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A B S T R A C T

Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of
uncertainty for an estimated ranking using a joint confidence region for the true ranking of
𝐾 populations. In this current paper, our proposed framework permits some control over the
amount of uncertainty and tightness in various portions of the estimated ranking with an
optimal allocation of sample among the 𝐾 populations.

1. Introduction

The KWW joint confidence region for the unknown overall true ranking, in Klein et al. (2020), is constructed as follows: by
observing how 𝐾 known joint confidence intervals for 𝐾 means overlap or not, by obtaining a confidence set for each population
rank, and ultimately obtaining the joint confidence region for the overall true ranking. We tighten (Definition 1) this joint confidence
region with an exact optimal allocation of sample among the 𝐾 populations.

Assume 𝐾(≥ 2) disjoint finite populations where 𝑁𝑘 is the known number of units in population 𝑘 for 𝑘 = 1, 2,… , 𝐾. Let
𝑁 =

∑𝐾
𝑘=1 𝑁𝑘, and let 𝑌𝑘𝑖 be the fixed unknown value of interest for the 𝑖th unit in population 𝑘, where the 𝑘th population mean

is 𝑌𝑘 =
∑𝑁𝑘

𝑖=1 𝑌𝑘𝑖∕𝑁𝑘 and variance is 𝑆2
𝑘 =

∑𝑁𝑘
𝑖=1(𝑌𝑘𝑖 − 𝑌𝑘)2∕(𝑁𝑘 − 1). The desire is to rank the 𝐾 populations from smallest to largest

based on the unknown values of the ordered population means.
For any unit in the population (sample) setting, we represent its value of interest using upper (lower) case 𝑌 (𝑦). If 𝑦𝑘1,… , 𝑦𝑘𝑛𝑘

are the observed values in a simple random sample of size 𝑛𝑘 from the 𝑘th population where the sample mean 𝑦̄𝑘 =
∑𝑛𝑘

𝑖=1 𝑦𝑘𝑖∕𝑛𝑘 is
an estimator of 𝑌𝑘, we rank the 𝐾 populations based on the estimated ranking of values, 𝑦̄1,… , 𝑦̄𝐾 , i.e.,

𝑦̄(1) ≤ 𝑦̄(2) ≤ ⋯ ≤ 𝑦̄(𝑘) ≤ ⋯ ≤ 𝑦̄(𝐾). (1)

KWW uses a collection (family) of 𝐾 joint confidence intervals for 𝑌1,… , 𝑌𝐾 to form the basis for the uncertainty measure
presented. For KWW methodology, we summarize in Section 2, present 3 new properties (Section 2.3), and summarize 4 uses
Section 2.5). In Section 3, we define tightness for a joint confidence region. In Section 4, we optimize an objective function with

an algorithm aimed at tightening the KWW joint confidence region.
Selected Ranking Literature. KWW (2020) cites three different approaches (with references) relating to ranks and rankings from
the literature: (a) frequentist; (b) Bayesian; and (c) the bootstrap. KWW (2020) goes beyond answering the question, ‘‘How good is
the estimated individual rank of a specific state?’’ to answering the question, ‘‘How good is the overall estimated ranking, hereafter
estimated ranking, of 𝐾 populations?’’ KWW presents a frequentist (as well as how to adapt for Bayesian inference) quantification of
this uncertainty via a joint confidence region for the true ranking (Section 2). In the Appendix (Concluding Remarks: Remark 5.5),
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we note related work for a ‘‘simultaneous confidence set’’ for a ranking by Mogstad et al. (2024). As noted in KWW (2020), Wright
(2024), and Hall and Miller (2009), uncertainty (due to sampling variability) is often less at the extremes of the estimated ranking
as compared with middle portion. We show how to tighten (Definition 1) the joint confidence region using an optimal allocation of
n overall sample size 𝑛 among the 𝐾 populations, especially the middle portion.

