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Abstract

In this paper we develop finite sample inference based on multiply imputed synthetic data

generated under the multiple linear regression model. We consider two methods of generating the

synthetic data, namely, posterior predictive sampling and plug-in sampling. Simulation results

are presented to confirm that the proposed methodology performs as the theory predicts, and to

numerically compare the proposed methodology with the current state of the art procedures for

analyzing multiply imputed partially synthetic data.
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1 Introduction

Statistical disclosure control (SDC) methodology aims to suitably modify a dataset prior to its

release so that the modified dataset does not disclose confidential information about the individual
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units that contributed their information to the dataset (for example, survey respondents). At the

same time, it is also a goal that a dataset that has been modified using SDC methodology would

still be useful for drawing inference on the relevant population. The release of synthetic data is a

form of SDC methodology where (all or part of) the real data are not released, but are instead used

to create synthetic data which are released. Generally the synthetic data literature refers to two

types of synthetic data: fully and partially synthetic data. Fully synthetic data were proposed by

Rubin [19] and methodology for drawing valid inference from such data was developed by Raghu-

nathan, Reiter, and Rubin [12]. Partially synthetic data were proposed by Little [9] and methodology

for drawing valid inference from these data was developed by Reiter [13]. Raghunathan, Reiter, and

Rubin [12] and Reiter [13] developed methodologies for scalar valued estimands, while Reiter [14] ex-

tended these procedures for vector values estimands. Drechsler [3] provides a detailed account of

both partially and fully synthetic data methodology. Both the methodology of Raghunathan, Re-

iter, and Rubin [12] and that of Reiter [13] are general in the sense that they can be applied under

a variety of models and for a variety of parameters, and these methodologies provide inference

that is approximately valid if the sample size is sufficiently large. Fully and partially synthetic

data approaches both utilize concepts of multiple imputation for missing data as developed by

Rubin [18], and therefore, both approaches call for releasing a total of m > 1 multiply imputed

synthetic datasets. Examples of major data sources where partially synthetic data products have

been produced include the Survey of Income and Program Participation (Abowd, Stinson, and

Benedetto [1], Benedetto, Stinson, and Abowd [2]), the American Community Survey Group Quar-

ters data (Hawala [4], Rodŕıguez [17]), OnTheMap data displaying where workers live and where

they work (Machanavajjhala et al. [10]), and the Longitudinal Business Database (Kinney, Reiter,

and Miranda [5], Kinney et al. [6]).

In this paper we focus on a specific synthetic data problem, namely, synthetic data under the

multiple linear regression model. This synthetic data problem fits into the framework of partially

synthetic data, and hence the methodology of Reiter [13] can be used to obtain approximately valid

inference if the sample size is sufficiently large and the number of multiply imputed synthetic

datasets available is m > 1. However, given the specific structure in this problem, we shall instead
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exploit the model structure to derive finite sample inference for the unknown regression coefficients.

While the methodology we derive is specific to the problem at hand, it yields exact inference for both

large and small samples using the m ≥ 1 multiply imputed synthetic datasets that are available.

(Of course, if m = 1 then we have only a singly imputed synthetic dataset, but the proposed method

will still provide valid inference.)

Throughout, let y = (y1, . . . , yn)′ be the n×1 vector of sensitive response variables, and suppose

y ∼ Nn(X ′β, σ2In), whereX = [x1, . . . ,xn] is a p×n dimensional matrix of fixed and non-sensitive

predictor variables with rank(X) = p < n, and the unknown parameters are β ∈ Rp and σ2 > 0.

Note that the original data are (y,X), and based on the original data, b = (XX ′)−1Xy is

the maximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator

(UMVUE) of β, distributed as Np(β, σ
2(XX ′)−1), independent of σ̂2 = RSS/(n− p) which is the

UMVUE of σ2 where RSS = (y −X ′b)′(y −X ′b) ∼ σ2χ2
n−p.

Since y is sensitive and hence cannot be released, instead it is replaced with m ≥ 1 multiply

imputed synthetic copies which are released. We consider two ways of generating the m ≥ 1

synthetic copies of y, namely, posterior predictive sampling and plug-in sampling.

Posterior Predictive Sampling. Assume a prior π(β, σ2) for (β, σ2), then the posterior distri-

bution of (β, σ2) given y is derived and used to draw m independent replications {(β∗j , σ∗2j ), j =

1, . . . ,m} (known as posterior draws). Next, for each such posterior draw of (β, σ2), a correspond-

ing replicate of y is generated. Thus the synthetic data {zj = (zj1, . . . , zjn)′, j = 1, . . . ,m} are

generated by drawing zj from the Nn(X ′β∗j , σ
∗2
j In) distribution, independently, for j = 1, . . . ,m.

The data (z1,X), . . . , (zm,X) are then released to the public. For the scenario described here, the

usual practice for drawing inference on the unknown parameters from the synthetic data, assuming

m > 1, is based on the methods of Reiter [13] for multiply imputed partially synthetic data. In the

specific case of m = 1, likelihood based methods for drawing inference in this scenario were derived

by Klein and Sinha [7].

Plug-in Sampling. An alternative way to generate synthetic data is to take the observed values

of b and RSS/(n−p), the point estimators of the unknown parameters β and σ2, plug them into the

distribution of y, and use the resulting distribution to generate synthetic data. Thus the synthetic
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data {zj = (zj1, . . . , zjn)′, j = 1, . . . ,m} are generated by drawing each zj independently from

the Nn

(
X ′b, RSS

n−pIn

)
distribution. The data (z1,X), . . . , (zm,X) are then released to the public.

