
Estimating the Variance of Complex Differentially
Private Algorithms

Robert Ashmead

JSM 2019, Denver, Colorado



Collaborators

John Abowd, Philip Leclerc, and William Sexton of the U.S.
Census Bureau and the entire team working on differentially private
disclosure avoidance methods for the 2020 Decennial Census.

2 / 30



Disclaimer

This presentation is to inform interested parties of ongoing research
and to encourage discussion of work in progress. Any views
expressed on statistical, methodological, technical, or operational
issues are those of the author and not the U.S. Census Bureau.
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Research Question

▶ Most common differentially private algorithms have known,
closed-form variances that are not dependent on the true
query answer itself.

▶ How do we estimate the variance for more complex methods
which do not necessarily meet these properties?
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Differential Privacy

Definition

A randomized algorithm M is ϵ-differentially private if for all
S ⊂ R and for all neighboring datasets x , y :

Pr [M(x) ∈ S ] ≤ eϵPr [M(y) ∈ S ]

Where R is the output space of M and the randomness is solely
due to the algorithm M.
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The Privacy-Loss Budget

One of the best features of differential privacy is the way one can
track the (global) privacy-loss budget, ϵ, of a mechanism from its
possibly many sub-components.

The privacy-loss budget can be translated into a worst-case bound
on an attacker’s ability to improve their inference about a person’s
data upon seeing the mechanism output relative to a
counterfactual baseline of the inference the attacker would have
made if that person’s data had been deleted/changed/never
collected before running the mechanism.
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Common DP Algorithms Have Known Variance

The Laplace distribution (two-sided exponential distribution)
(centered at 0) with scale b has pdf:

Lap(y |b) = 1

2b
e

(
− |y|

b

)

Variance = 2b2

Given data x and a linear query f with sensitivity ∆f , the Laplace
Mechanism is defined as M(x |ϵ) = f (x) + Y where
Y ∼ Lap(∆f /ϵ)

The variance of the Laplace mechanism is location invariant,
meaning it doesn’t depend on the value of f (x).
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Other Mechanisms Also Have Known Variance

▶ The (two-sided) Geometric Mechanism has variance

2 ∗ e
−ϵ
∆f

(1− e
−ϵ
∆f )2

▶ The matrix mechanism (Li, et al., 2015) used for answering
many queries simultaneously based on a strategy matrix, also
has known and location invariant variance
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Post-Processing DP algorithms can improve accuracy, but
complicates the variance

▶ Enforcing Non-negativity

▶ Maintaining Integers with (controlled) rounding

▶ Constraints to (known or invariant) marginals

Any post-processing is allowed as long as it only utilizes the output
of the DP mechanism and not the input

Post-processing changes the properties of the variance.

The variance could depend on the true query answer which is not
known.
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A Simple Example

Apply the Laplace mechanism to a query answer with sensitivity 1
and with ϵ = 0.1, 1, 10. Enforce non-negativity.
True query answer = 1

ϵ Variance Variance, non-negativity Bias, non-negativity

0.1 200 79.37 4.53
1 2 1.25 0.17
10 0.02 0.02 0.0

True query answer = 10

ϵ Variance Variance, non-negativity Bias, non-negativity

0.1 200 122.35 1.82
1 2 1.98 0.0
10 0.02 0.02 0.0
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A More Complicated Example

In the “Topdown” algorithm for the Disclosure Avoidance System
(DAS) for the 2020 Decennial Census the algorithm post-processes
the differentially private estimates to enforce

▶ Non-negativity

▶ Integer answers

▶ Constraints to invariant marginals

▶ Hierarchical consistency between tables
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Variance Estimation Options

▶ Use additional privacy-loss budget to estimate the difference
between the released DP query estimates and the true
estimates

▶ A rough approximation based on location-invariant closed
form methods

▶ Monte Carlo methods
▶ Can we just simulate the mechanism + post-processing?

▶ Yes, but we would have to utilize additional privacy-loss
budget

▶ Proposed ”Parametric Bootstrap” method
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Proposed “Parametric Bootstrap” Method

Let d be our dataset, M() be our DP mechanism, and q() be a
query of interest.

Suppose our mechanism releases an estimate of the dataset itself
d̂ = M(d).

If d̂ is a reasonably accurate estimate of d , then might it be used
to approximate the variance

Var(q(M(d))) ≈ Var(q(M(d̂)))?

We do not need to spend the privacy-loss budget to simulate
Monte Carlo draws of q(M(d̂))

13 / 30



“Topdown” Mechanism as a Tree
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“Topdown” Mechanism Summary

A. Take noisy histogram measurements using ϵ1

B. Solve a constrained non-negative least-squares optimization
problem which minimizes the squared distance between the
solution and the noisy measurements, has a non-negative
solution, and meets the constraints.

C. Solve a constrained rounding problem, which finds a nearby
non-negative integer solution minimizing the distance from
the LS solution (step B.) and also meets the constraints.

D. The solution is the privacy-protected histogram
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1940 Decennial Census Data Summary

▶ Data available from IPUMS (Ruggles et al., 2018)

▶ Geography levels (4): nation, state, county, enumeration
district

▶ Schema: 8 x 2 x 5 x 5 x 6 = 2400 cells

▶ Variables: GQ/HH type, voting-age, Hispanic, citizen, race

▶ 132,404,766 total persons; 134,857 enumeration districts:
▶ 2400*134,857 = 323,656,800 total cells

▶ Almost 3 times as many cells as total persons
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Simulation Summary

▶ For privacy-loss budgets of 0.1, 1.0, and 5.0 estimate the
variance of a number of queries at different geographic levels.

▶ Queries are a variety of marginal and crosses of the different
variables

▶ Nation, State, and County
▶ Estimate the variance using both the Monte Carlo (MC)

method (truth) and the proposed Parametric Bootstrap (PB)
method.

▶ The PB method uses the first run of the MC method as its
estimate of the truth

▶ Based on n = 100 simulations in both cases
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Results
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Results II
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Results III
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Results III
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Discussion

▶ The PB approach estimates the variance exceptionally well
considering that it does not spend additional privacy-loss
budget

▶ Does better for larger queries than smaller ones

▶ Improves with a larger privacy-loss budget

▶ In general, its success will be dependent on how well the
initial DP estimate matches the truth

▶ Additional work is needed on sufficient number of runs
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