caused a more severe increase in run times of the Laplace model.

In Scenario S1, where the Laplace mechanism produced the most noise and the “signal” from the process
model was lowest, traceplots (not shown) provided evidence that the chains from both samplers did not mix
well. The Gaussian approximation model appeared to fare better than the Laplace model however. Here it
appears that, even though the distribution of the noise is known, characteristics due to the process model
are drowned out by the amount of noise. In general, the mixing of the chains improves as ε or (µ, σ2) are
increased, corresponding to a larger signal to noise ratio.

Tables 1 and 2 summarize predictions and parameter estimates respectively, reporting the metrics de-
scribed in the beginning of Section 3. Ignoring the extremely noisy and low signal Scenario S1, the Laplace
model produced more accurate estimates of µ and σ2 than the Gaussian approximation model. However,
when ε is reduced or (µ, σ2) is increased, the two samplers produce very similar results for the estimates.
The prediction results in those scenarios are comparable as well. A notable difference is that the length
LEN of the intervals is wider from the Laplace model, as we might expect, so that the coverage COV of the
intervals from the Gaussian approximation model is slightly lower than the nominal 95% level.

3.2 Regression

Under the REG process model with regression coefficients β = (β0, β1), Scenario S1 assumes β1 = 0.5 and
σ2 = 1, S2 assumes β1 = 1.5 and σ2 = 2, and S3 assumes β1 = 2.5 and σ2 = 3; β0 = 0.5 remains fixed.
Using sample size n = 1,000, the design matrix X was constructed from two columns: an intercept with all
ones, and a second column whose ith row is generated by xi ∼ N(1, 1) and fixed throughout the simulation.
Thus, we mimic the settings used in the IID process model with µ = Xβ. The Laplace sampler was run
to produce a chain of length 3,000, with the first 1,000 iterations discarded as burn-in, yielding R = 2,000
saved draws, while the Gaussian sampler was run to produce a chain length of 2,000, with the first 1,000
iterations discarded as burn-in.

Similar to the IID setting, initial values for Stan were taken to be

Y (0,s) = W (s), β(0,s) = (X>X)−1X>W (s), and σ2(0,s) =
1

n− 1

n∑
i=1

[
W

(s)
i − W̄ (s)

]2
where W̄ (s) = 1

n

∑n
i=1W

(s)
i and W

(s)
i = log{max(Z

(s)
i , 1)}. Here β(0,s) has been taken to be the ordinary

least squares estimator from the regression of W (s) on X. For both the Laplace and Gaussian approximation
model, we assumed priors σ2 ∼ Gamma(10, 10) and β ∼ N(0, 25I).
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The samplers for the entire simulation took 194 hours to complete, with average sampler run times for
each scenario displayed in Table 13. As in the IID case, we see that fitting the Laplace model was much
slower than fitting the Gaussian approximation model. On average, across all simulations and scenarios, the
Laplace sampler took 13 times as long as compared to the Gaussian sampler. For the Laplace model, we
encountered poor mixing and slow convergence with the default settings in Stan. We increased the maximum
tree depth to 13, and also increased the maximum number of iterations to 3,000 to address these convergence
issues, though at the cost of longer running times. We did not encounter these issues with the sampler for the
Gaussian model using the default arguments. As in the IID setting, chains in Scenario S1 showed evidence
of inadequate mixing for both samplers; we again set it aside to focus on the other scenarios.

Tables 3 and 4 give predictions and parameter estimates, respectively. In general, we found that the
model-based estimates had higher accuracy as compared to the noisy direct estimates. As expected, this
was especially true for the scenarios with higher noise infusion. The results of the Laplace and Gaussian
approximation model were largely similar. One exception was the case of the high DP noise, and small µ
and σ2, in which case the Laplace model had much less error and bias. Overall, the Gaussian approximation
tended to have better coverage of the 95% interval, with similar interval lengths.

3.3 Conditional Autoregression

Under the CAR process model, the levels of β and setup of X were selected in the same manner as in
Section 3.2 for the REG model. We used a 10 × 10 square grid to construct the adjacency matrix A
discussed in Section 2.1, with one observation per area so that the sample size is n = 100. The lattice
structure and size were selected to illustrate a simple case of the CAR structure, while also maintaining
reasonable runtimes for the simulation. Both models were fit with 3,000 HMC iterations, with the first
1,000 iterations discarded as a burn-in, yielding R = 2,000 saved draws. The parameter ρ for CAR was
fixed at 0.95 throughout, and assumed known in the model. Initial values for Stan were formed in the same
way as the REG setting. For both the Laplace and Gaussian approximation model, we assumed priors
σ2 ∼ Gamma(10, 10) and β ∼ N(0, 25I).

MCMC sampling for the entire simulation took 904 hours (≈ 37.67 days) to complete, with average times
per scenario given in Table 13. The Laplace sampler was much slower than the Gaussian sampler, with the
Laplace model requiring on average 6.1 times as much time as the Gaussian model. We encountered similar
mixing and convergence issues as in the REG case, primarily with the Laplace model, though to a lesser
extent with the Gaussian approximation. Increasing the maximum iterations to 3,000, and increasing the
maximum tree depth to 13 again helped to address these issues.

Tables 5 and 6 give predictions and parameter estimates, respectively. The results here largely mimicked
the findings in the REG case. The model based estimates far outperformed the noisy DP measurements. The
Gaussian approximation performed similarly to the Laplace, even in the case of high noise and low µ and
σ2. Coverage rates as well as interval length for the 95% interval were similar between the two model-based
approaches.

4 Simulations with Discrete Gaussian Mechanism

This section repeats Section 3 but with Discrete Gaussian as the noise mechanism. Data were simulated
according to the IID, REG, and CAR process models for Y in Sections 4.1, 4.2, and 4.3, respectively, and
agency noise ξ variates were generated from the Discrete Gaussian mechanism (2.6). The objective now
is to compare predictions for Y using two MCMC samplers: a Gibbs sampler using the correctly specified

Discrete Gaussian noise mechanism with ξi
i.i.d.∼ DG(0, λ2) in the data model and Stan using a continuous

Gaussian distribution ξi
i.i.d.∼ N(0, λ2) in its place. The simulation setup and metrics are largely the same as

in Section 3, but some of the information is repeated in the following subsections for readability.
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4.1 Independent and Identically Distributed

Under the IID process model, data are generated with sample size n = 1,000. We consider three settings of
the parameters (µ, σ2): Scenario S1 uses µ = 1 and σ2 = 1, S2 uses µ = 2 and σ2 = 2, and S3 uses µ = 3
and σ2 = 3. Based on initial diagnostics, both samplers are run to produce chains of 3,000 iterations, with
the first 2,000 discarded as a burn-in, yielding R = 1,000 saved draws. Initial values are taken to be

Y (0,s) = W (s), µ(0,s) =
1

n

n∑
i=1

W
(s)
i , and σ2(0,s) =

1

n− 1

n∑
i=1

[
W

(s)
i − µ(0,s)

]2
,

where W
(s)
i = log{max(Z

(s)
i , 1)} and Y (r,s) represents the rth draw of the latent random variable Y (s). The

prior is taken to be µ ∼ N(0, 25) and σ2 ∼ IG(2, 10).
Total MCMC sampling time over the whole simulation took 253.76 hours to complete. Average sampler

run times for each scenario are displayed in Table 14. Stan run times are generally faster than the Gibbs
sampler, except in Scenario S3 with ε = 0.5 (low noise and high signal) where it slows down very noticeably.

Tables 1 and 2 summarize predictions and parameter estimates respectively. In Scenario S1 with ε = 0.01,
both IID models show signs of poor performance: the Gaussian model has a COV of 0.39 while LEN for the
DG model appears to be extremely wide. Metrics appear to be improved in other IID models aside from
Scenario S3 with ε = 0.01, where the RMSE of Gaussian is much larger than for DG; in this high signal and
high noise setting, traceplots from Stan showed evidence of slow mixing for several of the simulated datasets
which appear to be the cause. This effects of this can also be seen in Table 2 as sd(µ) and sd(σ2) increase
from ε = 0.1 to ε = 0.5 under Scenario S3.

4.2 Regression

Under the REG process model, values for regression coefficients β = (β0, β1) are taken to be (0.5, 0.5) for
Scenario S1, (0.5, 1.5) for S2, and (0.5, 2.5) for S3. Using sample size n = 1,000, the design matrix X is
constructed from two columns, an intercept with all ones and a second column whose ith row is generated
by xi ∼ N(1, 1), and fixed throughout the simulation. As in the IID case, samplers produced chains of length
3,000, with the first 2,000 iterations discarded as burn-in, yielding R = 1,000 saved draws. Initial values are
taken to be

Y (0,s) = W (s), β(0,s) = (X>X)−1X>W (s), and σ2(0,s) =
1

n− 1

n∑
i=1

[
W

(s)
i − W̄ (s)

]2
,

where W̄ (s) = 1
n

∑n
i=1W

(s)
i and W

(s)
i = log{max(Z

(s)
i , 1)}. Here β(0,s) is taken to be the ordinary least

squares estimator from the regression of W (s) on X. We assume priors σ2 ∼ IG(2, 10) and β ∼ N(0, 25I).
Total MCMC sampling time over the whole simulation took 267.58 hours to complete. Average sampler

run times for each scenario are displayed in Table 14. Here, Gibbs takes substantially longer than Stan, with
Stan run times increasing under Scenario S3 as ε increases.

