Our Team

Johann Gagnon-Bartsch (U. Michigan)
Fred Conrad (U. Michigan)
Michael Schober (New School)
Robyn Ferg (U. Michigan, Westat)
Juejue Wang (U. Michigan)
Rebecca Dolgin (New School)
Mao Li (U. Michigan)
Paul Beatty (US Census Bureau)
Session 7: Using Google Searches and Tweets for Social Research

New Thinking About When Social Media and Survey Responses May Align

Frederick G. Conrad
Michael F. Schober
Johann A. Gagnon-Bartsch
Robyn Ferg
Mao Li
Paul C. Beatty

1University of Michigan
2New School
3Westat
4US Census Bureau

Note: Views and ideas expressed here are those of the authors and not of the US Census Bureau
Our Goal

Use social media data to improve Census Bureau activities, broadly considered
Our Goal

Collection

Dissemination
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
- Improve questionnaire design
 - Question phrasing, word choice, etc.
- Questions not asked
- Sampling strategies
 - Oversample demographic groups or geographical regions where responses may be rapidly changing
Collection

Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
- Improve questionnaire design
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
- Improve questionnaire design
 - Question phrasing, word choice, etc.
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
- Improve questionnaire design
 - Question phrasing, word choice, etc.
 - Questions not asked
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
- Improve questionnaire design
 - Question phrasing, word choice, etc.
 - Questions not asked
- Sampling strategies
Examples of how insights from social media may improve data collection:

- Improve outreach, reduce non-response, e.g., by addressing trust concerns
 - Data won’t be shared with other agencies
 - Data won’t be hacked
 - Data will be used for good, etc.
- Improve questionnaire design
 - Question phrasing, word choice, etc.
 - Questions not asked
- Sampling strategies
 - Oversample demographic groups or geographical regions where responses may be rapidly changing
Examples of how insights from social media may improve data analysis and dissemination:

- Understand how data is used, and by whom
Examples of how insights from social media may improve data analysis and dissemination:

- Understand how data is used, and by whom
- Discover unmet needs
Dissemination

Examples of how insights from social media may improve data analysis and dissemination:

- Understand how data is used, and by whom
- Discover unmet needs
- Improve data quality, e.g., survey precision
Background (from our point of view)

- Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
- Cody, Reagan, Dodds, and Danforth (2016)
- Daas and Puts (2014)

- Further investigation revealed that some of the reported associations may have been spurious

- Conrad, et al. (2019)

- Open question: When and how can social media data be used for public opinion research?
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
- O’Connor, Balasubramanyan, Routledge, and Smith (2010)
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
- O’Connor, Balasubramanyan, Routledge, and Smith (2010)
- Cody, Reagan, Dodds, and Danforth (2016)
Background (from our point of view)

- Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys
 - AAPOR task force on big data (Murphy, et al., 2014)
 - O’Connor, Balasubramanyan, Routledge, and Smith (2010)
 - Cody, Reagan, Dodds, and Danforth (2016)
 - Daas and Puts (2014)

- Further investigation revealed that some of the reported associations may have been spurious
 - Conrad, et al. (2019)

Open question: When and how can social media data be used for public opinion research?
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
- O’Connor, Balasubramanyan, Routledge, and Smith (2010)
- Cody, Reagan, Dodds, and Danforth (2016)
- Daas and Puts (2014)

Further investigation revealed that some of the reported associations may have been spurious
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys
 - AAPOR task force on big data (Murphy, et al., 2014)
 - O’Connor, Balasubramanyan, Routledge, and Smith (2010)
 - Cody, Reagan, Dodds, and Danforth (2016)
 - Daas and Puts (2014)
Further investigation revealed that some of the reported associations may have been spurious
 - Conrad, et al. (2019)
Considerable enthusiasm for using social media data to augment, or even replace, traditional surveys

- AAPOR task force on big data (Murphy, et al., 2014)
- O’Connor, Balasubramanyan, Routledge, and Smith (2010)
- Cody, Reagan, Dodds, and Danforth (2016)
- Daas and Puts (2014)