2. Main results of KWW

The unknown true ranking is (𝑟1,… , 𝑟𝐾 ), where 𝑟𝑘, the rank of 𝑘th population, is

𝑟𝑘 =
𝐾
∑

𝑗=1
𝐼(𝑌𝑗 ≤ 𝑌𝑘) = 1 +

∑

{𝑗∶𝑗≠𝑘}
𝐼(𝑌𝑗 ≤ 𝑌𝑘), f or 𝑘 = 1,… , 𝐾 . (2)

The estimated ranking is (𝑟̂1,… , ̂𝑟𝐾 ), where 𝑟̂𝑘, estimated rank of 𝑘th population, is
𝑟̂𝑘 = 1 +

∑

{𝑗∶𝑗≠𝑘}
𝐼(𝑦̄𝑗 ≤ 𝑦̄𝑘), f or 𝑘 = 1, 2,… , 𝐾 . (3)

The values of 𝑌1,… , 𝑌𝐾 are unknown, and KWW assumes for each 𝑘 that we know real numbers 𝐿𝑘 < 𝑈𝑘 such that 𝑌𝑘 ∈ (𝐿𝑘, 𝑈𝑘).
When KWW constructs the joint confidence region shown in Section 2.4, KWW replaces the intervals (𝐿𝑘, 𝑈𝑘) with joint confidence
intervals and the Main Result (Section 2.1) is then used to obtain an uncertainty (or probability) statement. See Wright (2024) for
an example clarifying the basic KWW underlying concept.

Notation. For each 𝑘 ∈ {1, 2,… , 𝐾}, and 𝑗 ∈ 𝐼𝑘 = {1, 2,… , 𝐾}∖{𝑘}, KWW defines three sets

1. 𝑗 ∈ 𝛬𝐿𝑘 if and only if (𝐿𝑗 , 𝑈𝑗 ) lies to the left of (𝐿𝑘, 𝑈𝑘);
2. 𝑗 ∈ 𝛬𝑅𝑘 if and only if (𝐿𝑗 , 𝑈𝑗 ) lies to the right of (𝐿𝑘, 𝑈𝑘);
3. 𝑗 ∈ 𝛬𝑂 𝑘 if and only if (𝐿𝑗 , 𝑈𝑗 ) ∩ (𝐿𝑘, 𝑈𝑘) ≠ ∅.

It follows that 𝛬𝐿𝑘, 𝛬𝑅𝑘, and 𝛬𝑂 𝑘 are mutually exclusive, and 𝛬𝐿𝑘 ∪ 𝛬𝑅𝑘 ∪ 𝛬𝑂 𝑘 = 𝐼𝑘.

2.1. Main result

Where |𝐴| is the size of finite set 𝐴, KWW shows for 𝑘 ∈ {1, 2,… , 𝐾}, that

𝑟𝑘 ∈
{

|𝛬𝐿𝑘| + 1, |𝛬𝐿𝑘| + 2, |𝛬𝐿𝑘| + 3,… , |𝛬𝐿𝑘| + |𝛬𝑂 𝑘| + 1}. (4)

2.2. Joint confidence region for an overall true ranking

Henceforth, KWW assumes that
{

(𝐿1, 𝑈1), (𝐿2, 𝑈2), . . . , (𝐿𝐾 , 𝑈𝐾 )
}

is a collection (or family) of confidence intervals for the
unknown parameters 𝑌1, 𝑌2, . . . , 𝑌𝐾 , respectively, and that the joint (or familywise) coverage probability of these intervals is greater
than or equal to 1 − 𝛼. Thus,

{

(𝑟1,… , 𝑟𝐾 ) ∶ 𝑟𝑘 ∈
{

|𝛬𝐿𝑘| + 1, |𝛬𝐿𝑘| + 2, |𝛬𝐿𝑘| + 3,… , |𝛬𝐿𝑘| + |𝛬𝑂 𝑘| + 1} f or 𝑘 = 1,… , 𝐾
}

(5)

is a joint confidence region (or set) for the true ranking (𝑟1,… , 𝑟𝐾 ) having joint coverage probability of at least 1 − 𝛼. We refer to
the following set as a marginal confidence set for 𝑟𝑘: {|𝛬𝐿𝑘| + 1, |𝛬𝐿𝑘| + 2, |𝛬𝐿𝑘| + 3,… , |𝛬𝐿𝑘| + |𝛬𝑂 𝑘| + 1}.

If (𝐿1, 𝑈1),… , (𝐿𝐾 , 𝑈𝐾 ) are constructed such that the estimator 𝑦̄𝑘 ∈ (𝐿𝑘, 𝑈𝑘) for all 𝑘 with probability 1 (which is the case with
he KWW approach), then the estimated ranking (𝑟̂1, ̂𝑟2,… , ̂𝑟𝐾 ) is contained in the joint confidence region (5) with probability 1.

