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Executive Summary

According to Section 203(b) of the Voting Rights Act of 1965 beginning in 1975, and as amended in
1982 and 2006, states and political subdivisions must in certain circumstances make voting materials
available in languages other than English. These circumstances are defined in Section 203(b)
in terms of specific determinations involving the sizes and proportions of designated population
subgroups as measured by the decennial census and the most current American Community Survey
(ACS). Section 203(b) as amended prescribes that the Director of the Census Bureau shall make
these determinations every 5 years, based on the most current population estimates derived from
the ACS along with relevant census data. The 2021 determinations released in December 2021
were based solely on 2015-2019 5-year ACS data. As a response to concerns about the timing of
the decennial counts, which was affected by the COVID-19 pandemic, the decennial 2020 Census
data were not used.

For the determinations, estimates are needed at various levels of geographic aggregation. These
levels of geography include states, jurisdictions, American Indian Areas (AIAs), and Alaskan Native
Regional Corporations (ANRCs). The nation is partitioned into roughly 8,000 Jurisdictions (7,859
in ACS 2015-2019 5-year data containing at least one voting-age respondent), which are Counties
in most states and Minor Civil Divisions (MCDs) in the other states. Other geographic domains
relevant to provisions of Section 203(b) are the American Indian Areas (AIAs), of which there
are 568 with ACS respondents in 2015-2019, as well as 12 Alaska Native Regional Corporations
(ANRCs). All 12 ANRCs had at least one person in the ACS sample.

For purposes of Section 203(b), only the population of voting age (18 or over) persons is relevant.
Section 203(b) categorizes voting age persons according to Citizenship, Limited English Proficiency
(LEP) and Illiteracy. The classifications by voting age, Citizenship and Illiteracy, are each defined
by the answer to a single ACS question, and LEP is defined through the answers to two ACS
questions. People self-identify (in the Census or ACS) as belonging to one or more of 6 distinct
racial groups, (each containing several detailed races) and 1 ethnic classification that are then used
to define 73 ‘Language Minority Groups’ (LMGs) for purposes of Section 203(b). According to the
Voting Rights Act, only Asian and American Indian and Alaska Native languages and Spanish are
eligible for coverage. Of the LMGs eligible in 2021, 21 are Asian, 51 are American Indian or Alaska
Native (AIAN), and one is Hispanic.

Section 203(b) prescribes generally that states and political subdivisions must provide voting
materials in a language other than English for members of a LMG according to the following rules:

(i) A state must do so if the illiteracy rate among citizen voting-age LEP (VACLEP) members
of the LMG in the state exceeds the national rate of illiteracy among voting-age citizens (VACIT),
and the number of VACLEP persons in the LMG is greater than 5% of the total number of VACIT
in the state.

(ii) A jurisdiction must do so if the illiteracy rate among VACLEP persons in the LMG and
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jurisdiction exceeds the national rate of citizen illiteracy and the number of VACLEP LMG per-
sons in the jurisdiction is greater than either 10,000 or 5% of the total VACIT population of the
jurisdiction.

(iii) All jurisdictions (Counties or MCDs) containing any part of an American Indian Area
(AIA) or Alaskan Native Regional Corporation (ANRC) must do so if an AIAN LMG has illiteracy
rate among VACLEP AIAN persons of the LMG in the AIA/ANRC that exceeds the national rate
of citizen illiteracy and the number of VACLEP AIAN persons in the AIA/ANRC and LMG is
greater than 5% of the total voting-age citizen AIAN population of the AIA/ANRC.

Special tabulations of weighted survey estimates of state, jurisdiction, AIA, and ANRC voting-
age populations cross-classified by citizenship, limited English proficiency, illiteracy, and LMG are
available from ACS 5-year data. These tabulations could be used to create direct survey-weighted
estimates of all of the ingredients of the ‘triggering’ criteria (i)-(iii) for determinations. However, the
counts of ACS sampled voting-age persons by jurisdiction and LMG on which these weighted sums
would be based are often quite small, and the variability (standard errors) of the direct estimates are
often quite large compared to the estimates themselves. Moreover, the standard errors estimated
by current ACS methodology are also very unreliable for population counts in such small domains.

For reasons of estimation accuracy, starting in 2011 and again in 2016 and 2021, statistical
research on the estimation methodology driving the Section 203(b) determinations has been pri-
marily directed toward model-based ‘Small Area Estimation’. Small Area Estimation is devoted
to enhancing the precision of estimation through the formulation of statistical models for multiple
small areas which ‘borrow strength’ from one another through shared statistical parameters and
through use of auxiliary information.

The main idea of this approach is that geographies within the same LMG behave similarly with
respect to the characteristics of interest across different geographies, and with respect to covariates.

The domains used for the small area estimation models are Jurisdictions for each of the LMGs,
and AIAs or ANRCs for each of the AIAN LMGs. Statistical models are fitted separately for
the different LMGs and types of geography. In addition, the complexity of the model used for a
particular LMG and type of geography depends on how many distinct geographic units have ACS
respondents for that LMG. This is necessary as the ACS sample for some LMGs and geographic
units contains thousands of people, while for other LMGs and units of geography, the ACS sample
may contain only a single person.

The general form of model chosen for the 2021 statistical estimation is a Multinomial Logit
Normal (MLN) Model, formulated for the nested decreasing subpopulations of voting age persons
(VOT), voting age citizens (CIT), voting age citizens who are limited English proficient (LEP),
and illiterate limited English proficient voting age citizens (ILL). The MLN model is a random-
effects generalization of logistic regression, in which the proportions of CIT persons within VOT,
and similarly LEP within CIT and ILL within LEP, are modeled using a logit transformation and
random intercepts, as well as predictive covariates.
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The covariates used in modeling were computed from the same ACS dataset as the response
variable but at higher levels of aggregation. One set of covariates was defined as the higher-
geography-level LMG proportion of CIT within VOT, LEP within CIT, and ILL within LEP,
for the portion of the State complementary to a Jurisdiction it contains, or the portion of the
whole AIAN LMG complementary to an AIA. All other covariates were defined at the level of
the geographic unit, without regard to LMG. One such covariate, in all geography types, was the
proportion of people speaking a language other than English in the home. Covariates used in Asian
and Hispanic LMGs include the proportion of Foreign-born, the average years in US for the foreign-
born, and the proportions in coarse age-groups. Covariates used in various AIAN LMGs include
the proportions of high-school graduates, of white nonhispanic people, and of people in poverty.

In the most detailed form of the model, the random intercepts for the CIT, LEP and ILL
sub-models were jointly normally distributed and dependent. In less data-rich LMGs, the random
intercepts were assumed independent. In LMGs with still less data, models of this form with
reduced sets of covariates — or with none at all — were fitted. In smaller (AIAN) LMGs in which
the submodel CIT rates were uniformly close to 1, or in which the LEP or ILL rates were uniformly
close to 0, an even simpler form of model was fitted. This was a common-intercept beta-binomial
model with no covariates or random effects, which amounts to fitting a single rate on the pooled
LMG data.

The models chosen have been explored extensively in practice data analyses using ACS 2014-
2018 5-year data in the same way that the model was ultimately employed on ACS 2015-2019 5-year
data. The model has been assessed against the direct domain population estimators obtained from
the ACS and to those obtained by a Dirichlet-Multinomial model closely related to the model
used in producing 2016 determinations. Model diagnostics were used in selecting covariates for the
models and in assessing the suitability of the final models chosen. These analyses are elaborated
in this technical documentation. Uncertainty estimation was based on either Markov Chain Monte
Carlo computation of posterior variances or a Successive Difference Replication method applied to
the modeled estimates, depending on the complexity of the model.

Although all counts and proportions for Jurisdictions, AIAs, and ANRCs cross-classified by
LMGs were modeled, direct ACS estimates were used for quantities at higher levels of aggregation,
such as state-level estimates, or estimates by jurisdiction that are not cross-classified with LMG. In
addition, direct ACS estimates of voting age persons by LMG and geography were used to translate
proportion estimates from the models into corresponding population counts. The uncertainty of
these direct ACS estimates of voting age person counts was taken into account when computing
the variances of the corresponding ILL, LEP, and CIT counts.

Most of the determinations are the same using the model as those that would have been obtained
via the direct estimators, but there are some cases in which the model would result in determination
where the direct estimates would not, and vice-versa. The direct estimators can be quite volatile
and unreliable for domains with small sample sizes, and there are many such domains for LMGs
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in ANRCs, AIAs, and even Jurisdictions. The model predictions are more stable and result in a
substantial decrease in estimates with large Coefficients of Variation (CVs), e.g., CVs > 0.6, and
in large overall reductions in Margins of Error (MOEs). More detailed comparisons of the CVs and
MOEs are included in the technical report.

There are several ways in which the modeling approach adopted in 2021 differed from that
used in 2016. First was the overall class of models chosen, Multinomial Logit Normal in place of
Dirichlet-Multinomial. The MLN model has more parameters (because of the general dependence
among random intercepts), which were reduced in less data-rich LMGs by assuming the three
CIT, LEP and ILL random intercepts to be independent. Second was the choice to model all
predictions in Geography by LMG domains (below the level of States), no matter how data-sparse.
A third distinction in modeling arose because in 2016, Geography by LMG domains with sample
smaller than 5 (or in some cases 3) were not used in fitting LMG-level model parameters, while
all Geography by LMG domains with respondents were used in 2021. Finally, the variances of
estimated totals and proportions were estimated in 2021 by a combination of Bayesian posterior
variances (in the models for Jurisdictions in the largest LMGs) and replicate-weights based on
repeated calculation of estimates with alternate weights, while in 2016 the variance estimates were
calculated by a hybrid method combining parametric bootstrap and replicate weights.
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1 Introduction

According to Section 203(b) of the Voting Rights Act of 1965, as later amended in 1982 and 2006,
states or political subdivisions must in certain circumstances provide language assistance during
elections for groups of citizens who are unable to speak or understand English well enough to partic-
ipate in the electoral process. Section 203(b) as amended prescribes that the Director of the Census
Bureau shall make these determinations every 5 years under specific rules [Appendix A] involving
the sizes and proportions of designated population subgroups, based on the decennial census and
the most current available American Community Survey (ACS) data. The 2021 determinations
released in December 2021 were based solely on 2015-2019 5-year ACS data. In response to con-
cerns about the timing of the decennial counts, which was affected by the COVID-19 pandemic,
the decennial 2020 Census data were not used.

In 2021, the Director of the Census Bureau made coverage determinations for 73 racial/ethnic
Language Minority Groups (LMGs) within roughly 8000 Jurisdictions [Census RVRDO, 2021]. The
Jurisdictions constitute an electorally relevant partition of the nation into counties and minor civil
divisions (MCDs). There were 7,859 Jurisdictions in ACS 2015-2019 5-year data containing at
least one voting-age respondent. A coverage determination refers to a specific Jurisdiction-LMG
pair, and multiple LMGs may be covered within a single Jurisdiction. For all Jurisdiction-LMG
pairs there are three possible ways to be covered by Section 203(b). First, a LMG may meet the
state-level coverage criteria, in which case all Jurisdictions in that state are covered for that LMG.
1 Second, a LMG may meet the Jurisdiction-level coverage criteria, resulting in coverage of that
specific Jurisdiction-LMG pair. Lastly, American Indian and Alaska Native (AIAN) LMGs can
meet American Indian or Alaska Native Area-level (AIAN-level) coverage criteria. If an AIAN
LMG meets the AIAN-level coverage criteria for a certain AIAN area, then all Jurisdictions that
contain all or part of that area are covered for that LMG. Specifically, the coverage criteria are:

Criteria for state-level coverage for a particular LMG:

S1 The proportion of limited English-proficient voting-age citizens in the LMG among all voting-
age citizens in the state is greater than 5 percent; and

S2 The illiteracy rate among limited English-proficient voting-age citizens in the LMG in the
state is greater than the national illiteracy rate.

Criteria for Jurisdiction-level coverage for a particular LMG:

J1 (a) The proportion of limited English-proficient voting-age citizens in the LMG among all
voting-age citizens in the Jurisdiction (LEPprop2) is greater than 5 percent; or

1However, if a juridiction with LMG VACLEP population less than 5% of its VACIT is in a state with statewide
language coverage determination, then that jurisdiction is covered for that LMG only for statewide election materials.

2 Throughout this report, acronyms and repeatedly used abbreviations are given in upper-case conventional font,
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(b) The number of limited English-proficient citizens that are members of the LMG (LEPtot)
is greater than 10,000; and

J2 The illiteracy rate among limited English-proficient voting-age citizens of that LMG in the
Jurisdiction (ILLrat) is greater than the national illiteracy rate.

Criteria for AIA-level (AIA area or ANRC) coverage for a particular AIAN LMG:

A1 The proportion of limited English-proficient voting-age citizens in the LMG among all AIAN
voting-age citizens in the AIA (LEPprop) is greater than 5 percent; and

A2 The illiteracy rate among limited English-proficient voting-age citizens of that LMG in the
AIA (ILLrat) is greater than the national illiteracy rate.

Several types of quantities are needed to form the totals and proportions used to evaluate
coverage criteria at the State, Jurisdiction, AIA and ANRC levels. Specifically, the total numbers
of limited English-proficient voting-age citizens and illiterate limited English-proficient voting-age
citizens are required for each LMG within each State and Jurisdiction and for each AIAN LMG
within each AIA and ANRC. In addition, we use the total numbers of voting-age citizens within
each State and Jurisdiction and of voting-age AIAN citizens within each AIA and ANRC. These
quantities can be estimated directly from ACS data; however, the precision of some of the estimates,
especially for the limited English-proficiency proportions and illiteracy rates, can be quite poor
because many of the domains have extremely small populations. The national illiteracy rate is
computed as the number of illiterate voting-age citizens divided by the total voting-age citizens.
The rate used for the 2021 coverage determinations based on ACS 2019 5-year data was 1.31%.

In an effort to improve the accuracy of the estimates used to make the coverage determinations,
the Census Bureau applied a model-based estimation method in producing coverage determinations
in 2011 [Joyce et al., 2012, 2014] and also in 2016 [Slud et al., 2018]. The basic rationale behind
model-based small-domain estimation methods is that many small areas may be similar according
to measured characteristics, and viewed as differing through independent random ‘small domain
effects’. Modeling with shared statistical parameters may allow those parameters to be estimated
with an increased precision not possible for one or a few small domains. This phenomenon of
gaining precision of estimation through shared parameters is often called ‘borrowing strength’ and
is the essence of a growing statistical subdiscipline called small-area estimation [Rao and Molina,
2015]. The greatest gains in precision of estimation through small-area methods arise when useful
predictive covariate measurements are available at the small-domain level for inclusion in regression-
type models. Those aspects of small-domain differences not predictable through the ‘fixed effect’
covariates are modeled through independent ‘random effects’ from a distribution of an assumed
form. Underlying the modeling approach used in 2011 and 2016 Voting Rights Act (VRA) analyses,

while computer-package and computer-function names and variable names used in modeling or in formal labeling in
public data files are rendered in typewriter font.
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the beta-binomial and Dirichlet Multinomial models are well known in Bayes and empirical-Bayes
analysis [Carlin and Louis, 2009]. An example of the use of beta-binomial in small area estimation
is Aitkin et al. [2009]. For the small-area application of the multinomial logit normal models
considered and ultimately adopted for the 2021 VRA statistical analyses, important precursors
are the papers of Malec et al. [1997], Ghosh et al. [1998], Slud [2004] and, with a hierarchical
logit normal to account for multinomial outcomes, Malec [2005]. The remaining sections of this
report describe the rationale, model, details of implementation and assessments for the model-based
method used to derive the estimates for the 2021 Section 203(b) determinations.

2 Terminology and Data

The sources of data allowed by Section 203(b) to be used in coverage determinations are ACS and
comparable census data. The ACS is an ongoing annual household survey of information about
the US population that is used in many different ways. The ACS releases 1-year and 5-year data
products. The 5-year products aggregate and re-weight data collected over a 5-year period, allowing
increased precision of population estimates at the cost of temporal specificity. The 5-year data are
particularly useful for estimating features of small geographic areas or small domains in which
1-year estimates are too imprecise for release under Census Bureau statistical quality guidelines.
For purposes of coverage determination, 5-year ACS data are used because of the need to estimate
population subgroups in small geographic areas. At the time of estimating models used to make
2021 coverage determinations, the 2015-2019 5-year ACS dataset was the most recent available and
therefore served as the data source. Model exploration and development were done using 2014-2018
ACS 5-year data, before the 2019 data were released. Decennial 2020 census data were not used,
a decision taken because of concerns about timeliness of the release of local-area decennial census
counts, which was affected by the COVID-19 pandemic. This differed markedly from the 2011
methodology which did use 2010 decennial census data in producing 2011 coverage determinations,
but decennial data were deemed too far out of date to be used in the 2016 determinations apart
from having already been incorporated into national Population Estimates.

The Section 203(b) relevant political subdivisions, which we refer to as Jurisdictions (Juris),
are Counties in most states and Minor Civil Divisions (MCDs) in eight states (CT, ME, MA, MI,
NH, RI, VT, WI). In the ACS 2015-2019 data, there were 7,859 Jurisdictions containing at least
one sampled voting-age person, 568 AIAs containing at least one sampled voting-age person, and
12 ANRCs that all had at least one sampled voting-age respondent to the ACS. AIAs may intersect
with multiple Jurisdictions, and single Jurisdictions may contain all or part of multiple AIAs.

Limited English proficiency and illiteracy indicators are derived from ACS questions. For pur-
poses of coverage determinations, limited English-proficiency is defined as speaking a language
other than English at home and speaking English “Less than Very Well”. Illiteracy is defined as
having less than a 5th grade education. The subgroups needed to estimate the coverage determina-
tion quantities are defined through intersections of the properties of voting-age, citizenship, limited
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English proficiency, and illiteracy. Throughout this report, we refer to the relevant population
subgroups by the following abbreviations:

VOT: Voting-age persons;
CIT: Voting-age citizens;
LEP: Limited English-proficient, voting-age citizens; and
ILL: Illiterate, limited English-proficient, voting-age citizens.

The designations VOT, CIT, LEP and ILL are referred to throughout this report as outcome
Categories, and these same labels are also applied to the sample counts and survey-weighted esti-
mates within population domains defined by Geography and LMG.

The nesting of subpopulations VOT (= VOTAG) , CIT, LEP, and ILL in this report, is displayed
visually in Figure 1. Specifically, all ILL persons are LEP, all LEP persons are CIT, and all CIT
persons are VOT. Think of these as population subgroups for a specific LMG and at a specific
geographic level (State, Jurisdiction, AIA or ANRC).

In the Decennial Census and the ACS, people self-identify into one or more racial and eth-
nic groups in response to race and ethnicity questions. Certain of these groups are called Lan-
guage Minority Groups (LMGs) for purposes of Section 203(b); all are listed in Table 20 following
Appendix A. There are 21 LMGs within the Asian racial group, 51 LMGs within the AIAN racial
group, and a single Hispanic LMG that cuts across racial groups. (We number them as LMG 1–21
or AS 1–21 for Asian; LMG 22–72 or AI 1–51 for AIAN, and LMG 73 for HSP. This numbering
differs from the labeling of Language Minority Groups on the Public Use Data file: on that file,
they are numbered by an index LANCOUNT according to the following rule: HSP = LANCOUNT 1;
AI 1–AI 51 = LANCOUNT 4–54; and AS 1–AS 21 = LANCOUNT 56–76.) People who self-identify into
more than one racial/ethnic group can therefore belong to more than one LMG, although only a
small proportion do. Of the approximately 3.7 million adults who self-identify into at least one
LMG in the 2015-2019 ACS data, about 3.1% self-identify into 2 LMGs and 0.2% into 3 or more.
Coverage determinations are made separately for each LMG, so that people belonging to multiple
LMGs count towards the coverage criteria for all of them.

In the Tables, Figures and numerical comparisons throughout this report, we summarize es-
timates and Margins of Error (MOEs at the 90% confidence level) calculated either by direct
survey-weighted methods or by model-based methods. All of these numbers are based on the exact
numbers calculated by the methods described. However, in the publicly released data that is used
in determining Section 203(b) coverage under the Voting Rights Act, all count estimates are first
rounded to the nearest integer, and all estimates of proportions are first converted to percent [i.e.,
are multiplied by 100] and then rounded to the nearest 0.01.
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Figure 1: Labels VOTAG, CIT, LEP, ILL refer to successively smaller circular regions. Arrows
terminating within colored annuli and innermost circle show population-count notations NA

jg defined
in Appendix C for the multinomial categories: VOTAG non-CIT, CIT non-LEP, LEP non-ILL, ILL.

2.1 Direct Tabulated Outcomes

The outcome totals that were tabulated directly from the ACS 2015-2019 files for use in the pro-
duction of coverage determinations are:

(a) unweighted counts of ACS-sampled VOT, CIT, LEP, and ILL persons in each (State, LMG),
(Juris, LMG), (AIA, AIAN LMG) and (ANRC, AIAN LMG) domain;

(b) survey-weighted estimates of the total number of VOT, CIT, LEP, and ILL persons in the
same domains as in (a);

(c) unweighted counts of ACS-sampled VOT, CIT, LEP, and ILL persons in each State, Juris,
AIA and ANRC;
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Table 1: Quantiles of coefficients of variation for ACS 2019 5-year direct estimates of total LEPs
and ILL/LEP ratios in domains with estimated LEP persons ≥ 25 and respectively restricted to
domains with LEP and ILL sample-sizes ≥ 2.

Estimate Qu.25 Qu.50 Qu.75 Qu.80 Qu.90 Qu.95 # Domains
LEP in (Juris, LMG) 0.285 0.472 0.658 0.695 0.813 0.920 8727
ILL/LEP in (Juris,LMG) 0.293 0.458 0.642 0.686 0.805 0.930 2829

Note: “Qu.xx” denotes the xx percentile.

(d) survey-weighted estimates of the total number of VOT, CIT, LEP, and ILL persons in each
Geography as in (c);

(e) survey-weighted estimates of totals and proportions at Geography level (State, Juris, AIAN or
ANRC) of 10-15 covariates described in detail in Section 2.2.

The direct ACS survey-weighted estimators (b) of the domain total numbers of LEP and ILL
persons can be used in conjunction with (d) to estimate the quantities needed for coverage VRA
determinations. If these estimators were stable, they would be the design-based estimators of choice;
however, many of these survey-weighted total estimators are based on extremely small sample sizes
and yield estimates with large standard errors.

The coefficient of variation (CV) of a point estimate, its standard error divided by the estimate,
measures relative precision. The Census Bureau requires that CVs for a majority of the key ACS
survey estimates in each published table must be ≤ 0.30 to meet the Census Bureau’s statistical
quality standard for sampling error; and single estimates with CVs > 0.61 are said to be unreliable.
Table 1 shows that a majority of CVs for the ACS estimated total number of LEPs and ILL/LEP
ratios in single (Juris, LMG) domains are quite large. The CVs for the total estimated CIT
persons in whole jurisdictions (not subddivided into LMGs) are mostly small: the three quartiles
are 0.006, 0.025, 0.070. In view of the large CVs displayed in Table 1, many of the direct survey-
weighted estimates using the total LEPs or ILL ratios (= ILL/LEP) in each (Juris, LMG), which
are used in the Criteria for Jurisdiction-level Coverage given in Section 1 above, will be unreliable.
By contrast, the direct survey-weighted estimates of the total CITs in the Jurisdictions are typically
precise, giving us relative confidence in using them directly in the calculations.

The domains summarized in Table 1 are a relatively small subset of all (Juris, LMG) domains.
Out of 7,859 jurisdictions, averaged over LMGs, roughly 120 per LMG have estimated LEP counts
≥ 25 and LEP samples ≥ 2, and roughly 40 per LMG have estimated LEP counts ≥ 25 and ILL
samples ≥ 2. The results in Table 1 are sensitive to the minimum thresholds of LEP estimates
and LEP or ILL sampled persons used to restrict the domains. For example, when the defining
thresholds are restricted further to estimated LEP being ≥ 50 and numbers of sampled LEP or
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ILL ≥ 5, the numbers of domains are 5,195 for LEP and 1,327 for ILL. and the respective 0.9
quantile CVs for LEP and ILL/LEP estimates are 0.540 and 0.506. When the defining thresholds
are loosened to estimated LEP being ≥ 15 and numbers of sampled LEP or ILL ≥ 1, the numbers
of domains are 12,115 for LEP and 4,852 for ILL, and the respective 0.9 quantile CVs for LEP and
ILL/LEP estimates are 0.968 and 1.082.

Figure 2 is based on 2019 ACS 5-year data and shows the point estimates and 90% confidence
intervals for direct survey-weighted (Juris, LMG) domain estimates of the proportion LEPprop of
LEP persons in (Juris, LMG) out of all CITs in (Juris), for the set of 226 domains whose 90%
confidence interval includes 0.05 (the quantity and threshold for the determination criterion J1).
The confidence intervals are plotted vertically, for domains sorted from left to right in order of
increasing estimated CIT count. The interval widths have a general, but not strict, tendency to
decrease with increasing domain size. Because the 90% confidence intervals for these estimates
include values that meet the determination criterion (> 0.05) and other values that do not meet
it, the decision for these (Juris, LMG) domains is unclear yet particularly important. Thus, the
precision is undesirably low for many of the 226 direct survey-weighted (Juris, LMG) estimates near
0.05, most of them in juridictions with CIT counts < 650. Many of the 90% confidence intervals
for these estimates are extremely wide.

Whether using direct survey-weighted estimates as in preparing Fig. 2 or modeled estimates as
in later sections of this report, the statistical analysis is particularly critical in the determinations
of Voting Rights Act coverage only in the relatively small set of domains for which the ILL/LEP
fraction exceeds 0.0131 and either the LEP total is close to 10, 000 or the LEP fraction (LEPprop) is
close to 0.05. Of the 7,859 jurisdictions with data in the 73 LMGs, only 140 (Juris, LMG) domains
have LEP count < 10, 000 and ILL/LEP rate ≥ the national rate of 0.0131 and directly estimated
90% confidence interval for LEPprop containing 0.05. Of these 140 domains, 59 were determined to
require language ballot assistance, by meeting the criterion that LEPprop > 0.05.

To mitigate the small-domain imprecision seen in Table 1 and Figure 2, we developed model-
based estimators for the target domain totals in the spirit of small-area estimation [Rao and Molina,
2015]. The main idea of this approach is that many small (Juris, LMG) or (AIA, LMG) or (ANRC,
LMG) domains within the same LMG may behave similarly with respect to domain proportions
of citizenship among the VOTAG population, of limited English proficiency among voting-age
citizens, and of illiteracy among limited English-proficient voting-age citizens. This similarity can
be exhibited in the form of shared relationships between the outcome proportions and observable
domain-specific covariates.

