Contents lists available at ScienceDirect

STATISTICS &
PROBABILITY

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Optimal tightening of the KWW joint confidence region for a ranking
Tommy Wright!-2

Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, 20233, United States of America

ARTICLE INFO ABSTRACT

Keywords: Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of
Independence (Sidék) correction uncertainty for an estimated ranking using a joint confidence region for the true ranking of
Ofﬁi‘al statistics K populations. In this current paper, our proposed framework permits some control over the
Ranking

amount of uncertainty and tightness in various portions of the estimated ranking with an

Tightness optimal allocation of sample among the K populations.

1. Introduction

The KWW joint confidence region for the unknown overall true ranking, in Klein et al. (2020), is constructed as follows: by
observing how K known joint confidence intervals for K means overlap or not, by obtaining a confidence set for each population
rank, and ultimately obtaining the joint confidence region for the overall true ranking. We tighten (Definition 1) this joint confidence
region with an exact optimal allocation of sample among the K populations.

Assume K(> 2) disjoint finite populations where N, is the known number of units in population k for k = 1,2,...,K. Let
N = Z,ﬁ N,, and let Y; be the fixed unknown value of interest for the ith unit in population k, where the kth population mean
isY, = Y. Y/ Ny and variance is S,f = Z,]ikl (Y — ¥)?/(N,, — 1). The desire is to rank the K populations from smallest to largest
based on the unknown values of the ordered population means.

For any unit in the population (sample) setting, we represent its value of interest using upper (lower) case Y (). If yy, ..., Yy,
are the observed values in a simple random sample of size n;, from the kth population where the sample mean y, = Zfﬁ Vil s
an estimator of Y,, we rank the K populations based on the estimated ranking of values, y,, ..., jg, i.e.,

Yy < ¥y £ SV < S k- (€}

KWW uses a collection (family) of K joint confidence intervals for Y, ...,Yx to form the basis for the uncertainty measure
presented. For KWW methodology, we summarize in Section 2, present 3 new properties (Section 2.3), and summarize 4 uses
(Section 2.5). In Section 3, we define tightness for a joint confidence region. In Section 4, we optimize an objective function with
an algorithm aimed at tightening the KWW joint confidence region.

Selected Ranking Literature. KWW (2020) cites three different approaches (with references) relating to ranks and rankings from
the literature: (a) frequentist; (b) Bayesian; and (c) the bootstrap. KWW (2020) goes beyond answering the question, “How good is
the estimated individual rank of a specific state?” to answering the question, “How good is the overall estimated ranking, hereafter
estimated ranking, of K populations?” KWW presents a frequentist (as well as how to adapt for Bayesian inference) quantification of
this uncertainty via a joint confidence region for the true ranking (Section 2). In the Appendix (Concluding Remarks: Remark 5.5),
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we note related work for a “simultaneous confidence set” for a ranking by Mogstad et al. (2024). As noted in KWW (2020), Wright
(2024), and Hall and Miller (2009), uncertainty (due to sampling variability) is often less at the extremes of the estimated ranking
as compared with middle portion. We show how to tighten (Definition 1) the joint confidence region using an optimal allocation of
an overall sample size n among the K populations, especially the middle portion.

2. Main results of KWW

The unknown true ranking is (v, ...,rg), where r;, the rank of kth population, is
K
=2 0¥, <V)=1+ Y IX;<Y), for k=1, K. ®)
Jj=1 {jj#k}
The estimated ranking is (7, ..., #g), where #;, estimated rank of kth population, is
Fo=1+ Z I(5; <7). for k=12,...K. 3)
{jj#k}
The values of Y, ..., Yx are unknown, and KWW assumes for each k that we know real numbers L, < U, such that ¥, € (L,,U,).

When KWW constructs the joint confidence region shown in Section 2.4, KWW replaces the intervals (L,, U,) with joint confidence
intervals and the Main Result (Section 2.1) is then used to obtain an uncertainty (or probability) statement. See Wright (2024) for
an example clarifying the basic KWW underlying concept.