In general, the joint confidence region in (5) contains more than one possible true ranking. However, if the values of 𝑌𝑘 are
sufficiently different from each other such that (𝐿𝑘, 𝑈𝑘) ∩ (𝐿𝑘′ , 𝑈𝑘′ ) = ∅ for all 𝑘 ≠ 𝑘′ and 𝑘 = 1, 2,… , 𝐾, then it follows immediately
that the joint confidence region contains only one possible true ranking, and it is the estimated ranking (𝑟̂1,… , ̂𝑟𝐾 ); when this
happens, we would have the ‘‘tightest’’ (see Definition 1) possible joint confidence region.

2.3. Properties of joint confidence region and a marginal confidence set

Proofs of three new properties are immediate and straightforward (𝑀 𝑂 𝐸 means margin of error).
P-1: If |𝛬𝑂 𝑘| = 0, the marginal confidence set for 𝑟𝑘 is {|𝛬𝐿𝑘| + 1}.
P-2: If |𝛬𝑂 𝑘| = 0 ∀ 𝑘, the joint confidence region only contains the estimated ranking.
P-3: If |𝑦̄𝑗 − 𝑦̄𝑘| ≥ 𝑀 𝑂 𝐸𝑗 +𝑀 𝑂 𝐸𝑘 for all 𝑗 ≠ 𝑘, the marginal confidence set for 𝑟𝑘 is {|𝛬𝐿𝑘| + 1}. Here, 𝑀 𝑂 𝐸𝑗 = 𝑧 𝛾

2
𝑆 𝐸𝑗 , and 𝑧 𝛾

2
is 1 − 𝛾 quantile of standard normal.
2
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Table 1
Computation Details for 90% Joint Confidence Region for True Ranking (𝑌 = Travel Time To Work Data in Minutes).
Data Source: 1-Year American Community Survey (2011), Ranking Table R0801, U.S. Census Bureau.

90% Joint Confidence 90% Joint Confidence
𝑟̂𝑘 State (𝑘) 𝑦̄𝑘 𝑆 𝐸𝑘 Intervals for 𝑌𝑘 ’s Region for True Ranking

9 𝑀 𝑎𝑟𝑦𝑙 𝑎𝑛𝑑 (𝑀 𝐷) 32.2 0.1 (31.9, 32.5) {9}
8 𝑁 𝑒𝑤 𝑌 𝑜𝑟𝑘 (𝑁 𝑌 ) 31.5 0.1 (31.2, 31.8) {8}
7 𝑁 𝑒𝑤 𝐽 𝑒𝑟𝑠𝑒𝑦 (𝑁 𝐽 ) 30.5 0.1 (30.2, 30.8) {6, 7}
6 𝐷 𝑖𝑠𝑡𝑟𝑖𝑐 𝑡 𝑜𝑓 𝐶 𝑜𝑙 𝑢𝑚𝑏𝑖𝑎 (𝐷 𝐶) 30.1 0.3 (29.3, 30.9) {6, 7}
5 𝐼 𝑙 𝑙 𝑖𝑛𝑜𝑖𝑠 (𝐼 𝐿) 28.2 0.1 (27.9, 28.5) {3, 4, 5}
4 𝑀 𝑎𝑠𝑠𝑎𝑐 ℎ𝑢𝑠𝑒𝑡𝑡𝑠 (𝑀 𝐴) 28.0 0.1 (27.7, 28.3) {3, 4, 5}
3 𝑉 𝑖𝑟𝑔 𝑖𝑛𝑖𝑎 (𝑉 𝐴) 27.7 0.1 (27.4, 28.0) {2, 3, 4, 5}
2 𝐺 𝑒𝑜𝑟𝑔 𝑖𝑎 (𝐺 𝐴) 27.1 0.2 (26.6, 27.6) {1, 2, 3}
2 𝐶 𝑎𝑙 𝑖𝑓 𝑜𝑟𝑛𝑖𝑎 (𝐶 𝐴) 27.1 0.1 (26.9, 27.3) {1, 2}

Table 1a
State 𝑘 Details for 𝑟𝑘 ∈

{

|𝛬𝐿𝑘| + 1, |𝛬𝐿𝑘| + 2, |𝛬𝐿𝑘| + 3,… , |𝛬𝐿𝑘| + |𝛬𝑂 𝑘| + 1}.