2.2 Covariates

Predictive covariates considered for use in our models consisted of population ratios directly esti-
mated from the ACS data at different levels of aggregation (using survey weights) related to
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Figure 2: Direct estimates and 90% confidence intervals of LEP proportions LEPprop, for the 226
(Juris, LMG) Domains from 2019 ACS 5-year estimates whose CI includes 0.05. Points are ordered
and plotted by log of CIT count in Domain. Domain CIT counts range from 2 to 145,030.
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citizenship, English proficiency, race/ethnicity, educational level, poverty, age, age of AIAN persons,
and foreign birth, as well as average time in the United States. The levels of aggregation for ACS
covariates to be included in the models were state within LMG, AIA within LMG, and geography-
type (Juris or AIAN or ANRC) pooled across LMG. A fourth level of covariate aggregation, LMG-
by-geography domain [(Juris, LMG) or (AIAN, LMG) or (ANRC, LMG)] was used to create possible
covariates in 2016, but the covariates tallied in that way were very noisy and not found to be
predictively useful for outcomes at the LMG-by-geography level. Moreover, when small-domain
estimation models are formulated in terms of covariates that are estimated with standard errors
of magnitude comparable to those of the outcomes, it is well known [Ybarra and Lohr, 2008] that
the model predictions are biased unless the magnitude of covariate-estimation error is taken into
account. Thus the LMG-domain-level covariates were not used in 2021. The following are the
covariates used in 2021 modeling, displayed by type:

State-Level Covariates for Jurisdictions

C1 Logit-transformed fraction of citizens among VOT persons (STC.T)

C2 Logit-transformed fraction of limited English-proficient among CIT (STL.T)

Geography- (Juris- or AIA- or ANRC-) Specific Covariates

C3 Proportion of non-Hispanic White among VOT persons in geography (WHNHSP)

C4 Proportion of VOT persons with no college education in geography (EDU2)

C5 Average person count per housing unit among VOT persons in geography (NUMPER)

C6 Average age among VOT persons in any AIAN LMG in geography (AGE)

C7 Proportion of VOT persons in poverty in geography (POV)

C8 Proportion speaking other language at home among VOT persons in Juris (OTHLANG)

C9 Proportion of foreign-born persons among VOT persons in Juris (FRNBORN)

C10 Average years in US (as of 2019) among VOT foreign-born persons in Juris (AvgYrs)

AIA-Level Covariates

C11 Fraction of AIAN citizens among AIAN VOT persons (CITrat)

C12 Fraction of AIAN LEP persons among AIAN CIT (LEPrat)

C13 Fraction of AIAN ILL persons among AIAN LEP (ILLrat)
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The synthetic covariates STC.T and STL.tt, logit-transformed State level proportions, were de-
signed to help predict LMG-level proportions of CIT within VOT, LEP within CIT, and ILL within
LEP. These covariates were calculated, for each (Juris, LMG) domain, from the complement of that
domain within the State. Similarly, the untransformed proportions CITrat, LEPrat, ILLrat were
calculated, for each (AIA, LMG) domain, from the complement of that domain within the AIA.

Synthetic survey rate-variables, in frequent Census Bureau and survey-methodology parlance
[Rao and Molina, 2015, Sec. 3.2], are those defined from a level of aggregation higher than the
one of primary interest. Such covariates were previously introduced and advocated in a small-area
context, for confidence intervals of very small ACS rates, by Slud [2012]. Generally, these higher-
level survey-weighted direct ratio estimators of CIT and LEP rates are stably estimated but do not
directly reflect domain-level variation of these rates.

The second category, Geography-Specific Covariates, is the main source of predictive variables
for the models we developed. Although we considered other ACS covariates for citizenship and
LEP proportions that are listed under Geography-LMG Specific Covariates above, only those listed
as Geography-Specific were found to be usefully predictive in models for Asian or Hispanic (not
AIAN) LMGs. See Section 3.6 for exact information on the covariates used in each LMG model.

All the covariates listed above are taken from the ACS itself, meaning that each is a survey
estimate and thus subject to sampling error. Further, because both the covariates and outcomes
are from the same survey data, their sampling errors may be correlated, which could complicate
variance estimation both for parameter estimates and predictors based on them. For the most
part, this is not an important issue for the state- or geography-specific covariates because these
are generally based on much larger samples than the geography-by-LMG specific outcomes. We do
not consider models here for errors in variables and associated parameter estimates and predictors
along the lines of Ybarra and Lohr [2008], but future Voting Rights Act methodology may do so.

2.3 Modeled Outcomes

The outcomes of interest in the models, LEP and ILL totals and ratios involving them, are not
estimated directly. Instead, in a multinomial model for each LMG, we estimate the proportion of
VOT persons in each of four disjoint categories: VOT non-CIT, CIT but not LEP, LEP but not ILL,
and ILL (depicted as successive annuli and central disk in Figure 1). These estimated proportions
are combined with the direct estimate of the total number of VOT persons in the (Juris,LMG))
domain to get an estimate of the LEP and ILL totals. Separate models were estimated for each
LMG across Jurisdictions as well as across AIAs for each AIAN LMG. Guided by the principle of
analyzing each LMG separately, each model was fitted from data on all persons within the LMG
regardless of membership in other LMGs. As a result, one person’s data may contribute to multiple
LMG models. (We have already discussed in Section 2 the extent of self-identifications into multiple
LMGs.) This convention, adopted also in 2016, differs from the ‘local majority’ modeling strategy
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used in 2011 in which each person was assigned the unique largest local LMG among that person’s
self-identified LMGs. The only way in which our models fitted to different LMGs influence one
another is that the subset of fixed-effect covariates used for an LMG in each geography-type was
chosen from a list of possible predictors according to a grouping of LMGs with similar numbers of
(Geography, LMG) domains containing ACS samples of similar sizes.

In all the models we considered, scaled, disjoint, outcome category counts follow a Generalized
Linear Mixed Model [Breslow and Clayton, 1993] with form and parameters shared across domains
within LMG (formula (9) in the Appendix). The models use independent random effects to account
for domain differences within LMG, and they are fitted separately for each LMG.3 Estimates from
these models are either empirical-Bayes frequentist — estimating shared parameters via Maximum
Likelihood on the entire sample — or Bayesian, estimating shared parameters through Monte Carlo
simulated draws from their posterior distributions given the full set of observed data within each
LMG. Partly for computational reasons that will be explained below, we used full-model Bayesian
prediction for category counts and random effects only in the 21 most data-rich LMGs for the
Jurisdiction (County/MCD) Geography-type. In addition, simple intercept-only Bayesian beta-
binomial estimates were used (for all geography-types) for single-category counts (mostly CIT and
ILL) in those AIAN LMGs where CIT/VOT ratios were very close to 1 or ILL/LEP ratios were
very close to 0. (Section 2.4 and Table 2 below give further information about models used in LMG
and outcome-category combinations with extreme CIT/VOT, LEP/CIT, or ILL/LEP ratios.)

The frequentist, empirical-Bayes estimates of outcome-category totals are weighted combina-
tions of the direct ACS survey-weighted ratio estimates and synthetic model-based estimates in
which estimated parameters have been substituted. These combination estimates have the feature
of agreeing approximately with the direct estimate in domains where the direct estimate is rela-
tively precise, but of more heavily weighting the synthetic model-based estimates in areas where
the direct estimate has a large standard error. The Bayesian estimates of outcome-category totals
do not have the same weighted analytical form but also agree more closely with the direct versus
the synthetic estimates when the direct-estimate standard error is smaller.

Figure 3 illustrates the differences between direct-method and model-based predictions. For
LMG 4, the Chinese Language Minority Group, in jurisdictions with LEP sample in the range
1–300, the Figure contrasts the model-based predictions of ILL/LEP ratios with predictions based
on direct survey-weighted estimates. The model-based predictions are computed from model MLN-
D described in Section 3.1 below. There are two kinds of predictions from the fitted model, the
‘synthetic’ ones (blue circles) that predict only from the covariates and not the outcome-data of the
jurisdiction, and the fully model-based predictions (black diamonds) that use the model conditioned
on the survey-weighted direct CIT, LEP and ILL estimates. The latter prediction, making fullest
use of available data, is the one that is used in VRA determinations.

3However, because the Hispanic LMG is so much larger than all others, with estimated VOT population more
than 7 times the next-largest, that LMG was modeled separately in the four geographic Census regions.
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Figure 3: Model-predicted ILL/LEP values in domains for LMG 4 with positive LEP sample, plotted
against direct estimates of ILL/LEP. Black diamonds are model predictions given outcome data,
while blue circles are pure model predictions without regard to outcomes within domain. Red 45◦

line allows visual comparison of survey-weighted ratio versus modeled ILL/LEP estimates.

It makes sense that the model predictions using the data are closer to the 45-degree line, i.e. to
the direct-estimated predictions, than the model predictions that ignore the domain-specific out-
come. The model generally reflects a low rate of Illiteracy, and although the pure (synthetic) model-
based predictions incorporate the effects of domain covariates, the model predictions conditioned
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Table 2: Numbers of AIAN LMGs, by geography, for which CITr = CIT/VOT, LEPr = LEP/CIT,
and ILLr = ILL/LEP are well-defined (denominator > 0) and extreme, each by two criteria.

Geo type CITr = 1 LEPr = 0 ILLr = 0 CITr > .995 LEPr < .005 ILLr < .005
Juris 4 0 11 30 8 12
AIAN 14 2 22 41 11 22
ANRC 39 37 7 46 38 7

on the domain direct estimates of illiteracy and Limited English proficiency agree considerably
more closely, although not perfectly, with the direct ILL/LEP estimate. The phenomenon that
the model-based prediction ‘shrinks’ the direct estimate toward the synthetic modeled estimate is
characteristic of small-area estimates that borrow strength across domains.

2.4 Extreme Cases Where Models Degenerate

One of the obstacles to developing a uniform model-based method for estimating ratios CIT/VOT,
LEP/CIT and ILL/LEP at domain-level is that there are many (Geo, LMG) domains for which the
direct survey-weighted estimates of these ratios are equal or very close to 0 or 1. This phenomenon
occurs only in the AIAN LMGs, for all three geography types, Juris, AIA and ANRC, because
samples in low-population geographic units are often very small and AIAN citizenship is nearly
universal while some sampled geographic units have very low LEP proportions. Table 2 shows for
each geography-type the number of AIAN LMGs (out of 51) in which the respective ratios are
defined (denominator > 0) and extreme by two criteria, which means for CIT that CIT/VOT is
> 1 − 10−5 (> 0.995), and for LEP and ILL means that LEP/CIT or ILL/LEP are respectively
each < 10−5 (< 0.005).

3 Model Classes & Modeling Choices

As a a task in Small Area Estimation (SAE), the VRA Section 203 population estimates have
several distinctive features, strongly influencing the choice of model. First, Section 203 imposes not
a single SAE estimation task, but many: 73 for the separate LMGs in Jurisdiction geography, and
51 for the AIAN LMGs in AIA or ANRC geography. The data sizes for these different sub-tasks vary
greatly, very small for some AIAN LMGs and very large for Hispanic and the largest Asian LMGs.
Yet our understanding of the VRA legal requirements suggests the strong desirability of a uniform
methodology for all of the (Geo-type, LMG) sub-problems, each to be analyzed using separate
data. The VRA context restricts us to data with multiple distinct categorical outcomes (VOT non-
CIT, CIT non-LEP, LEP non-ILL, and ILL) observed at person level and aggregated to domains
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consisting of geographic units within each voting-age LMG population, with covariates available
only at the level of domains or higher-level aggregates (such as LMG-specific population proportions
at higher-level geography, or at the level of local geography without regard to LMG). Therefore, the
kinds of statistical models to be considered are regression models for discrete response-variables:
individual people are treated as responding independently, conditionally within domains, so their
domain-level counts are multinomial, and as is generally assumed in small-area and empirical-Bayes
statistical modeling [Rao and Molina, 2015, Carlin and Louis, 2009], outcomes in the different
domains have distinct independent random effects.

The literature on SAE contains many possible choices of area-level models for proportions [Jiang
and Lahiri, 2006, Rao and Molina, 2015, Esteban et al., 2020] and associated estimation methods.
Two of the most important model classes are beta-binomial (or for multiple categories, Dirichlet-
Multinomial) [Carlin and Louis, 2009, Aitkin et al., 2009] and bivariate or multinomial logit-normal
[Malec et al., 1997, Ghosh et al., 1998, Slud, 2000a, 2004, Malec, 2005, Molina et al., 2007, Franco
and Bell, 2022, Koster and McElreath, 2017, McElreath, 2020], although other models mentioned
by Esteban et al. [2020] have been tried. SAE literature on benchmarking develops the estimation
of domain population totals subject to the constraint that they sum to known totals at higher levels
of aggregated domains [Steorts and Ghosh, 2013, Datta et al., 2011, Pfeffermann and Tiller, 2006].
However, we viewed it as simpler in our nested-outcome setting to model the domain counts CIT
within VOT, LEP within CIT, and ILL within LEP by a succession of separately parameterized
random-effect binary-outcome models (binomial logit-normal or beta-binomial) rather than through
multinomials subject to constraints. In each of these successive binomial models the previous
(scaled) category total serves as a number of Bernoulli trials (see (iv) below for details). Another
approach to such models is to replace actual scaled sample-sizes and totals by so-called effective
sample sizes in the spirit of Kish [1987] and McAllister and Iannelli [1997], an idea implemented with
Generalized Variance Functions in the Census Bureau’s Small Area Income and Poverty Estimation
(SAIPE) program as explained in Franco and Bell [2013]. Although we considered that approach
in this VRA estimation cycle, we did not ultimately implement it for lack of time. Another active
SAE research direction is the analysis of time-sequence models, that is, generalized linear models
with random effects incorporating time-sequence domain-level data [Pfeffermann and Tiller, 2006,
López-Vizcáıno et al., 2015]. We initially considered models of this sort in the VRA Section 203
analyses using data from successive ACS 5-year datasets, but we did not pursue this research
direction due to computational difficulties and the large number of very small LMGs.

The model classes considered in the 2021 VRA determinations shared several common features.
Within each LMG (labeled g) and Geography type (with geographic units indexed by j for Juris-
diction or a for AIA or ANRC4), the basic data consist of the voting-age sample-size nVjg and the
direct survey-weighted estimates N̂A

jg or N̂A
ag of the numbers of persons in the 4 nested decreasing

4For the rest of this section, we use only the jurisdiction geography-level notation j, although the analogous
considerations and models apply to AIAN and ANRC models indexed by a for AIAN VOT-person counts.
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categories A = V,C, L, I (respectively, V =VOT, C =CIT, L =LEP, and I =ILL), as described
in Section 2, together with various geographic-level covariates Xjg for LMG g described in Sec-
tion 2.2. For these data, the outcome variables to be modeled are true population counts NA

jg in
the A = V,C, L, I categories. It was decided on the basis of experience in previous VRA cycles:

(i) to treat nVjg as fixed and known;

(ii) to obtain NV
jg solely in terms of the direct estimate N̂V

jg and the jurisdiction voting-age citizen
total NC

j+ from its direct estimate N̂C
j+ ;

(iii) to model the proportions NA
jg/N

V
jg ≡ πAjg for A = C,L, I as random variables between 0, 1

jointly independent of N̂V
jg ;

(iv) to model (nVjg/N̂
V
jg) · (N̂V

jg − N̂C
jg, N̂

C
jg − N̂L

jg, N̂
L
jg − N̂ I

jg, N̂
I
jg) as a Multinomial random

vector with nVjg trials and probabilities πjg ≡ (1− πCjg, πCjg − πLjg, πLjg − πIjg, πIjg) ; where

(v) the random probability-vector πjg is in turn modeled in terms of the covariates Xjg.

The random outcome-variables
(
Yjk,g, k = 0, 1, 2, 3

)
respectively equal to

(
nVjg · N̂A

jg/N̂
V
jg,

A = V,C, L, I
)

have successive differences modeled in (iv) as ‘Multinomial’ although their k = 1, 2, 3
components will usually not be integers. This is done because the amount of statistical informa-
tion in the data, as reflected in variances of parameter estimates, is more reliably reflected by the
sample size nVjg (partitioned into categories Yjk,g) than by the population size NV

jg estimated by
N̂V
jg. When sample sizes are large, the likelihood terms are essentially the same as if the entries

Yjk,g were rounded to integers; otherwise the ‘multinomial likelihood’ terms are not exact likelihood
terms of any model, and the parameter estimation technique is not exactly Maximum Likelihood,
but rather analogous to it. To our knowledge, there is no precise mathematical theory to say that
the resulting parameter estimates behave approximately (with limiting normal distribution and
variances estimated by the negative Hessian of log-likelihood with respect to unknown parameters)
as we expect by analogy with estimates from multinomial random-effect models. The same rough
analogy to multinomial likelihood theory has been followed previously in the VRA modeling done
in 2011 and 2016. See Section C for further elaboration of notations and models.

The models of type (i)-(v) actively studied in the 2021 cycle of statistical analysis for Voting
Rights Act determinations fell into two main types, of which we chose one for production, as
explained below. The two types of model differed only in the distributional form of the random
outcome-probabilities πjg and parametric regression form expressing them in terms of covariates
Xjg. These two model classes were respectively the Multivariate Logit-Normal models described
in Sec. 3.1 and App. C.1 and the Dirichlet-Multinomial models described in Sec. 3.2 and App. C.2.

Beyond the choice of parametric statistical models within which to estimate parameters, there
were many data-handling and model development choices to make in creating production estimates

15



based on business rules specifying which data subsets and covariates would be used. For example,
model fitting in 2016 was based only on LMG data in geographic units for which VOT sample size
was at least as large as a threshold of minsamp = 1, 3, or 5 according to LMG data-set size. The
idea was to make use only of sufficiently reliable data, rather than data in geographies with tiny
sample size, when there was enough aggregate data in geographies with samples at least of size
minsamp. In the 2021 VRA data analyses, we assessed (in Sec. 3.6 below) whether such a minsamp
threshold made a difference to the quality of prediction of population counts NA

jg and if so what
threshold to choose. Similar assessments were made, in Sections 3.6.2–3.6.4, to develop business
rules — acoording to the numbers of geographies with adequate sample within each LMG and
geography-type — for how many covariates and which ones would be used in fitting the MLN-class
models that were eventually chosen (with minsamp = 1) for production.

Choices of computational techniques for estimation and prediction were also necessary. These
involved selecting specific forms of models for computational tractability, based on accuracy and
on amount and timing of computational effort. Some of these choices, made according to the
data richness for each LMG and geography-type, were: whether to use a fully parameterized MLN
or a slightly simpler model; use of a frequentist (Maximum-Likelihood) or Bayesian (Markov-
Chain Monte-Carlo) method of parameter estimation and prediction of populations and margins
of error; the method of numerical integration to use in frequentist estimation, and the method
of initializeation in the Bayesian computations; and finally, what kind model to use as a fallback
in the relatively small number of (Geo, LMG) combinations where the parameter estimates in
the otherwise chosen models failed to converge. These computational choices are discussed in
Section 3.5 and Appendix E.

3.1 Multinomial Logit-Normal Model

One version of the model (i)-(v) in Section 3 above is expressed within LMG g (notation for which
is suppressed, since models are developed separately for each LMG) as:

Yj,k ∼ Binom
(
Yj,k−1 , h(ηj,k + uj,k)

)
given (Yj,t−1, ηj,t, uj,t, t = 1, . . . , k) (1)

for geographic units j within LMG g, where h(x) ≡ ex/(1 + ex), and for 1 ≤ k ≤ 3,

ηj,k ≡ X ′j β
(k) , uj = (uj,1, uj,2, uj,3)tr ∼ N (0 , Σ)

where β(k) for k = 1, 2, 3 are unknown coefficient vectors (some entries of which may be structural
zeroes), and Σ is a general unknown 3× 3 covariance matrix. This model is referred to as the full
Multinomial Logit-Normal (MLN-F), with the random probabilities πAj in (iv) defined by:

πCj = h(ηj,1 + uj,1) , πLj = πCj · h(ηj,2 + uj,2) , πIj = πLj · h(ηj,3 + uj,3) (1′)

These random probabilities are defined through random-intercept logistic expressions in the stages
k = 1, 2, 3, where ηj,k are the regression terms and uj,k are random effects. The dimensions of
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the vectors β(k), including structural zeroes, is the same as the number of components d of the
covariates vectors Xj . Models of this sort with a different regression parameterization have been
proposed beginning with Aitchison and Shen [1980] and are now standard in categorical data
analysis [Agresti, 2013]. Such models have also been used before in small area estimation problems
[Molina et al., 2007]. Precursors for univariate logit-normal small area estimation include Efron and
Morris [1975], Ghosh et al. [1998], and Slud [2000a]. Applications of the Multivariate logit model
to many different social science problems, with multinomial-outcome regression parameterization
as in Agresti, can be found in Koster and McElreath [2017], McElreath [2020]. The cascaded logit
parameterization of the Dirichlet-Multinomial probabilities used in this report (i.e., in (1′) above
and in formula (19) in the Appendix) was previously used in the 2016 VRA statistical analysis
[Slud et al., 2018].

As discussed fully in Appendix C.1, this model has |I1|+ |I2|+ |I3|+ 6 unknown parameters,
where Ik for k = 1, 2, 3 is the set of coefficient index positions in β(k) that are not structural 0’s, and
|Ik| denotes its cardinality. These models always include intercepts, so that 1 ∈ Ik and |Ik| ≥ 1.

A simplified diagonal -covariance version MLN-D of the Multivariate Logit-Normal model is de-
fined in exactly the same way as in (1), with Σ a diagonal matrix with diagonal elements σ2

k. In
that model, which has 3 fewer parameters than MLN-F, the 3 stagewise random-intercept logistic
regression models (1) are decoupled in the sense that uj,k are independent across k = 1, 2, 3, and
therefore πCj , π

L
j /π

C
j , π

I
j /π

L
j are independent. This independence turns out to be a great compu-

tational simplification, since the k’th stage unknown parameters β(k), σ2
k are different across the

three model stages and can be estimated separately via Maximum Likelihood from data (Yj,k, Xj)
given Yj,k−1 in the three conditional-model stages k = 1, 2, 3.

The MLN-F and MLN-D models make sense and can be fitted from data even when one or
more of the model-stages (1) involve β(k) in which only the intercept is not structurally 0. We will
use these intercept-only random-effect stagewise models in many LMGs containing relatively few
geographic units j with nonempty data-samples, especially in fitting CIT (stage k = 1) models in
LMGs where nearly all VOT persons are citizens and in fitting ILL (stage k = 3) models in LMGs
where only a tiny fraction of LEP persons is illiterate.

3.2 Models Related to Dirichlet-Multinomial (DM)

Appendix C.2 explains that a different model of the form (i)-(v), the Dirichlet-Multinomial [Carlin
and Louis, 2009, p. 284], was used in 2016 in estimation and production for VRA determinations5.

5Actually, that model was modified in 2016 production with the slight variation that the parameter τ was replaced

by the term τ0 ·
q
nV

j depending on sample size, with τ0 a parameter to be estimated.
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In that formulation, the random probabilities NA
j /N

V
j ≡ πAj within LMG g were modeled as

πj ∼ Dirichlet
(
τ, (1−h(ηj,1), h(ηj,1) (1−h(ηj,2), h(ηj,1)h(ηj,2) (1−h(ηj,3), h(ηj,1)h(ηj,2)h(ηj,3))

)
(2)

based on the Dirichlet probability distribution [Carlin and Louis, 2009, p. 425], a generalization of
the beta distribution to a number of categories greater than 2. It is shown in Appendix C.2 that
the Dirichlet-Multinomial (2) for πj is equivalent (for τ1 = τ2 = τ2 = τ) to the stagewise model

1− πj,1 ∼ Beta
(
τ1v1, τ1(1− v1))

)
, 1− πj,2

1− πj,1
∼ Beta

(
τ2v1v2, τ2v1(1− v2)

)
,

1− πj,3
1− πj,1 − πj,2

∼ Beta
(
τ3 v1v2v3, τ3 v1v2(1− v3)

)
are independent, for k = 1, 2, 3 (3)

for unknown (dispersion) parameters (τ1, τ2, τ3), where vk ≡ h(ηj,k) = exp(ηj,k)/(1 + exp(ηj,k)).
Here we have allowed the dispersion parameters τk for k = 1, 2, 3 to be general and distinct. This
model is more general than (2), with number of parameters |I1|+|I2|+|I3|+3, the same as the MLN-
D model. Like the MLN-D model, this version (3) of DM makes the unknown parameters (τk, β(k))
in each model stage distinct from those of the other stages, and the corresponding likelihoods
factor into the product of likelihoods for separate stages, which leads to the helpful computational
simplification that the stagewise parameters can be estimated separately.

In the DM model, like the MLN, it makes sense to estimate stagewise parameters in data-sparse
LMGs in models without covariates. Either when nVj is small or Yj,k/Yj,k−1 is too close to 0 or 1,
we fit models in which the intercept is the only nonzero entry ({1} = Ik) of β(k).

There is one further special case of a simplified DM model that is ultimately used as the fallback
in stagewise models for data-sparse Yj,k where random-effects MLN or DM models cannot be made
to converge. In such LMGs and stages, we use the Jeffreys-prior beta-binomial

Yj,k ∼ Binom(Yj,k−1, γj,k) , γj,k ∼ Beta(0.5, 0.5)

3.3 Predictors & Model Diagnostics

We briefly sketch here the model diagnostics, elaborated in Appendix F, that we use in subsequent
Sections of the report in assessing the quality of fit of different models and of different specifications
of particular chosen models. In all cases, we assess the models through their predictions. It is
important to remark that within a given LMG and geography-type, we produce estimates only
for domains (Geo, LMG) within which there is at least one sampled voting-age person in ACS
2015-2019 data, and we construct diagnostic tests from this set of jurisdictions.