Tables 9 and 10 summarize predictions and parameter estimates respectively. As in the IID case, COV
and LEN results for Scenario S1 with ε = 0.01 indicate problems for both samplers. Here, trace plots (not
shown) provide evidence poor mixing in both cases. Results in remaining cases appear to be comparable
with no indication of problems; the most obvious exception being a low COV for Scenario S3 with ε = 0.5,
which appears to experience slow mixing under several of the generated datasets.

4.3 Conditional Autoregression

Under the CAR process model, the levels of β and setup of X are selected in the same manner as in
Section 4.2 for the REG model. We use a 10× 10 lattice to construct the adjacency matrix A discussed in
Section 2.1, with one observation per area so that the sample size is n = 100. Samplers are run to produce
chains of length 3,000, with the first 1,000 draws discarded as burn-in, yielding R = 2,000 saved draws. The
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parameter ρ for CAR is fixed at 0.95 throughout and assumed known in the model. A similar analysis could
be conducted without an estimate of ρ using an intrinsic conditional autoregressive (ICAR) model (Besag
and Kooperberg, 1995). Initial values for Stan are formed in the same way as the REG setting. The prior
is taken to be σ2 ∼ IG(2, 10) and β ∼ N(0, 25I).

Total MCMC sampling time over the whole simulation took 113.70 hours to complete. Average sampler
run times for each scenario are displayed in Table 14. Here, Stan tends to take longer than the Gibbs sampler,
especially with the CAR latent process model.

Tables 11 and 12 give predictions and parameter estimates, respectively. As in the IID and REG cases,
but to a smaller degree, COV and LEN appear to suffer under Scenario S1 with ε = 0.01. Remaining results
show no evidence of mixing issues or poor performance. Furthermore, results from the two samplers appear
to correspond well. Table 12 also shows good agreement between the two samplers. However, due to the
confounding phenomenon under the CAR model, coefficient values themselves may not be comparable to
the true values as the inclusion of a spatially correlated random effect can drastically affect estimation of
fixed-effects coefficients (e.g., Hughes and Haran, 2013; Hodges and Reich, 2010; Bradley et al., 2015).

5 Empirical Simulation Study with Laplace Mechanism

This section presents the results of an empirical simulation study using 2010 census counts of the number of
persons in the 77 counties in Oklahoma for each of the AIAN race groups Cherokee, Choctaw, and Sioux.
This provides a realistic setting to compare models using the exact noise mechanism with models using
an approximating Gaussian data model, and to understand the benefit of including regression terms and
spatially correlated random effects in a BHM fit to real data. This study is also used to quantify the gains
in precision using model-based methods of increasing complexity to estimate counts of persons compared to
directly using noisy, differentially private measurements, and to understand the computational tradeoffs of
using the exact, but difficult to fit Laplace data model, vs. using the approximating Gaussian data model.

In this study, the released 2010 census counts are treated as sensitive data which are protected by a
Laplace noise mechanism before release (without any post-processing). Each of the three AIAN groups is
taken individually and privacy protected using three levels of privacy protection, ε ∈ {0.01, 0.1, 0.5}, giving
a total of 9 simulation levels. These values of ε were chosen to roughly represent very high, medium, and low

levels of privacy protection/noise. For each level, datasets Z(s) = (Z
(s)
1 , . . . , Z

(s)
n ) for s = 1, . . . , S = 100 are

generated by adding Laplace noise to the 2010 counts Y = (Y1, . . . , Yn) for the corresponding AIAN group;
i.e.

Z
(s)
i = Yi + ξ

(s)
i , ξ

(s)
i

i.i.d.∼ Lap(0, 1/ε). (5.1)

Here, Z
(s)
i represents the noisy, differentially private measurement of the true, unobservable 2010 census

count, Yi for the ith county. With 100 datasets generated for each of the 9 simulation levels, a total of 900
datasets were generated.

The IID and REG models were fit to each dataset Z(s) in two ways: first using the correct Laplace noise
mechanism in the data model, then replacing the Laplace mechanism with our Gaussian approximation. For
the REG model, the design matrix X consists of three columns: an intercept, the logarithm of corresponding
2000 census count incremented by one, and the logarithm of the corresponding ACS 2009 count incremented
by one. The logarithm of the 2000 census and 2009 ACS counts, summarized in Figure 1, are regarded as
non-sensitive, publicly available data sources that can be used to model 2010 census counts.

We also fit a model which includes a spatially-correlated random effect, but rather than using the CAR
model given in Section 3.3, we used an ICAR model (Besag and Kooperberg, 1995). Using an ICAR
distribution on the random effects avoids the difficulties of estimating the parameter ρ in the CAR model
presented in 2.2. The ICAR prior is also advantageous in that we found it results in much faster fitting times
in Stan than when using a CAR prior. The model, with an approximating Gaussian noise distribution, is
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then

Zi = Yi + ξi, ξi ∼ N
(
0, πλ2

i /2
)
,

log Yi = x>i β + ηi + γi, γi
i.i.d.∼ N(0, φ2),

η = (η1, . . . , ηn)
> |σ2 ∼ ICAR(σ2),

where ICAR(σ2) denotes the ICAR distribution parameterized by the single variance component, σ2. The
ICAR distribution can be characterized by its full conditional distributions. Let Ni index the set of geogra-
phies which neighbor area i, and let ni be the number of elements in Ni. Then

ηi | η−i, σ2 ∼ N

 1

ni

∑
j∈Ni

ηj ,
σ2

ni

 ,

where η−i represents the vector η, with the ith element removed. To avoid identifiability issues, we impose
the usual constraint that

∑
i ηi = 0. Random errors γi representing fine scale variability were added to

improve mixing in Stan. The same initial values as the REG model were used, in addition to η = 0. For the
priors, we used β ∼ N(0, σ2

βI) and σ2 ∼ Gamma(aσ, bσ) with σβ = 5, aσ = 10, bσ = 10.
Mathematically, this model is a fairly straightforward extension of the REG model, but the computational

challenges of fitting this model increased dramatically over fitting the REG model. The time increased
substantially fitting the ICAR model over the other models using equivalent settings in Stan. Also, keeping
the Stan settings the same resulted in poor model fit, as evidenced by examination of the traceplots and
analysis of the predicted values. One issue may be that, given the strength of spatial dependence exhibited,
the number of areas used (i.e., the 77 counties in Oklahoma) is too small to fit a spatial model. See Janicki
et al. (2022) for similar issues determining the number of geographic regions to use in a spatial areal model,
and discussion on tradeoffs with increasing or decreasing the number of areas. We therefore expanded
the number of geographies to include counties from Oklahoma’s six neighboring states, Colorado, Kansas,
Missouri, Arkansas, Texas, and New Mexico, for a total of 723 counties. Based on initial investigations,
we also increased the number of HMC iterations to 3,000, with the first 1,500 discarded as warmup, and
increased the maximum tree depth tuning parameter to 15 to improve convergence. Adjusting the tuning
parameters to these settings resulted in much better model fit, as evidenced by examination of the traceplots
and comparison of model-based predictions to the true values. The tradeoff with choosing these HMC
settings is the massive increase in computational time, as can be seen in Table 15. Due to these challenges,
we only present results for an empirical simulation study using the data set consisting of counts of Cherokee
persons by county.

As challenging as it was to fit this model with a Gaussian noise approximation, fitting the model using
the true Laplace model was greater still. The time to fit the Gaussian model to a single data set, in this
example, was over 200 minutes on average across all settings, as can be seen in Table 15. The time to fit the
Laplace model to a single data set, using the same tuning parameters as with the Gaussian model, was over
a day, and still convergence was not achieved. The lack of convergence was obvious, and could be observed
by examining the traceplots of the predicted values of the true counts (not shown). Despite using reasonable
starting values and increasing the number of HMC iterations, we could not achieve convergence using the
exact Laplace data model in under 24 hours in Stan.

For each of the three models, IID, REG, and ICAR, we used initial values in the HMC sampler in
Stan of Y ∗i = max{Zi, 1} for Yi, i = 1, . . . , n. The initial value used for σ2 was the variance of a1 =
log Y ∗1 , . . . , an = log Y ∗n . For models REG and ICAR, the initial value used for β was β∗ = (X>X)−1X>a
where a = (a1, . . . , an). The adjacency matrix A for the ICAR model was computed from the geography of

Oklahoma counties as well as counties in surrounding states. For each of the three models, draws Y
(r,s)
i for

r = 1, . . . , R were saved so that metrics described in Section 3 could be computed. HMC for all models was
carried out using Stan. We found that the Stan tuning parameters and the number of HMC iterations to
achieve convergence needed to be chosen separately for each model. In total, the samplers for the IID model
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took 4.89 hours to run, while the samplers for the REG model took 3.07 hours. The Stan samplers for the
three Cherokee scenarios with the Gaussian ICAR model took 1022.23 hours to run.

Table 17 gives an overall summary of the performance of the predictions for each scenario and for each
detailed race group. Table 17 shows the root mean squared error (RMSE), mean absolute error (MAE),
mean relative absolute error (MRAE), maximum deviation (MAX), coverage rate (COV), and interval length
(LEN), averaged over all 100 simulations for each scenario and for each detailed AIAN race group. We note
while the same noise levels are used with the Cherokee, Choctaw, and Sioux data sets, that comparisons
across these detailed AIAN race groups are not necessarily meaningful, as the predictions depend not only
on the noise levels, but also characteristics of the underlying true values as well as the predictors. Differences
in the summary statistics across columns with common noise levels in the Observed block of Table 17 are
due to simulation noise.