90% Joint Confidence
𝑟̂𝑘 𝑘 𝛬𝐿𝑘 𝛬𝑂 𝑘 Region for True Ranking

9 𝑀 𝐷 {𝑁 𝑌 , 𝑁 𝐽 , 𝐷 𝐶 , 𝐼 𝐿, 𝑀 𝐴, 𝑉 𝐴, 𝐺 𝐴, 𝐶 𝐴} ∅ {9}
8 𝑁 𝑌 {𝑁 𝐽 , 𝐷 𝐶 , 𝐼 𝐿, 𝑀 𝐴, 𝑉 𝐴, 𝐺 𝐴, 𝐶 𝐴} ∅ {8}
7 𝑁 𝐽 {𝐼 𝐿, 𝑀 𝐴, 𝑉 𝐴, 𝐺 𝐴, 𝐶 𝐴} {𝐷 𝐶} {6, 7}
6 𝐷 𝐶 {𝐼 𝐿, 𝑀 𝐴, 𝑉 𝐴, 𝐺 𝐴, 𝐶 𝐴} {𝑁 𝐽} {6, 7}
5 𝐼 𝐿 {𝐺 𝐴, 𝐶 𝐴} {𝑀 𝐴, 𝑉 𝐴} {3, 4, 5}
4 𝑀 𝐴 {𝐺 𝐴, 𝐶 𝐴} {𝐼 𝐿, 𝑉 𝐴} {3, 4, 5}
3 𝑉 𝐴 {𝐶 𝐴} {𝐼 𝐿, 𝑀 𝐴, 𝐺 𝐴} {2, 3, 4, 5}
2 𝐺 𝐴 ∅ {𝑉 𝐴, 𝐶 𝐴} {1, 2, 3}
2 𝐶 𝐴 ∅ {𝐺 𝐴} {1, 2}

2.4. KWW joint confidence region construction

KWW (2020) constructs a joint confidence region with an Independence (or Šidák (1967) Correction, assumes 𝑦̄1, 𝑦̄2, . . . , 𝑦̄𝐾 are
ndependently distributed where 𝑦̄𝑘 ∼ 𝑁(𝑌𝑘, 𝑆 𝐸𝑘) for 𝑘 with 𝑌𝑘 unknown and standard error 𝑆 𝐸𝑘 known by estimation.

With the framework of Section 4.1 in this paper, 𝑆 𝐸𝑘 is computed by

𝑆 𝐸𝑘 =

√

(

𝑁𝑘 − 𝑛𝑘
𝑁𝑘

) 𝑠2𝑘
𝑛𝑘

and 𝑠2𝑘 =
𝑛𝑘
∑

𝑖=1
(𝑦𝑘𝑖 − 𝑦̄𝑘)2∕(𝑛𝑘 − 1).

where 𝑦𝑘1, 𝑦𝑘2,… , 𝑦𝑘𝑛𝑘 are the observed values in a simple random sample from population 𝑘.
To construct a 100(1 − 𝛼)% joint confidence region, KWW considers joint confidence intervals whose joint coverage is shown to

equal 1 − 𝛼, where 𝛾 = 1 − (1 − 𝛼)1∕𝐾 :
(

𝑦̄𝑘 − 𝑧 𝛾
2
𝑆 𝐸𝑘, 𝑦̄𝑘 + 𝑧 𝛾

2
𝑆 𝐸𝑘

)

, f or 𝑘 = 1, 2,… , 𝐾 . (6)

Table 1 shows the Independence corrected 90% joint confidence intervals for 𝑌1, 𝑌2, . . . , 𝑌9 as given by (6) with overall 𝛼 = 0.10.
(In some cases, it is convenient to show that 𝑘 ranges over the names of the states rather than over the integers 1, . . . , 𝐾.) To construct
the joint confidence region, we ‘‘correct’’ the level 𝛼 for each state so that our ‘‘overall’’ level for the 𝐾 = 9 joint confidence intervals
is 𝛼 = 0.10. We proceed as follows using the 𝑌 = travel time to work data for 9 states in columns 1–4 of Table 1. For 𝛼 = 0.10 and

= 9, the 𝑧 value that bounds the inner (1 − 𝛼)1∕9 = 0.9884 of the N(0,1) is 𝑧 𝛾
2
= 2.523. Thus, for 𝑘 = 𝑉 𝐴

|𝛬𝐿,𝑉 𝐴| = |{𝐶 𝐴}| = 1 and |𝛬𝑂 ,𝑉 𝐴| = |{𝐼 𝐿, 𝑀 𝐴, 𝐺 𝐴}| = 3.