As discussed by Reiter and Kinney [15], in this scenario the procedures of Reiter [13] for drawing

inference based on m > 1 multiply imputed partially synthetic datasets appear to remain valid.

In the specific case of m = 1, likelihood based methods for drawing inference in this scenario were

derived by Klein and Sinha [8].

As mentioned above, in the case of singly imputed synthetic data (m = 1), finite sample

procedures for drawing inference have appeared in Klein and Sinha [7,8] for posterior predictive

sampling and plug-in sampling. The results derived in the present paper extend those finite sample

procedures form > 1 multiply imputed synthetic datasets. The organization of the rest of this paper

is as follows. In Section 2.1, we derive finite sample inference based on synthetic data generated

using posterior predictive sampling. Here we use a general form of the prior π(β, σ2), involving

a hyperparameter α. In Section 2.2, we carry out finite sample inference based on synthetic data

generated using the plug-in sampling method. In Section 3 we review the inference procedures

of Reiter [13,14] for multiply imputed partially synthetic data. In Section 4 we present results of

some simulation studies, and Section 5 presents some concluding remarks. Appendix A contains

proofs of theorems and results that appear in this paper. Appendix B contains some details of the

simulation studies presented in Section 4.

2 Methodology

In this section we derive the finite sample inference for multiply imputed synthetic data, first under

posterior predictive sampling in Section 2.1, and then for plug-in sampling in Section 2.2.

2.1 Posterior Predictive Sampling

To generate synthetic data z1 = (z11, . . . , z1n)′, . . . ,zm = (zm1, . . . , zmn)′ under posterior predictive

sampling we start from a joint prior distribution π(β, σ2) ∝ 1
σα for β ∈ Rp and σ2 > 0. The
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posterior distribution of (β, σ2), given y, has the representation:

β
∣∣σ2,y ∼ Np

[
b, σ2(XX ′)−1

]
,

RSS

σ2

∣∣∣y ∼ χ2
n+α−p−2. (1)

We assume throughout that n+ α > p+ 4. The synthetic data are generated by repeating Steps 1

and 2 below independently for each j = 1, . . . ,m.

Step 1. Draw (β∗j , σ
2∗
j ) from the posterior distribution (1).

Step 2. Draw zj = (zj1, . . . , zjn)′ ∼ Nn(X ′β∗j , σ
2∗
j In).

The released synthetic data are z1, . . . ,zm along with the matrix of predictor variables X. The

inferential procedures presented below are derived from the frequentist perspective where β and

σ2 are fixed but unknown quantities. In view of the sampling mechanism (Steps 1 and 2 above),

it follows that from the frequentist perspective, the joint distribution of z1, . . . ,zm, β∗1, . . . ,β
∗
m,

σ2∗
1 , . . . , σ

2∗
m , and y has the following hierarchical structure:

zj
∣∣β∗1, . . . ,β∗m, σ2∗

1 , . . . , σ
2∗
m ,y ∼ Nn(X ′β∗j , σ

2∗
j In), independently for j = 1, . . . ,m,

β∗j
∣∣σ2∗

1 , . . . , σ
2∗
m ,y ∼ Np(b, σ

2∗
j (XX ′)−1), independently for j = 1, . . . ,m,

σ2∗
1 , . . . , σ

2∗
m

∣∣y iid∼ RSS

χ2
n+α−p−2

, y ∼ Nn(X ′β, σ2In).

(2)

Therefore the joint probability density function (pdf) of z1, . . . ,zm, β∗1, . . . ,β
∗
m, σ2∗

1 , . . . , σ
2∗
m , y is

fβ,σ2(z1, . . . ,zm,β
∗
1, . . . ,β

∗
m, σ

2∗
1 , . . . , σ

2∗
m ,y)

=

m∏
j=1

(2πσ2∗
j )−n/2 exp

[
− 1

2σ2∗
j

(zj −X ′β∗j )′(zj −X ′β∗j )

]

×
m∏
j=1

(2πσ2∗
j )−p/2|XX ′|1/2 exp

[
− 1

2σ2∗
j

(β∗j − b)′(XX ′)(β∗j − b)

]

×
m∏
j=1

(RSS/2)(n+α−p−2)/2

Γ
(
n+α−p−2

2

) (σ2∗
j )−(n+α−p−2)/2−1 exp

[
−RSS

2σ2∗
j

]

× (2πσ2)−n/2 exp

[
− 1

2σ2
(y −X ′β)′(y −X ′β)

]
,
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and hence the marginal pdf of z1, . . . ,zm is

fβ,σ2(z1, . . . ,zm) =

∫
· · ·
∫
fβ,σ2(z1, . . . ,zm,β

∗
1, . . . ,β

∗
m, σ

2∗
1 , . . . , σ

2∗
m ,y)dβ∗1 · · · dβ∗mdσ2∗

1 · · · dσ2∗
m dy.

The inferential results presented below are based on the marginal distribution of z1, . . . ,zm, and

we will utilize the hierarchical structure (2) to derive the results.

For exact inference based on the released synthetic data, we define b∗j = (XX ′)−1Xzj and

RSS∗j = (zj −X ′b∗j )′(zj−X ′b∗j ), for j = 1, . . . ,m. It can be shown that (b∗1,RSS∗1), . . . , (b∗m,RSS∗m)

are jointly sufficient for β and σ2. Define b∗ = 1
m

∑m
j=1 b

∗
j and R̃SS∗ =

∑m
j=1 RSS∗j . Also let β∗ =

1
m

∑m
j=1 β

∗
j . Then E(b∗) = E[E(b∗|β∗1, . . . ,β∗m, σ2∗

1 , . . . , σ
2∗
m )] = E(β∗) = E[E(β∗|y)] = E(b) = β.