Notation. For each k € {1,2,...,K}, and j € I} ={1,2,...,K}\{k}, KWW defines three sets

1. je Ay, if and only if (L;,Uy) lies to the left of (L, U,);
2. j € Ap if and only if (L;,U;) lies to the right of (L, Uy);
3. j€ Ay ifandonly if (L;,U;) N (L, Uy) # 0.

It follows that A;,, Ag,, and Ay, are mutually exclusive, and A;; U Ag, U Ag, = I;.
2.1. Main result

Where |A| is the size of finite set A, KWW shows for k € {1,2,..., K}, that

re € {IALl + LAl + 2, 1 Api | +3, . [ ALl + [Age] + 1} 4

2.2. Joint confidence region for an overall true ranking

Henceforth, KWW assumes that { (Ly,U)), (Ly,Uy), ..., (Lg,Ug) } is a collection (or family) of confidence intervals for the
unknown parameters Y, Y,, ..., Y, respectively, and that the joint (or familywise) coverage probability of these intervals is greater
than or equal to 1 — . Thus,

{(rl,...,rk) S € (1ALl + LIAL] + 2, 1ALl +3, o 1Al + [Agel + 1) for k=1,... ,K} )
is a joint confidence region (or set) for the true ranking (r|, ..., rg) having joint coverage probability of at least 1 — a. We refer to
the following set as a marginal confidence set for ri: {[A; |+ L [Ap,| + 2, [Ap | +3, ..., A + [Age| + 1}

If (L,,U,),...,(Lg,Ug) are constructed such that the estimator y, € (L, U,) for all k with probability 1 (which is the case with
the KWW approach), then the estimated ranking (7,75, ..., #g) is contained in the joint confidence region (5) with probability 1.

In general, the joint confidence region in (5) contains more than one possible true ranking. However, if the values of ¥, are
sufficiently different from each other such that (L,,U,)N(Ly,Uy) =0 for all k # k' and k = 1,2, ..., K, then it follows immediately
that the joint confidence region contains only one possible true ranking, and it is the estimated ranking (7, ...,7x); when this
happens, we would have the “tightest” (see Definition 1) possible joint confidence region.

2.3. Properties of joint confidence region and a marginal confidence set

Proofs of three new properties are immediate and straightforward (M OE means margin of error).

P-1: If | Ay, | = 0, the marginal confidence set for r, is {|A;,]| +1}.

P-2: If |Ap,| = 0V k, the joint confidence region only contains the estimated ranking.

P-3:If |§; — x| 2 MOE; + MOE, for all j # k, the marginal confidence set for r, is {|A;,| + 1}. Here, MOE; = z%SEj, and 2z
is1-— g quantile of standard normal.
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Table 1
Computation Details for 90% Joint Confidence Region for True Ranking (Y = Travel Time To Work Data in Minutes).
Data Source: 1-Year American Community Survey (2011), Ranking Table R0801, U.S. Census Bureau.

90% Joint Confidence 90% Joint Confidence

i State (k) Vi SE, Intervals for Y,’s Region for True Ranking
9 Maryland (M D) 32.2 0.1 (31.9,32.5) {9}

