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Disclaimer

This report is released to inform interested parties

of ongoing research and to encourage discussion

of work in progress. The views expressed are the

author’s and not necessarily the Census Bureau’s.
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Outline

• Problem definition, specialized to 2-level models in complex

surveys

• Previous research – assumptions & theoretical results

• New Pseudo-likelihood EM method – exposition and simulation

results in 2-level linear ANOVA model

• Generality of available methods – Further models & examples
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Random Effects Models in Complex Surveys

Problem Formulation

• existence of design- and model-consistent estimator of multilevel-
model parameters in complex surveys with many independent
(ultimate) clusters including random effects

shared cluster effects make survey-weighted (pseudo)
loglikelihoods not directly applicable

• existence of consistent method-of-moments estimators

• existence of other (estimating-equation-based) consistent method-
of-moments estimators

• Key issue –validity of estimation methods for both non-
informative and informative weights
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Multilevel Survey Superpopulation Framework

Survey frame U, records {yi, zi}i∈U , probability sample S ⊂ U
with inverse single-inclusion (conditional) prob. weights wi

Multilevel: population units are multiply (here doubly-) indexed
i = (j, k) where k(i) denotes cluster, Uk = {i = (j, k) : k = k(i)}
Assume sample hierarchical with cluster sampling weights ωk,
within-cluster weights wj|k ≡ w(j,k)/ωk

Superpopulation model {(yi, zi) : i ∈ Uk} independent & satisfy

y(j,k)
indep∼ f(y | z(j,k), ak, β, η1), ak

indep∼ g(a, η2), θ = (β, η1, η2)

Noninformative sampling (of clusters/units) if {(yi, zi) : i =
(j, k) ∈ S ∩ Uk} satisfies same model, for k ∈ SC = {k(i) : i ∈ S}
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Background — Previous Work, Quick Summary

With noninformative sampling: consistent estimation can ignore
survey weights. What about informative sampling of clusters ?

Binder (1983) & Skinner (1989) showed that pseudo-likelihood∑
i∈S wi log f(Yi |Zi, θ) provides valid inference under independent-

unit parametric superpopulation model even under informative
(outcome-data-biased) sampling

Pfeffermann et al. (1998) considered informatively sampled linear
(2-level ANOVA) model

y(j,k) = β′z(j,k) + ak + ε(j,k), ak ∼ N (0, σ2
a), ε(j,k) ∼ N (0, σ2

e )

with complicated iterative WLS procedure involving weight-rescaling.
No proofs given; method apparently works with noninformative
sampling (in their and Korn & Graubard’s simulations).
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Background Summary, Linear Models Cont’d

Korn & Graubard (2003) showed in case with no covariates z(j,k)
(β = µ): Pfeffermann et al. methods not consistent for general

informative sampling; K & G provided consistent method-of-

moments method based on joint inclusion probabilities.

Asparouhov (2006) amplified weight-scaling idea, showing con-

sistency in some informative-sample cases; appealed to same

‘pseudo-logLik’ as Rabe-Hesketh & Skrondal (2006), below.
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Special Role of Linearity

With informatively sampled clusters, linearity enables consistent

estimation via WLS and residual moments:

β̂WLS =
( ∑

(j,k)∈S
w(j,k)z

⊗2
(j,k)

)−1 ∑
(j,k)∈S

w(j,k)z(j,k) y(j,k)

σ̂2
e,Mom = (

∑
k∈SC

ωk)−1 ∑
(j,k)∈S

ωk var(ê(j,k) : (j, k) ∈ S)

σ̂2
a,Mom = (

∑
(j,k)∈S

w(j,k))−1 ∑
(j,k)∈S

w(j,k) ê
2
(j,k) − σ̂2

e,Mom

ê(j,k) = y(j,k) − β̂′WLS z(j,k)

8



Background Summary, General Models

Rabe-Hesketh and Skrondal (2006): maximize logLik =∑
k∈SC

ωk log
∫

exp
( ∑
j∈Sk

wj|k log f(y(jk) | z(jk), ak, β, η1)
)
g(ak, η2)dak

But integral expression is not a likelihood, and consistency of

estimation is justified only when (all) cluster-sizes go to ∞.