Hence b∗ is an unbiased estimator of β. The variance of b∗ is

Var(b∗) =

[
1 +

2(n− p)
m(n+ α− p− 4)

]
σ2
(
XX ′

)−1
, (3)

where proof of (3) appears in Appendix A. Also,

E(R̃SS∗) = σ2 m(n− p)2

n+ α− p− 4
, (4)

implying that (R̃SS∗)(n+α−p−4)
m(n−p)2 is an unbiased estimator of σ2. Proof of (4) appears in Appendix A.

To construct an exact test and confidence set for β, define

T 2 = (b∗ − β)(XX ′)(b∗ − β)/R̃SS∗.

Then we have the following distributional result about T 2, whose proof is in Appendix A.

Theorem 1 The distribution of T 2 can be represented as T 2 ∼ T1 × T2 where T1 and T2 are

independently distributed. Furthermore,

T1 ∼ χ2
p, and T2 ∼

1 + 2m−2A
∑m

j=1(1/Bj)

A
∑m

j=1(Cj/Bj)
,

where A,B1, . . . , Bm, C1, . . . , Cm are independently distributed with A ∼ χ2
n−p, Bj ∼ χ2

n+α−p−2,
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and Cj ∼ χ2
n−p for j = 1, . . . ,m.

A (1−γ) confidence region for β can be obtained as follows. For given values of γ, p,m, n, α, let

dγ,p,m,n,α satisfy 1− γ = P (T 2 ≤ dγ,p,m,n,α). Notice that it is straightforward to simulate from the

distribution of T 2 using the representation of the distribution given in Theorem 1, and therefore,

one can compute dγ,p,m,n,α using Monte Carlo simulation. Then a (1 − γ) confidence region for β

based on T 2 is {
β :

(b∗ − β)′(XX ′)(b∗ − β)

R̃SS∗
≤ dγ,p,m,n,α

}
, (5)

with its volume given by πp/2

Γ( p2+1)
(dγ,p,m,n,α)p/2 |XX ′|−1/2 (R̃SS∗)p/2. To compute the expected

volume, it can be shown that E[(R̃SS∗)p/2] = σpE[(χ2
n−p)

p
2 ]E[

∑m
j=1

χ2
n−p;j

χ2
n+α−p−2;j

]p/2, where all the χ2

variables are independent.

Let A be a k × p dimensional matrix with rank(A) = k < p. Inference about η = Aβ easily

follows upon noting that, based on the existing arguments presented in the proof of Theorem 1,

b∗|∆ ∼ Np

(
β, (σ2 + 2∆)

(
XX ′

)−1
)

=⇒ Ab∗|∆ ∼ Nk

(
η, (σ2 + 2∆)A

(
XX ′

)−1
A′
)

=⇒ (Ab∗ − η)′[A(XX ′)−1A′]−1(Ab∗ − η)

σ2 + 2∆
∼ χ2

k,

where ∆ =
∑m

j=1

σ2∗
j

m2 . Defining T 2
η = (Ab∗ − η)′[A(XX ′)−1A′]−1(Ab∗ − η)/R̃SS∗, it then follows

that T 2
η is distributed as the product of T1,k and T2, where T1,k ∼ χ2

k, the distribution of T2 is

defined in Theorem 1, and T1,k and T2 are independent. By simulating the distribution of T 2
η we

can compute the value δk,γ,p,m,n,α satisfying 1 − γ = P (T 2
η ≤ δk,γ,p,m,n,α), and obtain a (1 − γ)

confidence region for η as

{
η :

(Ab∗ − η)′[A(XX ′)−1A′]−1(Ab∗ − η)

R̃SS∗
≤ δk,γ,p,m,n,α

}
. (6)

In particular, taking A to be a 1× p dimensional vector having a 1 in column i, and 0 in all other

columns, we see that inference about a single regression coefficient βi can be based on t2i =
(b∗i−βi)

2

DiiR̃SS∗

where Dii is the ith diagonal element of (XX ′)−1. From the preceding discussion it is clear that the

distribution of t2i is that of the product of two independent random variables, T1,1 and T2, where
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T1,1 ∼ χ2
1 and the distribution of T2 is defined in Theorem 1. The resulting (1 − γ) confidence

interval for βi is

[
b∗i −

(
Dii × R̃SS∗ × δ1,γ,p,m,n,α

)1/2
, b∗i +

(
Dii × R̃SS∗ × δ1,γ,p,m,n,α

)1/2
]
. (7)

2.2 Plug-in Sampling

To generate synthetic data z1 = (z11, . . . , z1n)′, . . . ,zm = (zm1, . . . , zmn)′ under plug-in sampling,

we start from the point estimates b and RSS/(n − p), of β and σ2, respectively. The synthetic

data are obtained by drawing z1, . . . ,zm as iid from Nn

(
X ′b, RSS

n−pIn

)
. Equivalently, the synthetic

data are obtained by drawing zji ∼ N(x′ib,
RSS
n−p), independently for i = 1, . . . , n and j = 1, . . . ,m.

We will now proceed to derive inferential procedures from the frequentist perspective where β and

σ2 are fixed but unknown quantities. In view of the sampling mechanism, it follows that the joint

distribution of z1, . . . ,zm and y has the following hierarchical structure:

z1, . . . ,zm
∣∣y iid∼ Nn(X ′b,

RSS

n− p
In)

[
equivalently, zji

independent∼ N

(
x′ib,

RSS

n− p

)]
,

y ∼ Nn(X ′β, σ2In).