8 New York (NY) 315 0.1 (31.2,31.8) {8}

7 New Jersey (NJ) 30.5 0.1 (30.2,30.8) {6,7}

6 District of Columbia (DC) 30.1 0.3 (29.3,30.9) {6,7}

5 Illinois (IL) 28.2 0.1 (27.9,28.5) (3,4,5)

4 M assachusetts (M A) 28.0 0.1 (27.7,28.3) {3,4,5}

3 Virginia (V A) 27.7 0.1 (27.4,28.0) {2,3,4,5}

2 Georgia (GA) 27.1 0.2 (26.6,27.6) {1,2,3}

2 California (CA) 27.1 0.1 (26.9,27.3) {1,2}

Table 1a

State k Details for r, € {|Ap |+ 1, 1ALl + 2, [Apl + 3o s | ALl + 1 Agel + 1}

90% Joint Confidence

Pr k A Aoi Region for True Ranking
9 MD {NY,NJ,DC,IL,MA,VA,GA,CA} [/ {9}

8 NY {NJ,DC,IL,MA, VA GA CA} [} {8}

7 NJ (IL,MA,VA GA,CA} {DC} (6,7}

6 DC {ILLMA,VA GA,CA} {NJ} {6,7}

5 L {GA,CA) {MA,VA) (3,4,5)

4 MA {GA,CA} {IL,VA} {3.4,5}

3 VA {CA) {IL,MA,GA)} {2,3,4,5)

2 GA [/ (VA CA} {1,2,3}

2 CA [} {GA)} {1,2}

2.4. KWW joint confidence region construction

KWW (2020) constructs a joint confidence region with an Independence (or Sidak (1967) Correction, assumes V1> Fos +-.» g are
independently distributed where j, ~ N(Y,, SE,) for k with Y, unknown and standard error S E, known by estimation.
With the framework of Section 4.1 in this paper, SE, is computed by

N, —n, \ 5 &
K\ Sk -
SE, = (k—> = and sp= Y0k = 907/ O = D).
k i=1
where yi, yio, ..., Vi, are the observed values in a simple random sample from population .
To construct a 100(1 — «)% joint confidence region, KWW considers joint confidence intervals whose joint coverage is shown to
equal 1 —a, where y = 1 — (1 — a)!/K:

(yk—z%SEk,)‘zk+z%SEk), for k=1,2,...,K. 6)

Table 1 shows the Independence corrected 90% joint confidence intervals for Y, Y5, ..., Y, as given by (6) with overall a = 0.10.
(In some cases, it is convenient to show that k ranges over the names of the states rather than over the integers 1, ..., K.) To construct
the joint confidence region, we “correct” the level « for each state so that our “overall” level for the K = 9 joint confidence intervals
is @ = 0.10. We proceed as follows using the Y = travel time to work data for 9 states in columns 1-4 of Table 1. For a = 0.10 and
K =9, the z value that bounds the inner (1 — )'/° = 0.9884 of the N(0,1) is zp = 2.523. Thus, for k =V A

[Apval={CA} =1 —and  |Agyl=[{IL.MA,GA}|=3.

Using (4), the marginal confidence set for ry, 4 is {1+1,14+2,1+3,1+3+1} = {2,3,4,5}. The other rows of Table 1 are obtained
similarly. Table 1a gives the details for obtaining each confidence set in the last columns of Tables 1 and 1a.

Note 1: The values in Table 1 for y, and SE, are from the actual published official estimates (U.S. Census Bureau) and their
computations are more complex than we assume throughout the remainder of this paper. This complexity is due to several reasons:
complex sampling design, adjustments for nonresponse, and the methodology used for computing y, and SE,. Hereafter in this
paper, we have defined y, and SE, as would be used under classical simple random sampling, independently sampling among the
K populations, for simplicity in presenting basic concepts.
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One Possible Another Possible

RANK True Ranking True Ranking
9 MD MD MD
8 NY NY NY
7 DC NJ NJ DC
6 DC NJ DC NJ
5 VA MA IL IL MA
4 VA MA IL MA IL
3 GA VA MA IL VA VA
2 CA GA VA CA GA
1 CA GA GA CA

CA GA VA MA IL DC NJ NY MD ‘

STATES ORDERED BY ESTIMATES

Fig. 1. KWW 90% Joint Confidence Region for Tables 1 and la & Two Other Possible True Rankings.

Fig. 1 provides a visual of the 90% joint confidence region for the true ranking of the 9 states using the travel time to work
data, and it follows from the last columns of Tables 1 and la. In the joint confidence region, highlighted states in bold show the
estimated ranking, and the non-bold states show uncertainty in the estimated ranking. This joint confidence region contains other
possible true rankings, and two examples are shown in the last two columns of Fig. 1.