Using (4), the marginal confidence set for 𝑟𝑉 𝐴 is {1 + 1, 1 + 2, 1 + 3, 1 + 3 + 1} = {2, 3, 4, 5}. The other rows of Table 1 are obtained
imilarly. Table 1a gives the details for obtaining each confidence set in the last columns of Tables 1 and 1a.

Note 1: The values in Table 1 for 𝑦̄𝑘 and 𝑆 𝐸𝑘 are from the actual published official estimates (U.S. Census Bureau) and their
computations are more complex than we assume throughout the remainder of this paper. This complexity is due to several reasons:
complex sampling design, adjustments for nonresponse, and the methodology used for computing 𝑦̄𝑘 and 𝑆 𝐸𝑘. Hereafter in this
paper, we have defined 𝑦̄𝑘 and 𝑆 𝐸𝑘 as would be used under classical simple random sampling, independently sampling among the
𝐾 populations, for simplicity in presenting basic concepts.
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Fig. 1. KWW 90% Joint Confidence Region for Tables 1 and 1a & Two Other Possible True Rankings.

Fig. 1 provides a visual of the 90% joint confidence region for the true ranking of the 9 states using the travel time to work
data, and it follows from the last columns of Tables 1 and 1a. In the joint confidence region, highlighted states in bold show the
estimated ranking, and the non-bold states show uncertainty in the estimated ranking. This joint confidence region contains other
possible true rankings, and two examples are shown in the last two columns of Fig. 1.

Fig. 1 reveals two other aspects of a joint confidence region. First, each specific row of the joint confidence region shows (with at
east 90% confidence) which states could occupy the associated rank. For example, rank 𝑟 = 5 could be occupied with 90% confidence
y states 𝑉 𝐴, 𝑀 𝐴, or 𝐼 𝐿. Second, each specific column of the joint confidence region shows (with at least 90% confidence) which
anks the associated state could occupy, i.e., a marginal confidence set for 𝑟𝑘. For example, 𝐺 𝐴 could occupy ranks 1, 2, or 3; while
𝑁 𝑌 can, with at least 90% confidence, only occupy rank 8.

2.5. KWW summary

The uncertainty shown in a KWW joint confidence region reveals:
(i) uncertainty in the estimated ranking (𝑟̂1, ̂𝑟2,… , ̂𝑟𝐾 );
(ii) other possible true rankings (𝑟1, 𝑟2,… , 𝑟𝐾 ) beyond the estimated ranking;
(iii) for population (column) 𝑘, a marginal confidence set (set of ranks 𝑟) for 𝑟𝑘; and
(iv) for rank (row) 𝑟, a marginal confidence set (set of populations 𝑘) for 𝑟.

Note 2: Fig. 1 is a 9 × 9 grid with 81 positions: 9 positions with bold letters for the estimated ranking, 12 positions with non-
old letters for the uncertainty of the estimated ranking, and 60 (= 81-9-12) positions that are blank. The joint confidence region
onsists of the 21 (= 9+12) positions for the estimated ranking and its uncertainty. More (Less) non-bold letters indicate more (less)
ncertainty in the estimated ranking.

3. Optimizing (tightening) a KWW joint confidence region

Definition 1. The tightness of a specific joint confidence region for an estimated ranking of 𝐾 populations is defined as 𝑇 = 1 − 𝑂 𝑃
𝐾2

,
where 𝑂 𝑃 is the total number of occupied positions (bold and non-bold letters) in the specified joint confidence region out of the
total number of positions 𝐾2. Note that 𝑂 𝑃 = 𝐾 +

∑

𝑘 |𝛬𝑂 𝑘|.

Example. From Fig. 1, note that 𝑂 𝑃 = 2 + 3 + 4 + 3 + 3 + 2 + 2 + 1 + 1 = 21. Hence the tightness of the joint confidence region in
ig. 1 is 𝑇 = 1 − 21