(8)

Therefore the joint probability density function (pdf) of z1, . . . ,zm, and y is

fβ,σ2(z1, . . . ,zm,y) =

m∏
j=1

(
2π

RSS

n− p

)−n/2
exp

[
− 1

2 RSS
n−p

(zj −X ′b)′(zj −X ′b)

]

× (2πσ2)−n/2 exp

[
− 1

2σ2
(y −X ′β)′(y −X ′β)

]
,

and hence the marginal pdf of z1, . . . ,zm is fβ,σ2(z1, . . . ,zm) =
∫
fβ,σ2(z1, . . . ,zm,y)dy. The

inferential results presented below are based on the marginal distribution of z1, . . . ,zm, and we will

utilize the hierarchical structure (8) to derive the results.

We now provide an exact inference procedure for β based on z1, . . . ,zm. Recall that each zj is

the n× 1 vector (zj1, . . . , zjn)′ and, conditionally given b and RSS, zji ∼ N(x′ib,
RSS
n−p). Therefore,

conditional on b and RSS, (z1i, . . . , zmi) is a random sample from N(x′ib,
RSS
n−p) for arbitrary but

8



fixed i = 1, . . . , n. Let z̄i = 1
m

∑m
j=1 zji, S

2
zi =

∑m
j=1 (zji − z̄i)2, and S2

z =
∑n

i=1 S
2
zi. If m > 1, then

it follows that, conditional on b and RSS,

S2
z ∼

[
RSS

(n− p)

]
χ2
n(m−1), z̄i ∼ N

[
x′ib,

RSS

m(n− p)

]
, i = 1, . . . , n,

with these terms being (conditionally) independent. If m = 1, then the situation reduces to z̄i = z1i

and S2
zi = 0 for i = 1, . . . , n, and hence S2

z = 0.

Let z̄ = (z̄1, . . . , z̄n)′ and b∗j = (XX ′)−1Xzj . We define b∗ = (XX ′)−1Xz̄ = 1
m

∑m
j=1 b

∗
j and

S2
comb = S2

z +m(z̄ −X ′b∗)′(z̄ −X ′b∗), and note that, conditionally given b and RSS,

b∗ ∼ Np

[
b,

RSS

m(n− p)
(XX ′)−1

]
, S2

comb ∼
[

RSS

(n− p)

]
χ2
n(m−1)+n−p.

Then E(b∗) = E[E(b∗|y)] = E(b) = β. Thus b∗ is an unbiased estimator of β whose variance is

given by

Var(b∗) = E[Var(b∗|y)] + Var[E(b∗|y)] = E

[
RSS

m(n− p)
(XX ′)−1

]
+ Var(b)

=
σ2

m
(XX ′)−1 + σ2(XX ′)−1 = σ2

(
1 +

1

m

)
(XX ′)−1.

Also note that E(S2
comb) = E[E(S2

comb|y)] = E[ RSS
n−p(nm− p)] = σ2(nm− p); hence S2

comb/(mn− p)

is an unbiased estimator of σ2. To construct an exact test and confidence set for β, define

T 2
comb = (b∗ − β)′(XX ′)(b∗ − β)/S2

comb.

We have the following distributional result about T 2
comb, whose proof is in Appendix A.

Theorem 2 The distribution of T 2
comb can be represented as follows:

T 2
comb|ψ ∼

p

m(nm− p)

[
1 +

m(n− p)
ψ

]
Fp,nm−p and ψ ∼ χ2

n−p.

To obtain a (1− γ) confidence set for β, for given values of γ, p,m, n, let `γ,p,m,n be such that
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1 − γ = P (T 2
comb ≤ `γ,p,m,n). The value `γ,p,m,n can be computed using Monte Carlo simulation,

by using Theorem 2 to simulate from the distribution of T 2
comb. A (1 − γ) level confidence set for

β based on T 2 is {
β :

(b∗ − β)′(XX ′)(b∗ − β)

S2
comb

≤ `γ,p,m,n
}
, (9)

and its volume is πp/2

Γ( p2+1)
(`γ,p,m,n)p/2 |XX ′|−1/2 (S2

comb)p/2. The expected volume can be computed

using E[(S2
comb)p/2] = E[(RSS)p/2]E[(χ2

mn−p)
p/2]/(n − p)p/2 = σpE[(χ2

n−p)
p/2]E[(χ2

mn−p)
p/2]/(n −

p)p/2.

Let A be a k × p dimensional matrix with rank(A) = k < p. Inference about η = Aβ easily

follows upon noting that, conditional on b and RSS,

Ab∗ ∼ Nk

(
Ab,

RSS

m(n− p)
A(XX ′)−1A′

)
, S2

comb ∼
RSS

n− p
χ2
mn−p,

along with their (conditional) independence. Thus, by arguments entirely analogous to those pre-

sented in the proof of Theorem 2, we get

T 2
comb;η|ψ ∼

k

m(mn− p)

[
1 +

m(n− p)
ψ

]
Fk,mn−p,

where T 2
comb;η = (Ab∗ − η)′[A(XX ′)−1A′]−1(Ab∗−η)/S2

comb, and the distribution of ψ is the same

is an Theorem 2. Thus, by simulating the distribution of T 2
comb;η, we can compute the constant

λk,γ,p,m,n satisfying 1− γ = P (T 2
comb;η ≤ λk,γ,p,m,n), and obtain a (1− γ) confidence region for η as

{
η :

(Ab∗ − η)′[A(XX ′)−1A′]−1(Ab∗ − η)

S2
comb

≤ λk,γ,p,m,n
}
. (10)