It is well-tested and accepted that direct survey-weighted ACS estimates of population in large
domains are reliable and roughly unbiased: these are the work-horse estimates of the ACS. There-
fore, within each LMG the quality of fit of models is assessed by comparing predicted total popula-
tions (within CIT, LEP, ILL) against the direct ACS estimates over large aggregates of jurisdictions
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for which some sample-size variable or geography-level covariate falls in specified ranges. Different
models or model specifications are compared via discrepancy between their estimates and direct
ACS estimates for the resulting aggregated domains. We use two primary measures of discrep-
ancy Delta between model predictions Ñ and the ACS direct estimates N̂ for each such domain:
(a) the percent relative difference 100 · (Ñ − N̂)/N̂ (denoted PctRel∆ in table captions below),
and (b) the standardized relative difference (Ñ − N̂)/SE(N̂) (denoted Stdizd∆ in tables), where
SE(N̂) is the square-root of the ‘Successive Difference Replication’ or SDR-estimator of variance of
the direct estimate N̂ described in Appendix D.5, formula (48). This standard-error estimate is the
one generally used by ACS, and for large domains the standardized difference (N̂−Ntrue)/SE(N̂) is
distributed approximately as a standard normal, so the Stdizd∆ discrepancy referred to a N (0, 1)
distribution roughly measures departure from the null hypothesis that the Ñ prediction and N̂
estimate are the same. (However, since all of our model-based predictions make use of and are
conditioned on the direct estimate, Ñ and N̂ will always be positively correlated, and we should
expect Stdizd∆ to be smaller in absolute value than a N (0, 1) deviate.)

3.3.1 Minimum Sample-Size Thresholds for Use of Geographic Units in Estimation

As a preliminary application of our model diagnostics, we discuss the choice of whether to set a
minimum VOT sample-size threshold minsamp for geographic units to have their data included
in the fitting of model parameters. Such a threshold was imposed for larger LMGs in the 2016
VRA cycle of statistical analyses [Slud et al., 2018]: in those analyses, within larger LMGs and
each geography-type (Jurisdiction or AIA), only those geographic units with VOT sample-size at
least 3 or 5 were included in parameter-estimation, although the fitted parameters were then used
in creating predictions for all geographic units. The idea was that survey-weighted observations
were much more stable and less noisy in those geographic units with sample-sizes greater than 1,
although it was recognized that the models would necessarily be less relevant to tiny geographic
units if units with the smallest sample sizes were excluded from parameter estmation. In the
2021 VRA cycle, we decided the question of whether minsamp should ever be > 1 by calculating
diagnostics for quality of predictions with MLN-D models in selected large LMGs with Jurisdiction
geography-type when minsamp is taken to be 5 versus the default of 1.

We conducted analyses concerning minsamp on LMGs 2, 11, 13, 17, 18, 19, 20, 22, 26, 51, 57,
59, 61 (from the whole list of 73 LMGs) in Jurisdiction geography-type for which MLN-D models
were ultimately fitted (in some cases, with no covariates) at all 3 model stages (CIT, LEP, ILL).
We found that restricting the jurisdictions used in parameter estimation by minsamp> 1 (and then
predicting from the model in all jurisdictions with positive VOT sample) appeared to improve the
quality of some predictions while making others worse. For example, Table 3 shows the diagnostics
of discrepancy for the LEP predictions in LMG2 both with minsamp values of 1 and 5. In this
Table, njuris is the number of jurisdictions in LMG2 that fall in the designated minsamp range,
with Pop-size the number of sampled persons in those jurisdictions, rounded to 4 significant digits.
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Table 3: LEP Model Diagnostics by VOT Sample Size with Min. Sample Size 5 or 1, in LMG 2

Measure minsamp Interval of VOT sample-size in Jurisdiction
(0,4] (4,12] (12,25] (25,50] (50,200] 201+

njuris 323 104 40 21 24 5
Pop-size 1,295 2,230 2,293 2,463 10,140 17,910
Delta 5 866.40 196.60 -48.20 44.20 -219.30 -22.76
PctRel∆ 66.90 8.82 -2.10 1.79 -2.16 -0.13
Stdizd∆ 4.53 0.74 -0.18 0.16 -0.38 -0.03
Delta 1 611.90 9.69 -144.00 -47.50 -319.90 -64.40
PctRel∆ 47.20 0.43 -6.23 -1.93 -3.15 -0.36
Stdizd∆ 3.20 0.04 -0.53 -0.17 -0.55 -0.08

Notes: njuris is the number and Pop-size the direct-estimated population of
jurisdictions with sample-size in indicated intervals; Delta is model-estimated mi-
nus direct-estimated pop-count; PctRel∆ is 100 times Delta over direct pop-count;
Stdizd∆ is Delta divided by direct-estimated standard deviation of pop-count.

Table 4: LEP Relative Delta in LMG 13 jurisdictions, for 3 different minsamp values

Measure minsamp Interval of VOT sample-size in Jurisdiction
(0,4] (4,12] (12,25] (25,50] (50,200] 201+

njuris 362 82 35 13 7 1
Pop-size 421 779 836 437 1,366 841
PctRel∆ 1 54.3 -18.39 -6.69 -1.90 -3.63 -1.36
PctRel∆ 3 72.9 -13.22 -1.89 3.69 -2.73 -1.23
PctRel∆ 5 91.3 -9.31 0.72 6.90 -2.15 -1.08

Notes: Measures defined under Notes for Table 3.

With minsamp= 5 versus 1, the absolute value of standardized discrepancy Stdizd∆ is mean-
ingfully larger in the smallest sample-size bin, somewhat larger in the second-smallest, and slightly
smaller in other bins. PctRel∆ shows a similar pattern. Omitting jurisdictions with low sample
sizes from model fitting adversely affects the LEP model predictions in low sample-size jurisdic-
tions for most LMGs. The pattern is fairly clear that more stringent sample size restrictions (larger
minsamp) lead to worse discrepancies in the lowest-sample bin. Table 4 shows this with LEP relative
discrepancies (PctRel∆) in LMG 13 with minsamp values of 1, 3, 5. There is a similar pattern for
the ILL predictions as a function of minsamp (not shown) as for LEP predictions.
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There are isolated exceptions to these patterns in the LMGs. LEP predictions in LMG 67 had
reduced absolute PctRel∆ values with minsamp of 5 versus 1 in smaller-sample bins, but larger
values in higher-sample bins. With ILL predictions, the same kind of reversal happens in LMGs 2
and 19. In these anomalous cases, the effects are not large and do not always persist as minsamp
moves from 1 to 3 to 5, and the numbers of sampled jurisdictions are rather small. PctRel∆ values
likely have high variances in these and other cases.

A reasonable interpretation of these results is that for most LMGs, the low-sample jurisdiction
estimates contain information not accounted for by the models fitted to jurisdictions with more
sample. Models that exclude this information may predict outcomes in higher sample jurisdictions
slightly better. We decided based on these remarks to fit the models using data from all jurisdic-
tions with sample (i.e., with minsamp= 1). Nevertheless, the suggestion here that models do not
qualitatively capture jurisdiction-size differences is borne out in analyses presented in later sections,
and represent a direction for improving the models in future research.

3.4 Comparisons of Fitted MLN and DM Models

The two different model types considered in this research were Multinomial Logit Normal (MLN)
and a kind of staged Dirichlet-Multinomial (DM) which is better regarded as a stacked or staged
Beta-Binomial (see Section 3.2 and Appendix C.2.) Both are multinomial regression models with a
similar logistic parameterization of stagewise conditional expectations, and when the MLN model is
restricted to have independent stagewise random effects (MLN-D) the two models have exactly the
same parameter dimension, equal to the total number of nonzero stagewise regression coefficients
(β(k), k = 1, 2, 3) plus three (respectively for σk in MLN and τk in DM) controlling random-effect
variances. The model DM bears some similarity to the model used in the 2016 VRA cycle [Slud
et al., 2018], but in the present research we did not allow the DM k’th stage parameter τk to vary
with nVjg sample size as was done in 2016.

The principle of comparison between the MLN and DM models is sketched in Appendix F and
in Section 3.3 above. We assess the relative quality of models by comparing the patterns and mag-
nitudes of discrepancies between the respective model predictions and the direct survey-weighted
estimators of population subgroups defined by CIT, LEP or ILL over aggregated jursdictions within
the LMG. The jurisdictions are aggregated into table cells by combining all jurisdictions with a
covariate (VOTsmp, EDU2, etc.) falling in a designated range of values. When the LMG population
of the aggregated jurisdictions is large enough (generally hundreds to thousands is enough), the
direct estimators form a reliable unbiased target to which the model predictions should be close.

As argued below in Section 3.5 using Table 6, the MLN-D model usually passes tests of model
adequacy versus the more richly parameterized MLN-F that allows correlated stagewise random
effects. Therefore, it seemed reasonable to compare model MLN and DM strictly based on MLN-D
predictions. Because the LEP and ILL (Juris, LMG) domain-population predictions are most
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Table 5: Measures of relative (PctRel∆) and standardized (Stdizd∆) discrepancy between each
of MLN-D and DM model predictions versus direct estimates of (Juris, LMG) LEP and ILL popu-
lations aggregated to VOT-sample-size (VOTsmp) classes, for LMGs 4 and 10. For each population-
group and LMG, the direct-estimated population size is also shown, rounded to 4 significant digits.

Measure Pop.gp LMG Model Interval of VOT sample size in Jurisdiction
(0,4] (4,12] (12,25] (25,50] 50,200] 201+

Pop-size LEP 4 MLN-D 5,704 10,220 12,460 15,660 44,500 869,800
PctRel∆ 9.02 -6.72 -6.09 0.14 -0.58 -0.01
Stdizd∆ 1.30 -1.36 -1.21 0.03 -0.24 -0.03
PctRel∆ DM 49.80 16.73 8.29 10.86 4.35 0.22
Stdizd∆ 7.17 3.39 1.65 2.60 1.82 0.43
Pop-size 10 MLN-D 4,225 5,051 5,061 5,535 18,950 14,790
PctRel∆ 15.12 -1.51 -3.67 -3.71 -1.56 -0.42
Stdizd∆ 1.87 -0.20 -0.47 -0.53 -0.38 -0.09
PctRel∆ DM 35.00 12.62 7.30 3.77 1.83 0.66
Stdizd∆ 4.32 1.69 0.93 0.54 0.45 0.14
Pop-size ILL 4 MLN-D 503 909 991 1,429 3,662 94,440
PctRel∆ 27.89 1.57 5.40 2.25 0.36 -0.26
Stdizd∆ 1.50 0.11 0.35 0.17 0.05 -0.17
PctRel∆ DM 67.38 22.65 15.14 9.89 4.53 0.14
Stdizd∆ 3.63 1.54 0.98 0.74 0.60 0.09
Pop-size 10 MLN-D 1,052 1,232 1,160 1,613 5,104 4,940
PctRel∆ 18.45 3.66 2.18 -9.83 -3.07 -2.59
Stdizd∆ 1.14 0.26 0.14 -0.73 -0.42 -0.34
PctRel∆ DM 38.88 15.74 10.30 0.95 1.26 -0.03
Stdizd∆ 2.41 1.13 0.67 0.07 0.17 0.00

Notes: Pop.gp is population subgroup LEP or ILL within aggregated jurisdictions
with sample-sizes in indicated intervals. MLN-D is multinomial logit-normal model
with independent random efects; DM is Dirichlet-multinomial model. See Notes under
Table 3 for Measure definitions.
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relevant to the VRA determinations, we exhibit model comparisons only for LEP and ILL population-
groups within (Juris, LMG) domains. After examining many such comparisons, we found that in
general the MLN-D predictions — which line up nearly perfectly with the DM predictions, ju-
risdiction by jurisdiction within each LMG — are slightly superior, by our criteria described in
Section 3.3. Table 5 shows this for LMGs 4 and 10, but the pattern of results is very similar
for other LMGs in Jurisdiction geography. The conclusion that MLN was the superior and more
flexible model was secure enough that we continued the research on the VRA project using it alone.

3.5 Frequentist & Bayesian Computational Considerations

Up to this point, we settled on using the Multinomial Logit-Normal class of models in statisti-
cal modeling and prediction for this cycle of Voting Rights Act determinations. There were still
some decisions to make whether the model would be parameterized in its most general (MLN-F)
form, with general random-effects covariance matrix Σ, or whether that covariance matrix would
be restricted to be diagonal (the MLN-D model). There was also a decision to make regarding the
computational and conceptual strategy for analyzing the model, whether by a frequentist numerical
likelihood maximization (described in Appendix E.1) or with a Bayesian estimation of the posterior
distribution for unknown parameters via Markov Chain Monte Carlo (Appendix E.2). These two
decisions turned out to be closely related: both methods turned out to be valid approaches to
estimating unknown parameters predicting domain-level population counts and Margins of Error
(square roots of MSPEs) for the outcome categories CIT, LEP and ILL, but their relative compu-
tational efficiency depended crucially on whether the MLN-D model was adequate within an LMG
or whether the added complexity of random-effect covariances made an important difference to the
predicted (Geo, LMG) population counts.

It is shown in Table 21 of Appendix Section E.3 that the computation times for frequentist
estimation of MLN-D model parameters, together with predictions of (Geo, LMG) population
category (CIT, LEP, ILL) counts and the 80 analogous calculations with replicate weights used to
estimate Mean-Square Prediction Errors, are extremely rapid, less than 11 minutes for each of the
large Jurisdiction-geography LMGs (3–10 and the NE region of the Hispanic LMG) displayed there.
The same table also showed that the corresponding times to run a complete suite of Bayesian MCMC
computations for the same outputs took from 40 to 100 times as long. (Multiply the times shown in
the first row of Table 21 by 4, since the times shown there were for the average of 4 parallel simulated
Markov chains needed to confirm convergence.) Finally, the second row of Table 21 (plus 1/81 times
the third row, which is nearly negligible) provides the run-times for frequentist estimation of the
full MLN-F model estimation and predictions, but those times — ranging from 6 to 40 minutes —
while far less than the Bayes MCMC run-times, do not include the many runs based on replicate
weights that would be needed to estimate MSPEs. While the parameter estimates computed from
the Bayes and frequentist analyses of MLN-F for the displayed LMGs were close but not identical,
Table 22 in Appendix E.3 demonstrated that the predictions from the two methods of analysis were
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indistinguishably close. The primary computational conclusions from Appendix E.3 are twofold.
The first is that for larger LMGs with many sampled jurisdictions, the Bayesian MCMC analysis was
the fastest and most reliable way of deriving all needed parameter estimates, population category
predictions and MSPEs from the MLN-F model. However, the second conclusion was that if the
MLN-D model were deemed adequate, then the results could be computed at least 40 times faster
by a frequentist Adaptive Gaussian Quadrature likelihood-maximization method.

The reason to focus on computation times for the model fits is not the time required to compute
final model fits and predictions, but rather to allow time for many alternative model fits along the
way to selecting covariates and to decide by the fitting of alternative models whether there should be
a minimum threshold (minsamp) for geographic-unit sample size to allow the sample in a geographic
unit to contribute to parameter estimation. We described the process of deciding on minsamp in
Section 3.3.1 and on the covariates to use in different LMGs and geographies in Section 3.6 below.
Since the difference between computational resources required for MLN-D versus MLN-F model
fits is large, it is important to justify why the higher-dimensional model MLN-F was needed only in
the largest LMGs with Jurisdiction geography-type, while MLN-D was adequate everywhere else.
Table 6 shows the pattern. Among the displayed LMGs, with Jurisdiction geography and njuris
denoting the number of jurisdictions with positive sample for each LMG, the larger and more
significant chi-square likelihood ratio test (LRT) statistics (equal to twice the difference between
the MLN-F and MLN-D maximized log-likelihoods, referred to the 3 degree of freedom percentage
point χ2

3, 0.05 = 7.81) tend to occur in large LMGs. There are exceptions, and only the LRT
statistics for MLN-D versus MLN-F in LMGs 9 and 73 are extremely significant, but the larger
LMGs do tend to have larger LRT chi-square values. The pattern here suggests that few LMGs will
really have clearly better accuracy from predictions with MLN-F instead of MLN-D. This pattern
is borne out in the smaller Jurisdiction-geography LMGs and in the AIA-geography LMGs: the
more parsimonious MLN-D is statistically adequate except for LMGs with largest njuris.

Table 6: AGQ Maximized LogLikF for MLN-F model (rounded to nearest 100), LRT χ2
3 (MLN-F

vs. MLN-D), number of Jurisdictions with sample, and β-coefficient dimension, in 9 selected LMGs.

LMG: 3 4 5 6 7 8 9 10 73
100·logLikF -178 -3,369 -1,833 -160 -61 -556 -1,035 -138 -3,373

LR χ2
3 7.6 5.6 9.6 9.2 8.8 4.4 22.6 7.2 27.4

dim(β) 13 12 12 9 9 12 12 12 13
njuris 989 3,309 4,004 742 845 3,029 3,126 1,052 1,405

Notes: LR is Likelihood Ratio statistic; njuris is number of jurisdictions with sample in LMG;
MLN-F differ from MLN-D multinomial logit-normal models in allowing dependent random effects.
LMG 73 denotes NE-region Hispanic.
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3.6 Model and Covariate Selection

A large number of MLN models were fitted for each geography type (Juris, AIA and ANRC). There
was no formal variable selection methodology based on hypothesis testing or AIC. However, vari-
ables were screened based on standardized coefficients found significant using model likelihoods, by
fitting preliminary MLN-D models in each LMG using a common maximal set of useful variables
and then re-fitting the model using only the ones that were significant for the LMG in a second
model-fitting pass. These potentially useful covariates included C1–C10 described in Section 2.2,
with particular attention to the covariates C8–C10 (FRNBORN, OTHLANG, and AvgYears) for Ju-
risdictions and C1, C2, C4 (STL.C, STL.L or LEPrat, EDU2) for all geographies. At that point
convergence was assessed, and when legitimate MLEs were found, the set of variables with signifi-
cant coefficients was recorded. The variables that appeared predominantly in MLN-D models were:
EDU2, STL.T, OTHLANG, FRNBORN, AvgYrs in Jurisdiction geography models, and AIA-wide LEP
and ILL rates (LEPrat, ILLrat) in AIA geography-type. These were the variables appearing most
often in the final models, and also the variables most often strongly significant (with absolute
standardized coefficients greater than 4 in Jurisdiction geography or greater than 3 in AIAs.)

These sets of useful covariates were compared across all LMGs within major LMG groupings
(Asian/Hisp and AIAN-Large and AIAN-Small) for each geography-type. Within these categories
a few subsets of LMGs were found with mostly the same significant covariates (based on the 2014-
2018 data on which these steps were performed) for the final production round of model-fitting on
2015-2019 data. Groups of LMGs were formed — the business rules described in detail below —
either to fit MLN-F with a full set of covariates, MLN-D with a full set of covariates, MLN-D with
a much reduced set of covariates, MLN-D with no covariates, or the no-covariate Beta-Binomial
(described in Appendix Section C.1.1 and C.2.1) when MLN-D convergence failed. Such failures of
convergence happened especially in LMG cases where the single-stage ratios CIT/VOT were close
to 1 or LEP/CIT or ILL/LEP were close to 0. In the 2016 VRA cycle [Slud et al., 2018], model
selection and business rules were based on a similar but less elaborate and less fully documented
screening procedure, while the methodology of variable selection in 2011 VRA analysis, used for
geographic-unit grouping in lieu of geography-level regression, was still less formal [Joyce et al.,
2012, 2014]. In general, we attempted to use the same covariates for as many LMGs as possible.

3.6.1 Assessing Predictions for MLN-D Models with Covariates

Up to this point, we found general support through the relative and standardized discrepancy
diagnostics for the choice of model MLN over DM, for the adequacy of MLN-D versus MLN-F
in all but the largest LMGs, and for analysis using minsamp = 1, i.e., allowing jurisdictions
to contribute data to parameter estimation regardless of sample size. In addition, comparison
of execution times and for computation of MSPEs along with predictions supported the decision
that Bayesian model-fitting techniques should be used for fitting MLN-F in the largest LMGs (for
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Jurisdiction geography-type only). In this section, we use prediction diagnostics to explore model
adequacy of the chosen models and the effectiveness of the covariate-sets chosen for them.

As described in Section 2.2, the covariates used in the MLN models are based on characteristics
observed for geographic units without regard to LMG membership: either specific outcome rates
(C1–C2, CITrat, LEPrat, ILLrat) or geographic data (C3–C10) in jurisdictions or AIAs without
regard to outcome. The covariates are weak in the sense that they are not specific to LMG members
within geographic units, and characteristics of LMG members are generally not well predicted by
those of their non-LMG neighbors. Indeed, we show in this section that the measures of relative and
standardized discrepancy between predicted and direct-estimated counts only weakly indicate the
value of covariates. However, the correlations between predicted and direct-estimated (Geo, LMG)
outcome rates indicate a clear benefit of using the covariates we have over none at all.

Table 7 displays results in two LMGs (both with covariates STL.T, EDU2, FRNBORN, AvgYears)
for their full models versus intercept-only models. In LMG 2, the LEP full model does not improve
much upon the intercept-only models, and for all but two VOT sample size bins, the full LEP
model seems worse. A similar pattern holds for LEP predictions in other small to medium sized
LMGs. The full model’s performance looks better in some larger LMGs. In LMG 4, for example,
we see in the Table that the full model outperforms the intercept-only model in the lowest VOT
sample size bin, while PctRel∆ increases in most other bins.

In many cases, inclusion or exclusion of a single covariate makes a noticeable difference in the
performance of the model with covariates. For example, in LMG 4 the LEP model without the
predictor FRNBORN performs about as well as the intercept-only model. Omitting the other predictor
variables has a smaller impact on PctRel∆. In most AIAN and some Asian LMGs, most VOT
sample size bins have absolute PctRel∆ larger for the intercept-only model than for the full model,
but the differences are generally small.

A visual summary across many LMGs is given in Figure 4, which display log absolute PctRel∆
for LEP over all LMGs where the MLN-D model can be fitted. This includes all Asian LMGs and
all AIAN LMGs except for LMG 25, 39, 48, 60, 69, and 71. We separate ‘Large’ from ‘Small’
Asian LMGs by whether they have more than 700 sampled jurisdictions. In these plots, the log
absolute PctRel∆ is plotted at the left of each size-interval facet, with log absolute PctRel∆ for the
intercept-only model plotted at the right. Points from the same LMG are colored and connected by
lines of the same color. An upward-sloping line indicates an LMG with full model predictions differs
less (from direct estimates) than the intercept-only model, and therefore with better predictions by
the full model in that LMG and size-class. A downward sloping line indicates better performance
by the intercept-only model. In general, the full models for LEP tend to perform better relative to
intercept-only models in large Asian LMGs, such as LMG 4, than they do in smaller Asian LMGs,
such as LMG 2. There is considerable variability in the performance of full models for AIAN LMGs,
with some outperforming the intercept-only models, some underperforming them, and some with
little visible difference. When the full model does in larger LMGs seem to work well with respect

26



Table 7: Relative Discrepancy PctRel∆ for LEP outcome on jurisdictions aggregated
into VOT sample-size classes for LMGs 2, 4. PctRel∆ is shown for MLN-D models with
full set of covariates, with single covariates removed, and with Intercept-only.

LMG VOT sample-size intervals
(0,4] (4,12] (12,25] (25,50] (50,200] 200+

2 njuris 323 104 40 21 24 5
Estd. Pop. 1,295 2,230 2,293 2,463 10,140 17,910
Full Model 47.25 0.43 -6.23 -1.93 -3.15 -0.36
Intercept-Only 36.26 1.59 -2.80 -0.57 -2.56 -0.54
STL.T omitted 47.56 0.31 -6.26 -1.74 -2.99 -0.36
EDU2 omitted 35.89 1.07 -2.93 -0.42 -2.68 -0.48

4 njuris 1,824 612 277 207 214 175
Estd. Pop. 5,704 10,220 12,460 15,660 44,500 869,800
Full Model 9.02 -6.72 -6.09 0.14 -0.58 -0.01
Intercept-Only 12.37 -4.17 -4.78 -0.21 -0.55 -0.07
STL.T omitted 10.52 -6.57 -5.76 -0.14 -0.59 -0.02
EDU2 omitted 4.65 -7.28 -5.75 0.49 -0.13 0.00
FRNBORN omitted 11.81 -4.43 -5.42 0.04 -0.68 -0.06

Note: Estd. Pop. is the (rounded) direct estimate of LEP count
in jurisdictions of indicated size range.

to the partition of jurisdictions by sample size, that effect mostly occurs in the lowest VOT sample
size bin. Plots like Figure 4 for small Asian LMGs, not shown, have mostly rather flat or slightly
downward-sloping lines, with a few LMGs showing steeper upward- or downward-sloping lines.

There are fewer ILL observations in our sample, and therefore fewer LMGs with sufficient sample
to fit the MLN-D model with covariates. When the ILL model can be fit with covariates in an LMG,
its number of Jurisdictions with LEP sample is generally much smaller and the ILL models have
fewer covariates than LEP for the same LMG. Covariates are less significant (as indicated by their
model-standardized coefficients), less predictive and the full-covariate models versus intercept-only
often do worse compared to the LEP full models.
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Figure 4: Lineplots Large Asian and all-AIAN

Large Asian Jurisdictions

AIAN Jurisdictions



Table 8: Relative Discrepancy PctRel∆ for LEP in LMG 2 on jurisdictions aggregated
respectively into EDU2 and FRNBORN intervals. PctRel∆ is shown for MLN-D models
with full set of covariates, with single covariates removed, and with Intercept-only.

EDU2 intervals
(0, 0.356] (0.356, 0.43] (0.43, 0.491] (0.491, 0.557] (0.557, 1]

njuris 220 142 82 46 27
Estd. Pop. (rounded) 7,383 6,852 16,730 4,337 1,028
Full Model -0.94 -2.28 0.96 0.46 8.96
Intercept-Only 5.37 -3.32 -0.06 -2.62 2.50
EDU2 omitted 4.94 -3.65 0.14 -2.16 0.86
STL.T omitted -1.01 -1.88 0.91 0.41 9.87

FRNBORN intervals
(0, 0.06] (0.06, 0.1] (0.1, 0.15] (0.15, 0.25] (0.25, 0.66]

njuris 106 105 103 101 102
Estd. Pop. (rounded) 367 1,841 1,930 5,865 26,330
Full Model 46.90 3.06 4.20 -5.66 0.26
Intercept-Only 30.13 2.64 4.90 -3.49 0.08
FRNBORN omitted 43.79 2.55 3.76 -5.55 0.35
STL.T omitted 45.04 2.14 4.45 -5.19 0.31
EDU2 omitted 30.07 2.65 3.98 -4.22 0.25

Notes: njuris and PctRel∆ defined in Notes under Table 3.

To counter the impression that the covariates have no value, we exhibit their positive effect
on model predictions in two ways. First, partitioning the jurisdictions by intervals of values of
significant variables like EDU or FRNBORN in a model allows the value of these covariates to come
into clearer focus. In Table 8 and other tables not shown, the PctRel∆ discrepancy measures are
much better for the full model including the covariate than for intercept-only models. Again this
effect is strongest for the large Asian LMGs but persists for some of the larger AIAN LMGs.