Fig. 1 reveals two other aspects of a joint confidence region. First, each specific row of the joint confidence region shows (with at
least 90% confidence) which states could occupy the associated rank. For example, rank r = 5 could be occupied with 90% confidence
by states VA, M A, or IL. Second, each specific column of the joint confidence region shows (with at least 90% confidence) which
ranks the associated state could occupy, i.e., a marginal confidence set for r,. For example, GA could occupy ranks 1, 2, or 3; while
NY can, with at least 90% confidence, only occupy rank 8.

2.5. KWW summary

The uncertainty shown in a KWW joint confidence region reveals:

(i) uncertainty in the estimated ranking (7, 7,, ..., Fg);

(ii) other possible true rankings (r|,r,, ..., rg) beyond the estimated ranking;

(iii) for population (column) k, a marginal confidence set (set of ranks r) for r;; and
(iv) for rank (row) r, a marginal confidence set (set of populations k) for r.

Note 2: Fig. 1 is a 9 x 9 grid with 81 positions: 9 positions with bold letters for the estimated ranking, 12 positions with non-
bold letters for the uncertainty of the estimated ranking, and 60 (= 81-9-12) positions that are blank. The joint confidence region
consists of the 21 (= 94+12) positions for the estimated ranking and its uncertainty. More (Less) non-bold letters indicate more (less)
uncertainty in the estimated ranking.

3. Optimizing (tightening) a KWW joint confidence region

Definition 1. The tightness of a specific joint confidence region for an estimated ranking of K populations is defined as T = 1— O—I;,
where OP is the total number of occupied positions (bold and non-bold letters) in the specified joint confidence region out ofK the

total number of positions K2. Note that OP = K + Y, |Agyl-

Example. From Fig. 1, note that OP =2+3+4+4+3+3+2+2+4 1+ 1 =21. Hence the tightness of the joint confidence region in
Fig. 1is T =1 - 2—; = % Note that 0 < T < =———. If T = 0, there is no tightness. If T = =—
confidence region only contains the estimated ranking; and we have strong evidence it is the true ranking.

It is clear from (5) or Definition 1 that we can tighten a joint confidence region if |A,,| can be made small for as many values
of k as possible; that is, if we can minimize the overlap of the joint confidence intervals in the family of joint confidence intervals.
Given the KWW approach and the desire that the confidence level be the same for each confidence interval in the family, one
straightforward way lies at the sample size value of n, for population k. Wright (2024) demonstrates empirically how changing
values of a (and y) can affect the tightness of a joint confidence region, and he gives another example illustrating how tightness
increases by increasing n; to 2n; and 2n; to 3n,, as shown in Figs. 2, 3, and 4. For Fig. 2, T = 60/81; for Fig. 3, T = 62/81; for
Fig. 4, T = 68/81.

, there is complete tightness; joint
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RANK
9 MD
8 DC NJ NY
7 DC NJ NY
6 DC NJ NY
5 MA
4 CA IL VA
3 CA IL VA
2 CA IL VA
1 GA
GA CA IL VA MA DC NJ NY MD

STATES ORDERED BY ESTIMATES

Fig. 2. KWW 90% Joint Confidence Region for the True Ranking of 9 States for n,.

RANK
9 MD
8 DC NY
7 DC NJ NY
6 DC NJ
5 MA
4 CA IL VA
3 CA IL VA
2 CA IL VA
1 GA
GA CA IL VA MA DC NJ NY MD

STATES ORDERED BY ESTIMATES

Fig. 3. KWW 90% Joint Confidence Region for the True Ranking of 9 States for 2n,.

RANK
9 MD
8 NY
7 DC NJ
6 DC NJ
5 MA
4 IL VA
3 IL VA
2 CA
1 GA
GA CA IL VA MA DC NJ NY MD

STATES ORDERED BY ESTIMATES

Fig. 4. KWW 90% Joint Confidence Region for the True Ranking of 9 States for 3n,.