Comparing results within each column of Table 17 we see that model-based predictions generally out-
perform the noisy measurements under each of the given metrics, regardless of the amount of noise added,
and regardless of whether the true Laplace data model or the approximating Gaussian data model is used.
The RMSE decreases substantially in each scenario using the IID model, compared to the noisy measure-
ments, especially with the Sioux data set. The predictions using the IID model are also well calibrated,
in the sense that the coverage rates of the credible intervals are close to the nominal 95% level. Using
the correctly-specified Laplace model gives better results than the approximating Gaussian data model,
particularly with uncertainty estimates and credible intervals, but the point estimates are generally very
comparable, indicating that the approximate Gaussian model gives good results.

Adding covariate information to the model, as can be seen in the REG blocks of Table 17, further increases
the precision of predictions, particularly in the very high noise case, ε = 0.01. Again, the Laplace model and
Gaussian model give very similar results. We do, however, see a degradation in performance of the credible
intervals, as coverage rates tend to be in the 80s. This could be due to not accounting for the uncertainty of
the ACS 5-year estimates, the specification of the hyperparameters or prior distributions, or the tuning of
the HMC algorithm.

The ICAR model, perhaps unsurprisingly, gives the best overall results. Accounting for spatial correlation
using an ICAR prior on the random effects both further improves the precision of the point predictions in
the ε = 0.1 and 0.5 scenarios, and also corrects the coverage rates in all scenarios. The worse performance
of the point estimates in the ε = 0.01 scenario may be more due to issues of fit using the REG model with
very high noise levels, rather than with the ICAR model.

Overall, we see that the Gaussian approximation to the data model gives very similar performance to
using the exact Laplacian model in nearly every scenario, and can be used in situations where a Laplacian
model is not feasible, such as when accounting for spatial correlation in the model. The greatest modeling
benefits are when there are very high levels of added noise. With very low levels of noise, the benefits are far
more modest, although there does seem to be some improvement in precision. Regardless of the amount of
added noise or the degree of added precision of the point estimates, the ability to fit a model to the observed,
noisy data, is important, as it allows for prediction of out of sample quantities, as in change of support and
downscaling problems, which is an important area of future research.

6 Empirical Simulation Study with Discrete Gaussian Mechanism

This section presents a similar study as in Section 5 based on the same AIAN data, outcomes, and covariates.
However, the observations are now prepared with a Discrete Gaussian mechanism so that

Z
(s)
i = Yi + ξ

(s)
i , ξ

(s)
i

i.i.d.∼ DG(0, 1/ε) (6.1)

for county i = 1, . . . , n within the sth simulated dataset s = 1, . . . , S. Here, Y = (Y1, . . . , Yn) are taken to
be the released 2010 census counts for either Cherokee, Choctaw, or Sioux groups, and three levels of noise
ε ∈ {0.01, 0.1, 0.5} are considered. There were S = 100 simulated datasets generated within each of the nine
simulation settings.
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Three pairs of models were considered to fit the generated data based on the IID, REG, and CAR models.
For each of the IID, REG, and CAR model types, one variant was fit using the true DG noise mechanism
in the data model and a second variant was fit with an associated Gaussian distribution in place of the DG
mechanism. We refer to these models using the labels DG IID, Gauss IID, DG REG, Gauss REG, DG CAR,
and Gauss CAR. The Gauss IID and Gauss REG models were fit with Stan as in Section 5.

Because Stan does not directly support discrete latent variables, the Gibbs sampling algorithm discussed
in Appendix A was used to fit the DG IID, DG REG, and DG CAR models. Furthermore, initial attempts
to produce suitable chains for the Gaussian CAR model using our Stan code were unsuccessful; therefore, a
Gibbs sampling approach was also used in this setting. Remark A.2 demonstrates that the obtained Gibbs
sampler cannot estimate the intercept parameter under an ICAR assumption; therefore, the CAR setting
uses a proper CAR structure with fixed dependency parameter ρ = 0.95. As in Section 4, all simulations
were fit by generating a chain of 3,000 iterations and discarding the first 2,000 as a burn-in sample. A
common conjugate prior of β ∼ N(0, 25I) and σ2 ∼ IG(2, 10) was used in all cases. A maximum tree depth
of 12 was used for Stan with the Gaussian REG model. In total, the samplers for the IID case took 155.92
hours, the samplers for the REG case took 268.13 hours, while the CAR case took 350.32 hours.

Table 18 summarizes prediction results from the simulation and Table 16 displays the associated runtimes
for reference. As anticipated, the RMSE, MAE, and MRAE tend to improve from Observed to IID, REG,
and CAR, as models become more expressive. DG and Gaussian results tend to be similar in most cases.
Focusing on COV, it appears that models for the Cherokee data attain closest to the nominal 95% coverage
level, while the Sioux data tend to be furthest. Some cases such as DG CAR with Sioux data have poor
coverage and a very narrow LEN. In these cases, neither the DG nor Gaussian models appeared to mix well
under the large noise setting ε = 0.01, but improved as ε was increased to 0.5. The large noise may be
especially problematic with the Sioux data because of the large number of zero counts; this can be seen in
Figure 4.

A closer look at the Gibbs sampler reveals some issues that may be contributing to the low coverage.
With integer-valued responses and DG noise in the data model, the choice of transformation f(x) = log x
precludes drawing integer values of zero from the conditional [yi | y−i,θ]; see Remark A.1. This affects the
COV metric when there are many zeros in the data. Future work with integer-valued response and DP noise
would benefit from the transformation f(x) = log(x + 1) instead. Also, with DG noise in the data model,
the Gibbs sampler was seen to get “stuck” in regions where only very small moves were possible. Here the
elements of y became unlikely to change by a full integer; trace plots of β and σ2 appear to show good
mixing, but their exploration is constrained due to the lack of movement of y. Under similar circumstances
with a Gaussian data model, all components of the chain are able to move, and evidence of poor mixing for
β and σ2 can more readily be seen. The underlying mixing issue might suggest that the Lognormal model
may not be ideal in this setting.

7 Conclusions

We have investigated several differentially private noise mechanisms in the data model within a hierarchi-
cal Bayesian model. Specifically, Laplace and Discrete Gaussian mechanisms were compared to respective
Gaussian approximations in a series of simulations. We first considered data generated from a Gaussian dis-
tribution conditional on a lognormally distributed process model, then proceeded to empirical simulations
with noise mechanisms applied to selected counts from the 2010 census.

Unsurprisingly, in cases where the noise mechanism has a large magnitude to drown out the signal from
the latent process, models have more difficulty capturing the process. This manifests in poor mixing of
MCMC chains which is evident in diagnostics such as trace plots and in the summarized results. Evidence
of poor mixing from Stan is also seen with small magnitude noise and large signal, but is not seen in Gibbs
samplers. For empirical simulations, the featured Lognormal model works well when small counts are not
too prevalent and noise magnitude is not too large. Gaussian approximations appear to give very similar
results to models using the exact Laplace or Discrete Gaussian noise mechanisms, provided that the noise
magnitude is not too large; in this case, use of the exact noise mechanism is preferable. However, runtimes in
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Figure 4: Distribution of counts from the 2010 census for the three AIAN groups in Oklahoma and neigh-
boring states.

Stan appear to suffer when outcomes are assumed to be sums of Lognormal and Laplace random variables.
Note that results obtained from Stan which were less ideal may be a symptom of our programming rather
than the capabilities of Stan.

Modeling of differentially private data will continue to be of interest as statistical agencies adopt it for
releases. Our study assumed fairly standard latent process models and was limited to a simplified dataset
extracted from a vastly more complicated release. The recent and future data releases feature many levels
of geography, many other race and ethnicity groups, and a number of tabulations which are subsetted to
particular groups in the overall population and crossed with a number of other factors of interest. Future
work will consider more holistic models to capture dependencies among tabulations within a release and
between multiple data products.
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Define the following notation.

• Let log(y) = (log y1, . . . , log yn) denote elementwise application of the logarithm.

• A random variable W ∈ Rn has multivariate normal distribution N(µ,Σ) with density fN(w | µ,Σ) ∝
exp{− 1

2 (w − µ)>Σ−1(w − µ)}.
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• A random variable W ∈ Rn has multivariate lognormal distribution LN(µ,Σ) with density fLN(w |
µ,Σ) ∝ exp{− 1

2 (logw − µ)>Σ−1(logw − µ)}
∏n
i=1

1
wi

I(wi > 0).

• A random variable W ∈ (0,∞) has inverse gamma distribution IG(a, b) with density fIG(w | a, b) ∝
w−a−1e−b/w I(w > 0).

• Random variable ξ = (ξ1, . . . , ξn) represents the agency noise, with density ξi ∼ fi(ξi | λi) and λi a
known parameter. Density fi will be taken to be the density of either DG(0, λ2

i ) or N(0, λ2
i ).