In particular, taking A to be a 1× p dimensional vector having a 1 in column i, and 0 in all other

columns, we see that inference about a single regression coefficient βi can be based on t2i =
(b∗i−βi)

2

DiiS2
comb

,

where Dii is the ith diagonal element of (XX ′)−1. Obviously, the distribution of t2i is the same as

that of T 2
comb;η with k = 1, and the resulting (1− γ) confidence interval for βi is

[
b∗i −

(
Dii × S2

comb × λ1,γ,p,m,n

)1/2
, b∗i +

(
Dii × S2

comb × λ1,γ,p,m,n

)1/2]
. (11)
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3 Review of Standard Methodology for Multiply Imputed Par-

tially Synthetic Data

In this section we review the state of the art methodology for drawing approximately valid inference

based on multiply imputed partially synthetic data. This methodology was developed by Reiter [13]

for a scalar-valued parameter of interest, and extended by Reiter [14] to a vector-valued parameter

of interest. Reiter [13,14] assumes that the partially synthetic data are generated using posterior

predictive sampling, however, Reiter and Kinney [15] indicate that the methodology still yields

valid inference when partially synthetic data are generated using plug-in sampling. We shall now

summarize the application of these procedures under our linear regression scenario, however, we

should re-iterate that these procedures are quite general; these yield approximately valid inference

under a variety of models and for a variety of estimands. This methodology requires the availability

of multiply imputed synthetic datasets, it cannot be applied if only a singly imputed synthetic

dataset is released.

In our notation, the synthetic data are (z1,X), . . . , (zm,X) where z1, . . . ,zm are the synthetic

copies of y, generated either using posterior predictive sampling as in Section 2.1, or plug-in sam-

pling as in Section 2.2. Let Q = Q(β, σ2) be the parameter of interest, which is a function of β

and σ2.

Inference for a Scalar-Valued Parameter. Suppose the parameter of interest Q = Q(β, σ2) is

a scalar. Let q = q(y,X) be a point estimator of Q based on the original data, and let u = u(y,X)

be an estimator of the variance of q, also based on the original data. Let qj = q(zj ,X) and

uj = u(zj ,X) be the values of q and u, respectively, when computed on the jth synthetic dataset.

Define

q̄m =
1

m

m∑
j=1

qj , Bm =
1

m− 1

m∑
j=1

(qj − q̄m)2, ūm =
1

m

m∑
j=1

uj .

Then q̄m is an estimate of Q, the variance of q̄m is approximated by Tm = Bm/m + ūm, and the

distribution of (q̄m − Q)/
√
Tm is approximated by a t distribution with ν = (m − 1)

[
1 + ūm

Bm/m

]2

degrees of freedom. The quantity (q̄m−Q)/
√
Tm is used, along with its approximate t distribution,

to obtain a confidence interval and significance test for Q.

11



Inference for a Vector-Valued Parameter. Suppose the parameter of interest Q = Q(β, σ2)

is a k × 1 dimensional vector. Let q = q(y,X) be a point estimator of Q based on the original

data, and let u = u(y,X) be an estimator of the covariance matrix of q, also based on the original

data. Let qj = q(zj ,X) and uj = u(zj ,X) be the values of q and u, respectively, when computed

on the jth synthetic dataset. Define

q̄m =
1

m

m∑
j=1

qj , Bm =
1

m− 1

m∑
j=1

(qj − q̄m)(qj − q̄m)′, ūm =
1

m

m∑
j=1

uj .

Then q̄m is an estimate ofQ, and the covariance matrix of q̄m is approximated by Tm = Bm/m+ūm.

Define Sm = (q̄m−Q)′(ūm)−1(q̄m−Q)/[k(1+r)] where r = tr(Bmū
−1
m )/(mk). The distribution of

Sm is approximated by an Fk,w(r) distribution where w(r) = 4+(t−4)
[
1 +

1− 2
t

r

]2

and t = k(m−1).

Thus the quantity Sm is used, along with its approximate F distribution, to obtain a confidence

region and significance test for Q. Alternative methods of inference based on the log-likelihood

ratio test statistic from the m synthetic datasets are also developed by Reiter [14].

4 Simulation Studies

In this section we present simulation results in order to demonstrate that the methodology developed

in Section 2 performs as our theory predicts, and to compare the proposed methodology with the

state of the art methodology which we reviewed in Section 3. All simulations were performed using

the statistical computing software R (R Core Team [11]). To perform the simulations, we define

X, β and σ2 as explained in Appendix B. Note that this simulation model was also used by

Klein and Sinha [8] to perform simulation studies to evaluate finite sample methodology for singly

imputed synthetic data generated under plug-in sampling. To conduct the simulations for a given

sample size n, we generate X one time as described in Appendix B, and then hold it fixed from one

iteration to the next. Using Monte Carlo simulation with 106 iterations, we compute an estimate of

the coverage probability and expected volume or expected length (as appropriate) of the following

confidence regions for β and the following confidence intervals for β2.

1. The confidence region (5) for β under posterior predictive sampling.

12



2. The confidence region (9) for β under plug-in sampling.

3. The confidence region for β obtained using the methodology of Reiter [14] as reviewed in

Section 3, where we take Q = β, q(y,X) = (XX ′)−1Xy = b, and u(y,X) = RSS
n−p(XX ′)−1.

4. The confidence interval (7) for β2 under posterior predictive sampling.

5. The confidence interval (11) for β2 under plug-in sampling.

6. The confidence interval for β2 obtained using the methodology of Reiter [13] as reviewed in

Section 3, where we take Q = β2, q(y,X) = b2, u(y,X) = RSS
n−pD22.

