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North American Industry Classification System

• U.S. Census Bureau classifies business establishments according to 
NAICS based on primary economic activities

• NAICS is utilized throughout the survey life cycle
• Sample selection
• Data collection
• Publication

• Hierarchical six-digit coding scheme
• First two digits of NAICS code represent economic sector (22 – Utilities)
• Additional non-zero digits add industry detail (221210 – Natural Gas Distribution)
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Economic Census

• Conducted every five years for years ending in “2” and “7”
• Extensive survey of approximately eight million establishments that 

covers most industries and all geographic areas of the U.S.
• Key statistics include

• Total number of establishments
• Total number of employees
• Value of sales, shipments, receipts, and revenue
• Total annual payroll

• Data products are presented by NAICS and geography
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Self-Designated 
Kind of Business 
Question from 2012 
Economic Census
• Question asks respondents to 

describe their business
• Respondent has the option to write 

in a business description if none of 
the checkbox descriptions is accurate

• Clerical analysis of write-in text and 
manual NAICS assignment are 
resource-intensive tasks

Source: 2012 Economic Census
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NAICS Autocoder for New Establishments

• Developed in collaboration with the Internal Revenue Service (IRS) 
and Social Security Administration

• Business names and descriptions come from the IRS’s SS-4 form, 
which is used to apply for an Employer Identification Number

• Based on dictionary of words, two-word sequences (bigrams), and 
complete write-ins that occur frequently and are highly associated 
with certain NAICS codes

• Logistic regression model with dictionary mapping percentages as 
predictors
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Other Autocoding Efforts

• NAICS autocoding for the 2017 Economic Census
• Compare write-in text to a look-up list of 5,000 descriptions and their 

associated NAICS code
• If exact match, then assign a NAICS code
• Able to assign NAICS code for 68,897 of 511,251 write-ins

• “Throw-away” write-in identification for the 2017 Economic Census
• Compare write-in text to a look-up list of text not predictive of NAICS
• If exact match, then flag to process separately
• Example text includes “NA” and “business closed”
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Write-In Data

• Self-designated kind of business write-in observations from the 2012 
Economic Census

• Observations with throw-away write-in text are removed
• Dataset covers all 20 sectors of the economy
• 377,708 observations

• Other text variables besides write-in text
• Business name
• Line label (checkbox description associated with the write-in text box)
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Breakdown of 2012 
Write-In Dataset by 
2-Digit NAICS Code
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2-Digit NAICS

The four most frequently occurring 2-
digit NAICS codes are:
• 42 (wholesale trade)

• 44-45 (retail trade)

• 54 (professional, scientific, and 
technical services)

• 81 [other services (except public 
administration)]

Source: 2012 Economic Census
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Bag of Words Approach to Text Classification

• Models based on the occurrences of individual words and bigrams in 
the text variables

• Model predictors, or features, are binary indicators of all the words 
and bigrams appearing in the dataset

• Equals 1 if word or bigram is in the text
• Equals 0 otherwise

• Features created separately for write-in, business name, and line label
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Text Variable Standardization

• Convert to lowercase
• Deal with punctuation
• Remove extra whitespace
• Remove common English “stop” words
• Fictional example

• Original: Sea-Doo and Jet Ski sales,PARTS & service.
• Standardized: sea doo jet ski sales parts service

• Determine words and bigrams based on standardized text
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Machine Learning Algorithms

• Two commonly used learning algorithms for text classification
• Naïve Bayes

• Bernoulli implementation (suited for binary features)
• Smoothness parameter – α

• Logistic regression
• One-versus-rest multiclass classification with L2 penalty
• Inverse of regularization strength parameter – C

• Stratified 5-fold cross-validation with a grid search to optimize 
parameter values

12



Model Evaluation – 2012 Economic Census

• Randomly split 377,708 observations into training and test sets
• Fit models using training set
• Apply models to test set

• Stratified simple random sample with strata defined by 2-digit NAICS 
and sampling fraction equal to 90 percent

• Training set has 339,936 observations
• Test set has 37,772 observations
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Cross-Validated 
Parameter Values 
and Test Set 
Accuracies

• Given the same features, logistic 
regression achieves higher accuracy 
than naïve Bayes

• Test set accuracies greater than 70 
percent are highlighted

• Logistic regression with WI, BN, and 
LL features is the best

Source: 2012 Economic Census

WI – write in

BN – business name

LL – line label

CV – cross-validation

Learning Algorithm Text 
Features

Parameter 
Value (CV)

Test Set
Accuracy

Naïve Bayes WI α = 0.1 0.6424

Naïve Bayes WI, BN α = 0.1 0.6593

Naïve Bayes WI, LL α = 0.2 0.7147

Naïve Bayes WI, BN, LL α = 0.1 0.7336

Logistic Regression WI C= 1.5 0.6454

Logistic Regression WI, BN C = 1 0.6866

Logistic Regression WI, LL C = 1.5 0.7483

Logistic Regression WI, BN, LL C = 1.5 0.7697
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Confusion Matrix for Best Logistic Model

Source: 2012 Economic Census
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Model Evaluation – 2017 Economic Census

• Pulled 226,124 write-in observations from the 2017 Economic Census 
database

• Distribution of 2-digit NAICS similar to that in 2012 dataset
• Fit logistic regression models using full 2012 data and apply to 2017 data

• Features: WI, BN, LL – accuracy of 0.4387
• Features: WI, BN – accuracy of 0.6118

• Differences in line label wording between 2012 and 2017 could explain 
underperformance of model with WI, BN, and LL features
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Future Work

• More advanced machine learning algorithms
• Different text analytics techniques
• Prediction at a more detailed NAICS level
• Combining data from multiple Economic Census years
• Non-text predictors

• Class of customer information to help distinguish retail from wholesale
• Other NAICS predictions (for example, naïve Bayes prediction and estimated 

2-digit NAICS at time of questionnaire mail-out)

17



Contact Information

• Brian.Dumbacher@census.gov

• Anne.Sigda.Russell@census.gov
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