A.1 Gibbs Sampler for REG and IID

Let X ∈ Rn×d be an n × d design matrix corresponding to fixed effects β. In vector notation, assume the
REG model

Z = Y + ξ, ξi
ind.∼ fi(ξi | λi),

log(Y ) = Xβ + η, η ∼ N(0, σ2I),

with parameter model

β ∼ N(0, σ2
βI), σ2 ∼ IG(aσ, bσ).

The IID model is obtained as a special case of the REG model where X = 1n. It is straightforward to
derive a Gibbs sampler for the REG model when Y is drawn as augmented data. However, because the
distribution of [Y | ·] does not have a familiar conjugate form, we will make use of a direct sampler described
in Appendix A.3.

The joint distribution of all random variables in the REG model is

f(z,y,β,η, σ2) = f(z | y)f(y | β, σ2)f(β)f(σ2)

=

[
n∏
i=1

fi(zi − yi | λi)

]
fLN(y |Xβ, σ2I)fN(β | 0, σ2

βI)fIG(σ2 | aσ, bσ).

1. To draw [σ2 | ·],

f(σ2 | ·) ∝ (σ2)−n/2 exp

− 1

2σ2
(log y −Xβ)> (log y −Xβ)︸ ︷︷ ︸

η

 · (σ2)−aσ−1e−bσ/σ
2

= (σ2)−aσ−n/2−1 exp

{
− 1

σ2
[bσ + η>η/2]

}
.

Therefore [σ2 | ·] ∼ IG(aσ + n/2, bσ + η>η/2).

2. To draw [β | ·],

f(β | ·) ∝ exp

{
− 1

2σ2
(log y −Xβ)>(log y −Xβ)

}
e−β

>β/(2σ2
β)

Therefore [β | ·] ∼ N(ϑ,Ω−1) with

ϑ = Ω−1X>(log y)σ−2, Ω = σ−2X>X + σ−2
β I.
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3. Finally, to draw [Y | z,θ], notice that

f(y | z,θ) ∝

[
n∏
i=1

fi(zi − yi | λi)fLN(yi | x>i β, σ2)

]

so that Yi may be drawn independently from [Y | z,θ] =
∏n
i=1[Yi | zi,θ]. We may write

f(yi | zi,θ) ∝ fi(zi − yi | λi)fLN(yi | x>i β, σ2). (A.1)

However, rather than directly making use of (A.1), it is equivalent and conceptually helpful in the
direct sampler to draw ξ′i from

f(ξi | ·) ∝ fi(ξi | λi)fLN(zi − ξi | x>i β, σ2),

as described in Appendix A.3, and transform to yi = zi − ξ′i to obtain a draw from [Yi | zi,θ].

Remark A.1. When both zi and ξi are integer-valued, density (A.1) will assign probability zero to the
event [yi = 0], so that zeros are not drawn. In this case, it would be preferable to model the transformation
log(Y + 1) = Xβ + η rather than log(Y ) = Xβ + η.

A.2 Gibbs Sampler for CAR

Let us rewrite the CAR model as

Z = Y + ξ, ξi
ind.∼ fi(ξi | λi),

log(Y ) = Xβ + η, η|σ2 ∼ N(0, σ2R−1).

with η = (η1, . . . , ηn) and R = D − ρA with matrices A and D as defined in Section 2.2, and assume the
prior

β ∼ N(0, σ2
βI), σ2 ∼ IG(aσ, bσ).

If ρ = 1 is taken so that an Intrinsic CAR is assumed, a pseudo-inverse R− may be used in place of R−1

when expressing the model. To derive a Gibbs sampler for this model, the joint distribution of all random
variables is

f(z,y,β,η, σ2) = f(z | y)f(y | β, σ2)f(β)f(σ2)

=

[
n∏
i=1

fi(zi − yi | λi)

]
fLN(y |Xβ, σ2R−1)fN(β | 0, σ2

βI)fIG(σ2 | aσ, bσ).

The conditionals are obtained as follows.

1. To draw [σ2 | ·],

f(σ2 | ·) ∝ (σ2)−n/2 exp

− 1

2σ2
(log y −Xβ)>R(log y −Xβ)︸ ︷︷ ︸

Q

 · (σ2)−aσ−1e−bσ/σ
2

= (σ2)−aσ−n/2−1 exp

{
− 1

σ2
[bσ +Q/2]

}
.

Therefore [σ2 | ·] ∼ IG(aσ + n/2, bσ +Q/2).
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2. To draw [β | ·],

f(β | ·) ∝ exp

{
− 1

2σ2
(log y −Xβ)>R(log y −Xβ)

}
e−β

>β/(2σ2
β)

∝ exp
{
− 1

2

[
β>
(
σ−2X>RX + σ−2

β I
)

︸ ︷︷ ︸
Ω

β − 2σ−2(log y)>RXβ
]}

∝ exp
{
− 1

2

[
β>Ωβ − 2σ−2(log y)>RXΩ−1︸ ︷︷ ︸

ϑ>

Ωβ
]}
.

Therefore [β | ·] ∼ N(ϑ,Ω−1) with

ϑ = Ω−1X>R (log y)σ−2, Ω = σ−2X>RX + σ−2
β I.

3. Finally, recalling that θ = (µ, σ2), to draw [Y | z,θ], notice that

f(y | z,θ) ∝

[
n∏
i=1

fi(zi − yi | λi)

]
fLN(y |Xβ, σ2R) (A.2)

may not factor into independent terms, however, we may draw sequentially from [Yi | y−i, z,θ], for
i = 1, . . . , n, where y−i = (y1, . . . , yi−1, yi+1, . . . , yn). From (2.1) and (A.2),

f(yi | y−i, z,θ) ∝ fi(zi − yi | λi)fLN(yi | µi, σ2
i ),

µi = x>i β +
ρ

ai+

n∑
`=1

ai`(log y` − x>` β), σ2
i =

σ2

ai+
.

Furthermore, rewriting as a distribution on ξi,

f(ξi | y−i, z,θ) ∝ fi(ξi | λi)fLN(zi − ξi | µi, σ2
i ) (A.3)

so that we may draw ξ′i ∼ [ξi | y−i, z,θ] using the direct sampler in Appendix A.3 and transform to
yi = zi − ξ′i to obtain a draw from [Yi | y−i, z,θ].

Remark A.2. With an ICAR model and an intercept assumed so that X = (1 W ), this sampler cannot
produce useful draws of the first element β1 of β. To see this, note that in Step 2, we have

RX =
(
0 (A−D)W

)
and X>RX =

(
0 0>

0 W>(A−D)W

)
using the identities (A−D)1 = 0 and 1>(A−D) = 0>. Furthermore,

Ω−1 =

(
σ2
β 0>

0
[
σ−2W>(A−D)W + σ−2

β I
]−1

)
.

Therefore, β1 is drawn from a normal distribution independently of the remaining coordinates of β with
variance e>1 Ω−1e1 = σ2

β and mean

e>1 ϑ = σ−2e>1 Ω−1X>R (log y) = σ−2σ2
βe
>
1 X

>R (log y) = 0,

which is a function of only the prior variance σ2
β .
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A.3 Direct Sampler

In Sections A.1 and A.2, we encountered conditional distributions for ξi of the form

f(ξ | ζ) = w(ξ | ζ)g(ξ | λ)/ψ, ξ ∈ Ω, ψ =

∫
Ω

w(ξ | ζ)g(ξ | λ)dν(ξ)

where ν(·) is either the counting measure or Lesbegue measure if ξi is discrete or continuous, respectively.
The vector ζ contains all random variables which have been conditioned on; we will consider it fixed for the
remainder of this section and omit it from the notation. Here, g is a density function which will be referred
to as the base distribution, and w is a nonnegative function that will be referred as the weight function. In
particular,

w(ξ | ζ) = fLN(z − ξ | ϑ, τ2) (A.4)

for some mean and variance parameters ϑ and τ2. Three base distributions were encountered, depending on
the agency noise assumed in the model:

1. Laplace noise g(ξ | λ) = fLap(ξ | λ),
2. Gaussian noise g(ξ | λ) = fN(ξ | 0, λ2), and
3. Discrete Gaussian noise g(ξ | λ) = fDG(ξ | 0, λ2).

These three weighted distributions may be drawn using the direct sampling scheme described in Raim
(2021), which is based on the framework developed by Walker et al. (2011). The idea in direct sampling is to
augment a random variable U where it is easier to draw from the joint distribution [ξ, U ] than the marginal
of ξ. This is accomplished without explicitly computing the normalizing constant ψ. Define c = supξ∈Ω w(ξ)
and Au = {ξ ∈ Ω : w(ξ) > uc}. To augment U , assume [U | ξ] ∼ Uniform(0, w(ξ)/c) so that

f(u | ξ) =
c

w(ξ)
I(0 < u < w(ξ)/c) =

c

w(ξ)
I(ξ ∈ Au).

The joint density of [ξ, U ] is then

f(x, u) =
c

ψ
g(ξ) I(ξ ∈ Au),

so that the marginal density of U is

p(u) =
c

ψ
P(Au), u ∈ [0, 1], P(Au) =

∫
I(ξ ∈ Au)g(ξ)dν(ξ),

and the distribution of [ξ | u] is

f(ξ | u) =
g(ξ)

P(Au)
I(ξ ∈ Au).