The diagnostic reported in the first half of Table 8 shows that the PctRel∆ relative-discrepancy
of LEP predictions from the full model is much less (in columns 1,2 and 4 although not 3 and 5)
as compared with predictions from the model omitting EDU2. The model omitting STL.T performs
as well (and better in column 3) than the full model. These results accord with internal model-
based Wald tests for significance of coefficients. In LMG2, the CIT stage of the MLN-D model
uses covariates FRNBORN, AvgYears; the LEP stage of the model uses STL.T, EDU2; and the ILL
model uses EDU2. Of these covariates, only FRNBORN, AvgYears for CIT and EDU2 for LEP have
model-standardized estimated coefficients that are significant (all strongly so, with Wald-test p-
values < 0.00015). We see that aggregating jurisdictions according to similar values of the strong

29



LEP-model covariate results in worse predictions when that strong covariate (EDU2) is dropped
from the model, but improved predictions when a very insignificant covariate (STL.T) is dropped.

In the second half of Table 8, jurisdictions are aggregated by similar values of the FRNBORN
covariate, which along with the closely related covariate AvgYears is highly significant in the CIT
model; but does not appear in the LEP stage model. In this setting, as when the jurisdictions
were aggregated by the VOT sample-size, the Full model LEP predictions are actually worse than
those of the intercept-only model. The overall conclusion from these jurisdiction-grouping relative-
discrepancy diagnostics seems to be that stronger covariates can be felt in the improved quality of
predictions when the grouping variable is itself the strong covariate, but perhaps not otherwise.

Table 9: Correlations (corr) between model-predicted and direct-estimated LEP/VOT
and ILL/VOT proportions, over the njuris jurisdictions with direct LEP ≤ 1000 or
ILL ≤ 100, respectively for LMGs with ≥ 50 jurisdictions with LEP or ILL sample.

LEP LMG 1 2 3 4 5 6 7 8 9 10
corr 0.110 0.207 0.129 0.091 0.131 0.057 0.139 0.145 0.095 0.064
njuris 864 173 386 1,119 1,090 290 156 550 935 376

LMG 11 12 13 14 15 16 17 18 20 22
corr 0.163 0.169 0.155 0.074 0.101 0.160 0.151 0.216 0.211 0.022
njuris 84 356 95 534 960 589 59 219 171 111

LMG 26 27 44 45 56 57 63 64 72
corr 0.059 0.006 0.197 0.023 0.060 0.258 0.001 0.080 0.069
njuris 244 120 212 65 227 78 264 212 583

ILL LMG 1 2 3 4 5 6 8 9 10
corr 0.090 0.143 0.075 0.114 0.019 0.132 0.056 0.127 0.075
njuris 317 50 207 454 212 185 86 248 221

LMG 12 14 15 16 18 44 72
corr 0.058 0.050 0.088 0.104 0.057 -0.068 -0.128
njuris 104 177 494 217 111 81 152

This subsection argues only that the covariates have some value, not that they are strong pre-
dictors. To assess this fairly, we turn to another diagnostic. In models with covariates, we compare
synthetic LEP rate predictions π̃Ljg versus the direct-estimated ratios N̂L

jg/N̂
V
jg. Synthetic means

that the domain (j, g) predictor is generated from parameters of the fitted model and domain covari-
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ate values using as though that domain had not been sampled. These predictions reflect whether
the model itself has any value in distinguishing LEP outcomes of different jurisdictions for the same
LMG. The Intercept-only model ignores the covariates and predicts the same LEP/VOT ratio for
the LMG in all jurisdictions. So, to the extent that the synthetic π̃Ajg predictions for A = LEP, ILL
show positive correlation with the direct-estimated observed rates, they show predictive value in
the same way weak but significant linear-regression predictors do. In Table 9, the correlations are
generally low but large enough to reflect useful models, and scatterplots bear this out. The ILL
correlations are smaller than LEP correlations, and in some AIAN LMGs are so small that the
intercept-only model is clearly warranted for ILL in those LMGs. However, LMG 72 is anomalous
and hard to interpret, with ILL predictions and direct ILL/VOT ratios negatively correlated.

3.6.2 Jurisdictions — Models & Covariates

In this subsection and later ones on AIAs and ANRCs, it is shown how the general approach
described above to the inclusion of covariates in the MLN model translated into a grouping of
LMGs for each geography-type and a specific set of covariate coefficients to fit in MLN-D or MLN-
F models for each group. The guiding principle was that larger LMGs (with larger sample and
larger population within geographic units) can make greater use of more predictive covariates, and
that the covariates selected should apply to all LMGs within a few main groupings.

In the Jurisdiction geography, it was necessary to screen covariates for models in 21 Asian and
51 AIAN LMGs and — because of our decision to split the Hispanic LMG into four Regional
sub-LMGs for purposes of model-fitting and prediction — 4 more models for the Hispanic LMG.
Each model consisted either of a 3-stage combined MLN-F model with correlated random effects or
an MLN-D model in which the three CIT, LEP and ILL models could be fitted independently. It
was decided, for reasons elaborated in Section 3.5, that a Bayesian MCMC model-fitting approach
would be used only on large LMGs, and only within the Jurisdiction geography-type, and the
criterion for ‘large’ was that the number of within-LMG sampled jurisdictions be larger than 700.
There were 21 such LMGs (including 13 Asian LMGs, 7 AIAN, and all 4 regional Hispanic LMGs)
all with total direct-estimated population of at least 88, 000.

A first stage of automated screening for covariates was done with fixed-effect logistic regression
models, first with single covariates; then with combinations chosen through greedy stepwise selection
(removing one variable at a time), primarily in Asian LMGs; and finally, in parallel and indepen-
dently across LMGs, for random-intercept logistic models. The sets of frequently chosen covariates
differed slightly for CIT, LEP and ILL. In decreasing order of importance for each outcome-group,
covariates FRNBORN, STC.T, EDU2, OTHLANG, AvgYrs, NumPer, WHNHSP were dominant in CIT
models; EDU2, OTHLANG, STL.T, FRNBORN, NumPer, WHNHSP, AGEGP2, AGEGP36 in LEP mod-
els; and EDU2, OTHLANG, STI.T, WHNHSP, AGEGP3 in ILL models. In some LMGs, especially the
largest ones, stepwise selection included more variables; but in some smaller AIAN LMGs, the

6There were 3 Age-group variables corresponding to age-intervals 18–44, 45–64, 65+.
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random-effect MLN-D models with more than 1 or 2 covariates did not converge, We separated
out a group of AIAN LMGs (nearly all small) where either CIT/VOT direct-estimated ratios were
> 0.9991 or ILL/LEP direct-estimated ratios were = 0), and in that group declared that both the
CIT and ILL MLN-D stage models would be fitted intercept-only.

The rules for inclusion of covariates in models for different LMGs can be understood as a
function of njuris, the count of within-LMG jurisdictions with VOT sample, as follows:

• Large Asian LMGs: in the 6 Asian LMGs with njuris > 2000, the CIT model was fitted with
covariates STC.T, EDU2, FRNBORN, AvgYrs; the LEP model with STL.T, EDU2, FRNBORN;
and the ILL model with EDU2, NumPer

• Medium-sized Asian LMGs: in the 8 Asian LMGs with njuris between 600 and 2000, and
with direct-estimated VOT population > 75, 000, the CIT model was fitted with covariates
EDU2, FRNBORN, AvgYrs; the LEP model with EDU2, FRNBORN; and the ILL model with EDU2

• Small Asian LMGs: in the 7 Asian LMGs with njuris between 100 and 600, the CIT model
was fitted with covariates FRNBORN, AvgYrs; the LEP model with STL.T, EDU2; and the ILL
model with EDU2

• Regional sub-parts of Hisp LMG : the CIT model was fitted with covariates STC.T, EDU2,
FRNBORN, AvgYrs; the LEP model with STL.T, EDU2, OTHLANG, AGEGP2, AGEGP3; and the
ILL model with EDU2 for Regions 1,2 (Northeast, Midwest) and STI.T, EDU2, AGEGP3 for
Regions 3,4 (South, West)

• High CIT or Low ILL rate AIAN LMGs: in the 37 AIAN LMGs with direct-estimated
CIT/VOT > 0.9991 or ILL = 0, the CIT and ILL models were intercept-only, and the LEP
model was fitted with covariates STL.T,OTHLANG, to which were added EDU2, POV for LMGs
with njuris > 500

• Other AIAN LMGs: CIT model fitted with covariates STC.T,Reg4, plus POV AG2 when njuris
> 500; LEP model fitted with covariates STL.T, OTHLANG, plus POV, Reg4 when njuris
> 500; ILL model fitted with OTHLANG, plus EDU2 when njuris > 500

3.6.3 American Indian Areas — Models & Covariates

In the AIA geography data, it was necessary to screen covariates for 51 models. None of the LMGs
has more than 350 AIAs with VOT sample. Moreover for AIAN LMGs in AIAs, very few AIAs
account for most of the sample: in 28 of the 51 AIAN LMGs, more than half of the AIA sample falls
within 3 AIAs. Therefore only the MLN-D model (with independent stagewise random-effects) was
considered, which means that the models took the form of 51 separate triplets of models for CIT,
LEP and ILL outcome rates, each in terms of the next higher level (respectively VOT, CIT, LEP)
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in the nested outcome hierarchy of Fig. 1. Not only did many of the LMGs have extremely small
numbers (less than 50) of AIAs with sampled persons, many of the LMGs also had CIT/VOT ratios
extremely close to 1 and/or ILL/LEP ratios extremely close to 0. For the CIT and ILL models in
all such LMGs, a random-intercept logistic (binomial logit-normal) intercept-only form was chosen.

Preliminary investigation of models in LMGs for which CIT and ILL rates were extreme showed
that many MLN-D models did not converge, and in those LMGs we fell back on beta-binomial
models. In LMGs without such extreme rates, we found that only a few predictive covariates
were useful, judging by model-based tests of significance of coefficients and related stepwise model
selection, those covariates were LEPrat and occasionally WHNHSP, EDU2, POV. The result of these
investigations was the following set of rules assigning covariates to LMGs:

• Beta-binomial models: if CIT/LEP for an LMG in was ≥ 0.995 or was ≥ 0.95 when also
ILL/LEP ≤ 0.001, the CIT model was fitted as beta-binomial (with Beta(1/2, 1/2) prior); if
LEP/CIT was ≤ 0.0025 for all AIAN persons in AIAs in the LMG, the LEP model was fitted
as beta-binomial; and if the total of LEP sampled AIAN persons was < 3 or ILL/LEP was
≤ 0.001 or both ILL/LEP ≤ 0.003 and at most 5 LEP AIAN persons were sampled, then the
ILL model was beta-binomial

• Other CIT models: in other LMGs, the CIT model was MLN-D with the single covariate
CITrat if that model’s estimates converged, and otherwise the model was intercept-only

• Other LEP models: in AIAN LMGs 9, 32, 43, 49, 51, use covariates LEPrat, WHNHSP; in
AIAN LMG 50 use LEPrat, POV; and in other LMGs with ILL/LEP > 0.0025 use LEPrat
and change to intercept-only if < 40 CIT persons were sampled or if the model fails to
converge or the LEPrat coefficient is not significant

• Other ILL models: in AIAN LMGs 24, 44 use covariates ILLrat, EDU2; in AIAN LMG use
ILLrat, WHNHSP; and otherwise use the single covariate ILLrat, reverting to intercept-only
if the model is nonconvergent or the coefficient non-significant or fewer than 20 LEP AIAN
persons were sampled

• Intercept-only models: in all cases using an intercept-only model, switch to beta-binomial
either if the model is nonconvergent or the estimated random-effect σ parameter is < .001

3.6.4 Alaska Native Regional Corporations — Models without Covariates

For ANRC geography, it was necessary to screen covariates for 51 models. Since there were only
12 distinct geographic units, we considered only the MLN-D model for predictions, and we rapidly
found that no covariates were so different between single ANRCs that they helped with predictions.
So the only further modeling choice was to decide which of the model stages for the 51 AIAN
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LMGs could be fitted with an intercept-only logit-normal model and which must be handled with
the backup beta-binomial model. The rule adopted to distinguish between these two cases is:

• Beta-binomial models for LMGs: for LMGs in which fewer than 8 ANRCs have VOT sam-
ple,the CIT, LEP and ILL models are all beta-binomial; in addition, for LMGs with CIT/VOT
≥ 0.996, the CIT model is beta-binomial; for LMGs with LEP/CIT ≤ 0.002 the LEP model
is beta-binomial; and for LMGs with ILL/LEP ≤ 0.002 the ILL model is beta-binomial

• Intercept-only models: for all other LMG and CIT, LEP, ILL model combinations, the model
is MLN-D intercept-only; except if that model fails to converge or random-effect σ parameter
is estimated < .001, the model reverts to beta-binomial

3.7 Limitations of Model Assumptions

The model assumptions used in the VRA statistical analysis have several limitations with respect to
the available data. Two in particular can be assessed and improved upon in future VRA cycles, with
the objective of providing firmer theoretical underpinnings to the model-based estimates used in the
production of statistical estimates on which VRA determinations are based. The first limitation has
already been mentioned: we used multinomial regression models — models assuming integer-valued
count data — for the non-integer derived quantities Yjk,g = (nVjg/N̂jg) · N̂A

jg (k=1 for A=C, 2 for
A=L, and 3 for A=I) introduced in assumption (iv) of Section 3 to partition the (j, g) sample-size
nVj into categories A. A second important assumption that can be challenged is the independence
(of N̂V

j ) from ratios πjg = (NA
jg/N

V
jg, A = C,L, I) assumed in (iii) of Sec. 3 and in (7) of

Appendix C. This assumption is used both in model formulation and variance estimation, and was
used similarly in the 2016 VRA cycle. A preliminary assessment of this assumption is contained in
the small correlational study summarized in the following paragraphs and tables.

3.7.1 Testing an Independence Assumption via Correlations

There are two different ways to obtain estimated correlations between values N̂V
j and (estimated)

fractions π̂Aj within a fixed LMG g. Since the independence assumption (7) of Appendix C applies
only to the random variables for a fixed geographic unit j, the most relevant way to find correlations
is to re-compute N̂j,(r), π̂

A
j,(r) for each of the r = 1, . . . , 80 SDR weight-replicates used in standard

ACS calculations of variances and covariances and take the correlation across these two vectors of
80 numbers. A second way to look at dependence (without considering weight-replications) is to
take the correlations across all geographic units j (with positive VOT sample-size) within LMG g.
This second type of correlation has a somewhat different interpretation.

First, Table 10 summarizes the jurisdiction-specific correlations across SDR replicate estimates.
For each of 12 LMGs and each of the populations A = C (CIT), L (LEP), I (ILL) in all jurisdictions
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j that had positive VOT sample-size in ACS 2015-2019, we computed the correlations∑80
r=1 (N̂j,(r) − N̄j) (π̂Aj,(r) − π̄

A
j )[∑80

r=1 (N̂j,(r) − N̄j)2
∑80

r=1(π̂Aj,(r) − π̄
A
j )2

]1/2 , N̄j =
1
80

80∑
r=1

N̂j,(r) , π̄Aj =
1
80

80∑
r=1

π̂Aj,(r)

(4)
Quartiles of these computed correlations for each of 12 LMGs, across all jurisdictions with VOT
sample for the LMG, are displayed in the first 3 columns of the table, with the number of such
jurisdictions for the LMG in the 4th column. In each LMG, there are some jurisdictions, tallied
in the 7th column of the table, for which these estimated correlations are large, in the sense that
their absolute values are ≥ 0.25. However, the VOT sample sizes in those large-absolute-correlation
jurisdictions are for the most part extremely small. We take Table 10 to be a rough confirmation
that for each jurisdiction in each LMG other than LMG 72, the VOT estimated total N̂jg is
approximately uncorrelated with the model-predictions π̂Ajg for the ratios πAjg ≡ NA

jg/N
V
jg. Apart

from LMG 72, the lower and upper quartiles bracket 0, typically with absolute values of size 0.12
or smaller. For some reason we cannot fully explain, LMG 72 is different, showing systematically
positive correlations that are not small. Indeed, in LMG 72, correlations greater than 0.25 occur
respectively in 2747 and 2430 jurisdictions out of 4399 for LEP and ILL, with correlations < −0.25,
respectively occurring only 27 and 28 times.

One reason why LMG 72 might be different is that it is a catch-all category, comprised of
American Indian or Alaska Native persons from many different unspecified tribes (other than those
accounted for in other LMGs). In that sense, the correlations (4) within LMG 72 might be viewed
as correlations across many distinct, individually small, tribal groups. That is a kind of correlation
that we can approximate by looking at correlations of N̂V

j and π̂Aj across sampled jurisdictions
within LMG. Table 11 shows correlations of that type, for A = C,L, I. However, these correlations
across geographic units do not directly address the within-jurisdiction independence-assumption
that was the main topic of this subsection.

The strong positive correlations seen across weight-replicates in LMG 72 are a concerning
anomaly. We investigated this further by breaking down the cross-replicate correlations for all
LMGs separately for jurisdictions in each of 6 VOT sample-size classes, respectively those with
VOTsmp in the ranges 1, 2–3, 4–6, 7–10, 11–40, 41–100, and 101+. Remarkably, although this does
not occur in any other of the 11 LMG’s in Table 10, the cross-replicate correlations for LMG 72
in each outcome group CIT, LEP, ILL become progressively stronger for the larger jurisdiction
sample-sizes. This may be an oddity of ACS weighting that applies especially strongly to members
of this catch-all AIAN group LMG 72, but it may also be true of AIAN LMGs that, like LMG 72,
have a particularly large proportion of their population falling in jurisdictions with small sample
size.
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Table 10: Summary of Correlations between N̂j,(r), π̂
A
j,(r) across weight-replicates r = 1, . . . , 80, for

CIT, LEP and ILL totals in Jurisdictions j within indicated LMGs. Cols. 1-3 are quantiles across j
of cross-replicate correlations. Col. 4 is the number of jurisdictions with ACS sample within LMG.
Cols. 5-7 refer to jurisdictions with absolute cross-replicate correlations ≥ 0.25: the median and
Q3 of the sample sizes for correlations ≥ 0.25 and the number of such jurisdictions.

Total LMG Cross-Replicate Correlations Large-Corr. Jurisdictions
Q1.cor med.cor Q3.cor Num.Jur med.samp Q3.samp Num.Jur

CIT 2 -0.109 0.009 0.121 517 5 14.25 136
4 -0.137 0.006 0.147 3309 5 14.5 943
7 -0.078 0.019 0.151 845 3 7 206
8 -0.070 0.040 0.162 3029 3 8 675

11 -0.073 0.022 0.130 461 3 8 118
13 -0.083 0.005 0.108 500 4 8 117
15 -0.103 0.016 0.150 2374 5 14 611
22 -0.066 0.026 0.125 1274 1 2 152
24 -0.059 0.027 0.131 1905 1 1 259
27 -0.070 0.014 0.107 3830 1 2 350
61 -0.067 0.007 0.116 301 1 2 34
72 0.253 0.339 0.497 4399 4 11 3353

LEP 2 -0.089 0.011 0.140 517 6 15 121
4 -0.105 0.015 0.161 3309 5 13 854
7 -0.105 0.003 0.118 845 2 6 168
8 -0.115 -0.013 0.097 3029 2 7 506

11 -0.101 -0.01 0.089 461 2 7.5 83
13 -0.093 0.003 0.118 500 4 7 106
15 -0.102 0.019 0.171 2374 5 11 621
22 -0.084 0.000 0.092 1274 1 3 168
24 -0.068 0.024 0.120 1905 1 1.5 251
27 -0.073 0.008 0.096 3830 1 3 383
61 -0.075 -0.003 0.106 301 1 5.5 42
72 0.214 0.289 0.396 4399 4 11 2774

ILL 2 -0.083 0.008 0.131 517 5 11 92
4 -0.104 0.005 0.133 3309 4 10 725
7 -0.091 -0.002 0.099 845 1 4 104
8 -0.095 0.002 0.105 3029 2 6 405

11 -0.091 -0.009 0.086 461 1 6.75 70
13 -0.080 0.003 0.093 500 3 6.5 91
15 -0.095 0.013 0.145 2374 4 9 520
22 -0.079 0.005 0.101 1274 1 3 161
24 -0.056 0.016 0.100 1905 1 2 240
27 -0.076 0.005 0.092 3830 1 4 364
61 -0.086 0.010 0.087 301 1 2 37
72 0.183 0.267 0.371 4399 5 13 2458
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Table 11: Correlations between N̂j , π̂
A
j for A = C,L, I across j within LMG.

LMG 2 4 7 8 11 13 15 22 24 27 61 72
CIT 0.02 0.03 -0.01 0.02 -0.07 0.06 0.05 0.01 0.00 NA -0.07 -0.19
LEP 0.13 0.14 0.25 0.02 0.03 0.17 0.15 0.13 0.07 0.03 0.14 0.17
ILL 0.04 0.10 -0.01 -0.02 -0.02 0.07 0.09 0.05 0.07 0.03 0.16 0.21

4 Variance and Mean-Square Predictor Error (MSPE) Estimation

At least 3 different kinds of variance or mean-square prediction-error (MSPE) estimates are pro-
duced to quantify variability in our statistical predictions for (Geo, LMG) population subgroups.
All are described in full details, both conceptually and computationally, in the Appendix D in
sections D.1, D.2, D.5 and D.6. Briefly, these are the standard successive difference replication
(SDR) variance estimates used by ACS for direct survey-wieghted estimates, and two methods that
combine the SDR variances for the direct estimate of the VOT population N̂V

jg in (Geo, LMG)
with model-based Bayesian or frequentist MSPEs. The Bayesian method relies on Markov-Chain
Monte-Carlo (MCMC) simulations estimating posterior variances for model predictions, while the
frequentist method applies the SDR idea to model-based predictions recalculated for 80 different
weight-replicates. Some comparisons between these two different types of model-based MSPEs cal-
culated on a selection of LMGs are given in Section 4.2 below. The model-based MSPE estimation
methods adopted in this VRA cycle differ from a method based on the model-based Parametric
Bootstrap [Slud and Ashmead, 2017] used in the 2016 VRA cycle [Slud et al., 2018].

4.1 Comparing Direct with Model-Based Variances

Within each of the 7,859 jurisdictions, we aim to estimate values for 73 LMGs, leading to a total
of 573,707 estimands for each of 6 variables: the VOT, CIT, LEP and ILL counts), the proportion
of the total citizen7 population within a geography that is LEP (LEPprop), and the (Geo, LMG)
domain ratio ILL/LEP. We estimate the same variables within the 568 AIAs and 12 ANRCs in 51
Native American LMGs, for a total of 28,968 and 612 estimands respectively.

The tables and figures in this section will focus on quantities related to LEP and ILL, as these
are the most relevant for the VRA Section 203(b) coverage determinations. Unfortunately, as we
can see in the following tables, the 2015-2019 5 Year ACS has small samples of voting age citizens
for many LMG / geography combinations we are interested in.

7citizen AIAN, for AIA and ANRC geographies
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Table 12 shows the numbers of (Geo, LMG) domains with indicated ranges of ACS 2015-19
sample-size for jurisdictions, AIAs, and ANRCs. Domains with no sampled VOT persons have
no direct or model-based estimates. Domains with very small samples have extremely imprecise
direct estimates, and we fit models in an attempt to reduce this estimation error. Estimated
standard deviations (SDs or MSPEs) and Coefficients of Variation (CVs) measure the quality
of these estimates. For our purposes, the most important variables we estimate are LEP and
ILL/LEP, since these are used to make coverage determinations. This section compares CVs and
SDs associated with the direct and model-based estimates of LEP and ILL/LEP.

Table 12: Rounded numbers of (Geo, LMG) domains with indicated ranges of ACS
2015-19 VOT sample size, for Jurisdiction, AIA, and ANRC geographies

Sample 0 1 2-5 6-10 11-20 21-50 51-100 101-250 251-500 501+
Juris 495,100 20,670 27,210 7,911 5,253 4,333 2,005 1,688 688 895
AIA 24,790 1,456 1,358 373 282 275 160 192 51 31

ANRC 353 66 84 27 27 19 10 10 5 11

Table 13: Percent of (Juris, LMG) and (AIA, AIAN LMG) domains with CV < 0.6 for variables
LEP and ILLrat, by sample size, based on M= Model-based or D=Direct estimates

Sample Size 1 2-5 6-10 11-20 21-50 51-100 101-250 251-500 501-1000 1001+
LEP (M) 0.2 5.8 24.3 46.1 70.0 82.5 88.5 94.3 97.4 99.8
LEP (D) 0.0 0.3 2.4 9.4 30.4 61.0 80.9 91.0 95.0 99.6

ILL/LEP (M) 41.7 40.1 34.4 35.2 38.4 50.9 66.9 81.0 93.0 97.3
ILL/LEP (D) 0.3 1.8 3.4 4.6 7.3 12.7 23.1 46.2 68.1 93.7

AIA
LEP (M) 0.0 14.0 50.7 63.1 70.5 67.5 77.1 74.5 73.7 83.3
LEP (D) 0.0 0.2 0.5 1.4 6.2 18.1 38.0 51.0 63.2 91.7

ILL/LEP (M) 54.5 76.1 71.3 69.9 73.8 77.5 80.2 88.2 94.7 100.0
ILL/LEP (D) 0.0 0.2 0.8 1.8 2.2 7.5 10.9 7.8 10.5 16.7

Broadly, we consider four types of estimates: (i) direct survey-weighted estimates with SDs esti-
mated using Successive Difference Replication (SDR); (ii) Bayesian estimates from the multinomial
logit normal (MLN-F) model with general random-effect covariances, with SDs estimated as pos-
terior standard deviations; (iii) frequentist estimates from the multinomial logit-normal(MLN-D)
models with random effects assumed independent and SDs estimated using SDR applied to model-
based predictions; and (iv) Beta-Binomial model estimates with no covariates. Types (ii)-(iv) are
model-based estimates. Each (Geo, LMG) domain with VOT sample has one direct and one model
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Table 14: Rounded count of (Juris, LMG) domains with estimable CV by variable × estimate-type

Variable Direct Model
LEP 18,600 78,260
ILL/LEP 5,527 78,200

based estimate, the latter of type (ii) in data-rich domains and of type (iii) [sometimes combined
with (iv)] in domains with fewer sampled domains. The primary comparisons of this Section are of
estimated SDs of direct versus model-based estimates for LEP counts and ILL/LEP ratios.