Further investigation revealed that some of the reported associations may have been spurious

- Conrad, et al. (2019)

Open question: When and how can social media data be used for public opinion research?
Paradigms

- Social media as analogous to a survey
Paradigms

- Social media as analogous to a survey
- Social media as analogous to a focus group
This talk: Qualitative insights

- What concerns are expressed?
This talk: Qualitative insights

- What concerns are expressed?
- What misinformation is present?
This talk: Qualitative insights

- What concerns are expressed?
- What misinformation is present?
- Who is citing Census data, and how?
This talk: Qualitative insights

- What concerns are expressed?
- What misinformation is present?
- Who is citing Census data, and how?
- More generally: **What is being said?**
This talk: Qualitative insights

- What concerns are expressed?
- What misinformation is present?
- Who is citing Census data, and how?
- More generally: **What is being said?**
- Just read the tweets!
Key Challenge
Ideal Solution
Ideal Solution

Key Findings
Many people expressed concern about ... Several others made the point that....
Random Sampling

Key Findings
Many people expressed concern about ... Several others made the point that
Computer Analysis

Key Findings

Many people expressed concern about ... Several others made the point that....
Interactive Analysis

Key Findings

Many people expressed concern about ... Several others made the point that....
Questions

1. What is the optimal level and type of automation to allow a human analyst to obtain novel, timely, and credible insights?
Questions

1. What is the optimal level and type of automation to allow a human analyst to obtain novel, timely, and credible insights?
2. To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?
Questions

1. What is the optimal level and type of automation to allow a human analyst to obtain novel, timely, and credible insights?
2. To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?
3. To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?
Question 1

What is the optimal level and type of automation to allow a human analyst to obtain novel, timely, and credible insights?

Tweet Browser:

- Interactive tool to allow a human to explore and digest a large social media corpus.
- Goal is to see "both the forest and the trees."
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- Bottom up:
 - Computer-generated "topics"
 - User specified parameters (algorithm, number of topics, etc.)
 - Exploration can be iterative and interactive
 - May start with computer-generated topics, and refine manually
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can "drill down" into a topic
 - Browse random subsets of tweets
 - Graphical depictions, e.g., of important words
 - Distribution of tweets over time, geography
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.

- Bottom up:
 - Computer-generated "topics"
 - User specified parameters (algorithm, number of topics, etc.)

Exploration can be iterative and interactive.
May start with computer-generated topics, and refine manually (keywords, dates, etc.).
May start with manually specified subsets, and then apply automated topic modeling.
Either way, the process may be recursive, so users can "drill down" into a topic.

- Browse
 - Random subsets of tweets
 - Graphical depictions, e.g., of important words
 - Distribution of tweets over time, geography
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.

- Explorations can be iterative and interactive.

- May start with computer-generated topics and refine manually (keywords, dates, etc.).

- May start with manually specified subsets and then apply automated topic modeling.

- Either way, the process may be recursive, so users can "drill down" into a topic.

- Browse random subsets of tweets.

- Graphical depictions, e.g., of important words.

- Distribution of tweets over time, geography.
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

Exploration can be iterative and interactive.

May start with computer-generated topics, and refine manually.

May start with manually specified subsets, and then apply automated topic modeling.

Either way, the process may be recursive, so users can “drill down” into a topic.
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- Bottom up:
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- Bottom up:
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- Exploration can be iterative and interactive
- May start with computer-generated topics, and refine manually
- May start with manually specified subsets, and then apply automated topic modeling
- Either way, the process may be recursive, so users can “drill down” into a topic

- Browse random subsets of tweets
- Graphical depictions, e.g., of important words
- Distribution of tweets over time, geography
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- Exploration can be **iterative** and **interactive**
Tweet Browser

- Top down:
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- Bottom up:
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- Exploration can be **iterative** and **interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- Exploration can be **iterative** and **interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- **Exploration can be iterative and interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can “drill down” into a topic
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.
- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)
- **Exploration can be iterative and interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can “drill down” into a topic
- **Browse**
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- **Exploration can be iterative and interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can “drill down” into a topic

- **Browse**
 - Random subsets of tweets
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- **Exploration can be iterative and interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can “drill down” into a topic

- **Browse**
 - Random subsets of tweets
 - Graphical depictions, e.g., of important words
Tweet Browser

- **Top down:**
 - Specify keywords, hashtags, etc.
 - Dates, whether retweet, etc.
 - Sentiment, etc.