Rao, Verret and Hidiroglou (2013) generalize Korn & Graubard’s

method of moments, estimating consistently based on composite

pairwise likelihoods weighted by joint inclusion probabilities.
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Pseudo-EM Method

Census augmented logLikelihood∑
k

log g(ak, η2) +
∑

(j,k)∈Uk
log f(y(j,k)|z(j,k), ak, β, η1)

is estimated design-consistently (for augmented survey dataset

and all parameters θ) by lw(θ) =∑
k∈SC

ωk log g(ak, η2) +
∑

(j,k)∈U
w(j,k) log f(y(j,k)|z(j,k), ak, β, η1)

As for usual EM algorithm, but now using estimated log-likelihood,

iteratively for initial θ0,

θ1 = arg maxθ Eθ0

(
lw(θ) | I[(j,k)∈S], w(j,k), y(j,k), z(j,k)

)
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Implementation & Theory for Pseudo-EM

Need to be able to compute conditional distributions for ak in

last E-step. For this, generally need noninformative sampling

within clusters, with weights wj|k free of y(j,k), ak.

When this holds, under general asymptotic conditions (also re-

lated to EM convergence and unique MLE or local starting

values), convergent pseudo-EM maximizer is approximately the

census-logLik MLE.
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Special Case of Linear ANOVA Model

(1) When within-cluster sampling is noninformative, explicit

conditional distributions ak ∼ N (γk(ȳ·,k − β′z̄·,k), (1− γk)σ2
a)

(where γk = nkσ
2
e /(nkσ

2
e + σ2

a), nk = |Sk|) lead to explicit EM

iterations θ0 7→ θ1 in terms of weighted survey data.

(2) When y(j,k) = µ+ak+ε(j,k), and weights are constant within

cluster, pseudo-EM estimator is identical to WLS and residuals-

based estimators µ̂WLS, σ̂2
a,Mom, σ̂

2
e,Mom. Analogous result holds

in regression ANOVA when z(j,k) are constant across j.

(3) When sampling within-cluster is noninformative, pseudo-EM

and WLS & residual-MOM estimators remain extremely close

and consistent, as confirmed by simulations.
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Linear Regression ANOVA, cont’d

(3) In some settings with informative within-cluster sampling,

pseudo-EM still does remarkably well; e.g., where a noninforma-

tive sample is modified as in Korn and Graubard by subsampling

with prob. 1/2 those units with |ε(j,k)| > 0.6745σe, based on

1000 iterations, in samples of ≈ 500 clusters of size ≈ 24 from

a population of 2 · 106) the average parameter estimators were

β0 β1 σ2
a σ2

e
PseudoEM -0.0124 1.0014 0.9946 0.9816

WLS/Mom -0.0084 1.0039 1.2748 0.7320
True 0 1 1 1
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Further Research on this Topic

In other (nonlinear) models, only pseudo-EM provides consistent

estimators based on complex surveys with informatively sampled

clusters in terms of single-inclusion probability weights, even if

sampling within clusters is noninformative:

(i) Beta-binomial with random effects:

y(j,k) ∼ Binom(νjk, πk), πk ∼ Beta(τµ, τ(1− µ) iid

(ii) Logistic regression with random effects:

y(j,k) ∼ Binom(νjk,plogis(β′z(j,k) + ak)), with ak ∼ N (0, σ2
a) iid

(iii) Nonlinear regression: y(j,k) = h(β′z(j,k) + ak) + ε(j,k)
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Extensions, continued

In these model settings (i) still allows explicit conditional dis-

tributions and EM iterations. In (ii) and (iii), the E-step must

be implemented numerically, with an approach such as adaptive

Gaussian Quadrature (Pinheiro & Bates 1995).
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