The range of uncertainties of estimates is displayed in terms of their coefficients of variation
(CVs). The Census Bureau’s quality standards for ACS require a majority of published key es-
timates to maintain a CV < 0.3. Estimates with CVs greater than 0.61 are deemed unreliable.
In Table 13, the percentage of estimates acceptable for ACS, with CVs < 0.6) is seen to be low,
due in large part to the small sample sizes available for smaller LMGs and jurisdictions or AIAs
in the ACS. The percentage of acceptable model-based estimates is noticeably higher than that of
acceptable direct estimates in all sample-size classes. (The same holds for ANRCs, not shown.)

Another motivation for producing model-based estimates is that CVs cannot be calculated for
domains were the sample is too small to estimate both the standard deviation and mean. This often
implies that CVs are not estimable using direct estimates, but are using models. The numbers of
(Juris, LMG) domains with estimable CVs in this sense are shown in Table 14.

For (Juris, LMG) domains with LEP < 10, 000 to influence the Section 203(b) determinations,
the ratio of the estimate of LEP to the total voting age citizen population of that geography (AIAN
citizen population for AIA or ANRC) must be greater than 0.05. There are only 5 domains for
jurisdictions and 2 for AIAs that meet this criterion and have sample sizes of 5 or less. Hence,
outcomes in the lowest two sample size categories will have limited practical impact.

Advantages of the model estimates are also shown in Table 15 comparing the distribution of
model and direct CV estimates in (Juris, LMG) domains where both can be calculated. The median

Table 15: Quantiles of CVs for LEP and ILL/LEP variables in (Juris, LMG) domains
where both direct and model CVs can be estimated and are not 0

Variable Est. Type Q5 Q25 Median Q75 Q95
LEP Direct 0.16 0.49 0.79 0.98 1.28
LEP Model 0.13 0.38 0.61 0.90 1.38
ILL/LEP Direct 0.14 0.36 0.60 0.89 1.33
ILL/LEP Model 0.15 0.31 0.41 0.56 0.75
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model-based CVs are lower than the median direct CVs for both LEP, ILL/LEP in the (Juris, LMG)
domains where both types of CVs can be estimated. This is another sense in which model-based
CVs typically outperform the direct CVs.

We next address frequency and improvement of the estimates in single domains, by comparing
direct to model-based estimates of SDs and CV. Larger standard deviations (SDs) or CVs imply a
higher degree of uncertainty, and therefore worse estimation performance. For most comparisons,
we omit any estimates with a standard deviation of zero. These cases are not easily interpretable,
as all of our estimates have at least some uncertainty. In many cases, we also omit estimates based
on sample size less than 5, both because estimates based on extremely small samples are noisy
and generally unreliable, and also because samples this small only rarely result in Section 203(b)
determinations.

The scatterplots in Figure 5 show the relationship between Direct (SDR) and Model-based
SDs for single (Juris, LMG) domains for the variables LEP and ILL/LEP. In each, the SDR and
model-based SDs are equal along the dashed blue line. Points below [above] the line indicate (Juris,
LMG) domains for which the direct estimated SD is larger [smaller] than the corresponding model-
based estimate. Domains for which either the SDR or Model SD are estimated as zero are not
meaningful, and have been omitted. In order to reduce visual clutter, and emphasize relevance to
VRA determinations, the plots are restricted to domains with LEPprop > 0.05. In both plots, the
points tend to cluster on or below the dashed blue line; that is, for the great majority of (Juris,
LMG) domains, the model-based estimates have smaller estimated SDs than the direct estimates.

Tables 16 and 17 make the same point by displaying quantiles of the percent reduction of model
versus direct CVs by decile of the direct estimated CV. The tables tally only (Juris, LMG) domains
for which both the model and SDR SDs are positive. In both tables, the median percent reduction
of CV is generally positive, meaning that the model-based CV is usually lower than the direct CV.
For LEP estimates, the median reduction is similar in most of the direct CV bins, except in the
largest deciles which show the largest reduction. The range of the LEP CV reductions is also seen
to increase as the direct CV increases. In contrast, the median reduction of the ILL/LEP CVs
seems to increase with the decile of the direct CVs: the higher the direct CV, the larger appears
the benefit of the model-based estimate. Similar patterns hold for both LEP and ILLrat in (AIA,
AIAN LMG) domains.
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Figure 5: Nonzero SDR vs Model SDs for (Juris, LMG) domains where LEPprop > 0.05.
(Axis labels are: SDR SD for SDR SDs and Mod SD for SDs of model-based estimates.)
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Table 16: Quantiles of percent CV reduction of model vs. direct CV of LEP in (Juris, LMG)
domains with sample size ≥ 5 and nonzero SDs, displayed by decile of direct CV

CV Decile # (Juris,LMG) Qu.05 Qu.25 Median Qu.75 Qu.95
1 (0.01, 0.25] 1,849 -7.38 6.86 15.51 23.94 34.52
2 (0.25, 0.41] 1,809 -11.69 4.68 15.82 26.22 38.61
3 (0.41, 0.55] 1,826 -17.77 4.36 17.61 29.81 44.41
4 (0.55 ,0.68] 1,786 -19.43 3.37 17.06 29.41 45.74
5 (0.68, 0.79] 1,542 -24.47 3.62 18.61 32.16 49.01
6 (0.79, 0.89] 1,154 -26.25 7.06 21.50 35.62 50.26
7 (0.89, 0.95] 1,104 -30.50 10.34 24.22 36.95 52.16
8 (0.95, 1.01] 1,039 -32.51 9.79 26.72 38.85 54.36
9 (1.01, 1.13] 1,023 -23.39 14.24 30.91 42.17 58.58

10 (1.13,11.30] 924 -6.92 29.62 44.22 57.54 74.05

Table 17: Quantiles of percent CV reduction of model vs. direct CV of ILL/LEP in (Juris,
LMG) domains with sample size ≥ 5 and nonzero SDs, displayed by decile of direct CV

CV Decile # (Juris, LMG) Qu.05 Qu.25 Median Qu.75 Qu.95
1 (0.01, 0.21] 436 -405.1 -13.09 9.39 18.22 29.55
2 (0.21, 0.32] 467 -175.3 -15.58 13.79 24.47 32.86
3 (0.32, 0.41] 422 -67.72 -4.69 16.77 28.18 38.97
4 (0.41, 0.50] 477 -32.96 8.51 21.62 32.08 43.32
5 (0.50, 0.60] 501 -29.66 9.70 25.77 35.55 48.71
6 (0.60, 0.71] 490 -10.18 18.75 33.98 43.87 54.68
7 (0.71, 0.82] 441 1.13 22.21 37.22 48.56 59.59
8 (0.82, 0.95] 505 9.10 30.06 41.39 53.01 65.18
9 (0.95, 1.10] 460 19.05 37.49 45.89 57.78 69.10

10 (1.10,12.60] 478 36.68 50.35 61.21 71.06 82.30

Throughout, we have focused on VOT sample sizes in ACS 2015-2019. Yet even if the VOT
sample is large, in the (Geo, LMG) domains where this sample includes no citizens or no LEP
citizens, it is not possible to produce direct estimates or SDR SDs. However, model estimates can
still be produced by using covariates and outcomes from other domains with the same LMG. Model
estimates for LEP when there is no CIT sample, or for ILL when there is no LEP sample, are
called ‘synthetic’. Counts of domains with synthetic estimates are displayed by VOT sample size in
Table 18. The great bulk of such estimates are in domains with small VOT sample sizes. Because
synthetic estimates have no direct estimates to compare against, we summarize the differences
between synthetic model-based estimates and non-synthetic model-based estimates in Table 19.
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Table 18: Number of (Juris, LMG) domains (rounded to 4 significant digits) with synthetic
estimates for LEP or ILL/LEP and model SD > 0, displayed by VOT sample size

VOTsmp 1 2-5 6-10 11-20 21-50 51-100 101-250 251-500 501+
LEP 2,566 1,302 69 12 2 0 0 0 0
ILL/LEP 27,500 22,900 5,251 2,561 1,272 291 100 15 2

Table 19: Quantiles of Positive Model-based CVs by Synthetic Status, for (Juris, LMG) domains

Variable Synthetic Qu.05 Qu.25 Median Qu.75 Qu.95
LEP FALSE 0.31 0.70 0.98 1.33 2.48
LEP TRUE 0.76 0.99 1.20 1.40 1.91
ILL/LEP FALSE 0.21 0.43 0.61 0.75 1.12
ILL/LEP TRUE 0.21 0.45 0.67 0.93 1.95

The general pattern is that purely synthetic LEP estimates exhibit a reduced range, being
slightly higher than non-synthetic LEP estimates below the median, but lower than non-synthetic
LEP estimates above the median. Lower quantiles of synthetic ILLrat CVs are similar to those of
non-synthetic ILL/LEP CVs, but higher quantiles (particularly at or above the median) are notably
larger for synthetic as opposed to non-synthetic estimates. At the median, synthetic ILL/LEP and
LEP estimates have higher model CVs than non-synthetic estimates. In this way, the synthetic
ILLrat CVs show an increased range, in contrast to the LEP CVs. The upshot is that the synthetic
CVs seem to have different distributions than their non-synthetic counterparts, based on their
central tendencies and the shape of their tails.

Inclusion determinations for Section 203(b) of the Voting Rights Act depend crucially on the
number of voters with limited English proficiency (the LEP count) in each (Geo, LMG) domain,
and the proportion of those voters who are illiterate (ILL/LEP). The diagnostics shown above
all support the conclusion that the model estimates are on average more precise than the direct
SDR estimates of standard deviation for both LEP and ILL/LEP. The Section 203(b) model-based
determinations are more accurate in that sense than they would have been if based on direct
survey-weighted estimates.

4.2 Bayesian Posterior Variances versus SDR-based MSPEs

It is important to verify that the variances or MSPE estimates for model-based predictors agree
closely when calculated by different methods for the same model . We have verified in Section 3.5
(Table 6, with the exceptions of LMGs 9 and 73) model MLN-D adequately captures the outcome
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data and the additional MLN-F parameters allowing dependence of random effects are not necessary.
We verified for the same LMGs 3–10 as in Table 6 and outcomes LEP and ILL that the differently
calculated Bayes-posterior derived MLN-F MSPE estimates track closely with those calculated by
the replication-based frequentist MLN-D MSPE estimates. However, there is an interesting pattern
by which the Bayes SDs (root MSPEs) tend to overestimate small (0–20) values by comparison with
the frequentist SDR-based estimates; the Bayes versus frequentist SD estimates are just as often
slightly lower or higher for medium-low SDs (say ranging from 20–50); Bayes SD estimates are
lower for medium-high SDs (50–300); and the Bayes estimates are a tiny bit smaller but very close
for large SD values. These ranges apply to LEP-count SDs, but a similar pattern with scaled-down
ranges applies to ILL-count SDs. In fact the estimated SDs track together fairly closely in all the
LMGs investigated, with the largest but still tolerable differences seen in LMG4, which is illustrated
in Figure 6 for LEP.

5 Summary

Since 2011, the first year in which Voting Rights Act Section 203(b) determinations were made using
a model-based statistical analysis, the Census Bureau has pursued methodological development and
innovation in these analyses. Somewhat different models were used in each of the 2011, 2016 and
2021 cycles, although the basic approach and guiding philosophy of Small Area Estimation [Rao
and Molina, 2015] has been maintained. That philosophy is to improve the quality of estimates for
geographic units in each LMG by ‘borrowing strength’ from the similarity of relationships between
covariates in the other geographic units and the corresponding population-subgroup (CIT, LEP,
ILL) fractions in those units.

The present report has extensively described the statistical models and computational methods
used in producing the estimates of LMG population subgroups and the ratios of them used in the
Section 203(b) determinations. Evaluative analyses in Section 4.1 demonstrate, as similar analyses
in previous cycles also did, that the model-based analyses provide estimates with smaller variances
(and in that sense, better) than the ‘direct’ estimates that could have been generated by standard
ACS survey weighting. Different evaluative analyses in Section 3.6 described assessments showing
that the estimates are nevertheless reliable in conforming to ACS direct estimates of LEP and ILL
populations within LMGs over aggregates of jurisdictions. Nevertheless, the accuracy of the model
predictions is so far limited by the noisy relationship between jurisdiction-wide covariates and the
sizes of LMG-specific population subgroups.

The following two subsections detail the differences in methodology between the 2016 VRA
statistical analyses and the present ones, and suggest some directions in which future development
of VRA Section 203(b) statistical methods may be fruitfully pursued.
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Figure 6: Plots of estimated SDs by Frequentist SDR versus Bayesian MCMC for jurisdiction LEP
counts in LMG4 for four ranges of successively larger SD estimates. Red lines are 45◦.
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5.1 Differences from 2016 Methodology

The analytical methods used in the 2021 VRA estimates are different from those used in previous
cycles in choices of model, of predictive covariates, of inclusion criteria for small-sample geographies
to contribute to model parameter estimates, of method of computation of model predictions and
estimates of variances (MSPEs), and of model assessment. The models used in this cycle are
Multinomial Logit-Normal (MLN), chosen in preference to the Dirichlet-Multinomial (DM) models
used in 2016 and the related DM models (See Sections 3, 3.1 and 3.2 for model definitions and
descriptions and section 3.4 for the selection of MLN for data production in this estimation cycle.)
The definitions and choice of potential predictive covariates were discussed in Section 2.2: these
differed from the ones considered in 2016 mainly by excluding survey-based covariates defined
from the same geography/LMG domains in which estimates were desired, on the grounds that such
covariates are themselves noisy and erratic outcomes of survey data-collection. One initial objective
of new research in this cycle was to develop new covariates based on historical (previous ACS) data,
but there was not time to develop new methodology for the large-scale analysis of random-effect
models of this sort. We had also hoped to make use of decennial-census-related administrative
records as covariates, but COVID-related delays in decennial 2020 data publication schedules made
that impossible. Development of methods based on such improved predictive data must await
future research, some directions of which are sketched in Section 5.2 below.

Other details of methodological choices differing from those of 2016 have been described through-
out this report. Section 3.3.1 explained and justified the choice to use all possible data in parameter
estimation, regardless of the smallness of sample-size in the geographic unit where it was collected.
This choice differed from 2016, where minimum sample-size thresholds were used to include data in
estimation. Bayesian estimation methods, including MCMC-based estimates of Variance (MSPE)
were introduced in this research for two reasons. First, we had hoped to analyze data using more
general models flexible enough to incorporate past ACS data, and for some such models the compu-
tation of frequentist estimates would have been intractable. Second, we found (cf. Section 3.5) that
in the ‘Full’ MLN models suitable for the largest LMGs (MLN-F), with dependent random effects,
the computation of variances would have been too computationally burdensome by the frequentist
methods found for simpler MLN models, and the Bayesian computations were more practical. We
view this combination of techniques as a strength of the current research effort. The frequentist
parametric-bootstrap method used in 2016 to estimate variances would not have been computa-
tionally feasible this time around because of the large number of repeated MLN-F estimates that
it would have required.

The methods we developed in this research project to assess models, covariate choices (in Sec-
tion 3.6.1) and model-assumptions (in Section 3.7.1) were innovative and different from assessments
used in previous cycles of VRA research, and contributed to the quality of our final data product.
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5.2 Future Research Directions

The research done and documented in this report has left incomplete several steps that could be
developed further to produce more flexible models and efficient computer code using existing data.
One such step is to expand the study begun in Section 3.7.1 and possibly generalize the independence
assumption [(iii) in Section 3] used in variance estimation. Another kind of extension would be to
further explore the recording and interaction of covariates incorporating VOT sample-size classes,
since our model assessments suggest that the geographic units with smallest sample sizes are not
well fitted by models developed for domains with large sample. If the production of estimates
were again to be based on MLN-F models, there is room for numerical-analysis improvements in
the optimization of multiparameter mixed-effect likelihoods that might allow frequentist Adaptive
Gaussian Quadrature computations with MLN-F to speed up to the point of supplanting the
Bayesian MCMC methods used in the 2021 cycle for larger LMGs. Finally, even within the current
research cycle we contemplated replacing direct SDR variances in small domains with Generalized
Variance Functions (GVFs) [Wolter, 2007], curve-fitted approximations to variances as a function of
domain sample sizes within distinct geography types. Work in this direction was begun by Xiaoyun
Lu as part of the 2021 research but did not advance far enough to play a role in the final product.
It would make sense to carry these GVF investigations forward in future VRA cycles.

Other models and directions of research are also promising for the next VRA research cycles to
support Section 203(b) determinations in 2026 and 2031. Primary among them is the development
of predictive covariates from administrative records to be used together with decennial census data
to supplement ACS data. The difficult issue is that Language Minority Groups are based on race
and national origin not directly included in most administrative records (with the exception of
some AIAN classifications), so that administrative records would have to be linked to the ACS
and/or decennial census to enable ACS covariates and CIT, LEP and ILL outcomes to be used
together in local (Geo, LMG) domains. If the linkage problems could be solved, the resulting unit
or local-area covariates would likely become much more powerful as predictors of CIT, LEP, and
ILL status than they are now. Linkage of administrative records to ACS does not so far run afoul
of newly instituted Differential Privacy procedures that inject noise into granular local-area census
data, but linkage to decennial census microdata does, so utilization of census data in future VRA
cycles will require new ideas.

Past ACS data could be another new source of predictive data. Recent past nonoverlapping
ACS releases would provide additional predictive covariates in most if not all jurisdictions and AIAs
and could enable time-series extensions to the Multinomial Logit-Normal models used in 2021
production. Estimation within such models incorporating random domain-effects would present
formidable computational challenges, but on a smaller scale such Bayesian-hierarchical time series
models and MCMC are becoming feasible [López-Vizcáıno et al., 2015]. Slightly less ambitiously,
future research might develop models similar to the MLN models used here but incorporating past
ACS data (possibly recoded together with current data on the same domains) as covariates.
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Agust́ın. Small-area estimation of proportions under area-level compositional mixed models.
TEST, 29:793–818, 2020.

Fay, Robert E. and Dippo, C.S. Theory and application of replicate weighting for variance cal-
culations. In Proceedings of the Survey Research Methods Section of the American Statistical
Association, pages 212–217, 1989.

48

https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/voting-rights-determination-file.html
https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/voting-rights-determination-file.html


Fay, Robert E. and Train, George. Aspects of survey and model-based postcensal estimation of
income and poverty characteristics for states and counties. In Proceedings of the Section on
Government Statistics, American Statistical Association, Alexandria, VA, pages 154–159, 1995.

Franco, Carolina and Bell, William. Applying bivariate binomial/logit normal models to small
area estimation. In Proceedings of the Section on Survey Research Methods, American Statistical
Association, Alexandria, VA, pages 690–702, 2013.

Franco, Carolina and Bell, William. Using American Community Survey data to improve estimates
from smaller US surveys through bivariate small area estimation models. Journal of Survey
Statistics and Methodology, 10:225–247, 2022.

Franco, Carolina, Little, Roderick, Louis, Thomas, and Slud, Eric. Comparative study of con-
fidence intervals for proportions in complex sample surveys. Journal of Survey Statistics and
Methodology, 7:334–364, 2019.

Ghosh, M., Natarajan, K., Stroud, T., and Carlin, B. Generalized linear models for small-area
estimation. Journal of the American Statistical Association, 93:273–282, 1998.

Jiang, Jiming and Lahiri, Partha. Mixed model prediction and small area estimation, with discus-
sion. TEST, 15:1–96, 2006.

Joyce, Patrick M., Malec, Donald, Little, Roderick J.A., and Gilary, Aaron. Statistical modeling
methodology for the Voting Rights Act Section 203 language assistance determinations. U.S.
Census Bureau. Center for Statistical Research & Methodology Research Report Series, #2012-02,
2012. Available online at https://www.census.gov/srd/papers/pdf/rrs2012-02.pdf.

Joyce, Patrick M., Malec, Donald, Little, Roderick J.A., Gilary, Aaron, Navarro, Alfredo, and
Asiala, Mark E. Statistical modeling methodology for the Voting Rights Act Section 203 language
assistance determinations. Journal of the American Statistical Association, 109:36–47, 2014.

Kish, Leslie. Weighting in Deft2. The Survey Statistician, 1987.

Koster, J. and McElreath, R. The multinomial analysis of behavior. Behavioral Ecology & Socio-
biology, 71:138, 2017.

Krewski, D. and Rao, J.N.K. Inference from stratified samples: Properties of the linearization,
jackknife and balanced repeated replication methods. Annals of Statistics, 9:1010–1019, 1981.
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A Section 203 of the Voting Rights Act of 1965

(a) Congressional findings and declaration of policy

The Congress finds that, through the use of various practices and procedures, cit-
izens of language minorities have been effectively excluded from participation in
the electoral process. Among other factors, the denial of the right to vote of such
minority group citizens is ordinarily directly related to the unequal educational op-
portunities afforded them resulting in high illiteracy and low voting participation.
The Congress declares that, in order to enforce the guarantees of the fourteenth and
fifteenth amendments to the United States Constitution, it is necessary to elimi-
nate such discrimination by prohibiting these practices, and by prescribing other
remedial devices.

(b) Bilingual voting materials requirement

(1) Generally

Before August 6, 2032, no covered State or political subdivision shall
provide voting materials only in the English language.

(2) Covered States and political subdivisions

(A) Generally

A State or political subdivision is a covered State or political
subdivision for the purposes of this subsection if the Director of
the Census determines, based on the 2010 American Community
Survey census data and subsequent American Community Survey
data in 5-year increments, or comparable census data, that —

(i)(I) more than 5 percent of the citizens of voting age of such
State or political subdivision are members of a single language
minority and are limited English-proficient;
(II) more than 10,000 of the citizens of voting age of such
political subdivision are members of a single language minor-
ity and are limited English-proficient; or
(III) in the case of a political subdivision that contains all
or any part of an Indian reservation, more than 5 percent of
the American Indian or Alaska Native citizens of voting age
within the Indian reservation are members of a single lan-
guage minority and are limited English-proficient; and

(ii) the illiteracy rate of the citizens in the language minority
as a group is higher than the national illiteracy rate.
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(B) Exception

The prohibitions of this subsection do not apply in any political
subdivision that has less than 5 percent voting-age limited English-
proficient citizens of each language minority which comprises over
5 percent of the statewide limited English-proficient population of
voting-age citizens, unless the political subdivision is a covered po-
litical subdivision independently from its State.

(3) Definitions
As used in this section—
(A) the term “voting materials” means registration or voting notices,
forms, instructions, assistance, or other materials or information
relating to the electoral process, including ballots;
(B) the term “limited English-proficient” means unable to speak or
understand English adequately enough to participate in the electoral
process;
(C) the term “Indian reservation” means any area that is an American
Indian or Alaska Native area, as defined by the Census Bureau for the
purposes of the 1990 decennial census;
(D) the term “citizens” means citizens of the United States; and
(E) the term “illiteracy” means the failure to complete the 5th primary
grade.

(4) Special Rule
The determinations of the Director of the Census under this subsection
shall be effective upon publication in the Federal Register and shall not be
subject to review in any court.

(c)-(d) [Not given here. See U.S. Code, Title 52, Subtitle I, Chapter 105, §10503.]

(e) Definitions
For purposes of this section, the term “language minorities” or “language minority
group” means persons who are American Indian, Asian American, Alaska Native,
or of Spanish heritage.
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Table 20: 2021 Language Minority Groups. LMG 1–21 = AS 1–21, LMG 22-52 = AI 1–51.

HSP. Hispanic AI 16. Delaware
AS 1. Asian Indian AI 17. Hopi
AS 2. Bangladeshi AI 18. Houma
AS 3. Cambodian AI 19. Iroquois
AS 4, Chinese AI 20. Kiowa
AS 5. Filipino AI 21. Lumbee
AS 6. Hmong AI 22. Menominee
AS 7. Indonesian AI 23. Mexican American Indian
AS 8. Japanese AI 24. Navajo
AS 9. Korean AI 25. Osage
AS 10. Laotian AI 26. Ottawa
AS 11. Malaysian AI 27. Paiute
AS 12. Pakistani AI 28. Pima
AS 13. Sri Lankan AI 29. Potawatomi
AS 14. Thai AI 30. Pueblo
AS 15. Vietnamese AI 31. Puget Sound Salish
AS 16. Other Asian AI 32. Seminole
AS 17. Bhutanese AI 33. Shoshone
AS 18. Burmese AI 34. Sioux
AS 19. Mongolian AI 35. South American Indian
AS 20. Nepalese AI 36. Spanish American Indian
AS 21. Okinawan AI 37. Tohono O’Odham
AI 1. Apache AI 38. Ute
AI 2. Arapaho AI 39. Yakama
AI 3. Blackfeet AI 40. Yaqui
AI 4. Canadian & French Indian AI 41. Yuman
AI 5. Central American Indian AI 42. All other AI tribes
AI 6. Cherokee AI 43. AI tribes, not specified
AI 7. Cheyenne AI 44. Alaska Athabascan
AI8. Chickasaw AI 45. Aleut
AI 9. Chippewa AI 46. Inupiat
AI 10. Choctaw AI 47. Tlingit-Haida
AI 11. Colville AI 48. Tsimshian
AI 12. Comanche AI 49. Yup’ik
AI 13. Cree AI 50. Alaskan Native tribes, not specified
AI 14. Creek AI 51. AI or AN tribes, not specified
AI 15. Crow
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B Determination Flow Chart

Data on limited-English proficiency comes from Person questions
14a and 14c on the American Community Survey 

Total Population for Language Minority Groups

Spanish/Hispanic/
Latino

AIAN (American 
Indian/Alaskan 

Native)
Asian

Geography Type

State
County

County Subdivision

ILLRAT
The rate of total LMG voting age
citizens who are limited-English 

proficient and have less than a 5th 
grade education is higher than the 

national rate

LEPPCT
If more than 5% of 

LMG voting age
citizens are 

limited-English 
proficient

VACLEP

If more than 10,000 
LMG voting age

citizens are limited-
English proficient

How the Law Prescribes the Determination of Covered Areas under the 
Language Minority Provisions of Section 203 of the Voting Rights Act

OR AND

THEN

The state*, county, or county subdivision under consideration is covered for that 
specific minority group of Section 203 of the Voting Rights Act. 

If more than 5% of the American Indian or 
Alaska Native voting age citizens 

belonging to an American Indian/Alaska 
Native tribe are limited-English proficient

The rate of those LMG voting age citizens
who are limited-English proficient and 
have less than a 5th grade education is 

higher than the national rate

Any county or county subdivision in 
which that American Indian or 
Alaska Native area is located is 

covered under Section 203 of the 
Voting Rights Act. 