4. A plan for optimal tightening of KWW joint confidence region

4.1. Framework

Sampling independently among the K populations, assume a simple random sample of n; units selected from population k with
sample mean y, which is an estimator of population k mean Y,. The overall sample size for the K populations is n = Zle ng. The
2
N,—n
sampling variance of y, is Cochran (1977), Lohr (2022) Var(j,) = (%)—k
k ny

Consider objective function (7) given N, and S,%

K K N\ S2
_ 2 SN 2f Nk =M \ Pk
f<"w"z’---’"f<>—ZNkV‘"@k)—ZNk<Tk>g @)
k=1 k=1

and seek to find optimal choice of n, (for all k) that minimize f(n;,n,,...,ng) subject to the overall sample size n being fixed and
the following additional constraints. Note that the estimator of y/V ar(y,), which is SE,, is how we aim to control the length of
each 100(1 — y)% joint confidence interval given in (6). Clearly for given N, and SZ (or an estimate), we can carefully choose n,
with the aim of making SE, small and hence decrease the number of overlaps, i.e. A, |, which is key to “tightening” the KWW
90% joint confidence region, as shown in Wright (2024).

Additional Constraints: Wright (2017, 2020) assume the desire that sample size n, be bounded below and above by specified
positive integers a;, and b,, respectively, that is,

1<a,<n,<b, <Ny, for each k. 8
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As a result, n, the overall sample size, will be at least Zle a, and no more than Z,’;l by.
The objective function in (7) is appealing in this framework where we aim to tighten a joint confidence region because

2 2
SE? = (%) :,—k is an unbiased estimator of (%)f—k, 2MOE, = 2(2.523(SE})) is the width of the kth joint confidence
k k k k

interval for ¥, when K = 9; and it is clear that we can decrease 2M OE, if we increase n,, or, more precisely, allocate more of n to
those populations k* where the values of S,f* (almost equivalently si*) are larger.

4.2. Optimization

N2§2 N2 s2
Without loss of generality, assume —-1— > ... > K K_|
ay(ay+1) ag(ag+1)
Where ZkK:] N (N, — ak)SlfaL is the value of f(n,n,,...,ng) when n, = a, for population k, a decomposition of the objective
function f(ny, . ..., ny) is Wright (2017, 2020)
K SZ
k
fonmy,ong) = Y NNy —a)—~
1 k

k=
+

N;S NS NPST
mw+w_m+ww+m'”'mpnm»
; 9)

* a(a, +1)  (ap+ D@ +2) (n = D(np)

+

262 T N2S2 262
<_ NS NSk NSk )

2 @2 ' 2 @2 2 Q2
NSk _ NSk o Ny Sk >
aglag +1)  (ag + D(ag +2) (ng — D(ng)

With the decomposition (9), the constraint (8) is satisfied, and the objective function (7) is minimized whenever we stop

sequential sample size assignment among K populations if we use the following Algorithm (Wright, 2017, 2020), discussed in Remark
5.1 of Appendix: this Algorithm is more efficient than Neyman allocation (Neyman, 1934).

OPTIMAL SAMPLE SIZE ASSIGNMENT Algorithm
Step 1: First, note g, units are to be selected for the sample from population k, for all k.
Step 2: For additional sample units, compute the array of squared priority values:

NS NiST NiS?
Population 1 e —1 1
aj(a; +1) (ay + D(a; +2) (by = 1)(by)
N2S2 N2S2 N2S2
Population k k_k h_h e kK (10)
a(a; + 1) (ap + (a, +2) (b — D(by)
NS NZS2 NZSZ
Population K
ag(ag +1)  (ag + D(ag +2) (bg — D(bg)

Step 3: From the kth row (population), at least g; units and no more than b, units are to be included in
the sample. So from Step 2, select the largest values sequentially until sample size assignment is stopped.
Each population is assigned an additional sample unit each time one of its squared priority values is
among the largest assigned values. (Whenever sample size assignment stops, f(ny,n,, ..., ng) will be
minimized for overall » at that point (Wright, 2020).)

Appendix A. Supplementary Materials

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2024.110288.

Data availability

No data was used for the research described in the article.
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