For the sake of comparison, we also compute a Monte Carlo estimate of the coverage probability

and expected volume or expected length of the standard confidence region for β and standard

confidence interval for β2, based on the original data, which are obtained from the standard results

(Rencher and Schaalje [16]):

(b− β)′(XX ′)(b− β)(
RSS
n−p

)
p

∼ Fp,n−p and
bi − βi√
Dii

(
RSS
n−p

) ∼ tn−p.

The simulation results related to β are displayed in Tables 1 and 2, where Table 1 gives the

results under posterior predictive sampling, while Table 2 gives the results under plug-in sampling.

Simulation results related to β2 are displayed in Tables 3 and 4, where Table 3 give the results under

posterior predictive sampling, while Table 4 gives the results under plug-in sampling. In Tables

1 - 4, results for the original data confidence regions/intervals are displayed under the heading

Original Data, results for the confidence regions/intervals derived in Section 2 are displayed under

the heading Finite Sample Analysis, and results for the confidence regions/intervals reviewed in

Section 3 are displayed under the heading Combination Formula Based Analysis. Also in Tables

1 - 4 the Monte Carlo estimates of coverage probability appear under the heading cvg (coverage).

We have plotted the Monte Carlo estimates of coverage probability under the combination formula

based analysis in Figure 1, where the estimates from Tables 1 - 4 are plotted in Figure 1(a) - 1(d),

respectively. In Figure 1 we have not plotted the Monte Carlo estimates of coverage probability

13



under our proposed finite sample analysis because these values are approximately on the horizontal

line at 0.95 in all simulation scenarios considered (as predicted from the theory in Section 2). In

Tables 1 and 2, the columns labeled rel vol (relative volume) give the Monte Carlo estimate of

the expected volume of the confidence region divided by the Monte Carlo estimate of the expected

volume of the corresponding original data confidence region. Similarly, in Tables 3 and 4, the

columns labeled rel len (relative length) give the Monte Carlo estimate of the expected length of the

confidence interval divided by the Monte Carlo estimate of the expected length of the corresponding

original data confidence interval. These tables show results for n = 50, 100, 200, 500, 1000, 2000, 3000

and m = 2, 5, 10; for the finite sample analysis we also show results for m = 1, but the combination

formula based analysis cannot be applied in the m = 1 case. In all cases the nominal level of the

confidence region/interval is set at 0.95.

The following is a summary of the results of Tables 1 - 4 and Figure 1.

1. We observe that for all values of n and all values of m that we consider, the finite sample

confidence regions/intervals of Section 2 have coverage equal to the nominal value of 0.95. This

finding is true for both the methodology of Section 2.1 under posterior predictive sampling,

and the methodology of Section 2.2 under plug-in sampling. Thus the proposed methodology

performs as the theory predicts.

2. As expected, the combination formula based analysis performs well as long as the sample

size is sufficiently large and the number of imputations is not too small. We observe that if

m = 2, then the combination formula based analysis yields confidence regions/intervals whose

coverage is not quite equal to the nominal value of 0.95, and this statement is true for both

large and small values of n. Similarly, we observe that if the sample size n is too small, then

the combination formula based analysis yields confidence regions/intervals whose coverage is

not quite equal to the nominal value of 0.95, and this is true for all values of m considered

in the simulation study. However, for the cases m = 5 and m = 10, the combination formula

based analysis yields confidence regions/intervals whose coverage appears to converge to the

nominal value of 0.95 as the sample size increases.
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(a) Inference for β, posterior predictive sampling.
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(b) Inference for β, plug-in sampling.
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(c) Inference for β2, posterior predictive sampling.
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(d) Inference for β2, plug-in sampling.

Figure 1: Monte Carlo estimates of confidence region/interval coverage.
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3. In Tables 1 and 2 and Figures 1(a) and 1(b), we observe that for the combination formula

based analysis, for each n the coverage decreases when m increases from 2 to 5. In particular,

we note that for m = 2, the coverage exceeds the nominal value of 0.95 for most values of

n. Thus the observed decrease in coverage when m increases from 2 to 5 may occur because

m = 2 may be too small to invoke the approximations used to justify the combination formula

based analysis. Also, in Table 2 we observe that for the combination formula based analysis,

when m = 10 and n = 50, the relative volume is less than 1. This feature may occur because

the sample size n = 50 in this scenario is again too small to invoke the approximations

used to justify the combination formula based analysis, as evident from the fact that the

corresponding coverage is less than the nominal value of 0.95. For larger values of n, where

the coverage is approximately 0.95, the relative volume exceeds 1.

4. In cases where the sample size and number of imputations is sufficiently large so that the

combination formula based analysis yields confidence regions/intervals having coverage ap-

proximately equal to the nominal value of 0.95, we observe in the tables that the finite sample

analysis can offer a slight improvement in terms of reduced expected volume or expected

length of the confidence region/interval. However, as n and m increase, this improvement

diminishes, and when n is sufficiently large, and m is not too small, the two methods appear

to have similar performance.

5 Concluding Remarks

In this paper we have developed model based inference for multiply imputed synthetic data under

the multiple linear regression model when synthetic data are generated via posterior predictive

sampling, and when synthetic data are generated via plug-in sampling. The proposed methodology

is derived from finite sample theory, and hence provides valid inference for both large and small

values of the sample size n, and for any value of m ≥ 1, where m is the number of released synthetic

datasets.
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Appendices

A Proofs

Proof of (3). We work under the setup of Section 2.1. Let D∗ = (β∗1, . . . ,β
∗
m, σ

2∗
1 , . . . , σ

2∗
m ).