AND

THEN

Total LMG Population

Total LMG Voting
Age Population

Total LMG Voting
Age Citizens

Data on educational attainment comes from question 11 
on the American Community Survey 

There is a special computation for 
American Indian or Alaska Native 

areas or other tribal lands: 

*Statewide coverage only occurs under the 5% trigger, it does not use the 10,000 trigger.

*
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C Notations and Model Definitions

The models considered in this report all share the same data-structure within each geography by
LMG domain. In this Section, the LMG index is g (fixed, and later suppressed because all models
are defined within a single LMG), and the geography index is j ∈ Jg = J for sampled jurisdictions.
(Analogous notations apply with index a for AIAN or ANRC geography within LMG.) Let njg = nVjg
denote the number of respondent (voting-age person, or VOT) records in the (Geo, LMG) domain
(j, g). For each respondent i ∈ (j, g), with survey weight wi, the data consist of indicators yAi,jg for
the nested decreasing categories A = V,C, L, I respectively denoting Voting-age persons (VOT),
Voting-age Citizens (CIT), Limited English Proficiency CIT (LEP), and Illiterate LEP (ILL). Thus,
1 ≡ yVi,jg ≥ yCi,jg ≥ yLi,jg ≥ yIi,jg ≥ 0 for all i ∈ (j, g). Corresponding to each (j, g), there is also a
covariate-vector Xjg with dimension dg and coordinates that may depend on g. All models defined
below treat the covariates Xjg as nonrandom, or equivalently, condition on them.

The counts of VOT respondents and the direct survey-weighted estimate of total VOT popula-
tion in domain (j, g) are respectively

njg =
∑
i∈(j,g)

1 , N̂jg = N̂V
jg =

∑
i∈(j,g)

wi

The unweighted counts and survey-weighted totals in the domain in the VOT, CIT, LEP, ILL
categories are defined as

nAj ≡
∑
i∈(j,g)

yAi,jg , N̂A
j ≡

∑
i∈(j,g)

wi y
A
i,jg A = V,C, L, I (5)

where the g index is everywhere suppressed from now on because models are defined and fitted
separately for different LMGs g.

In what follows, the VOT respondent-count nj = nVj and population estimates Nj = NV
j are

regarded as fixed and not modeled, and the category population estimates NA
j are treated as data

subject to modeling assumptions. Because of the discrete nature of the respondent counts, we model
the imputed subsets of the sample nVj falling in the CIT, LEP, and ILL categories, accounting for
the survey weights by defining pro-rated respondent counts Yj,k, k = 0, 1, 2, 3:

Y j = (Yj,0, Yj,1, Yj,2, Yj,3) =
nj

N̂V
j

· (N̂V
j , N̂

C
j , N̂

L
j , N̂

I
j ) (6)

Throughout this report, our models assume about Y j that

the counts Y j are independent of nVj , N̂V
j (7)

Equivalently, all models concerning scaled outcome-counts Y j (or the disjoint counts W j defined
next) are conditioned on fixed values of nj , N̂V

j for all domains j ∈ J .
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A second way of representing the nested decreasing category totals within nj is to make the
categories disjoint, i.e., to define quadruples W j = (Wj,k, k = 1, . . . , 4) of nonnegative category
counts Wj,k ≡ Yj,k−1 − Yj,k ≥ 0 for the four disjoint categories of VOT non-CIT, CIT non-LEP,
LEP non-ILL, and ILL persons, within the (j, g) domain. Figure 1 in the main text exhibits these
four categories pictorially. Although the data vectors Y j and W j do not have integer entries, we
formulate models as though they do, as was done also in Joyce et al. [2014] and Slud et al. [2018].

Our models all have a mixed-effect, generalized-linear multinomial form. This means that there
is a random vector πj = (πj,1, . . . , πj,4) of 4 category probabilities, depending on covariates Xj , on
three vectors of d-dimensional regression coefficients β(k), and on further random-effect variables
that are independent and identically distributed across geographic indices j ∈ J . The distributional
form of the random effects will be different in the two classes of models that we consder, but the
category probabilities depend on Xj and on coefficients β(k) only through the quantities

ηj,k ≡ X′j β
(k) , k = 1, 2, 3 (8)

The nonrandom part of the model expresses πj,k in similar but not identical ways through the
logistic function h(w) ≡ plogis(w) = ew/(1+ew) and ηj,k. Conditionally given πj , the pro-rated
respondent counts are modeled as

W j ≡ (nj − Yj,1, Yj,1 − Yj,2, Yj,2 − Yj,3, Yj,3) ∼ Multinom
(
nj , πj

)
(9)

As a matter of modeling strategy, the vectors πj of random category-probabilities are regarded
as a feature of the overall population in domain (j, g) regardless of the size of the nVjg sample.
The randomness in πj is our model for the differences between domains (j, g) for different j, but
the model (9) reflects our idea that the total population counts in the VOT, CIT, LEP and ILL
categories respectively satisfy

NC
j ≈ NV

j · (1− πj,1) , NL
j ≈ NV

j · (πj,3 + πj,4) , N I
j ≈ NV

j · πj,4 (10)

The true-population category totals NA
j are denoted without the hats that appear in their approx-

imately unbiased survey-weighted estimates N̂A
j . The quantities to be predicted within models (9)

are the totals NA
j , A = C,L, I, in (10). The ratios NL

j /N
C
j and N I

j /N
L
j respectively define the

within-domain proportion of voting-age citizens who are LEP and of LEP persons who are ILL.
Within our models in which NA

j counts are random, we augment the independence assumption (7)
to say

counts and random probabilities (Y j , πj) are independent of nVj , N̂V
j (7′)

In order to explain different forms of the multinomial models, we make use of a standard
property of multinomial random variables

M = (M1,M2,M3,M4) ∼ Multinom
(
n, (p1, p2, p3, p4)

)
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The property, which is actually equivalent to the multinomial distribution, is that

M1 ∼ Binom(n, p1), M2 ∼ Binom(n−M1,
p2

1− p1
) given M1

M3 ∼ Binom(n−M1 −M2,
p3

1− p1 − p2
) given M1,M2 (11)

The two classes of models we consider in the Voting Rights Act analyses are Multinomial Logit-
Normal and Dirichlet-Multinomial, respectively described in detail in Sections C.1 and C.2 below.
In both, the four category probabilities (πj,k, k = 1, 2, 3, 4) for each j ∈ J are randomized versions
of the probability vector

p(v1, v2, v3) = (p1, p2, p3, p4) ≡
(
1− v1, v1 (1− v2), v1 v2 (1− v3), v1 v2 v3

)
(12)

where

vk = vj,k ≡ h(ηj,k) =
exp(X ′j β

(k))

1 + exp(X ′j β(k))
, k = 1, 2, 3 (13)

These quantities vk =
∑4

b=k+1 pb for k = 1, 2, 3 are respectively interpreted as approximate ratios
CIT/VOT, LEP/CIT, and ILL/LEP for the (j, g) domain in LMG g, before introducing random
effects into each type of model.

In the Multinomial Logit-Normal class of models, the random effects for geographic index j ∈ J ,
denoted uj = (uj,k, k = 1, 2, 3) are assumed jointly normal with unknown variance parameters,
and the randomized vector πj of disjoint-category probabilities is given in terms of the function p
defined in (12) by

MLN: πj ≡ p
(
h(ηj,1 + uj,1), h(ηj,2 + uj,2), h(ηj,3 + uj,3)

)
(14)

In the Dirichlet-Multinomial class of models, the randomized vector πj is given by:

DM: 1− πj,1 ∼ Beta
(
τ1v1, τ1(1− v1))

)
, 1− πj,2

1− πj,1
∼ Beta

(
τ2v1v2, τ2v1(1− v2)

)
,

1− πj,3
1− πj,1 − πj,2

∼ Beta
(
τ3 v1v2v3, τ3 v1v2(1− v3)

)
are independent, for k = 1, 2, 3 (15)

for unknown (dispersion) parameters (τ1, τ2, τ3), where as in (13), vk ≡ h(ηj,k).

In both types of model, the probabilities

αj,k =
4∑

b=k+1

πj,b
/ 4∑
b=k

πj,b , j ∈ J , k = 1, 2, 3 (16)

play a special role as the logistic rates vj,k = h(ηj,k) with a random effect. In the MLN models,
αj,k ≡ h(ηj,k + uj,k), while in the DM model the random probabilities αj,k are precisely the
quantities assumed independent and beta-distributed in (15) and have expectations vj,k.
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C.1 Multinomial Logit-Normal Models

The Multinomial Logit-Normal (MLN) Model is defined as in (9) and (14) with random effects uj
independent identically distributed across j satisfying uj,1

uj,2
uj,3

 =

 σ1 0 0
a1 σ2 0
a2 a3 σ3

  zj,1
zj,2
zj,3

 ≡ Azj , zj,k
iid∼ N (0, 1) (17)

so that
σ2
k = Var(uj,k), k = 1, 2, 3

and
E(uj,2 |uj,1) =

a1

σ1
uj,1 , E(uj,3 |uj,1, uj,2) = (a2 −

a1a3

σ2
)uj,1 +

a3

σ2
uj,2 (18)

By Choleski decomposition, every covariance matrix Σ for uj can be written in the form V =
AA′ with lower-triangular A. The parameterization (17) is useful in later sections in simplifying
the form of the conditional distribution of Yj,k given (Yj,t, t < k).

The MLN model given in (9), (14) and (17) has an alternate, equivalent expression as a cascaded
random-intercept logistic regression model

Yj,k ∼ Binom
(
Yj,k−1 , h(ηj,k + uj,k)

)
given (Yj,t−1, ηj,t, uj,t, t = 1, . . . , k) (19)

Equivalence between (19) and the MLN model (9) is an immediate consequence of the multinomial
re-expression (11).

The dimension of the unknown parameter ϑ = (β(1), β(2), β(3), a1, a2, a3, σ1, σ2, σ3) in the ‘full’
MLN model (denoted MLN-F) is 3d + 6. Parameter reductions can be achieved structurally by
specifying in advance which index subsets I1, I2, I3 ⊂ {1, . . . , d} will contain the non-zero coefficients
of β(1), β(2), β(3). The parameter-dimension for the regression coefficients is then |I1|+ |I2|+ |I3|.
There are 6 variance parameters, reducing to 3 if we restrict to independent random effects by
assuming a1, a2, a3 equal to 0. When we make this reduction of the MLN model to have diagonal
random-effect covariance matrix, the model is denoted MLN-D. In MLN-D, the three random
effects (uj,k, k = 1, 2, 3) are independent for each j ∈ J . In that case, each of the three random-
intercept logistic regression models in (19) depends on a separate and independent random effect
uj,k, and the one indexed by k depends only on parameters β(k), σk. For that reason, the whole
model likelihood factorizes into separate likelihoods for separate sets of parameters (β(k), σk), and
they can be maximized separately, resulting in considerable computational simplification.

C.1.1 Limiting Cases of Infinite Regression Coefficients

Under model MLN-D with Yj,k very close to 0 or to Yj,k−1, the estimated value of σk can be-
come very large along with some or all of the estimated β(k) components. To understand this
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phenomenon in modeling terms, consider the case where there are no covariates (with nonzero
regression coefficients), so that each of the models (19) in a single domain has the form

Y ∼ Binom
(
m, h(η + σ z)

)
, z ∼ N (0, 1) (20)

The log-likelihood contribution for Y then has the form log g(m,Y, η, σ), apart from an additive
constant not depending on (η, σ), where

g(m, r, η, σ) ≡
∫

h(η + σz)r (1− h(η + σz))m−r φ(z) dz (21)

and φ(z) is the standard normal density function e−z
2/2/
√

2π. An easy calculation shows that

∂

∂η
g(m, r, η, σ) = r g(m+ 1, r, η, σ) − (m− r) g(m+ 1, r + 1, η, σ) (22)

and a similar calculation followed by an integration-by-parts shows

∂

∂σ
g(m, r, η, σ) =

∫
h(η+σz)r (1−h(η+σz))m−r

[
r (1−h(η+σz)) − (m−r)h(η+σz)

]
z φ(z) dz

(23)

= σ
∂

∂η

[
r g(m+ 1, r, η, σ) − (m− r) g(m+ 1, r + 1, η, σ)

]
= σ

∂2

∂η2
g(m, r, η, σ)

= σ
[
r2 g(m+2, r, η, σ) − (2r(m−r)+m) g(m+2, r+1, η, σ) + (m−r)2 g(m+2, r+2, η, σ)

]
(24)

Since we are interested in this subsection in understanding the loglikelihood when r = m or r = 0,
we note that (22) is strictly positive for r = m > 0, and

g(m, r, η, σ) ≡ g(m,m− r,−η, σ) , for all 0 ≤ r < m

When Yj,k = Yj,k−1, we see that the conditional MLN-D loglikelihood contribution (without any
covariates) from Yj,k given Yj,k−1 is strictly increasing in η = β

(k)
1 and for large values of η is strictly

decreasing in σk. This last assertion follows from the expression (24) rewritten for r = m as

∂

∂σ
g(m,m, η, σ) = σm

∫
h(η + σz)m(1− h(η + σz))

[
m− (m+ 1)h(η + σz)

]
φ(z) dz

and as η →∞, by the dominated convergence theorem

(1− h(η))−1 ∂

∂σ
g(m,m, η, σ) −→ −σm as η →∞ (25)

Suppose that for a fixed k, for all j ∈ J , Yj,k = Yj,k−1. Consider the MLN-D loglikelihood with
no covariates, for that same fixed k for joint data (19) over all j ∈ J such that nj > 0. Starting from
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any initial parameter values (β(k)
1 , σk, k = 1, 2, 3), by (22) the log-likelihood is strictly increased

by making all three β(k)
1 values large and positive; after that, by (25) and (22) increasing β(k)

1 and
decreasing σk > 0 further increases the loglikelhood. Thus, when Yj,k = Yj,k−1 for all j ∈ J , the
MLEs for β(k)

1 and σk diverge to ∞ and 0 respectively in this case. Similarly, if Yj,k = 0 for all
j ∈ J for some k ≥ 1, the corresponding MLN-D MLEs for β(k)

1 and σk diverge to −∞ and 0
respectively. These effects were seen numerically wherever Yj,k = Yj,k−1 for all j ∈ J (for a fixed
k ≥ 1) or Yj,k = 0 for all j ∈ J for some fixed k ≥ 1. However, the form of (25) does imply, and
we confirmed numerically, that for very large absolute values of β(k)

1 the log-likelihood approaches
0 and the further effect on the log-likelihood of changes in σk are minuscule.

The MLE divergence found in this subsection occurred numerically also in some LMGs and
k-values where

∑
j Yj,k−1/

∑
j Yj,k ratios were very close but not identical to 1 or 0. In LMGs

and k for which the ratios are so extreme (cf. Table 2), these observations motivate the use of
a simplified beta-binomial model to replace single stages k within (19). Those simplified models
given in Section C.2.1 below.

C.2 Dirichlet-Multinomial Models

The Beta-Binomial model [Carlin and Louis, 2009, p. 55] for a random count Y has the form

Y ∼ Binom(n, ω) given ω , ω ∼ Beta
(
τ a, τ (1− a)

)
where 0 < a < 1 and τ > 0 are unknown scalar parameters. The Beta random variable ω, with
mean a and variance a(1− a)/(τ + 1), serves as a random success-probability for n Bernoulli trials.
The so-called dispersion parameter τ controls the variability of ω.

The DM Model (9) and (15) is a random-effect multinomial regression model, which after re-
expression (11) of the multinomial, becomes a series of three cascaded beta-binomial models

Yj,k ∼ Binom(Yj,k−1, αj,k) given (Yj,b, b < k) (26)

with independent random conditional category-inclusion probabilities αj,1 = 1 − πj,1 for CIT,
αj,2 ≡ 1 − πj,2/(1 − πj,1) for LEP given CIT, and αj,3 ≡ 1 − πj,3/(1 − πj,1 − πj,2) for ILL
given LEP. (Recall that the αj,k notations were first defined in equation (16).) The data consist
of Yj,0 = nj , {Yj,k : k = 1, 2, 3}j and Xj for all domains (j, g) in LMG g, and the unknown
parameters are β(k) ∈ Rd, τk > 0 for k = 1, 2, 3. Allowing for the possibility of restricting
the nonzero coefficients of β(k) to the index-set Ik for k = 1, 2, 3, the parameter dimension is
|I1| + |I2| + |I3| + 3. This resembles the cascaded beta-binomial model used in VRA analysis
by Joyce et al. [2014] in 2011, except that in that analysis, the covariates entered not through
regression but through a grouping of data across domains within LMGs.
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A variant of the DM model would define dispersion parameters as τ1 = τ, τ2 = τ · (1− p1), τ3 =
τ · (p3 + p4), reducing the parameter dimension by 2. That form of the model is Dirichlet Multi-
nomial [Carlin and Louis, 2009, p. 284], because a Dirichlet(τ, (p1, p2, p3, p4)) distributed random
probability vector (ω1, ω2, ω3, ω4) has the property that ω1, ω2/(1− ω1), ω3/(1− ω1 − ω2) are
jointly independent Beta(τp1, τ(1 − p1)), Beta(τp2, τ(p3 + p4)), Beta(τp3, τp4) random variables.
Thus, if πj were Dirichlet(τ, p(v1, v2, v3)) distributed, the cascaded models (15) and (26) with
τ1 = τ, τ2 = τ · (1 − p1), τ3 = τ · (p3 + p4) would follow. However, the model (26) with general
(τ1, τ2, τ3) is not a Dirichlet model for πj . A different form of Dirichlet-Multinomial with τ replaced
in domain j by τ + τ0 ·

√
nj was the model used by Slud et al. [2018] in the 2016 VRA cycle.

An immediate consequence of the unusual regression parameterization in model (15) is that

E(αj,k) = E
( 4∑
b=k+1

πj,b
/ 4∑
b=k

πj,b
)

= E
(
1− πj,k

/ 4∑
b=k

πj,b
)

= h(ηj,k) for k = 1, 2, 3

and therefore in the DM model with general τk,

E
(
Yj,k |Yj,k−1

)
= Yj,k−1 · h(ηj,k)

exactly as in the MLN model. Moreover, like MLN-D, the DM model has the simplifying property
that the conditional likelihood of Yk,i given (Yj,t : t < k) depends only on the parameters β(k), τk.
These conditional likelihoods factor into expressions for separate k that depend on disjoint sets of
parameters, and the maximum likelihood estimators of β(k), τk can be found through maximization
of Beta-Binomial conditional log-likelihoods (separate for k = 1, 2, 3) of the form∑

j∈J
log
(Γ(τk) · Γ(τkh(ηj,k) + Yj,k) · Γ(τk(1− h(ηj,k)) + Yj,k−1 − Yj,k)

Γ(τk h(ηj,k)) · Γ(τk (1− h(ηj,k))) · Γ(τj,k + Yj,k−1)

)
(27)

The parameterization of the DM model with general τk has the same dimension as the corre-
sponding MLN-D model with the same sets Ik of structurally non-zero regression coefficients in
β(k). The dispersion parameters 1/(1 + τk) play a similar role in DM models as the variances σ2

k

do in MLN-D, controlling the variance of the unmodeled random effects on outcomes Yj,k given
Yj,k−1. The Dirichlet-Multinomial model with τk ≡ τ has two fewer parameters (than MLN-D or
DM with general τk), and the general-covariance model MLN-F has three more parameters.

C.2.1 Special Cases of DM Submodels with no Covariates

The DM models, like the MLN models, are fitted with more covariates (i.e., larger sets I1, I2, I3 of
regression coefficients that are not set to be structurally 0) in LMGs g with a lot of data, i.e., with
many domains (j, g) in which there were more than a few respondents. In the most data-sparse
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LMGs (mostly AIAN LMGs), either few covariates or none are used. Each of the staged DM models
in (26) along with (15) then takes the simplified form of a Beta-binomial model

Yj,k ∼ Binom
(
Yj,k−1, αj,k

)
given (Yj,t−1, αj,t, 1 ≤ t ≤ k)

where the jointly independent random success probabilities αj,k across (j, k) are given by

αj,k ∼ Beta
(
τk · µk−1 · h(X ′j β

(k)
1 ), τk · µk−1 · (1− h(X ′) β

(k)
1

)
, µb =

b∏
t=1

h(X ′j β
(t)
1 )

In the extreme case where either
∑

j (Yj,k−1 − Yj,k) = 0 or
∑

j Yj,k = 0, as in Section C.1.1

the maximum likelihood estimates for β(k)
1 within the DM model would diverge, repectively to +∞

or to −∞, and τk would become indeterminate. To avoid that numerical instability, we change the
form of the stage k model. When either

∑
j (Yj,k−1 − Yj,k) or

∑
j Yj,k is close enough to 0, either

within MLN-D or DM models, we allow no covariates and use a Beta-binomial model

Yj,k ∼ Binom
(
Yj,k−1, γj,k

)
, γj,k ∼ Beta(0.5, 0.5

)
(28)

This choice of Beta(0.5, 0.5) prior for the binomial success probability is called the Jeffreys prior
[Carlin and Louis, 2009, p. 39]. It has well-known properties of providing numerically stable pos-
terior confidence intervals (credible intervals) with good frequentist coverage probabilities, even in
extreme settings like those we consider with posterior success probabilities γk nearly degenerate at
0 or 1 [Brown et al., 2001, Franco et al., 2019]. The fixed choice of prior removes the unknown
parameters τk, β

(k)
1 from the estimation problem, leaving only the predictor of the random effect

γk to feed into the prediction of Yj,k from Yj,k−1.

D Frequentist vs. Bayes Prediction and Variance Estimation

Within the field of Small Area Estimation, the methods of prediction and variance estimation
differ in frequentist Empirical-Bayes analysis and Bayesian analysis. We maintain a terminological
distinction in both kinds of analysis: whenever a function of data is used to approximate a fixed
unknown statistical parameter, that function or statistic is called an estimator ; if the quantity
being approximated involves an unobserved random variable (which is also how Bayesians view
unknown parameters) and may also involve fixed unknown parameters, then the statistic is called a
predictor . ‘Estimate’ is a term that is used more generically and loosely, as in reference to statistics
published regarding domain population counts and ratios and their margins of error. Throughout
this report, all model-based population estimates involve latent random effects and are therefore
‘predictors’. Margin-of-error estimates that are conditional on data are therefore also predictors,
but statistics approximating unconditional margins of error can be called estimators.
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Schematically, the setting has the following ingredients: a set of fixed covariates {Xj}j∈J
indexed by domains j; data {Y j}j∈J independent across domain-index j; latent (unobservable)
domain-specific random effects πj = q(θ,Xj , zj) (expressed in terms of iid random variables zj
whose distributions contain no unknown parameters). The observations Y j conditionally given
πj , zj , θ are independent across j ∈ J and have distributions depending only on πj . In the
Empirical-Bayes approach [Carlin and Louis, 2009, Rao and Molina, 2015], parameters θ are esti-
mated (usually by Maximum Likelihood or a related method) using the marginal likelihood for Y j

in terms of θ, and the objects πj of prediction are estimated as π̂j ≡ E
(
πj
∣∣Y j , θ

)
by substituting

an estimator θ̂ for the unknown θ. In both the MLN and DM models, these conditional expectations
E
(
πj
∣∣Y j , θ

)
have a very specific and tractable form, based on which the integral formula (E.1.1)

in the MLN-F model and (42) for the DM model are based:

Eϑ
(
πj,k |Y j = mj

)
=

E
(
qk(ϑ,Xj , zj)

∏4
b=1 qb(ϑ,Xj , zj)rj,b

)
E
(∏4

b=1 qb(ϑ,Xj , zj)rj,b
) (29)

where
(rj,1, . . . , rj,4) ≡ (mj,0 −mj,1, mj,1 −mj,2, mj,2 −mj,3, mj,3)

This formula (29) follows immediately from the multinomial random-effects model (9).

In the Bayes approach to predicting πj , parameters θ are predicted from the posterior distri-
bution for θ given the data D ≡ {(Y j , N̂

V
j }j∈J , and that posterior is usually obtained from an

asymptotically stationary and ergodic Markov Chain Monte Carlo (MCMC) simulated random
sequence θ(t), {z(t)

j }j for t = 1, 2, . . . , generated conditionally given Zj . The prior distribution for
unknown parameters used in this MCMC simulation is chosen to be ‘noninformative’ as part of the
Bayesian computational details in Section E.2. The posterior distribution for θ and zj given data
(for a fixed j ∈ J ) is then estimated as

P̂ r
(
(θ, zj) ∈ C

∣∣ {Y j}j
)

=
1
T

B+T∑
t=B

I
[(θ(t),z

(t)
j )∈C]

for a moderately large number B (with default value 4000 in R-STAN) of burn-in iterations, and a
very large T (usually > 100, 000). The posterior expectations of the quantities πj are estimated by

π̂j ≡ Ê
(
πj
∣∣ {Y j}j

)
=

1
T

B+T∑
t=B+1

q(θ(t), Xj , z
(t)
j ) (30)

Estimated Mean Squared Prodiction Errors (MSPEs) in the Bayesian context are obtained (within
R-STAN) by treating the estimators π̂j in (30) as stationary-time-series variables and from them
using time series variance estimation formulas for the conditional (posterior) variance

Var
(
π̂j

∣∣∣ {Y j}j
)
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Formulas for the frequentist conditional-expectation predictors for πj are given in the next
Section as functions of the unknown parameters defined from integrals that can be numerically
evaluated to high accuracy, into which parameter estimates are substituted. The frequentist Vari-
ances or MSPEs are estimated by the unconditional quantities

Eϑ
(
π̂j,k − πj,k

)2 ∣∣
ϑ=ϑ̂

or Eϑ
( 4∑
b=k+1

[
π̂j,k − πj,k

])2 ∣∣
ϑ=ϑ̂

(31)

Predictions of the counts NA
jg, A = V,C, L, I, (and certain ratios of them) are of primary interest

in the Voting Rights analysis. Both in their frequentist and Bayesian versions, the model-based
predictions π̂j are translated into model-based predictors N̂A,M

jg of these counts by plugging them
into the relations (10), where N̂V

j is the direct survey-weighted estimator given in (5):

N̂C,M
j = N̂V

j · (1− π̂j,1) , N̂L,M
j = N̂V

j · (π̂j,3 + π̂j,4) , N̂ I,M
j = N̂V

j · π̂j,4 (32)

Since the estimates π̂j,k will all be strictly between 0 and 1, it follows immediately from (32) that
all domains (j, g) with positive VOT sample-count nVjg will have positive VOT total estimate N̂V

jg

and positive predicted CIT, LEP, and ILL predictions N̂A
jg.