Therefore, we may draw u from marginal distribution p(u) and ξ′ from [ξ | u], and finally discard u.
The direct sampling scheme described in Raim (2021) assumes univariate target density f with weight

function w with Au an interval for every u ∈ [0, 1], and is most practical when endpoints of Au and the
CDF and quantile function of base distribution g are readily computed. We will review these steps to obtain
samplers used the present paper. A step function h(u) to approximate the marginal p(u); in particular,
an unnormalized version of the step function h∗ is built from N knot points u0, . . . , uN so that h(u) =

h∗(u)/
∫ 1

0
h∗(t)dt. We use N = 100 in all results in this paper. To obtain exact draws from p(u), rather

than from a numerical approximation to p(u), rejection sampling is used with h as the proposal density
as described in Algorithm 2. The expected number of rejections will be small when h∗ is an accurate
approximation to P(Au). Details on construction of the step function, knot selection, and rejection sampling
are described in Raim (2021).
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For the weight function (A.4), the mode is ξ∗ = z − exp{µ − σ2} so that c = exp{−(µ − σ2/2)} is the
associated maximum of the weight function. The set Au is an interval whose endpoints are the roots of the
equation w(ξ)− cu = 0, which are given by

{ξ1(u), ξ2(u)} = z − exp
{

(µ− σ2)±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2}
. (A.5)

Denoting G as the cumulative distribution function associated with g, and G(ξ−) = limt↑ξ G(t), we have

P(Au) = P(w(ξ) > uc)

= P(ξ1(u) < ξ < ξ2(u))

= G(ξ2(u)−)−G(ξ1(u)). (A.6)

Once u is drawn from p(u), the quantile function G−(ξ) may be used to draw from f(ξ | u) via the inverse
CDF method because

F−(ϕ | u) ≡ G−((t− s)ϕ+ s)

for quantile ϕ ∈ (0, 1) with s = G(ξ1(u)) and t = G(ξ2(u)−). Algorithm 1 describes the computation of P(Au)
via (A.5) and (A.6), and Algorithm 2 summarizes the overall direct sampler.4 To complete specification of
the sampler, we now describe computation of G and G− for each of the three base distributions. The Laplace
distribution has closed form expressions

GLap(ξ | λ) =
1

2
+

1

2
sgn(ξ)[1− e−|ξ|/λ],

G−Lap(ϕ | λ) = −λ sgn(ϕ− 1/2) log(1− 2|ϕ− 1/2|).

Functions for the Gaussian distribution are widely available in software libraries; e.g., GN(ξ | λ2) and G−N(ϕ |
λ2) can be invoked using pnorm(xi, 0, lambda) and qnorm(phi, 0, lambda) in R, respectively. The
DG(0, λ2) distribution is not implemented in standard statistical software; however, Canonne et al. (2020)
provide a number of results to facilitate its use, including a close relationship to the N(0, λ2) distribution.
We will make use of one particular result, which will now be stated for reference.

Lemma A.3 (Proposition 25 of Canonne et al. (2020)). Suppose X ∼ DG(0, λ2) and Y ∼ N(0, λ2). For
any integer m ≥ 1 and all λ > 0, P(X ≥ m) ≤ P(Y ≥ m− 1).

To use the Discrete Gaussian distribution with the direct sampler, we would like to make use of its CDF
and quantile function; however, these appear not to have closed form expressions. Our approach will be
to work with a truncated version of the distribution, which is described in the following results. Denote
Φ(x | µ, σ2) and Φ−1(ϕ | µ, σ2) as the CDF and quantile function of N(µ, σ2), respectively.

Lemma A.4. For any τ ∈ (0, 1], let xτ = dΦ−1(1−τ/2 | 0, λ2)e and X ∼ DG(0, λ2). Then P(|X| > xτ ) ≤ τ .

Proof. Let Y ∼ N(0, λ2) and U ∼ Uniform(0, 1),

P(|X| > xτ ) = 2 P(X ≥ xτ + 1) (A.7)

≤ 2 P(Y ≥ xτ ) (A.8)

≤ 2 P(Y ≥ Φ−1(1− τ/2 | 0, λ2))

= 2 P(U ≥ 1− τ/2)

= 2(1− (1− τ/2))

= τ.

Expression (A.7) follows by symmetry of X about 0. Expression (A.8) follows from Lemma A.3 because xτ
is a nonnegative integer when τ ∈ (0, 1].

4Remark 2.2 of Raim (2021) gives a more complicated expression for the acceptance ratio, but it can simply be taken as
P(Au)/h∗(u).
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Now, with xτ selected as in Lemma A.4, Sτ = {−xτ , . . . , xτ} is ensured to contain at least probability τ
from the DG(0, λ2) distribution. Therefore, we consider instead working with DG(0, λ2) truncated to the set
Sτ , which we denote DGτ (0, λ2). The following result shows that DG(0, λ2) and DGτ (0, λ2) are also close
in total variation distance dTV.

Proposition A.5. Let p be a density on a countable set Ω, X ∼ p, and q(x) = I(x ∈ S) · p(x)/P(X ∈ S) be
q truncated to a set S ⊆ Ω. Then dTV(p, q) = P(X /∈ S).

Proof. Because Ω is countable, we may express the total variation distance between p and q as

dTV(p, q) =
1

2

∑
x∈Ω

|p(x)− q(x)|

=
1

2

∑
x∈S
|p(x)− q(x)|+ 1

2

∑
x∈Ω\S

|p(x)− q(x)|

=
1

2

∑
x∈S

∣∣∣∣p(x)− p(x)

P(X ∈ S)

∣∣∣∣+
1

2

∑
x∈Ω\S

p(x)

=
1

2

∑
x∈S

p(x)

∣∣∣∣1− 1

P(X ∈ S)

∣∣∣∣+
1

2
P(X /∈ S)

=
1

2

∑
x∈S

p(x)
P(X /∈ S)

P(X ∈ S)
+

1

2
P(X /∈ S)

= P(X /∈ S).

Therefore, the total variation distance between DG(0, λ2) and DGτ (0, λ2) is P(|X| > xτ ), which is
bounded above by the τ given in Lemma A.4 to select xτ . To facilitate the repeated computations of the
CDF of DGτ (0, λ2) used in Algorithms 1 and 2, values

GDGτ (ξ | λ) =

∑
ω∈Sτ I(ω ≤ ξ) exp{−ω2/(2λ2)}∑

s∈Sτ exp{−s2/(2λ2)}

may be precomputed for a given λ and each ξ ∈ Sτ . The quantile function G−DGτ
may be implemented using

a bisection search on the sorted CDF values.

Algorithm 1 Unnormalized p(u) density.

Input: u ∈ [0, 1] argument to evaluate.
Input: ζ = (z, µ, σ2) parameters for w.

1: function P(Au)

2: Let {ξ1(u), ξ2(u)} = z − exp
{

(µ− σ2)±
[
σ4 − 2µσ2 + 2σ2 log(cu)

]1/2}
.

3: return G(ξ2(u)−)−G(ξ1(u))

B Simulation Results
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Algorithm 2 Direct sampler with rejection step.

Input: G is CDF of g.
Input: G− is quantile function of g.
Input: c = supξ∈Ω w(ξ).
Input: ζ = (z, µ, σ2) parameters for w.
Input: λ parameter for g.
Input: N determines initial number of knot points for step function approximation.

1: function DirectSampler
2: Define the function P(Au) according to Algorithm 1.
3: Construct the step function h∗ using N + 1 knot points and P(Au).
4: Let h be the density from normalizing h∗.

5: do . Draw from p(u) using rejection sampling.
6: Draw u from step density h
7: Draw v from Uniform(0, 1)
8: Let Accept← I [v ≤ P(Au)/h∗(u)].
9: Update h∗ with u as additional knot if adaptive rejection is desired.

10: while Accept = 0

11: Assign s = G(ξ1(u)) and t = G(ξ2(u)−) . Draw from f(x | u) using its quantile function.
12: Draw ω ∼ Uniform(0, 1)
13: return G−((t− s)ω + s)

Table 1: Results for Laplace IID simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 140.81 14.16 2.82 141.07 14.15 2.84 141.41 14.07 2.81
MAE 99.75 10.03 2.00 100.13 10.03 2.01 100.22 9.99 1.99
MRAE 59.91 6.14 1.20 36.38 3.68 0.75 23.01 2.15 0.44
MAX 764.34 75.58 15.11 736.72 73.74 15.06 743.83 73.77 14.38
COV 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
LEN 599.15 59.91 11.98 599.15 59.91 11.98 599.15 59.91 11.98

L
ap

la
ce

RMSE 7.75 5.05 2.04 40.61 9.77 2.50 77.01 11.66 2.64
MAE 4.41 3.14 1.46 19.42 6.71 1.77 48.19 8.20 1.88
MRAE 1.60 1.74 0.82 5.84 2.21 0.63 9.30 1.61 0.40
MAX 97.19 47.69 12.90 559.13 61.41 13.87 562.19 68.41 14.12
COV 0.42 0.94 0.95 0.87 0.94 0.95 0.92 0.95 0.95
LEN 10.71 14.83 7.27 86.92 32.20 9.89 214.79 44.12 10.91