We have Var(b∗) = E[Var(b∗|D∗)] + Var[E(b∗|D∗)] = E
[
(XX ′)−1m−2

∑m
j=1 σ

2∗
j

]
+ Var(β∗) =

σ2(XX ′)−1 n−p
m(n+α−p−4) + Var(β∗) where we have used the fact that E(σ2∗

j ) = E[E(σ2∗
j |y)] =

E[ RSS
n+α−p−4 ] = σ2(n−p)

n+α−p−4 . Noting that Var(β∗j |y) = E[Var(β∗j |σ2∗
j ,y)|y] + Var[E(β∗j |σ2∗

j ,y)|y] =

E[σ2∗
j (XX ′)−1|y] + Var[b|y] = (XX ′)−1 RSS

n+α−p−4 , and E(β∗j |y) = E[E(β∗j |σ2∗
j ,y)|y] = E[b|y] =

b, we obtain, Var(β∗) = E[Var(β∗|y)] + Var[E(β∗|y)] = E[(XX ′)−1 RSS
m(n+α−p−4) ] + Var(b) =

σ2(XX ′)−1 n−p
m(n+α−p−4) + σ2(XX ′)−1. Therefore, Var(b∗) = σ2(XX ′)−1 n−p

m(n+α−p−4) + Var(β∗) =

2σ2(XX ′)−1 n−p
m(n+α−p−4) + σ2(XX ′)−1 = σ2(XX ′)−1[1 + 2(n−p)

m(n+α−p−4) ]. �

Proof of (4). Working under the setup of Section 2.1, we have E(RSS∗j ) = E[E(RSS∗j |β∗j , σ2∗
j )] =

E[(n − p)σ2∗
j ] = (n − p)E[E(σ2∗

j |y)] = (n − p)E[ RSS
n+α−p−4 ] = σ2 (n−p)2

n+α−p−4 . Hence E(R̃SS∗) =∑m
j=1E(RSS∗j ) = σ2 m(n−p)2

n+α−p−4 . �

Proof of Theorem 1. We define ∆ =
∑m

j=1

σ2∗
j

m2 and express T 2 as T1 × T2 where T1 =

(b∗−β)(XX′)(b∗−β)
σ2+2∆

and T2 = σ2+2∆

R̃SS∗
. To derive the distribution of T 2, we show that T1 and T2

are independent, and establish their marginal distributions as stated in the theorem. Towards this

end, we begin with some facts regarding the distributions of the random variables involved.

1. We have b∗j |(β∗1, σ2∗
1 , . . . ,β

∗
m, σ

2∗
m ) ∼ Np[β

∗
j , (XX

′)−1σ2∗
j ], independently for j = 1, . . . ,m, and

therefore, b∗|(β∗1, σ2∗
1 , . . . ,β

∗
m, σ

2∗
m ) ∼ Np

[
β∗, (XX ′)−1∆

]
.
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2. We have β∗j |(σ2∗
j , b,RSS) ∼ Np[b, σ

2∗
j (XX ′)−1], independently for j = 1, . . . ,m, and therefore,

β∗|(σ2∗
1 , . . . , σ

2∗
m , b,RSS) ∼ Np

[
b, (XX ′)−1∆

]
.

3. It follows by multiplication and use of the identity

(β∗ − b)′(XX ′)(β∗ − b) + (b∗ − β∗)′(XX ′)(b∗ − β∗)

= 2

(
β∗ − b+ b∗

2

)′
(XX ′)

(
β∗ − b+ b∗

2

)
+

1

2
(b∗ − b)′(XX ′)(b∗ − b),

that the conditional joint pdf of b∗ and β∗, given ∆, b,RSS, is

f(b∗,β∗|∆, b)

∝ exp

{
−1

2

[
2

∆

(
β∗ − b+ b∗

2

)′
(XX ′)

(
β∗ − b+ b∗

2

)
+

1

2∆
(b∗ − b)′(XX ′)(b∗ − b)

]}
.

4. Integrating out β∗, we get

f(b∗|∆, b,RSS) ∝ exp

{
−1

2

[
1

2∆
(b∗ − b)′(XX ′)(b∗ − b)

]}
.

5. Using b ∼ Np(β, σ
2(XX ′)−1), we multiply f(b∗|∆, b,RSS) with f(b) and use the identity below

to integrate out b:

(b∗ − b)′(XX ′)(b∗ − b)
2∆

+
(b− β)′(XX ′)(b− β)

σ2

=

(
1

σ2
+

1

2∆

)b−
(
β
σ2 + b∗

2∆

)
(

1
σ2 + 1

2∆

)
′(XX ′)

b−
(
β
σ2 + b∗

2∆

)
(

1
σ2 + 1

2∆

)
+

(b∗ − β)′(XX ′)(b∗ − β)

σ2 + 2∆
.

6. This readily yields the required conditional density of b∗, given ∆ as

f(b∗|∆) ∝ exp

{
−1

2

(b∗ − β)′(XX ′)(b∗ − β)

σ2 + 2∆

}
.
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7. It then follows that

(b∗ − β)′(XX ′)(b∗ − β)

σ2 + 2∆

∣∣∣∆ ∼ χ2
p,

and hence unconditionally as well. Obviously, T1 is independent of ∆, and hence that of T2

because b∗j ’s are independent of RSS∗j ’s, conditionally given b and RSS.

To determine the distribution of T2 = σ2+2∆∑m
j=1 RSS∗j

, note that this expression involves the random

variables {(RSS∗j , σ
2∗
j ), j = 1, . . . ,m}, and their distributions in turn depend on RSS. We proceed

in a very logical fashion by taking up the above random variables one group at a time in the natural

order they appear, namely, first {RSS∗j , j = 1, . . . ,m}, then {σ2∗
j , j = 1, . . . ,m}, and at the end

RSS. We again observe the following facts.