The Variances or MSPEs of interest in the Voting Rights project are estimates of conditional
(given data) or unconditional expected squares of N̂A

j −NA
j for A = V,C, L, I, or of N̂A,M

j −NA
j

for A = C,L, I, and corresponding conditional or unconditional expected squares of the differences
between certain ratios of these model-based predictions and the same ratios of their targets. The
square roots of these Variances or MSPEs are published as ‘Margins of Error’ in the public data
release.

The relations between the different frequentist and Bayesian variance concepts is discussed
further in Section D.1 below. Sections D.3 and D.5 present more precisely the formulas used in
model-based prediction supporting the VRA determinations. Further details of computation of
frequentist and Bayesian predictions and MSPE estimates are described fully in Section E.

D.1 Relations between Different Prediction and Variance Concepts

The preceding two sections have provided high-level formulas (32) for predictors N̂A,M
j and for

MSPE’s of model-based predictors π̂j,k. In this subsection, we connect these formulas conceptu-
ally through the model-assumption (7) with model-based MSPE formulas applicable to estimate
frequentist and Bayesian MSPEs for N̂A,M

j , A = C,L, I, and their ratios.

Regardless of whether counts are estimated by direct or model-based methods, the error is
measured by the conditional or unconditional expected square discrepancy between the estimate
and the target. Subtle differences between these notions arise depending on whether we regard the
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target totals as being pure counts or stochastic, modeled quantities. The estimators or predictors
also depend both on the randomly selected samples (and survey weights) and on the modeled
quantities Yj,k and underlying random effects πj,k. The simplest case of estimation and error
measurement arises in the case of the survey-weighted direct estimators N̂A

j defined in (5). In the
design-based view, these estimators are unbiased for their nonstochastic target counts NA

j (defined
below (10)), and the variances and MSPEs are the same

Var(N̂A
j ) ≡ MSPE(N̂A

j ) = E
(
N̂A
j − NA

j

)2 for A = V,L,C, I (33)

If in this setting we take a model-based point of view as in (10), with NA
j = NV

j · πAj , or

(NC
j , N

L
j , N

I
j ) = NV

j · (1− πj,1, πj,3 + πj,4, πj,4) (34)

then one might imagine taking conditional expectations also given Y j or given the full set of
observed data D, in which case the MSPE (33) would be replaced by E

(
(N̂A

j − NA
j )2 | D

)
. Here

the main idea is that the models allow the conditional distributions of πj given Y j or D to be used
in expressing the conditional moments of N̂A

j −NA
j given Y j .

When we measure estimation errors using the model-based estimators N̂A,M
j , we necessarily

view the targets (34) as random, and there are distinct unconditional and conditional MSPEs:

MSPE(N̂A,M
j ) = E

(
N̂A,M
j −NA

j

)2
, MSPEC(N̂A,M

j ) = E
(
(N̂A,M

j −NA
j )2

∣∣D) (35)

The first of these MSPEs is generally what one estimates in frequentist Small Area Estimation [Rao
and Molina, 2015], while the second is what the Bayesian prefers to estimate as posterior MSPE
conditional on data. If the conditional MSPE is of direct interest, then the frequentist estimators
of MSPE(N̂A,M

j ) developed in Section D.5 below are not useful. If the unconditional MSPE is the
operationally useful quantity, then the conditional one is an unbiased estimate of it but has extra
variability except when samples are very large.

Bayesian predictions for πj obtained from MCMC sampling are interpreted as posterior con-
ditional expectations, so the corresponding MSPEs are intrinsically conditional on the data and
interpeted as posterior variances. The frequentist unconditional MSPEs are obtained in practice
by Balanced Repeated Replication (Successive Difference Replication) techniques that we explain
concretely in Section D.5. Are the two approaches definitely estimating the same thing, at least in
expectation ? They are, in large samples, when |J | → ∞. The Bernstein-von Mises theorem and
associated ‘concentration of measure’ results [van der Vaart, 1998, Ch. 10, Bickel and Kleijn, 2012]
say that for a large class of smoothly parameterized models including those studied in this report,
under diffuse or noninformative prior distributions with positive densities, the posterior distribution
f(ϑ |D) of the fixed-effect unknown parameters ϑ given data D = {(Y j , N̂

V
j )}j∈J is asymptotically

normal and centered at the maximum likelihood estimator ϑ̂ with asymptotic variance equal to the
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inverse of the (limit of the) Fisher information matrix (scaled by 1/|J |). Then, in the notation
πj = q(ϑ,Xj , zj) at the beginning of Section D, and continuing to treat Xj data as nonrandom
(possibly after conditioning on them), when Y j = mj , we have as in (29)

π̂j =
E
(
q(ϑ,Xj , zj) p(Y j = mj |πj = q(ϑ,Xj , zj)))

∣∣D)
E
(
p(Y j = mj |πj = q(ϑ,Xj , zj))

∣∣D)
∣∣∣
ϑ=ϑ̂

≡ Q(ϑ̂, Xj , mj)

The main point here is that Q is a well-defined smooth function of its arguments,

Q(ϑ,Xj , Y j) ≡ Eϑ
(
q(ϑ,Xj , zj)

∣∣Xj , Y j

)
This implies that in the Bayesian setting the MCMC-based predictor (30) could have been replaced
at some computational cost by the asymptotically unbiased predictor

π̂Bayes
j ≡ 1

T

B+T∑
t=B+1

Q(ϑ(t), Xj , Y j) (36)

The Bayesian predictors (30) and (36) have the same convergent-MCMC limit for large B, T ,
because that limit is just the posterior conditional expectation of πj . By the Delta Method applied
(with base-point ϑ̂ justified by the Bernstein-von Mises form of the posterior distribution for ϑ)
when samples and |J | are large, we see that in large data-samples governed by a fixed parameter,

π̂Bayes
i − π̂j =

1
T

B+T∑
t=B+1

(Q(ϑ(t), Xj , Y j) − Q(ϑ̂,Xj , Y j))

≈
[
∇ϑQ(ϑ̂,Xj , Y j)

]′ 1
T

B+T∑
t=B+1

(ϑ(t) − ϑ̂) = OP
(
(T |J |)−1/2 + T−1

)
This argument implies that the order of approximation between the frequentist and Bayesian pre-
dictors of πj is actually better (for large B, T ) than the order of accuracy of π̂j , and that is what we
found in computational comparisons of predictions using Bayesian versus frequentist methods un-
der the MLN2 model on selected large LMGs. The overall impact of this result is that for practical
purposes, in large samples the Bayesian and frequentist predictors may be regarded as equivalent,
and the Bayesian posterior variances of these predictions can also serve as conditional MSPEs for
frequentist estimates.

Despite the difference in outlook between Bayesian and frequentist analysts on reporting vari-
ability, the estimated unconditional MSPE quantity (35) is also worth reporting when estimation
is done by Bayesian methods. That is true partly to maintain maximal comparability between the
estimates of variability reported for LMGs analyzed using Bayesian computations and those using
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frequentist computations, since the decision to use Bayesian estimates in the VRA project was
made for reasons of computational stability more than inferential philosophy.

We must still provide a computational method, in Section D.5, for how to estimate MPSE. But
at this point, we explain conceptually how to combine variance estimates for the survey-weighted
direct estimates N̂V

j with the MSPE estimate for Bayesian or frequentist model-based predictors
π̂j,k to yield estimates for MSPEs (35).

D.2 MSPEs of Counts from MSPEs of Random Probabilities

From either a frequentist or Bayesian point of view, we start now from available predictors and
MSPEs for model-based domain-level mixed-effect probabilities π̂j to develop MSPE formulas for
count-predictors N̂A,M

j and related ratios of counts. The main idea here is the formula

E
({
N̂V
j π̂Aj − NV

j πAj
}2) = E

({
N̂V
j (π̂Aj − πAj ) + (N̂V

j − NV
j )πAj

}2)
for A = C,L, I, where

πCj ≡ 1− πj,1 , πLj ≡ πj,3 + πj,4 , πIj ≡ πj,4 (37)

and the analogous notational definitions π̂Aj in terms of π̂j,k also hold. Then, by the independence
assumption (7′), the MSPE in (35) can be re-expressed in the decomposed form

E
(
{N̂V

j }2
)
E
(
{π̂Aj − πAj }2

)
+ Var(N̂V

j )E({πAj }2)

The variance of N̂V
j can be estimated by the standard ACS method of SDR covered in Section D.5

below. So the previous discussion of MSPE estimation for π̂j completes the derivation of a method
for (frequentist) MSPE estimation for N̂A,M

j . The high-level formula, specified further in Sec-
tion D.5, is

M̂SPE(N̂A,M
j ) = V̂ar(N̂V

j ) · Ê
({
πAj
}2) +

{
N̂V
j

}2 · M̂SPE
(
π̂Aj
)

(38)

for A = C,L, I. In the Bayesian case, {π̂Aj }2 =
{
E
(
πAj
∣∣D)}2 itself is an unbiased estimator of

E
(
{πAj }2

∣∣D) − Var
(
πAj | D

)
since the data D include N̂V

j while NV
j is not modeled and considered

nonrandom, and

MSPEC(N̂A,M
j ) = (N̂V

j −NV
j )2 E

(
{πAj }2

∣∣D) + {N̂V
j }2 Var

(
πAj | D

)
(39)

Therefore the Bayesian unconditional MPSE estimation formula, taking the sampling variability
into account and relying on the argument in Section D.1 for the close agreement between the
conditional and unconditional variance of πAj , becomes

V̂ar(N̂V
j ) ·

({
π̂Aj
}2 + V̂ar

(
πAj
∣∣D)) + {N̂V

j }2 · V̂ar
(
πAj | D

)
(40)
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D.3 Prediction Formulas

This section provides frequentist prediction formulas for π̂j,k for both the models MLN and DM. Un-
like the Bayesian predictions in (30), the frequentist predictions π̂j are developed from conditional
expectations using (14) under MLN and (15) under DM.

Under model MLN, it is easy to check from (14) that

4∑
t=k+1

πj,t =
k∏
b=1

αj,b =
k∏
b=1

h(ηj,b + uj,b) for k = 1, 2, 3

Therefore, the predictors derived from equation (14) are expressed in the form

4∑
t=k+1

π̂j,t =
k∏
b=1

α̂j,b = E
( k∏
b=1

h(ηj,b + uj,b)
∣∣Y j

) ∣∣∣
ϑ=ϑ̂

(41)

with unknown parameters ϑ replaced by estimates. The conditional expectation in (41) is expressed
as a ratio of 3-dimensional multivariate-normal integrals (or products of 1-dimensional integrals)
for the numerator and denominator of (29), to be discussed further in Section E.

Under model DM, the Beta distributions in (15) imply conditionally given Y j ,

αj,1 = 1− πj,1 ∼ Beta(τ1 v1 + Yj,1, τ1 (1− v1) + nj − Yj,1)

αj,2 = 1− πj,2
1− πj,1

∼ Beta(τ2 v1 v2 + Yj,2, τ2 v1 (1− v2) + Yj,1 − Yj,2)

αj,3 = 1− πj,3
1− πj,1 − πj,2

∼ Beta(τ3 v1 v2 v3 + Yj,3, τ3 v1 v2 (1− v3) + Yj,2 − Yj,3) (42)

where as before, vk = h(ηj,k) and the random variables on the left-hand sides of the displayed
equations in (42) are independent. Therefore, under the DM model,

E(αj,k |Y j) =
(
τk

k∏
b=1

h(ηj,b) + Yj,k
)/(

τk

k−1∏
b=1

h(ηj,b) + Yj,k−1

)
Independence of the Beta variables in (15) implies conditional independence given Y j , so that

4∑
t=k+1

π̂j,t =
k∏
b=1

α̂j,b =
k∏
b=1

( τ̂b
∏b
t=1 h(η̂j,t) + Yj,b

τ̂b
∏b−1
t=1 h(η̂j,t) + Yj,b−1

)
(43)

The final prediction formulas combine (32) with (41) for model MLN-D and with (43) for DM.
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D.4 Composing Stagewise Predictions

The prediction formulas described so far under MLN are fully general, encompassing both the
frequentist and Bayesian analysis methods under the general MLN-F model in which the random
effects (uj,k, k = 1, 2, 3) are allowed to be dependent. In the more restricted MLN-D model,
in which random effects uj,k are independent across k, the estimation and prediction formulas
decouple from one k to another, through the successive logistic regression models (19), and the
prediction formulas become much more explicit. Similarly, in the DM model the likelihoods factor
into stagewise submodels in (26) with separate parameters. In both types of models (MLN-D and
DM), the frequentist predictors given by (29) are constructed, according to equations(14) and (15)
to have very special structure. First, in the MLN-D model, for k = 1, 2, 3,

E
( 4∑
t=k+1

πj,t

∣∣∣ (Yj,b, b ≤ k), (uj,b, b < k)
)

=
[ k−1∏
b=1

h(ηj,b + uj,b)
]
· E(h(ηj,k + uj,k) |Yj,k)

Using the formulas (29) and (21), we find

E
( 4∑
t=k+1

πj,t

∣∣∣ (Yj,b, uj,b, b ≤ k)
)

=
[ k−1∏
b=1

h(ηj,b + uj,b)
]
· g(Yj,k−1, Yj,k, ηj,k, σk)

Therefore, for k = 1, 2, 3, the frequentist predictor in model MLN-D satisfies

4∑
t=k+1

π̂j,t =
k∏
t=1

g(Yj,t−1, Yj,t, η̂j,t, σ̂b) (44)

where η̂j,t ≡ X ′j β̂
(t). The predictor µ̂j,k =

∏k
t=1 h(η̂j,t) in the absence of random effects is the

same as the limit of (44) as all σ̂t terms go to 0.

Similarly, in the DM model (where stagewise random effects were already assumed independent),
the prediction formulas (43) can be expressed as a product of stagewise predictors in the form

4∑
b=k+1

π̂j,b =
k∏
t=1

α̂j,t =
k∏
t=1

τ̂t µ̂j,t + Yj,t
τ̂t µ̂j,t−1 + Yj,t−1

for k = 1, 2, 3 (45)

where the corresponding predictors µ̂j,b in the absence of random effects (i.e., in the limit where all
τ̂b →∞) are given by

µ̂j,b =
b∏
t=1

h(η̂j,t) for b ≥ 1, µ̂j,0 = 1
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Recall that in certain extreme cases where the MLN-D or DM models do not converge, we
proposed to model Yj,k in terms of Yj,k−1 using a beta-binomial model (28). In that case, the
beta-binomial posterior-mean predictor for αj,k =

∑4
t=k+1 πj,t/

∑4
t=k πj,t is

α̂j,k = E
(
Yj,k | (Yj,b, b < k)

)
/ Yj,k−1 = (Yj,k + 1/2) / (Yj,k−1 + 1)

and (in case this beta-binomial form were used only in the stage k model) the overall predictor for∑4
t=b+1 πj,t is obtained by substituting this stage k predictor whenever b ≥ k. Under the MLN-D

model (with Jeffreys beta-binomial at k’th-stage), the predictor for
∑4

t=b+1 πj,t takes the form

4∑
t=b+1

π̂j,t =
[ b∏
t=1

g(Yj,b−1, Yj,b, η̂j,b, σ̂b)
]
·
[(Yj,k + 1/2) / (Yj,k−1 + 1)
g(Yj,k−1, Yj,k, η̂j,k, σ̂k)

]I[b≥k]
(46)

The analogous formula if the DM model applies to the stages other than the k’th is:

4∑
t=b+1

π̂j,t =
[ b∏
t=1

τ̂t µ̂j,t + Yj,t
τ̂t µ̂j,t−1 + Yj,t−1

]
·
[(τ̂k µ̂j,k−1 + Yj,k−1) (Yj,k + 1/2)

(τ̂k µ̂j,k + Yj,k) (Yj,k−1 + 1/2)

]I[b≥k]
(47)

D.5 Variance and MSPE Formulas

Conceptual descriptions of variance and MSPE estimation have been given above in Sections D, D.1
and D.2, for the direct estimates and model types under consideration for the VRA project. In this
subsection, these descriptions are made more concrete with the mathematical computing formulas
used in Variance and MSPE estimation. Further details of the computational implementation of
these formulas are given in Section E below.

The primary technique of design-based variance estimation used in major Census Bureau surveys
such as the ACS is Balanced Repeated Replication [Wolter, 2007, Fay and Dippo, 1989] and more
specifically Successive Difference Replication (SDR) [Fay and Train, 1995]. This technique estimates
the variance of a survey-weighted total estimator t̂Y =

∑
i∈S yiwi by re-calculating the survey-total

estimate with the survey weights wi replaced by a system of replicate-weights wi,r = wi fi,r for
r = 1, . . . R. The weight-multipliers fi,r are defined systematically from the sequence of sort-ordered
respondents i ∈ S according to a recipe described in detail in the paper of Fay and Train [1995] and
elaborated in the journal paper of Ash [2014], typically with R = 80. With t̂Y,(r) ≡

∑
i∈S yiwi,r,

the SDR variance estimate for the total t̂Y is

V̂ SDR(t̂Y ) = (4/R)
R∑
r=1

(t̂Y,(r) − t̂Y )2 (48)

It is important to recognize that (48) estimates, in approximately unbiased fashion, only the sam-
pling variance due to random sampling with unequal weights the estimated total of constant at-
tribute yi in a finite population. This estimator makes no attempt to take advantage of relationships
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between these constants and covariate vectors of constants Xi. Moreover, if the attributes yi are
indicators I[i∈(jg)∩A], where (jg) indexes geography and LMG and A denotes one of the categorical
identifiers CIT, LEP, or ILL, then the random effect incorporated within the model NA

j = NV
j πAj

under the MLN or DM model must be regarded as fixed with respect to the sampling variability
being assessed by (48). Under the multinomial random-effects model MLN or DM,

V̂ SDR(N̂A
j ) ≈ E

(
(N̂A

j − NA
j )2

∣∣ul, l = 1, . . . , J
)

= E
(

(N̂A
j − NV

j πAj )2
∣∣ul, l = 1, . . . , J

)
(49)

is conceptually the same as the conditional Mean Squared Prediction Error for N̂A
j given the fixed

finite population including the full set of population random effects in πl, j ∈ J . This measure
(49) of variance does not average over alternate possible populations defined by the distribution
of random effects. It is the baseline measure of prediction accuracy against which model-based
predictors were compared in 2011, 2016, and again in 2021.

Because the SDR Variance (49) does not average over alternative populations, it differs in
principle from the model-based Mean-Squared Prediction Error, defined by

MSPE(N̂A
j ) = E

(
N̂A
j −NV

j πAj
)2

More broadly, for any estimator or predictor8 ÑA
j of NA

j , the Mean Squared Prediction Error is
defined by

MSPE(ÑA
j ) = E(ÑA

j − NV
j πAj

)2 (50)

Thus, unconditional MSPE represents expected squared discrepancy between an estimator and the
random variable NA

j incorporating the true random effect for unit j and is unconditional in the
sense that it is averaged over all potential populations under the model with random effects ul.

The method of estimating MSPE in (50) is different in the 2021 VRA cycle than it was in
2016 [Slud et al., 2018]. In 2016, the conditional variance of the predictor π̂Aj was obtained using
parametric bootstrap for data derived from each of the set of R = 80 replicate weights. In 2021,
the primary frequentist method of estimating (50) treats ÑA

j as a somewhat complicated nonlinear
function of the data (N̂V

l , Y l, l = 1, . . . , J) that can be re-calculated using each of the replicate-
weights wj,r (in place of wj) to yield alternative predictions ÑA

j,(r) = N̂V
j,(r) π̂

A
j,(r). With this point

of view, one obtains an SDR expression for the conditional expected squared discrepancy between
ÑA
j and its design-based expectation over samples drawn:

V̂ SDR(ÑA
j ) =

4
R

R∑
r=1

(
N̂V
j,(r) π̂

A
j,(r) − ÑA

j

)2 (51)

8Predictor is the terminology we follow, as Bayesians or frequentists, when an estimated quantity is not a fixed
unknown parameter but rather a random variable.
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Each of the predictors α̂j,k, k = 1, 2, 3, is a smooth function of X ′j β̂
(k) and either Σ̂ in MLN or

(τ1, τ2, τ3) in model DM. Since nVj is viewed as fixed and known, this makes each π̂Aj a smooth
nonlinear function of data N̂A

j for A = V,C, L, I along with roots of a finite-dimensional score
equation used to define β̂ and either Σ̂ or τ̂ . By a slight extension of the usual justification
[Krewski and Rao, 1981] for BRR estimates of variances of smooth functions of survey-weighted
sums, we can base estimates of the variances of π̂Aj on Successive Difference Replication (SDR) as
an instance of Balanced Repeated Replication (BRR).

The quantity on the right-hand side of (51) is an estimated conditional MSPE averaged over that
part of the data-generating mechanism for (Y j , j ∈ J ) associated with the random-response-based
assignment of weights to respondents, but with the randomness associated with the random effects
(πj , j ∈ J ) fixed. From this point of view, the variance estimate (51) should be robust to possible
dependence between the direct-estimated quantities N̂V

j and the data D, while independence of
these was a necessary assumption in the MSPE estimation method adopted in 2016.

The foregoing discussion of MSPE estimates using SDR applies to frequentist direct and modeled
MSPE estimates. The Bayesian estimates, based on MCMC-calculated posterior variance for π̂j
given data, were already shown in formula (40) to provide unconditional MSPE estimates by making
use of SDR variances for N̂V

j . The independence assumption (7) was also used in deriving that
Bayesian MSPE formula.

D.6 Variance Calculations for Ratios

We have indicated in several places that the ratio variables LEPprop and ILL/LEP within LMG for
each type of geography are important for Voting Right determinations. The predictors for these
ratios are defined straightforwardly as the ratios of the corresponding predictors of numerator and
denominator totals appearing in their definitions. Recall the notations NC

j+, N̂
C
j+ respectively

for the true and direct-method CIT counts (without regard to LMG) within jurisdiction j, and
the analogous notations NC

a+, N̂
C
a+ for counts of AIAN citizens within AIA or ANRC geographies

uindexed by a. Also recall the notations NL
jg, N

I
jg, N

L
ag, N

I
ag for true LEP or ILL counts within

geographic units j or a, and the corresponding model-based (frequentist or Bayesian) predictors
ÑL
jg, Ñ

I
jg, Ñ

L
ag, Ñ

I
ag. Then the ratio variable predictors are defined explicitly as

˜LEPpropjg =
ÑL
jg

N̂C
j+

· I[N̂C
j+>0] , ˜ILL/LEPjg =

Ñ I
jg

ÑL
jg

· I[N̂L
jg>0] =

π̃Ijg

π̃Ljg
· I[N̂L

jg>0] (52)

with analogous notations and definitions when Jurisdiction geography-type and indices j are re-
placed by AIA or ANRC geography-type and indices a. Here πAjg are defined as in (37), and π̃Ajg
analogously with π̃Ajk substituted for πAjg. In the rest of this section, we describe the formulas for
Variance or MSPE estimates for the predictors in (52).
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When the predictors are made from frequentist estimators, the MSPE or variance predictors
are constructed fairly painlessly using the same weight-replication idea as the formula (51): the
predictor is recalculated using the SDR weight-replicates indexed r = 1, . . . , 80, and the MSPE
estimates are calculated directly from these replicate-predictors,

M̂SPE( ˜LEPpropj) =
4
80

80∑
r=1

( ˜LEPpropj,(r) − ˜LEPpropj
)2 (53)

M̂SPE( ˜ILL/LEPj) =
4
80

80∑
r=1

( ˜ILL/LEPj,(r) − ˜ILL/LEPj
)2 (54)

Three special comments must be made here. First, such predictors and MSPE estimates are
produced only for geographies with VOT sample, N̂V

jg > 0. Second, the indicators in the definitions
(52) ensure that these ratio-predictors are well-defined (= 0) when N̂L

jg = 0. Third, there are
some small geographic units for which the ACS version of the replicate weights wi,r are 0 or even
negative, which can result in denominators N̂L

j,(r) being negative or 0. In all such cases, we define

the corresponding ˜ILL/LEPj,(r) to be 0.

When the predictors ÑA
jg are derived from Bayesian analysis, the formulas for MSPE of LEPprop

and ILL/LEP both are conditioned on the data Y j but have different forms. First, since the sample
size from which N̂C

j+ is estimated is generally much larger than the sample size nLjg, it makes sense
to use the Bayesian form of linearized variance or MSPE formula for LEPprop:

M̃SPE
(
LEPpropj |Y j

)
≈ Var

(ÑL
j −NL

j

NC
j+

− (N̂C
j+ −NC

j+)
NL
j

(NC
j+)2

|Y j

)
and also to disregard the data-conditional covariance between ÑL

j and N̂C
j+. (This last decision, to

ignore covariances in the last expression, is partly motivated by the different scale of observations of
the all-geographic-unit CIT versus the LMG-specific LEP, but also because any nonzero covariance
is likely to be negative, resulting in a slightly conservative MSPE estimate. This aspect of the joint
behavior of assessments should be assessed in future VRA research.) The combination of these two
approximations yields

M̃SPE
(
LEPpropj |Y j

)
≈ (N̂C

j+)−2
[
V̂ar(ÑL

j |Y j) + LEPprop2
j V̂ar(ÑC

j+)
]

(55)

All terms on the right-hand side of this equation are estimated in ways that have already been
described, with the first conditional variance a Bayesian posterior variance obtained from MCMC,
and the second (unconditional) variance of a direct estimator calculated by a direct SDR weight-
replication formula.
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Finally, still in the Bayesian setting, the ratio π̃Ij /π̃
L
j in the final equality of (52) has posterior

MSPE directly obtainable from MCMC in the form

V̂ar
( πIj
πLj
|Y j

)
+
( Ê(πIj |Y j)

Ê(πLj |Y j)
− Ê

( πIj
πLj
|Y j

))2

E Computational Methods

The multinomial logistic regression model MLN-F is an extension of the simpler random-intercept
logistic regression model, which has been treated thoroughly both in textbooks [Agresti, 2013,
Stroup, 2012] and in software, particularly in SAS and in the R functions and packages lme4, glmer,
glmmML, GLMMadaptive, as well as the custom-coded NRstpGQ function [Slud, 2000b]. Accurate log-
likelihood calculation and maximization is simpler in the lower-dimensional problem than in the
mixed-effect multinomial logistic regression MLN-F. It is desirable to make use of the solved, sim-
pler problem wherever possible, either to provide starting values of completely justified parameter
estimates or by making use of sub-models.