G
au

ss

RMSE 30.21 5.96 2.06 48.63 9.87 2.50 79.19 11.70 2.64
MAE 11.99 3.38 1.45 23.93 6.67 1.77 48.05 8.18 1.88
MRAE 7.89 1.84 0.81 8.38 2.18 0.61 9.49 1.58 0.39
MAX 523.57 59.86 13.38 580.25 63.64 13.96 614.23 69.06 14.14
COV 0.86 0.96 0.93 0.94 0.93 0.92 0.92 0.92 0.92
LEN 72.39 16.55 6.63 122.02 29.48 8.36 211.23 37.78 9.06
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Table 2: Results for Laplace IID simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

L
a
p

la
ce

µ -35.08 1.00 1.00 2.26 2.04 2.01 3.23 3.03 3.01
sd(µ) 64.54 0.12 0.05 0.26 0.07 0.05 0.14 0.06 0.06
σ2 1.07 0.99 1.01 1.26 1.88 1.94 2.40 2.77 2.86
sd(σ2) 0.18 0.15 0.08 0.26 0.15 0.12 0.23 0.15 0.13

G
au

ss

µ -0.21 0.86 0.99 2.30 2.02 2.01 3.23 3.03 3.00
sd(µ) 5.72 0.13 0.05 0.16 0.08 0.05 0.14 0.06 0.06
σ2 1.92 1.43 1.07 2.02 1.97 1.96 2.55 2.82 2.88
sd(σ2) 0.42 0.16 0.08 0.20 0.16 0.12 0.23 0.16 0.13

Table 3: Results for Laplace REG simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 142.21 14.04 2.83 141.69 14.14 2.83 141.78 14.09 2.84
MAE 100.77 9.95 2.00 100.00 10.00 2.00 100.26 9.96 2.02
MRAE 69.83 6.85 1.38 122.44 13.21 2.36 469.15 44.48 9.08
MAX 746.00 74.27 14.71 773.21 73.52 14.72 765.87 75.50 14.92
COV 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
LEN 599.15 59.91 11.98 599.15 59.91 11.98 599.15 59.91 11.98

L
ap

la
ce

RMSE 8.89 5.44 2.03 54.38 9.70 2.40 85.09 11.15 2.60
MAE 4.56 3.26 1.43 26.25 6.24 1.66 47.49 7.27 1.82
MRAE 1.60 1.64 0.84 5.54 2.72 1.10 10.12 4.21 4.11
MAX 112.44 48.00 12.32 511.17 62.82 13.65 654.78 69.80 14.22
COV 0.67 0.94 0.95 0.92 0.94 0.95 0.94 0.94 0.79
LEN 14.89 15.25 7.20 124.21 31.88 9.16 243.75 39.26 8.31

G
au

ss

RMSE 33.22 6.19 2.06 59.93 9.83 2.41 87.26 11.19 2.55
MAE 12.79 3.48 1.43 29.03 6.26 1.66 48.37 7.25 1.76
MRAE 9.21 1.82 0.84 9.53 3.05 1.12 14.11 4.38 2.66
MAX 544.62 58.89 12.75 604.26 64.75 13.76 685.77 70.74 14.19
COV 0.96 0.96 0.93 0.93 0.93 0.92 0.92 0.92 0.86
LEN 79.20 16.83 6.55 137.10 28.71 7.82 223.27 34.03 7.71
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Table 4: Results for Laplace REG simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

L
ap

la
ce

β0 -1.80 0.43 0.49 0.60 0.52 0.52 0.71 0.56 0.90
sd(β0) 2.54 0.19 0.07 0.41 0.16 0.09 0.28 0.21 0.34
β1 0.19 0.54 0.51 1.51 1.50 1.49 2.43 2.46 2.26
sd(β1) 1.12 0.09 0.04 0.17 0.08 0.06 0.14 0.13 0.21
σ2 1.04 1.00 1.01 1.66 1.91 1.95 2.64 2.79 2.67
sd(σ2) 0.15 0.28 0.16 0.65 0.56 0.42 1.12 0.85 1.25

G
au

ss

β0 1.26 0.41 0.48 0.99 0.56 0.52 0.87 0.57 0.68
sd(β0) 0.83 0.19 0.07 0.45 0.16 0.09 0.28 0.17 0.29
β1 0.19 0.47 0.51 1.31 1.47 1.49 2.35 2.46 2.39
sd(β1) 0.39 0.09 0.04 0.20 0.08 0.06 0.14 0.11 0.18
σ2 2.04 1.41 1.07 1.98 1.98 1.98 2.75 2.84 2.79
sd(σ2) 1.31 0.45 0.18 0.78 0.59 0.43 1.17 0.89 0.99

Table 5: Results for Laplace CAR simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 140.41 14.20 2.81 141.81 14.35 2.81 139.57 14.12 2.81
MAE 99.90 10.08 1.99 100.82 10.16 2.00 99.31 10.05 2.00
MRAE 44.85 4.63 0.94 47.46 4.79 0.89 85.59 9.00 1.65
MAX 506.83 53.82 10.51 526.40 54.17 10.14 525.66 52.78 10.14
COV 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
LEN 599.15 59.91 11.98 599.15 59.91 11.98 599.15 59.91 11.98

L
ap

la
ce

RMSE 5.29 2.95 1.37 37.37 7.97 2.18 73.82 10.66 2.45
MAE 3.50 2.02 0.97 17.45 4.87 1.51 39.25 6.76 1.70
MRAE 1.37 0.64 0.36 1.82 0.54 0.30 1.05 0.55 0.35
MAX 23.98 13.56 5.58 226.08 35.09 8.38 350.15 45.15 9.19
COV 0.88 0.91 0.94 0.91 0.92 0.94 0.90 0.91 0.90
LEN 17.51 8.22 4.75 70.40 23.44 8.11 193.27 34.75 8.96

G
au

ss

RMSE 6.84 3.63 1.44 38.44 8.14 2.19 72.66 10.64 2.41
MAE 4.06 2.41 1.01 19.27 4.98 1.51 39.09 6.74 1.65
MRAE 1.58 0.80 0.38 2.35 0.66 0.31 1.22 0.56 0.31
MAX 38.00 17.96 6.09 224.92 36.74 8.54 348.04 45.61 9.12
COV 0.89 0.86 0.94 0.89 0.90 0.92 0.88 0.90 0.90
LEN 20.63 8.81 4.77 75.97 22.04 7.11 173.29 30.44 7.75
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Table 6: Results for Laplace CAR simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

L
a
p

la
ce

β0 -3.30 -0.79 0.45 -0.56 0.46 0.53 0.66 0.57 0.59
sd(β0) 1.04 1.57 0.25 1.70 0.41 0.31 0.63 0.45 0.47
β1 -1.34 0.36 0.51 1.48 1.51 1.50 2.44 2.46 2.40
sd(β1) 0.70 0.58 0.10 0.84 0.16 0.09 0.24 0.14 0.11
σ2 1.00 1.00 1.00 1.04 1.38 1.60 1.66 2.02 2.21
sd(σ2) 0.02 0.05 0.15 0.08 0.23 0.19 0.25 0.26 0.27

G
a
u

ss

β0 -3.22 -1.09 0.46 -0.36 0.56 0.55 0.76 0.66 0.51
sd(β0) 1.20 1.97 0.28 2.03 0.46 0.30 0.63 0.44 0.38
β1 -1.30 0.29 0.50 1.47 1.47 1.49 2.41 2.45 2.45
sd(β1) 0.77 0.80 0.11 0.89 0.19 0.09 0.25 0.15 0.10
σ2 1.01 1.11 1.11 1.12 1.50 1.67 1.72 2.06 2.22
sd(σ2) 0.11 0.21 0.20 0.17 0.27 0.21 0.29 0.26 0.24

Table 7: Results for DG IID simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 100.07 10.02 2.00 100.07 10.02 2.00 100.07 10.02 2.00
MAE 79.82 7.99 1.57 79.82 7.99 1.57 79.82 7.99 1.57
MRAE 48.75 4.80 0.95 29.68 2.88 0.57 18.07 1.72 0.34
MAX 347.97 34.14 6.84 347.97 34.14 6.84 347.97 34.14 6.84
COV 0.95 0.95 0.93 0.95 0.95 0.93 0.95 0.95 0.92
LEN 392.00 40.00 8.00 392.00 40.00 8.00 392.00 40.00 8.00

D
G

RMSE 8.83 4.20 1.55 31.01 7.25 1.82 56.39 8.57 1.92
MAE 6.82 2.82 1.19 17.84 5.36 1.44 37.07 6.59 1.51
MRAE 4.89 1.51 0.66 5.67 1.67 0.48 6.48 1.22 0.31
MAX 88.58 27.82 6.36 285.26 31.46 6.69 317.77 32.90 6.77
COV 1.00 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.97
LEN 51.04 14.02 5.51 95.75 25.14 6.67 176.70 31.34 7.34

G
au

ss

RMSE 7.06 4.50 1.59 35.16 7.43 1.84 59.15 8.65 14.58
MAE 4.08 2.79 1.23 16.08 5.52 1.46 37.80 6.72 3.48
MRAE 0.86 1.33 0.72 2.73 1.80 0.54 6.28 1.37 0.36
MAX 70.57 32.64 6.64 347.85 32.99 6.74 344.98 33.44 350.86
COV 0.39 0.95 0.97 0.89 0.97 0.98 0.96 0.97 0.96
LEN 3.32 13.31 6.57 59.98 29.19 8.40 193.68 37.84 9.80
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Table 8: Results for DG IID simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