1. For j = 1, . . . ,m,
RSS∗j
σ2∗
j

∣∣∣σ2∗
1 , . . . , σ

2∗
m ,RSS ∼ χ2

n−p,

and all the χ2 variables are independent, and obviously they are also independent of σ2∗
j ’s. Let

us denote them by Cj , j = 1, . . . ,m. This fact is used in the denominator of T2.

2. We next note that

RSS

σ2∗
j

∣∣∣RSS ∼ χ2
n+α−p−2, j = 1, . . . ,m,

and, conditionally given RSS, these χ2 variables are independent, and obviously they are also

independent of RSS. We denote them by Bj , j = 1, . . . ,m.

3. Using the above two steps, T2 can be expressed as

σ2 + 2∆∑m
j=1 RSS∗j

∣∣∣RSS
d
=

σ2 + 2m−2RSS(
∑m

j=1
1
Bj

)

RSS
∑m

j=1
Cj
Bj

.

4. Finally, using the fact that RSS/σ2 ∼ χ2
n−p, and noting this last χ2, denoted as A, is independent

of all the previous χ2 variables, we get

T2
d
=

1 + 2m−2A(
∑m

j=1
1
Bj

)

A
∑m

j=1
Cj
Bj

.
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This completes the proof. �

Proof of Theorem 2. The proof is based on the following steps.

1. Given (b,RSS), the conditional joint pdf of (b∗, S2
comb) is given by

f(b∗,RSS∗|b,RSS) ∝ e
−n−p

2

[
m

(b∗−b)′(XX′)(b∗−b)+S2comb
RSS

]
×

(S2
comb)

nm−p
2
−1

RSSnm/2
.

2. The joint pdf of (b,RSS) is given by

fβ,σ2(b,RSS) ∝ e−
1
2

[
(b−β)′(XX′)(b−β)

σ2
+RSS

σ2

]
× (RSS)

n−p
2
−1

σn
.

Combining the above, we get the joint pdf of (b∗, S2
comb, b,RSS) which we use to sequentially

integrate out b and RSS. Writing R̃SS = RSS/(n− p), since

m(b∗ − b)′(XX ′)(b∗ − b)
R̃SS

+
(b− β)′(XX ′)(b− β)

σ2

=

(
1

σ2
+

m

R̃SS

)b− ( β
σ2 + mb∗

R̃SS
)

( 1
σ2 + m

R̃SS
)

′ (XX ′)
b− ( β

σ2 + mb∗

R̃SS
)

( 1
σ2 + m

R̃SS
)

+
(b∗ − β)′(XX ′)(b∗ − β)

(σ2 + (1/m)R̃SS)
,

integrating out b, we get the joint pdf of (b∗, S2
comb,RSS) as

fβ,σ2(b∗, S2
comb,RSS)

∝ e
− 1

2

[
(b∗−β)′(XX′)(b∗−β)

σ2+(1/m)R̃SS
+
S2comb
R̃SS

+RSS
σ2

]
×

(S2
comb)

nm−p
2
−1

(RSS)nm/2
× (RSS)−

p+2
2

σn
×
[

1

σ2
+

m

R̃SS

]−p/2
.

Putting ψ = RSS/σ2, the joint pdf of (b∗, S2
comb, ψ) simplifies as

fβ,σ2(b∗, S2
comb, ψ)

∝ e
− 1

2

[
(b∗−β)′(XX′)(b∗−β)

σ2(1+
ψ

m(n−p) )
+

(n−p)S2comb
σ2ψ

+ψ

]
× (S2

comb)
nm−p

2
−1 × (ψ)−

p+2
2 ×

[
1 +

m(n− p)
ψ

]−p/2
.

To complete the proof, note that, conditionally given ψ,

22



(b∗ − β)′(XX ′)(b∗ − β)

σ2(1 + ψ
m(n−p))

∼ χ2
p,

(n− p)S2
comb

σ2ψ
∼ χ2

nm−p, independent of b∗,

and, marginally, ψ ∼ fn,p(ψ) ∝ e−
ψ
2 (ψ)

n−p
2
−1. The result follows immediately upon noting that,

conditionally given ψ,

T 2
comb

[
ψ

m(n− p) + ψ

]
∼ p

m(mn− p)
Fp,mn−p.

This completes the proof. �

B Details of the Simulation Model

To perform the simulation studies of Section 4, we take

X =



1 1 . . . 1

x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

x41 x42 . . . x4n

I(x51 = 2) I(x52 = 2) . . . I(x5n = 2)

I(x51 = 3) I(x52 = 3) . . . I(x5n = 3)

I(x51 = 4) I(x52 = 4) . . . I(x5n = 4)

I(x51 = 5) I(x52 = 5) . . . I(x5n = 5)

I(x51 = 6) I(x52 = 6) . . . I(x5n = 6)



, β =



β1

β2

β3

β4

β5

β6

β7

β8

β9

β10



=



10

2

2

−3

−1

−2

1

2

2

4



, σ2 = 1,

where I(·) is the indicator function and the variables appearing in X are generated independently

for i = 1, . . . , n according to

x1i ∼ N(1, 1), log x2i ∼ N(0, 1), x3i ∼ Exponential(mean = 1), x4i ∼ Poisson(1),

P (x5i = 1) = P (x5i = 3) = P (x5i = 4) = P (x5i = 5) = 0.2, P (x5i = 2) = P (x5i = 6) = 0.1.
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