Whether in the 1- or 3-dimensional integrals over random effects, the numerical quadrature
method that has been far and away the most successful and accurate approach to MLN log-
likelihood calculation is Adaptive Gaussian Quadrature (AGQ) introduced by Pinheiro and Bates
[1995]. Before its advent, even in the 1-dimensional case (random-intercept logistic regression) there
had only been approximate methods, the top-order Laplace asymptotic approximation or estima-
tion methods based on penalized likelihood [Breslow and Clayton, 1993]. Since the introduction of
AGQ, it has been incorporated into the R glmer function and other R packages and into SAS proc’s
GLIMMIX and NLINMIX. A study by Slud [2000b] of the accuracy of several competing methods of
loglikelihood computation for random-intercept logistic regression showed AGQ’s impressive and
reliable accuracy.

No AGQ numerical integration was done in the 2016 Dirichlet-Multinomial models [Slud et al.,
2018] or in the somewhat different DM models described in Section C.2 in this document. In these
models, the loglikelihods can be evaluated directly in terms of Gamma functions and optimized
through general-purpose numerical maximization functions nlm and optim in R.

E.1 Adaptive Gaussian Quadrature in MLN Models

The Adaptive Gaussian Quadrature (AGQ) idea in the present context is explained thoroughly in
a multilevel GLMM context by Pinheiro and Chao [2006], following the earlier idea of Pinheiro
and Bates [1995]. That idea is adapted here in a form similar to one used previously in R code for
random-intercept logistic regression [Slud, 2000b].
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The log-likelihood contribution for domain j (within LMG g that is not explicitly shown in the
notations) is given as a function of parameter ϑ :

logLj(ϑ) = log
(

(2π)−3/2

∫ ∫ ∫
exp

{
W j · (56)

log p(ηj1, + σ1z1, ηj2 + a1z1 + σ2z2, ηj3 + a2z1 + a3z2 + σ3z3) − 1
2

(z2
1 + z2

2 + z2
3)
}
dz1 dz2 dz3

)
where W j ≡ (nVj − Yj1, Yj1 − Yj2, Yj2 − Yj3, Yj3). For reference later in this section, denote the
exponent in the integrand in the last-displayed triple integral as Kj(z ;W j , ϑ) =

Kj(z) = W j · log p(ηj1 + σ1z1, ηj2 + a1z1 + σ2z2, ηj3 + a2z1 + a3z2 + σ3z3) − 1
2
‖z‖2 (57)

In model MLN-D with diagonal covariance matrix Σ, i.e., with the added assumption that
a1 = a2 = a3 = 0, the log-likelihood factors in a particularly simple way. First, the log-likelihood
for data Y j =

∑4
k=j+1 Wjk conditionally given uj takes the form (apart from omitted multinomial

coefficients, and with cluster-j sample size denoted by Yj0 ≡ nVj ) :

4∑
k=1

Wjk log πjk =
3∑

k=1

Yjk (ηjk + ujk) −
3∑

k=1

Yj,k−1 log(1 + eηjk+ujk)

When Σ is diagonal, it follows that ujk = σk zjk, where zjk ∼ N (0, 1) are i.i.d.. Then the likelihood
Lj(ϑ) factors into three separate terms with univariate integrals depending on disjoint sets of
parameters, in the form

logLj(ϑ) =
3∑

k=1

log
∫

exp((ηjk + σkzk)Yjk)

(1 + exp
(
ηjk + σkzk)

)Yj,k−1
φ(zk) dzk (58)

where φ(z) denotes the standard normal density. Since each integral in (58) is the likelihood
for a single random-intercept logistic regression observation, and each integral depends on sepa-
rate parameters (β(k), σk), the ML estimation decouples between separate logistic-regression log-
likelihoods (for k = 1, 2, 3)∑

j∈J
log
∫

exp((ηjk + σkzk)Yjk)

(1 + exp
(
ηjk + σkzk)

)Yj,k−1
φ(zk) dzk (59)

and we conclude that the separate maximizations of (59) together provide the joint MLE .

The idea of Adaptive Gaussian Quadrature (AGQ) is implemented in a few clear steps, which
we describe for each logLj log-likelihood term in parallel, to achieve efficiencies in R.
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Step 1. First the unique maximizer z∗j,k of the curly-bracketed exponent in logLj(ϑ) given in
(56) must be found. This can be accomplished in vectorized fashion, i.e., in parallel across domains
j, via the Newton-Raphson (NR) algorithm. The derivatives of the integrand terms are explicit,
because the derivatives for p are explicit. The checking of the NR stopping-criterion at each step
can also be vectorized, and the algorithm continues vectorized for those domains where it has not
stopped, up to a maximum number of steps, say 10 or 20. In the special random-intercept logistic
regression sub-case, 5 NR iterates were generally sufficient.

Step 2. Using the same explicit derivatives as in Step 1, we calculate for each j the 3×3 matrix
equal to the negative Hessian of Kj(z ;W j , ϑ) in z at z∗j :

D(j) = I3×3 −
4∑

k=1

Wjk∇⊗2
z log pk(ηj1 + σ1z1, ηj2 + a1z1 + σ2z2, ηj3 + a2z1 + a3z2 + σ3z3)

∣∣∣
z=z∗j

The corresponding gradient ∇zKj(z∗j ,W j , ϑ) evaluated at z∗j is identically 0, and the matrix D(j)
is positive definite: both assertions hold because z∗j is the calculus maximizer of Kj .

Step 3. Using Steps 1 and 2, we re-write

logLj(ϑ) = Kj(z∗j ;W j , ϑ) + log
(

(2π)−3/2

∫
exp

(
− (z − z∗j )trD(j) (z − z∗j )/2

)
·

exp
(
Kj(z)−Kj(z∗j ) + (z − z∗j )trD(j) (z − z∗j )/2

)
dz
)

(60)

The exponent in the second line of (60) is the remainder in the 2-term Taylor expansion of Kj(z)
around z∗j , and thus of order ‖z − z∗j‖3, and is a smooth function of parameters ϑ. Moreover,
Kj(z) −Kj(z∗j ) ≤ 0, and in domains with large nVj , the matrix D(j) is also roughly of order nVj ,
so that almost all the contribution to the integral occurs in the near neighborhood of z∗j .

Step 4. In the final (triple) integral of (60), change variables by x = D(j)1/2 (z − z∗j ). Then
the argument of the logarithm in (60) becomes

det(D(j))−1/2

∫ ∫ ∫
exp

(
Kj(z)−Kj(z∗j ) + ‖x‖2/2

)
φ(x1)φ(x2)φ(x3) dx1 dx2 dx3 (61)

Step 5. The final step of AGQ evaluates the triple integral (61) by doing each univariate
integral numerically using Gaussian quadrature. For a fixed choice of the number m of quadrature
points, a set of carefully defined weights ws and real values vs (satisfying symmetry conditions
wm−s+1 = ws, vm−s+1 = −vs) is determined so that

∫
f(y) exp(−y2) dy ≈

∑m
s=1 ws f(vs) or∫

g(x)φ(x) dx ≈ π−1/2
∑m

s=1 ws g(
√

2 vs) to a high order of approximation, and this formula is
exact for polynomials f of degree up to 2m. The final AGQ approximation of logLj(ϑ) becomes

logLj(ϑ) ≈ − 1
2

log det(D(j)) + Kj(z∗j ;W j , θ) + log
[ 1
π3/2

m∑
s1=1

m∑
s2=1

m∑
s3=1

ws1ws2ws3 ·
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exp
(
Kj(z∗j +

√
2D(j)−1/2(vs1 , vs2 , vs3)tr)−Kj(z∗j ) + v2

s1 + v2
s2 + v2

s3

)]
(62)

E.1.1 Gradients and Prediction formulas for MLN Models

Because the MLN models can be high-dimensional (3d+ 3 or 3d+ 6 parameters if all covariates are
used for each category of outcome), off-the-shelf numerical maximization software can be somewhat
slow in maximizing even a well-approximated log-likelihood for them. However such programs are
designed to run faster when analytical functions computing or closely approximating log-likelihood
gradients (scores) are supplied. In fact, this can be done readily in the MLN models, where the form
of the gradients is closely related to the computation of empirical-Bayes predictors of random-effect
scores β(k)trXi + uk,i from data W i and estimated parameters. Under the MLN-F model, we are
particularly interested in the probabilities, for k = 1, 2, 3,

4∑
t=k+1

πj,k ≡ E(Yjk/nVj |Xj , uj) =
k∏
t=1

h(ηjt + ujt) (63)

and their conditional expectations given the observed data are

E(
4∑

t=k+1

πj,k |Xj , Y j , ϑ) = E
( k∏
t=1

h(ηjt + ujt)
∣∣Xj , Y j , ϑ

)
(64)

Under model MLN-D, when the random-effects covariance matrix is diagonal, the last condi-
tional expectation becomes a product of three univariate conditional expectations

αjk ≡ E
(
h(ηjk + ujk)

∣∣Xj , Y j

)
= E

(
plogis(ηjk + ujk) |Xi, Y j

)
=
∫

exp
(
(ηjk + σkz)(Yjk + 1)

)
(1 + exp(ηjk + σkz))Yj,k−1+1

φ(z) dz
/ ∫ exp

(
(ηjk + σkz)Yjk

)
(1 + exp(ηjk + σkz))Yj,k−1

φ(z) dz

equal to g(Yj,k−1 + 1, Yjk + 1, ηjk, σk)/g(Yj,k−1, Yjk, ηjk, σk) where g was defined in formula (21) in
Section (C.1.1).

When Σ is not diagonal, the formulas for the terms E(
∑4

t=k+1 πj,t |Y j) are slightly more
complicated (i.e., are 3-dimensional integrals in z1, z2, z3). For example, in the general-variance
case,

E
(
πj3 + πj4

∣∣Xj , Y j , θ
)

=
∫ ∫ ∫

exp
(
Kj(z;W j , ϑ)

)
h(ηj1 + σ1z1) ·

· h(ηj2 + a1z1 + σ2z) dz1 dz2 dz3
/ ∫ ∫ ∫

exp
(
Kj(z;W j , θ)

)
dz1 dz2 dz3 (65)
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The ‘empirical BLUP’ predictors for E(Yj,k |Xj , uj) = nVj · E(
∑4

t=k+1 πjt |Xj , Y j) are
then given by ratios of integrals as in the last displayed equation, with parameters ϑ replaced by
their maximum likelihood estimators. Similarly, the Empirical Best Linear Unbiased (EBLUP)
predictor for the population ratio modeled by αjk =

∑4
t=k+1 πjt/

∑4
t=k πjt = h(ηjk +ujk) is given

by substituting ϑ̂ into

E
(
h(ηjk + ujk)

∣∣Xj , Y j

)
=
∫ ∫ ∫

exp
(
Kj(z;W j , ϑ)

)
h(ηjk + ujk)dz

/∫ ∫ ∫
exp

(
Kj(z;W j , θ)

)
dz

E.2 Bayesian Computation in MLN Nodels

The Bayesian analysis of the MLN model was conducted via Markov Chain Monte Carlo (MCMC)
using the STAN programming language [STAN Development Team, 2019]. The covariance matrix
of the random effects was parametrized as above in terms of the three stagewise marginal variances
and the Cholesky decomposition of the correlation matrix, using the LKJ prior recommended in
STAN Development Team [2019, Sec. 1.13] and also in Koster and McElreath [2017] and McElreath
[2020]. For the marginal priors, we used the recommended Cauchy distribution as suggested in
the STAN User’s guide, comparing it in sensitivity analysis with other priors including the unit
Exponential prior suggested by McElreath [2020]. The regression coefficients were given the ‘weakly
informative’ N (0, 10) priors for regression coefficients, following recommendations of STAN’s author
Andrew Gelman.

For each MCMC run, we used four chains, as recommended in STAN Development Team [2019].
We checked that all the chains converged for all the LMGs that used the Bayesian code, which as
described on page 4 were numbered 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 27, 44, 45, 56, 63,
64, 72, and 73. (The Hispanic LMG that we call LMG 73 was analyzed in this way separately in
four regional pieces.) We checked that the Rhat statistics never exceeded the recommended level
1.05, and examined several sample trace plots and posterior densities for anomalies. Because the
model development was done under a different version of JAGS than the productions runs, we also
checked whether the posterior expectations and variances under the two versions yielded similar
results, and checked for a number of LMGs that increasing the number of iterations by 50% did
not much change the results.

There is a very fast experimental STAN program called vb for Variational Bayes that can quickly
produce posterior distributions under the specified model. Because vb is currently experimental,
we did not use it for the actual production of the estimates, but it proved very useful for rapidly
generating initial values for the posterior distribution. In particular, we use certain percentiles
(2.5%, 25%, 75%, 97.5%) of vb estimated posteriors and then proceeded with usual STAN MCMC.
With these initializations and the ‘weakly informative’ priors mentioned above, we found that the
Bayesian and frequentists estimates were substantially equivalent, as discussed in the next Section.
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E.3 Computational Comparison of Bayesian and Frequentist Estimates

In the 2021 cycle of production of the LMG-level statistical estimates used in VRA Section 203(b)
Determinations, the decision of whether to use Bayesian or frequentist methods of analysis were
made for primarily computational reasons. To explain why, and precisely which LMGs and models
were analysed by which methods, we present various checks on the relative accuracy of the methods
and comparisons of run-times, convergence and reliability of the computed estimates. A summary
of how the results of these comparisons were used in the production decisions can be found in
Section 3.5 of the main text of this report.

The Bayesian analyses were run, in individual LMGs, only for the MLN-F model. The MCMC
analysis of these models required four parallel computations (in order to check convergence of the
estimates by the current standards of Bayesian analysis), at the end of which both the parameter
estimates and MSPE estimates were rapidly collected. By contract, the frequentist analyses required
iterative numerical maximization of the likelihood for the MLN model in each LMG, resulting in
LMG geographic-unit-level predictions of CIT, LEP and ILL, and then a further computation of
the analogous estimates and predictions for the analogous survey data {Y jg}j∈Jg re-generated with
80 separate sets of ‘SDR replicate’ weights in order to produce margin-of-error MSPE estimates by
the methods described in this Appendix.

The frequentist estimates and predictions based on the simpler MLN-D model (the same model
with random-effect variance matrix Σ constrained to be diagonal) were so much simpler to compute
numerically that in all LMGs this was the method of choice for exploratory data analyses with
alternative models (based on different sets of covariates Xjg and different thresholds minsamp for a
(Geo, LMG) domain to be included in the parameter estimation step. To get an idea of the relative
run-times for the two types analysis, see Table 21 for results on LMGs 3–10 and 73 (NE Region)
analyzed in this way. (The respective numbers of jurisdictions with ACS 2015-2019 sample in these
LMGs were: 989, 3309, 4004, 742, 845, 3029, 3126, 1052 and 1045.) In the first row of Table 21, run-
times in hours are given for the average of the 4 MCMC chains (because the 4 chain computations
are run in parallel), although this way of doing the comparison advantages the Bayes methods. The
third row displays the total run-time for the 81 replicate-weight frequentist MLN-D estimation and
prediction runs, and the second row gives the additional times for each LMG beyond the MLN-D
intializations for a single fit using the original ACS weights.

Table 21 shows that the time required to produce estimates in the MLN-F models are definitely
faster for the frequentist AGQ calculations than for the Bayesian MCMC. However, the Bayesian
MCMC runs produce posterior variances as MSPEs as part of the same computation, while accord-
ing to the current method, MSPEs from frequentist estimates must be produced from 81 separate
model-fitting calculations using SDR weight-replicates. The time required for 81 frequentist MLN-
F calculations would not have been faster than the Bayesian MCMC calculations. The Bayesian
approach was ultimately employed only for the most data-rich LMGs with Jurisdiction geography.
In less data-rich LMGs, it was found that the MLN-F fitted models were not significantly different
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Table 21: Run-times (hrs) for Bayesian and frequentist MLN runs computing parameter estimates,
outcome (Geo, LMG) predictions and MSPEs in Jurisdiction Geography for selected LMGs.

Language Minority Group Number
Method Model 3 4 5 6 7 8 9 10 73
Bayes MLN-F .25 3.50 3.20 .12 .21 1.60 2.00 .20 1.6
Freq MLN-F .10 .43 .41 .07 .12 .67 .65 .11 .17
Freq MLN-D .02 .14 .12 .01 .01 .12 .18 .02 .04

Notes. Bayes MLN-F: average of 4 MCMC runs; Freq MLN-D: total for 81 replicate runs; Freq
MLN-F: from MLN-D initialization to convergence. LMG numbering 1–73 described on page 4.

from the MLN-D fits, and the tremendously greater speed of MLN-D frequentist computations
resulted in a preference for that method on all but the largest LMGs.

All but one of the frequentist MLN-F fits in Table 21 used the standard R nonlinear minimiza-
tion by function nlm of the AGQ numerically integrated log-likelihood and analytical (numerically
integrated) gradient. The one exception was LMG 6, where nlm and similarly optim did not
run properly and had to be restarted and completed with a different method, optimal-steplength
gradient descent. This kind of unaccountable non-convergence requiring a re-start with modified
optimization method did occur multiple times in our testing of frequentist software for MLN-F
model fitting, and this was another reason we chose a Bayesian method of MLN-F model-fitting in
the LMGs that were sufficiently large to require it. The run-times for frequentist MLN-F model
fits could be made smaller, perhaps by 10-50% without much change in predictive performance, by
tinkering with convergence criteria. However, we are not sure that the optimization could be made
fully automatic without the need for re-starts involving intermediate convergence failures. But
probably the Bayesian MCMC runs could also be made quicker using Metropolis-Hastings MCMC
with normal posterior proposal distributions starting from MLN-D fits.

These purely computational considerations are relevant because the estimates and predictions
from the same MLN-F models by the two analytical approaches were substantially the same. The
estimates are not identical, but typically differ only in the second or third decimal place, occasionally
in a very few cases in the first decimal place only when the estimate SEs are large (> 0.7). The sense
of estimation accuracy is considerably different in the Bayesian and frequentist computations. In
Bayesian MCMC, ‘convergence’ represents a confirmation of indicators of approximate stationarity
tested by approximately equal distributions for the 4 parallel simulated Markov chains. The sense
of convergence in the frequentist AGQ likelihood maximization is based on checks for smallness of
the calculated gradients of log-likelihood components, which typically must be < 10−6 of the log-
likelihood for the calculation to stop. In the example LMGs of Table 21, with MLN-F parameter
dimension from 13 to 19, fully half the computation time is spent in iterations reducing the gradient
sizes by the last factor of 0.01 while the log-likelihoods change by at most 0.01. So the standard
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Table 22: Differences between MLN-F frequentist and Bayesian predictions of outcome counts
CIT, LEP, ILL by jurisdiction within selected LMGs. Columns 1-3 are mean absolute differences
of predictions within jurisdictions with MLN-D predicted counts ≤ 30. Columns 4-6 are mean
absolute differences of log counts for jurisdictions with MLN-D predicted count > 30.

Predicted count ≤ 30 Predicted count > 30
CIT LEP ILL CIT LEP ILL

LMG 3 0.024 0.075 0.046 0.002 0.009 0.012
LMG 4 0.022 0.032 0.020 0.002 0.006 0.014
LMG 5 0.014 0.026 0.011 0.001 0.006 0.020
LMG 6 0.028 0.098 0.059 0.002 0.012 0.016
LMG 7 0.058 0.125 0.060 0.006 0.033 0.199
LMG 8 0.020 0.026 0.025 0.002 0.010 0.047
LMG 9 0.015 0.033 0.025 0.001 0.007 0.022
LMG 10 0.029 0.056 0.060 0.003 0.007 0.015
LMG 73 0.011 0.040 0.016 0.001 0.015 0.014

Table 23: Measures of difference between MLN-F and MLN-D frequentist predictions of outcome
counts CIT, LEP, ILL by jurisdiction within selected LMGs. Columns 1-3 are mean absolute
differences of predictions within jurisdictions with MLN-D predicted counts ≤ 30. Columns 4-6 are
mean absolute differences of log counts for jurisdictions with MLN-D predicted count > 30.

Predicted count ≤ 30 Predicted count > 30
CIT LEP ILL CIT LEP ILL

LMG 3 0.066 0.276 0.275 0.005 0.029 0.061
LMG 4 0.050 0.144 0.087 0.004 0.021 0.044
LMG 5 0.042 0.205 0.032 0.004 0.037 0.044
LMG 6 0.059 0.102 0.312 0.005 0.011 0.049
LMG 7 0.173 0.408 0.109 0.015 0.119 0.422
LMG 8 0.049 0.081 0.039 0.004 0.024 0.070
LMG 9 0.111 0.133 0.132 0.009 0.021 0.104
LMG 10 0.115 0.276 0.313 0.009 0.031 0.079
LMG 73 0.037 0.327 0.097 0.003 0.059 0.059

of accuracy is considerably more stringent for the frequentist analysis. In any case, it is the
outcome predictions [CIT, LEP, ILL counts within (Geo, LMG)] that must be compared to establish
practical equivalence between the Bayesian and frequentist methods of analysis in this project. This
comparison is done in Tables 22 and 23.

83



Tables 22 and 23 respectively quantify the differences between frequentist versus Bayes MLN-F
predictions and between frequentist MLN-F versus MLN-D predictions, for (Geo, LMG) outcome
counts in the categories CIT, LEP, and ILL. Both tables quantify these prediction differences by
separate measures for small and large counts. For jurisdictions in which counts for a specific outcome
category are predicted (by frequentist MLN-D) to be ≤ 30, mean absolute differences of predicted
counts are shown in the first 3 columns of both tables. For jurisdictions with predicted category
counts > 30, relative errors of prediction are quantified by mean absolute differences of (natural)
logarithms of predicted counts, in the last 3 columns of both tables. The discrepancies in MLN-F
frequentist versus Bayes predictions are very small, both in their own right and by comparison
with the corresponding differences in MLN-F versus MLN-D frequentist predictions. We argue in
some detail in Section 3.5 of the main text of this report that the MLN-D model is aleady quite
effective for estimation and prediction of domain outcome-category population counts in the main
text. Yet a comparison between the corresponding entries of Tables 22 and 23 shows that the
MLN-F outcome-count predictions of the same model by the radically different frequentist-AGQ
and Bayesian-MCMC computational techniques are closer together by a factor of 3 or more than
the frequentist predictions between the slightly different MLN-F and MLN-D models.

F Prediction Diagnostics

This section describes a simple systematic approach to the assessment of quality of predictions made
by different models and different variants of the same model in order to inform modeling decisions
and validate that the models chosen for VRA prediction fit adequately. The quantities that we are
interested in predicting are: NA

jg where j = 1, . . . J indexes geographic unit (jurisdiction, AIA or
ANRC), g indexes LMG, and A = V,C, L, I respectively denote the nested decreasing categories of
VOT, CIT, LEP, ILL.

Our data come in the form of observed sample sizes nAjg (of which we regard nVjg as fixed
and known and disregard the rest) and survey-weighted estimates N̂A

jg. These survey-weighted
estimates are noisy, but they are supposed to be unbiased estimates of their targets NA

jg based on
ACS weighting, and this is not a bad assumption. We recode the survey-weighted data into scaled
sample-sizes Y A

jg = nVjg · N̂A
jg/N̂

V
jg that we assume to satisfy (jointly in A = V,C, L, I) a mixed-

effects multinomial generalized linear model (MLN or DM) in terms of covariate vectors Xjg. As
in Section C, we focus attention on a single LMG g and suppress the notation g.

Corresponding to a fitted generalized linear model, with a particular covariate specification and
set of model estimates ϑ̂ consisting of coefficients β̂(k), k = 1, 2, 3 and 3 × 3 mixed-effect variance
Σ̂ or dispersion parameters τ̂ , resulting in a set of model-based predictions ÑA

j = ÑA
j (θ̂).

We are interested in comparing many model specifications and associated predictions ÑA
j . It

is not helpful to compare these directly with the survey-weighted estimates N̂A
j because the latter
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are so noisy. On the other hand, aggregated versions of the discrepancies ÑA
j − N̂A

j across indices
j are supposed to have mean approximately 0 for a properly specified model. (That is, the mean
would be exactly 0 if the predictions Ñj(θ) were based on the true θ in a correct model.) So we
propose to use diagnostic statistics of the form

∆A(θ̂) ≡
J∑
j=1

xj
(
ÑA
j − N̂A

j

)
, A = C,L, I

where the quantities xj may be functions or components of the covariates Xj or indicators of
the indices j falling into designated subsets defined by sample sizes nVj . If we are comparing two
models with different specifications, estimators θ̂ and predictions ÑA

j (θ̂), we will tend to prefer the
model with systematically smaller absolute values of the statistic ∆A = ∆A(θ̂,x).

One systematic set of diagnostic comparisons would use a number of different sequences xj
defined from model covariates, other potential covariates, and geographic size measures for which
nVj may be a proxy. As implemented in Section 3.6, the quantities ∆A(θ̂,x) are usefully tabulated
within VOT sample-size classes since somee important differences in the performance of model
predictions were found to relate strongly to domain sample size. However, we found it useful also
to tabulate ∆A(θ̂,x) for jurisdictions aggregated by intervals of values of certain key covariates.

In applying this diagnostic approach to data from the 2021 VRA Section 203 project, the survey-
weighted estimates N̂A

j are drawn directly from arrays tabulated from ACS 2015-2019 data, and
the predictors ÑA

j (θ̂) are the model-based results from MLN or DM models, with specified rules for
choosing the covariates (the β(k) components chosen not to be structural zeroes, with indices Ik,
and further rules defining the minimum sample-size threshold for including geographic units in the
LMG-specific fitting of unknown statistical parameter. The results of these diagnostic comparisons,
and the consequent modeling decisions made for the VRA 2021 production of estimates used in
Section 203(b) determinations, are described in Sections 3.4 and 3.6 of this report.

A somewhat different diagnostic is applied to the overall assessment of prediction quality in
Section 3.6.1. In that Section, the objective is to document the sense in which the model-based
predictions with covariates improve on corresponding model-based predictions without covariates.
Both the predicted counts ÑA

jg and their direct-estimated comparators N̂A
jg increase with geographic-

unit VOT population size N̂V
jg, and are for that reason highly correlated, and the predictions ÑA

jg

also make use of the direct counts N̂A
jg through the empirical-Bayes conditioning on Ŷ A

jg . To learn
whether the model made effective use of covariates, another approach is to compare synthetic
model-based predictions π̃Ajg — defined from the model as though no there were no sampled data
in domain (j, g) — in predicting the observed (direct-estimated) ratios N̂A

jg/N̂
V
jg. The diagnostic

used in Section 3.6.1 is the LMG-specific correlations between these predicted and observed rates,
computed across weight-replicates.
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