- **Bottom up:**
 - Computer-generated “topics”
 - User specified parameters (algorithm, number of topics, etc.)

- **Exploration can be iterative and interactive**
 - May start with computer-generated topics, and refine manually (keywords, dates, etc.)
 - May start with manually specified subsets, and then apply automated topic modeling
 - Either way, the process may be recursive, so users can “drill down” into a topic

- **Browse**
 - Random subsets of tweets
 - Graphical depictions, e.g., of important words
 - Distribution of tweets over time, geography
The plot below contains 26311 total tweets.

Most common words in each cluster:

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Proportion of Tweets</th>
<th>Number of Tweets</th>
<th>Top 5 Stemmed Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.557</td>
<td>14644</td>
<td>but Californian questionnaires repkatieport struggl</td>
</tr>
<tr>
<td>4</td>
<td>0.053</td>
<td>1397</td>
<td>bug debt jimmyrayn trust unionist</td>
</tr>
<tr>
<td>6</td>
<td>0.023</td>
<td>617</td>
<td>com news theguardian trust us</td>
</tr>
<tr>
<td>3</td>
<td>0.043</td>
<td>1124</td>
<td>case judg mail probe trust</td>
</tr>
<tr>
<td>1</td>
<td>0.241</td>
<td>6346</td>
<td>2020census count mail trust uscensusbureau</td>
</tr>
<tr>
<td>5</td>
<td>0.019</td>
<td>511</td>
<td>crime given minggao26 propens trust</td>
</tr>
<tr>
<td>2</td>
<td>0.037</td>
<td>983</td>
<td>cel good mail sun trust</td>
</tr>
<tr>
<td>7</td>
<td>0.026</td>
<td>689</td>
<td>baddcompani hansilowang right st trust</td>
</tr>
</tbody>
</table>
 Longer-term goal

- Systematically explore different workflows
Longer-term goal

- Systematically explore different workflows
 - Purely top-down vs. purely-bottom up vs. begin top-down, etc.
Longer-term goal

▶ Systematically explore different workflows
 ▶ Purely top-down vs. purely-bottom up vs. begin top-down, etc.
 ▶ Hypothesis driven?
Longer-term goal

- Systematically explore different workflows
 - Purely top-down vs. purely-bottom up vs. begin top-down, etc.
 - Hypothesis driven?
 - Spend time reading many tweets, or glance at summaries?
Longer-term goal

- Systematically explore different workflows
 - Purely top-down vs. purely-bottom up vs. begin top-down, etc.
 - Hypothesis driven?
 - Spend time reading many tweets, or glance at summaries?
- Requires systematic evaluation of insights
Longer-term goal

- Systematically explore different workflows
 - Purely top-down vs. purely-bottom up vs. begin top-down, etc.
 - Hypothesis driven?
 - Spend time reading many tweets, or glance at summaries?
- Requires systematic evaluation of insights
 - Consistent format for reporting insights
Longer-term goal

- Systematically explore different workflows
 - Purely top-down vs. purely-bottom up vs. begin top-down, etc.
 - Hypothesis driven?
 - Spend time reading many tweets, or glance at summaries?
- Requires systematic evaluation of insights
 - Consistent format for reporting insights
 - Scoring for quality, novelty, credibility
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
 - Whether data is accurate
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
 - Whether data is accurate
 - Whether data will be used for good
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
 - Whether data is accurate
 - Whether data will be used for good
- Two approaches:
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
 - Whether data is accurate
 - Whether data will be used for good
- Two approaches:
 - Read a random sample of “census” tweets from 2020
Question 2

To what extent do the insights obtained from social media posts reproduce those obtained from traditional focus groups?