D
G

µ 1.45 0.93 0.99 2.03 1.99 2.00 2.92 3.00 3.00
sd(µ) 0.21 0.11 0.04 0.19 0.08 0.05 0.15 0.07 0.05
σ2 1.60 1.15 1.04 2.03 2.07 2.01 3.20 3.05 2.99
sd(σ2) 0.15 0.13 0.08 0.27 0.19 0.12 0.33 0.20 0.17

G
a
u

ss µ -5.04 0.79 0.99 0.24 1.98 2.00 2.77 3.01 2.98
sd(µ) 2.44 0.16 0.05 1.80 0.09 0.05 0.22 0.07 0.10
σ2 5.11 1.05 0.97 3.68 2.00 1.96 3.29 2.99 3.05
sd(σ2) 1.71 0.19 0.08 2.21 0.20 0.12 0.47 0.21 0.39

Table 9: Results for DG REG simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 99.84 9.99 1.99 99.84 9.99 1.99 99.84 9.99 1.99
MAE 79.58 7.98 1.56 79.58 7.98 1.56 79.58 7.98 1.56
MRAE 55.82 5.55 1.08 96.42 9.69 1.82 403.25 41.19 6.94
MAX 341.50 34.04 6.81 341.50 34.04 6.81 341.50 34.04 6.81
COV 0.95 0.95 0.93 0.95 0.95 0.93 0.95 0.95 0.93
LEN 392.00 40.00 8.00 392.00 40.00 8.00 392.00 40.00 8.00

D
G

RMSE 9.56 4.36 1.53 40.44 7.16 1.73 60.88 8.06 1.78
MAE 6.91 2.87 1.16 21.76 5.03 1.32 37.35 5.80 1.34
MRAE 5.15 1.51 0.67 4.95 1.97 0.68 7.05 2.28 0.75
MAX 100.32 27.87 6.44 286.64 32.05 6.70 317.51 32.59 6.81
COV 1.00 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.98
LEN 51.23 14.12 5.34 110.22 24.03 6.28 182.53 27.87 6.55

G
au

ss

RMSE 8.74 4.37 1.53 40.53 7.16 1.74 60.92 8.13 1.83
MAE 4.46 2.84 1.16 21.49 5.04 1.32 37.38 5.89 1.40
MRAE 1.27 1.45 0.68 4.82 2.21 0.85 8.63 4.79 2.42
MAX 104.61 27.98 6.44 287.46 32.05 6.70 318.19 32.77 6.93
COV 0.63 0.96 0.95 0.95 0.95 0.95 0.95 0.93 0.86
LEN 12.72 14.24 5.58 107.69 24.17 6.42 182.31 27.74 6.14
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Table 10: Results for DG REG simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

D
G

β0 1.21 0.47 0.48 0.54 0.50 0.49 0.50 0.50 0.49
sd(β0) 0.27 0.13 0.06 0.14 0.10 0.07 0.11 0.09 0.08
β1 0.19 0.49 0.51 1.47 1.50 1.50 2.50 2.50 2.51
sd(β1) 0.15 0.07 0.04 0.07 0.05 0.05 0.05 0.06 0.05
σ2 1.62 1.10 1.04 2.09 2.02 2.02 3.03 3.00 3.00
sd(σ2) 0.15 0.10 0.06 0.22 0.14 0.12 0.20 0.17 0.16

G
a
u

ss

β0 -3.63 0.34 0.47 0.27 0.49 0.48 0.46 0.57 0.68
sd(β0) 2.45 0.21 0.07 0.49 0.16 0.09 0.27 0.27 0.32
β1 -0.06 0.52 0.51 1.57 1.50 1.51 2.52 2.46 2.39
sd(β1) 0.96 0.09 0.04 0.19 0.09 0.06 0.13 0.16 0.19
σ2 4.18 1.20 1.05 2.22 2.03 2.02 3.05 3.00 2.99
sd(σ2) 1.48 0.16 0.07 0.37 0.18 0.13 0.25 0.19 0.55

Table 11: Results for DG CAR simulation: summary of predictions.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

O
b

se
rv

ed

RMSE 99.48 9.92 1.99 99.48 9.92 1.99 99.48 9.92 1.99
MAE 79.43 7.94 1.56 79.43 7.94 1.56 79.43 7.94 1.56
MRAE 35.44 3.57 0.72 34.61 3.61 0.76 63.52 6.95 1.56
MAX 270.89 26.78 5.44 270.89 26.78 5.44 270.89 26.78 5.44
COV 0.95 0.95 0.93 0.95 0.95 0.93 0.95 0.95 0.93
LEN 392.00 40.00 8.00 392.00 40.00 8.00 392.00 40.00 8.00

D
G

RMSE 7.81 2.52 1.16 30.13 6.03 1.63 55.42 7.47 1.74
MAE 6.12 1.70 0.86 15.10 4.00 1.20 31.09 5.20 1.29
MRAE 3.21 0.60 0.30 1.62 0.46 0.22 0.77 0.38 0.18
MAX 31.75 11.40 3.96 168.06 22.31 4.96 224.16 24.79 5.17
COV 1.00 0.99 0.99 0.99 0.97 0.98 0.97 0.97 0.98
LEN 46.28 10.69 4.37 85.84 20.26 5.90 155.70 25.69 6.37

G
au

ss

RMSE 5.06 2.78 1.17 31.13 6.06 1.63 55.76 7.50 1.75
MAE 3.34 1.90 0.86 15.05 4.02 1.21 31.56 5.24 1.31
MRAE 1.10 0.55 0.30 1.21 0.47 0.25 0.97 0.45 0.27
MAX 24.08 12.04 3.98 172.99 22.43 4.96 224.47 24.86 5.21
COV 0.85 0.94 0.97 0.97 0.96 0.95 0.96 0.95 0.94
LEN 14.86 9.98 4.61 79.84 20.43 6.02 157.29 25.80 6.39
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Table 12: Results for DG CAR simulation: summary of parameter estimates.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

D
G

β0 1.28 0.48 0.44 0.85 0.53 0.47 0.55 0.52 0.47
sd(β0) 0.49 0.31 0.20 0.37 0.29 0.27 0.33 0.32 0.33
β1 0.05 0.36 0.50 1.28 1.49 1.51 2.48 2.50 2.51
sd(β1) 0.27 0.20 0.08 0.22 0.10 0.08 0.11 0.10 0.10
σ2 5.03 3.17 1.66 3.80 2.46 2.20 3.50 3.26 3.10
sd(σ2) 1.32 0.74 0.31 1.08 0.58 0.39 0.76 0.66 0.52

G
au

ss

β0 -3.85 -0.94 0.37 -0.75 0.39 0.46 0.34 0.44 0.46
sd(β0) 0.79 1.38 0.27 1.31 0.41 0.29 0.68 0.43 0.42
β1 -1.45 0.55 0.53 1.69 1.55 1.52 2.57 2.51 2.45
sd(β1) 0.56 0.55 0.09 0.63 0.15 0.09 0.26 0.15 0.11
σ2 7.85 4.69 1.77 4.74 2.56 2.23 3.60 3.29 3.10
sd(σ2) 1.85 1.62 0.35 1.52 0.61 0.40 0.84 0.70 0.54

Table 13: Laplace simulation results: mean of STAN run times per simulation (minutes) over 100 simulated
datasets.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

II
D Lap 0.64 1.01 4.05 1.41 3.57 4.06 2.32 3.37 5.59

Gauss 0.39 0.17 0.14 0.27 0.17 0.22 0.24 0.26 0.33

R
E

G Lap 0.76 1.77 2.84 2.95 4.72 6.33 7.19 32.40 49.62
Gauss 0.30 0.19 0.18 0.28 0.33 0.44 0.52 1.94 3.67

C
A

R Lap 1.14 1.80 1.48 4.75 19.86 83.33 87.25 139.65 146.71
Gauss 0.82 1.14 0.59 1.61 2.61 7.16 7.89 16.93 17.82

Table 14: DG simulation results: mean of sampler run times per simulation (minutes) over 100 simulated
datasets.

Scenario S1 Scenario S2 Scenario S3
ε = 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

II
D DG 14.19 12.09 11.61 13.94 11.95 13.53 13.72 15.11 11.75

Gauss 0.53 0.25 0.23 0.40 0.28 0.38 0.36 1.41 30.52

R
E

G DG 18.01 16.19 18.39 17.59 15.92 16.63 17.36 16.58 16.05
Gauss 0.37 0.16 0.19 0.24 0.29 0.48 0.58 2.23 3.28

C
A

R DG 1.63 1.34 1.23 1.57 1.35 1.23 1.61 1.28 1.19
Gauss 0.94 1.10 0.66 1.87 3.69 9.03 8.99 16.72 12.78
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Table 15: Laplace empirical simulation results: mean of STAN run times per simulation (minutes) over 100
simulated datasets.

Cherokee Choctaw Sioux

ε = 0.01 0.10 0.50 0.01 0.10 0.50 0.01 0.10 0.50

II
D Lap 0.21 0.23 0.97 0.18 0.15 0.34 0.10 0.21 0.17

Gauss 0.03 0.05 0.10 0.02 0.03 0.05 0.05 0.02 0.02

R
E

G Lap 0.15 0.12 0.43 0.13 0.08 0.18 0.06 0.04 0.05
Gauss 0.14 0.06 0.07 0.12 0.05 0.05 0.07 0.03 0.02

ICAR Gauss 13.69 63.72 535.93 . . . . . . . . . . . . . . . . . .