92
= 60

81
. Note that 0 ≤ 𝑇 ≤ 𝐾 − 1

𝐾
. If 𝑇 = 0, there is no tightness. If 𝑇 = 𝐾 − 1

𝐾
, there is complete tightness; joint

onfidence region only contains the estimated ranking; and we have strong evidence it is the true ranking.
It is clear from (5) or Definition 1 that we can tighten a joint confidence region if |𝛬𝑂 𝑘| can be made small for as many values

f 𝑘 as possible; that is, if we can minimize the overlap of the joint confidence intervals in the family of joint confidence intervals.
iven the KWW approach and the desire that the confidence level be the same for each confidence interval in the family, one

straightforward way lies at the sample size value of 𝑛𝑘 for population 𝑘. Wright (2024) demonstrates empirically how changing
alues of 𝛼 (and 𝛾) can affect the tightness of a joint confidence region, and he gives another example illustrating how tightness
ncreases by increasing 𝑛𝑘 to 2𝑛𝑘 and 2𝑛𝑘 to 3𝑛𝑘, as shown in Figs. 2, 3, and 4. For Fig. 2, 𝑇 = 60∕81; for Fig. 3, 𝑇 = 62∕81; for

Fig. 4, 𝑇 = 68∕81.
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Fig. 2. KWW 90% Joint Confidence Region for the True Ranking of 9 States for 𝑛𝑘.

Fig. 3. KWW 90% Joint Confidence Region for the True Ranking of 9 States for 2𝑛𝑘.

Fig. 4. KWW 90% Joint Confidence Region for the True Ranking of 9 States for 3𝑛𝑘.

4. A plan for optimal tightening of KWW joint confidence region

4.1. Framework

Sampling independently among the 𝐾 populations, assume a simple random sample of 𝑛𝑘 units selected from population 𝑘 with
sample mean 𝑦̄𝑘 which is an estimator of population 𝑘 mean 𝑌𝑘. The overall sample size for the 𝐾 populations is 𝑛 =

∑𝐾
𝑘=1 𝑛𝑘. The

ampling variance of 𝑦̄𝑘 is Cochran (1977), Lohr (2022) 𝑉 𝑎𝑟(𝑦̄𝑘) =
(𝑁𝑘 − 𝑛𝑘

𝑁𝑘

)
𝑆2
𝑘

𝑛𝑘
.

Consider objective function (7) given 𝑁𝑘 and 𝑆2
𝑘

𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) =
𝐾
∑

𝑘=1
𝑁2

𝑘𝑉 𝑎𝑟(𝑦̄𝑘) =
𝐾
∑

𝑘=1
𝑁2

𝑘

(

𝑁𝑘 − 𝑛𝑘
𝑁𝑘

)𝑆2
𝑘

𝑛𝑘
(7)

and seek to find optimal choice of 𝑛𝑘 (for all 𝑘) that minimize 𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) subject to the overall sample size 𝑛 being fixed and
the following additional constraints. Note that the estimator of

√

𝑉 𝑎𝑟(𝑦̄𝑘), which is 𝑆 𝐸𝑘, is how we aim to control the length of
ach 100(1 − 𝛾)% joint confidence interval given in (6). Clearly for given 𝑁𝑘 and 𝑆2

𝑘 (or an estimate), we can carefully choose 𝑛𝑘
with the aim of making 𝑆 𝐸𝑘 small and hence decrease the number of overlaps, i.e. |𝛬𝑂 𝑘|, which is key to ‘‘tightening’’ the KWW
0% joint confidence region, as shown in Wright (2024).

Additional Constraints: Wright (2017, 2020) assume the desire that sample size 𝑛𝑘 be bounded below and above by specified
positive integers 𝑎𝑘 and 𝑏𝑘, respectively, that is,
1 ≤ 𝑎𝑘 ≤ 𝑛𝑘 ≤ 𝑏𝑘 ≤ 𝑁𝑘, f or each 𝑘. (8)
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s

As a result, 𝑛, the overall sample size, will be at least ∑𝐾
𝑘=1 𝑎𝑘 and no more than ∑𝐾

𝑘=1 𝑏𝑘.
The objective function in (7) is appealing in this framework where we aim to tighten a joint confidence region because

𝑆 𝐸2
𝑘 =

(

𝑁𝑘−𝑛𝑘
𝑁𝑘

)

𝑠2𝑘
𝑛𝑘

is an unbiased estimator of
(

𝑁𝑘−𝑛𝑘
𝑁𝑘

)

𝑆2
𝑘

𝑛𝑘
; 2𝑀 𝑂 𝐸𝑘 = 2(2.523(𝑆 𝐸𝑘)

)

is the width of the 𝑘th joint confidence

interval for 𝑌𝑘 when 𝐾 = 9; and it is clear that we can decrease 2𝑀 𝑂 𝐸𝑘 if we increase 𝑛𝑘, or, more precisely, allocate more of 𝑛 to
those populations 𝑘∗ where the values of 𝑆2

𝑘∗ (almost equivalently 𝑠2𝑘∗ ) are larger.