Case study:

- 2020 Census Barriers, Attitudes, and Motivators Study (CBAMS)
- Can attitudes and opinions revealed in the focus group also be discovered on Twitter?
- Focus specifically on trust concerns:
 - Whether data might be shared with other agencies
 - Whether data might be hacked
 - Whether data is accurate
 - Whether data will be used for good
- Two approaches:
 - Read a random sample of “census” tweets from 2020
 - “Search” for tweets using BERT-derived distance metrics
Quote from CBAMS:

“The government has always been intrusive as it is, and it’s probably a level of intrusion. That’s why people are like, ’Hold on, what you want to know what’s in my bed, at my house, and who’s using my toilet? You should go mind your business.”

Tweets:

▶ “@Mededitor A surprisingly lean census. I recall in other years being asked to report the number of toilets in my home!”
▶ “The census is full of questions that I’m not sure I’d want a government to know about me.”
We explored several other quotes from CBAMS
In all cases, we were able to find tweets expressing similar concerns / opinions
We conclude that, at least on this topic, attitudes and opinions revealed in the focus group can also be discovered on Twitter
Still an open question:
 Would the insights derived from an analysis of social media replicate those from a focus group?
 For example, would a “blind” analysis have also highlighted the same trust concerns?
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

▶ CBAMS
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS
- Approach:
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS
- Approach:
 - Read a random sample of “census” tweets from 2020
 - Findings:
 - Several opinions were prominent on Twitter that did not appear in CBAMS
 - Example: Refusal to participate in the Census if it did not contain a citizenship question
 - Highlights ability of social media to provide insights on opinions of otherwise hard-to-reach populations
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

▶ CBAMS

▶ Approach:
 ▶ Read a random sample of “census” tweets from 2020
 ▶ Read a random sample of “census + citizenship” tweets from 2020

Findings:

▶ Several opinions were prominent on Twitter that did not appear in CBAMS
 Example: Refusal to participate in the Census if it did not contain a citizenship question

Highlights ability of social media to provide insights on opinions of otherwise hard-to-reach populations
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS
- Approach:
 - Read a random sample of “census” tweets from 2020
 - Read a random sample of “census + citizenship” tweets from 2020
 - Sampled in various ways; several hundred tweets

Findings:

- Several opinions were prominent on Twitter that did not appear in CBAMS
- Example: Refusal to participate in the Census if it did not contain a citizenship question
- Highlights ability of social media to provide insights on opinions of otherwise hard-to-reach populations
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS

- Approach:
 - Read a random sample of “census” tweets from 2020
 - Read a random sample of “census + citizenship” tweets from 2020
 - Sampled in various ways; several hundred tweets

- Findings:
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS

 - Approach:
 - Read a random sample of “census” tweets from 2020
 - Read a random sample of “census + citizenship” tweets from 2020
 - Sampled in various ways; several hundred tweets

 - Findings:
 - Several opinions were prominent on Twitter that did not appear in CBAMS
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS

 - Approach:
 - Read a random sample of “census” tweets from 2020
 - Read a random sample of “census + citizenship” tweets from 2020
 - Sampled in various ways; several hundred tweets

 - Findings:
 - Several opinions were prominent on Twitter that did not appear in CBAMS
 - Example: Refusal to participate in the Census if it did not contain a citizenship question
Question 3

To what extent do social media posts provide insights that complement or are entirely distinct from those obtained from traditional focus groups?

Case study:

- CBAMS
- Approach:
 - Read a random sample of “census” tweets from 2020
 - Read a random sample of “census + citizenship” tweets from 2020
 - Sampled in various ways; several hundred tweets
- Findings:
 - Several opinions were prominent on Twitter that did not appear in CBAMS
 - Example: Refusal to participate in the Census if it did not contain a citizenship question
 - Highlights ability of social media to provide insights on opinions of otherwise hard-to-reach populations
Thank You

We gratefully acknowledge support from the US Census Bureau through a cooperative agreement with the University of Michigan and the New School, “New Approaches to Analyzing Social Media Content for Enhancing Census Bureau Data” (award #CB20ADR0160002)