Table 16: DG empirical simulation results: mean of sampler run times per simulation (minutes) over 100
simulated datasets.

Scenario 1 Scenario 2 Scenario 3

ε = 0.01 0.10 0.50 0.01 0.10 0.50 0.01 0.10 0.50

II
D DG 9.96 8.26 8.44 9.73 8.42 8.25 9.91 8.52 8.34

Gauss 1.06 2.40 3.40 0.67 1.49 2.77 0.33 0.61 0.99

R
E

G DG 11.40 9.96 8.03 11.74 9.91 8.18 11.42 9.38 8.10
Gauss 8.55 15.11 16.76 2.70 7.06 15.43 1.15 1.68 4.32

C
A

R DG 13.08 11.45 9.74 15.74 13.57 9.61 16.30 15.93 9.54
Gauss 10.74 10.68 10.56 10.39 10.60 10.58 10.43 10.60 10.63
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Table 17: Empirical simulation results: summary of predictions. Due to convergence issues, results for the
Laplace ICAR model are not shown. Furthermore, Gauss ICAR results are shown only for the Cherokee
group because of long runtimes.

Cherokee Choctaw Sioux

ε = 0.01 0.10 0.50 0.01 0.10 0.50 0.01 0.10 0.50

O
b

se
rv

ed

RMSE 140.78 13.82 2.83 138.55 14.06 2.75 142.74 13.96 2.77
MAE 101.02 9.92 2.00 98.99 10.05 1.96 101.58 9.94 1.97
MRAE 3.09 0.30 0.06 1.62 0.16 0.03 23.67 2.33 0.47
MAX 490.57 47.55 10.09 490.22 48.65 9.37 512.41 49.02 9.86
COV 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
LEN 599.15 59.91 11.98 599.15 59.91 11.98 599.15 59.91 11.98

L
ap

II
D

RMSE 120.18 13.45 2.81 119.23 13.52 2.73 34.14 9.61 2.44
MAE 85.48 9.69 1.99 85.82 9.64 1.95 16.43 6.73 1.75
MRAE 2.14 0.30 0.06 1.23 0.14 0.03 1.65 1.16 0.31
MAX 434.28 46.97 10.04 420.74 47.08 9.35 198.34 37.89 8.97
COV 0.95 0.96 0.97 0.95 0.95 0.97 0.84 0.98 0.98
LEN 459.48 58.29 12.81 458.90 58.02 12.87 58.03 31.89 10.45

G
au

ss
II

D

RMSE 120.91 13.45 2.81 119.68 13.53 2.73 45.68 9.82 2.44
MAE 85.86 9.68 1.99 85.92 9.64 1.95 20.13 6.77 1.73
MRAE 2.10 0.29 0.05 1.22 0.14 0.03 2.64 1.16 0.31
MAX 438.15 47.08 10.06 425.97 47.17 9.35 277.91 40.19 9.06
COV 0.93 0.93 0.95 0.93 0.92 0.95 0.86 0.96 0.96
LEN 393.83 48.24 10.71 391.41 48.08 10.77 74.42 29.57 8.91

L
ap

R
E

G

RMSE 80.17 13.41 3.49 71.35 12.32 2.86 26.51 6.25 2.41
MAE 51.63 9.80 2.35 45.48 9.03 2.08 11.95 4.04 1.78
MRAE 0.28 0.22 0.12 0.21 0.10 0.03 0.84 0.47 0.30
MAX 323.93 44.89 13.88 286.85 42.11 9.27 156.99 27.61 8.15
COV 0.81 0.89 0.94 0.82 0.90 0.97 0.94 0.88 0.93
LEN 224.36 48.71 12.94 189.58 46.63 12.55 52.09 17.01 8.50

G
au

ss
R

E
G

RMSE 81.22 13.11 2.89 72.96 12.29 2.74 47.66 6.73 2.33
MAE 51.96 9.59 2.08 46.59 8.99 1.99 19.54 4.26 1.71
MRAE 0.29 0.22 0.09 0.22 0.10 0.03 1.73 0.52 0.29
MAX 332.93 45.12 10.00 294.56 42.57 9.18 301.35 30.37 8.35
COV 0.81 0.87 0.93 0.84 0.88 0.95 0.48 0.94 0.98
LEN 210.36 41.63 10.50 193.61 40.40 10.43 35.07 18.64 7.81

G
au

ss
IC

A
R

RMSE 85.37 9.64 2.61 — — — — — —
MAE 54.03 6.36 1.93 — — — — — —
MRAE 0.35 0.42 0.21 — — — — — —
MAX 358.25 60.21 12.50 — — — — — —
COV 0.92 0.84 0.93 — — — — — —
LEN 257.70 25.16 11.22 — — — — — —
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Table 18: Empirical (DG) simulation results: summary of predictions.

Cherokee Choctaw Sioux

ε = 0.01 0.10 0.50 0.01 0.10 0.50 0.01 0.10 0.50

O
b

se
rv

ed

RMSE 99.94 9.99 1.99 99.94 9.99 1.99 99.94 9.99 1.99
MAE 79.75 7.96 1.55 79.75 7.96 1.55 79.75 7.96 1.55
MRAE 10.05 1.00 0.20 20.92 2.08 0.41 36.27 3.61 0.70
MAX 337.49 33.25 6.63 337.49 33.25 6.63 337.49 33.25 6.63
COV 0.95 0.95 0.92 0.95 0.95 0.92 0.95 0.95 0.92
LEN 392.00 40.00 8.00 392.00 40.00 8.00 392.00 40.00 8.00

D
G

II
D

RMSE 59.04 8.66 1.93 51.92 7.72 1.87 31.34 6.22 1.76
MAE 40.98 6.69 1.54 36.08 5.91 1.52 20.04 4.86 1.46
MRAE 4.25 0.67 0.17 6.44 1.01 0.26 6.54 1.53 0.41
MAX 299.37 31.83 6.55 298.18 30.84 6.46 288.98 29.48 6.20
COV 0.93 0.93 0.94 0.84 0.83 0.84 0.69 0.69 0.69
LEN 197.44 31.64 7.30 168.47 26.67 6.41 91.72 19.60 5.15

G
au

ss
II

D

RMSE 58.86 8.66 1.92 50.06 7.60 1.83 29.28 5.84 1.62
MAE 38.01 6.62 1.52 29.49 5.54 1.44 12.92 3.91 1.24
MRAE 3.11 0.60 0.15 3.92 0.74 0.22 2.86 0.87 0.33
MAX 306.48 32.10 6.57 307.47 31.40 6.51 281.42 30.35 6.33
COV 0.93 0.92 0.91 0.83 0.82 0.82 0.69 0.68 0.67
LEN 187.26 31.67 7.36 152.34 26.08 6.70 74.37 18.27 5.52

D
G

R
E

G

RMSE 34.67 7.37 1.92 27.41 6.06 1.90 18.07 4.51 1.66
MAE 17.87 5.36 1.52 12.21 4.31 1.53 9.45 3.04 1.37
MRAE 0.61 0.39 0.17 0.77 0.51 0.26 2.35 0.76 0.37
MAX 245.90 41.32 6.58 226.19 27.97 6.65 189.37 32.60 6.27
COV 0.90 0.86 0.92 0.77 0.68 0.82 0.60 0.62 0.68
LEN 102.92 23.76 6.80 68.20 15.92 5.87 43.89 10.47 4.48

G
au

ss
R

E
G

RMSE 34.95 7.43 1.92 28.86 6.06 1.87 16.23 4.43 1.56
MAE 17.61 5.34 1.52 12.45 4.30 1.50 5.81 2.76 1.20
MRAE 0.46 0.37 0.17 0.60 0.51 0.25 0.67 0.59 0.31
MAX 246.62 48.08 6.60 231.78 28.16 6.63 175.54 32.27 6.29
COV 0.89 0.83 0.88 0.78 0.69 0.79 0.65 0.65 0.67
LEN 98.95 23.49 6.81 70.33 17.10 6.05 31.58 11.69 4.88

D
G

C
A

R

RMSE 30.61 7.50 1.94 23.99 6.60 1.93 8.99 5.94 1.71
MAE 15.66 5.46 1.54 10.29 4.60 1.56 4.21 3.46 1.39
MRAE 0.55 0.41 0.18 0.55 0.51 0.27 0.77 0.73 0.38
MAX 228.87 41.60 6.56 222.10 29.95 6.86 95.55 42.40 6.42
COV 0.80 0.80 0.91 0.40 0.50 0.80 0.23 0.26 0.67
LEN 75.80 21.63 6.69 29.02 11.70 5.68 5.32 3.60 4.29

G
au

ss
C

A
R

RMSE 31.42 7.47 1.93 25.46 6.17 1.90 14.45 4.46 1.59
MAE 16.00 5.43 1.53 11.20 4.40 1.51 6.16 2.85 1.24
MRAE 0.50 0.40 0.17 0.65 0.53 0.26 1.18 0.63 0.32
MAX 232.03 41.54 6.57 218.80 28.20 6.87 165.86 31.98 6.31
COV 0.82 0.79 0.87 0.70 0.60 0.77 0.67 0.61 0.66
LEN 80.58 22.04 6.73 57.23 14.99 5.87 34.35 10.50 4.74
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