4.2. Optimization

Without loss of generality, assume
𝑁2

1𝑆
2
1

𝑎1(𝑎1+1)
≥ ⋯ ≥

𝑁2
𝐾𝑆2

𝐾
𝑎𝐾 (𝑎𝐾+1) .

Where ∑𝐾
𝑘=1 𝑁𝑘(𝑁𝑘 − 𝑎𝑘)𝑆2

𝑘
1
𝑎𝑘

is the value of 𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) when 𝑛𝑘 = 𝑎𝑘 for population 𝑘, a decomposition of the objective
function 𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) is Wright (2017, 2020)

𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) =
𝐾
∑

𝑘=1
𝑁𝑘(𝑁𝑘 − 𝑎𝑘)

𝑆2
𝑘

𝑎𝑘

+
(

−
𝑁2

1𝑆
2
1

𝑎1(𝑎1 + 1) −
𝑁2

1𝑆
2
1

(𝑎1 + 1)(𝑎1 + 2) −⋯ −
𝑁2

1𝑆
2
1

(𝑛1 − 1)(𝑛1)
)

⋮

+
(

−
𝑁2

𝑘𝑆
2
𝑘

𝑎𝑘(𝑎𝑘 + 1) −
𝑁2

𝑘𝑆
2
𝑘

(𝑎𝑘 + 1)(𝑎𝑘 + 2) −⋯ −
𝑁2

𝑘𝑆
2
𝑘

(𝑛𝑘 − 1)(𝑛𝑘)
)

⋮

+
(

−
𝑁2

𝐾𝑆
2
𝐾

𝑎𝐾 (𝑎𝐾 + 1) −
𝑁2

𝐾𝑆
2
𝐾

(𝑎𝐾 + 1)(𝑎𝐾 + 2) −⋯ −
𝑁2

𝐾𝑆
2
𝐾

(𝑛𝐾 − 1)(𝑛𝐾 )
)

.

(9)

With the decomposition (9), the constraint (8) is satisfied, and the objective function (7) is minimized whenever we stop
equential sample size assignment among 𝐾 populations if we use the following Algorithm (Wright, 2017, 2020), discussed in Remark

5.1 of Appendix: this Algorithm is more efficient than Neyman allocation (Neyman, 1934).

OPTIMAL SAMPLE SIZE ASSIGNMENT Algorithm
Step 1: First, note 𝑎𝑘 units are to be selected for the sample from population 𝑘, for all 𝑘.
Step 2: For additional sample units, compute the array of squared priority values:
Populat ion 1

𝑁2
1𝑆

2
1

𝑎1(𝑎1 + 1)
𝑁2

1𝑆
2
1

(𝑎1 + 1)(𝑎1 + 2) ⋯
𝑁2

1𝑆
2
1

(𝑏1 − 1)(𝑏1)
⋮

Populat ion 𝑘
𝑁2

𝑘𝑆
2
𝑘

𝑎𝑘(𝑎𝑘 + 1)
𝑁2

ℎ𝑆
2
ℎ

(𝑎𝑘 + 1)(𝑎𝑘 + 2) ⋯
𝑁2

𝑘𝑆
2
𝑘

(𝑏𝑘 − 1)(𝑏𝑘)
⋮

Populat ion 𝐾
𝑁2

𝐾𝑆
2
𝐾

𝑎𝐾 (𝑎𝐾 + 1)
𝑁2

𝐾𝑆
2
𝐾

(𝑎𝐾 + 1)(𝑎𝐾 + 2) ⋯
𝑁2

𝐾𝑆
2
𝐾

(𝑏𝐾 − 1)(𝑏𝐾 )

(10)

Step 3: From the 𝑘th row (population), at least 𝑎𝑘 units and no more than 𝑏𝑘 units are to be included in
the sample. So from Step 2, select the largest values sequentially until sample size assignment is stopped.
Each population is assigned an additional sample unit each time one of its squared priority values is
among the largest assigned values.

(

Whenever sample size assignment stops, 𝑓 (𝑛1, 𝑛2,… , 𝑛𝐾 ) will be
minimized for overall 𝑛 at that point (Wright, 2020).

)

Appendix A. Supplementary Materials

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2024.110288.

Data availability

No data was used for the research described in the article.
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